summaryrefslogtreecommitdiff
path: root/stereographic.hpp
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2021-01-05 18:11:21 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2021-01-05 18:11:21 +0100
commit5ee6815f0734b2089c5b4c068cc21f2983bdba24 (patch)
tree179e2ec28f57662ce91491d79799270f2727b144 /stereographic.hpp
parent7c3e71970b6f2d48530bc2ab4fc0f2932522b98b (diff)
downloadcode-5ee6815f0734b2089c5b4c068cc21f2983bdba24.tar.gz
code-5ee6815f0734b2089c5b4c068cc21f2983bdba24.tar.bz2
code-5ee6815f0734b2089c5b4c068cc21f2983bdba24.zip
A lot of work, and fixed a huge bug regarding the meaning of .dot in the Eigen library for complex vectors.
Diffstat (limited to 'stereographic.hpp')
-rw-r--r--stereographic.hpp67
1 files changed, 45 insertions, 22 deletions
diff --git a/stereographic.hpp b/stereographic.hpp
index 4109bc7..59432b7 100644
--- a/stereographic.hpp
+++ b/stereographic.hpp
@@ -1,12 +1,14 @@
#include <eigen3/Eigen/Cholesky>
+#include "Eigen/src/Core/util/Meta.h"
#include "p-spin.hpp"
+#include "unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h"
Vector stereographicToEuclidean(const Vector& ζ) {
unsigned N = ζ.size() + 1;
Vector z(N);
- Scalar a = ζ.dot(ζ);
- std::complex<double> b = 2.0 * sqrt(N) / (1.0 + a);
+ Scalar a = ζ.transpose() * ζ;
+ Scalar b = 2 * sqrt(N) / (1.0 + a);
for (unsigned i = 0; i < N - 1; i++) {
z(i) = b * ζ(i);
@@ -32,15 +34,14 @@ Matrix stereographicJacobian(const Vector& ζ) {
unsigned N = ζ.size() + 1;
Matrix J(N - 1, N);
- Scalar b = ζ.dot(ζ);
+ Scalar b = ζ.transpose() * ζ;
for (unsigned i = 0; i < N - 1; i++) {
for (unsigned j = 0; j < N - 1; j++) {
- J(i, j) = -4.0 * ζ(i) * ζ(j);
+ J(i, j) = - 4 * sqrt(N) * ζ(i) * ζ(j) / pow(1.0 + b, 2);
if (i == j) {
- J(i, j) += 2.0 * (1.0 + b);
+ J(i, j) += 2 * sqrt(N) * (1.0 + b) / pow(1.0 + b, 2);
}
- J(i, j) *= sqrt(N) / pow(1.0 + b, 2);
}
J(i, N - 1) = 4.0 * sqrt(N) * ζ(i) / pow(1.0 + b, 2);
@@ -49,25 +50,40 @@ Matrix stereographicJacobian(const Vector& ζ) {
return J;
}
-Matrix stereographicMetric(const Vector& ζ) {
- unsigned N = ζ.size();
- Matrix g(N, N);
+Matrix stereographicMetric(const Matrix& J) {
+ return J * J.adjoint();
+}
+
+Eigen::Tensor<Scalar, 3> stereographicChristoffel(const Vector& ζ, const Matrix& gInvJac) {
+ unsigned N = ζ.size() + 1;
+ Eigen::Tensor<Scalar, 3> dJ(N - 1, N - 1, N);
- double a = ζ.cwiseAbs2().sum();
- Scalar b = ζ.dot(ζ);
+ Scalar b = ζ.transpose() * ζ;
- for (unsigned i = 0; i < N; i++) {
- for (unsigned j = 0; j < N; j++) {
- g(i, j) = 16.0 * (std::conj(ζ(i)) * ζ(j) * (1.0 + a) -
- std::real(std::conj(ζ(i) * ζ(j)) * (1.0 + b)));
+ for (unsigned i = 0; i < N - 1; i++) {
+ for (unsigned j = 0; j < N - 1; j++) {
+ for (unsigned k = 0; k < N - 1; k++) {
+ dJ(i, j, k) = 16 * sqrt(N) * ζ(i) * ζ(j) * ζ(k) / pow(1.0 + b, 3);
+ if (i == j) {
+ dJ(i, j, k) -= 4 * sqrt(N) * (1.0 + b) * ζ(k) / pow(1.0 + b, 3);
+ }
+ if (i == k) {
+ dJ(i, j, k) -= 4 * sqrt(N) * (1.0 + b) * ζ(j) / pow(1.0 + b, 3);
+ }
+ if (j == k) {
+ dJ(i, j, k) -= 4 * sqrt(N) * (1.0 + b) * ζ(i) / pow(1.0 + b, 3);
+ }
+ }
+ dJ(i, j, N - 1) = - 16 * sqrt(N) * ζ(i) * ζ(j) / pow(1.0 + b, 3);
if (i == j) {
- g(i, j) += 4.0 * std::abs(1.0 + b);
+ dJ(i, j, N - 1) += 4 * sqrt(N) * (1.0 + b) * ζ(i) / pow(1.0 + b, 3);
}
- g(i, j) *= (N + 1) / std::norm(pow(b, 2));
}
}
- return g;
+ std::array<Eigen::IndexPair<int>, 1> ip = {Eigen::IndexPair<int>(2, 1)};
+
+ return dJ.contract(Eigen::TensorMap<Eigen::Tensor<const Scalar, 2>>(gInvJac.data(), N - 1, N), ip);
}
std::tuple<Scalar, Vector, Matrix> stereographicHamGradHess(const Tensor& J, const Vector& ζ) {
@@ -82,11 +98,18 @@ std::tuple<Scalar, Vector, Matrix> stereographicHamGradHess(const Tensor& J, con
Matrix hessZ;
std::tie(hamiltonian, gradZ, hessZ) = hamGradHess(J, z);
- Matrix g = stereographicMetric(ζ);
- Matrix gj = g.llt().solve(jacobian);
+ Matrix g = stereographicMetric(jacobian);
+ Matrix gInvJac = g.ldlt().solve(jacobian);
+
+ grad = gInvJac * gradZ;
+
+ Eigen::Tensor<Scalar, 3> Γ = stereographicChristoffel(ζ, gInvJac.conjugate());
+ Vector df = jacobian * gradZ;
+ Eigen::Tensor<Scalar, 1> dfT = Eigen::TensorMap<Eigen::Tensor<Scalar, 1>>(df.data(), {df.size()});
+ std::array<Eigen::IndexPair<int>, 1> ip = {Eigen::IndexPair<int>(0, 0)};
+ Eigen::Tensor<Scalar, 2> H2 = Γ.contract(dfT, ip);
- grad = gj * gradZ;
- hess = gj * hessZ * gj.transpose();
+ hess = jacobian * hessZ * jacobian.transpose() + (Eigen::Map<Matrix>(H2.data(), ζ.size(), ζ.size())).transpose();
return {hamiltonian, grad, hess};
}