summaryrefslogtreecommitdiff
path: root/langevin.cpp
blob: 870879b037225b159ccacae9b11cdee025e24f5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include <getopt.h>

#include "complex_normal.hpp"
#include "p-spin.hpp"
#include "dynamics.hpp"

#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h"

#define PSPIN_P 3
const int p = PSPIN_P; // polynomial degree of Hamiltonian
using Complex = std::complex<double>;
using ComplexVector = Vector<Complex>;
using ComplexMatrix = Matrix<Complex>;
using ComplexTensor = Tensor<Complex, p>;

using Rng = randutils::random_generator<pcg32>;

int main(int argc, char* argv[]) {
  // model parameters
  unsigned N = 10; // number of spins
  double T = 1;    // temperature
  double= 1;   // real part of distribution parameter
  double= 0;   // imaginary part of distribution parameter

  // simulation parameters
  double ε = 1e-4;
  double εJ = 1e-2;
  double δ = 1e-2;   // threshold for determining saddle
  double Δ = 1e-3;
  double γ = 1e-2;   // step size
  unsigned t = 1000; // number of Langevin steps
  unsigned M = 100;
  unsigned n = 100;

  int opt;

  while ((opt = getopt(argc, argv, "N:M:n:T:e:r:i:g:t:E:")) != -1) {
    switch (opt) {
    case 'N':
      N = (unsigned)atof(optarg);
      break;
    case 't':
      t = (unsigned)atof(optarg);
      break;
    case 'T':
      T = atof(optarg);
      break;
    case 'e':
      δ = atof(optarg);
      break;
    case 'E':
      ε = atof(optarg);
      break;
    case 'g':
      γ = atof(optarg);
    case 'r':= atof(optarg);
      break;
    case 'i':= atof(optarg);
      break;
    case 'n':
      n = (unsigned)atof(optarg);
      break;
    case 'M':
      M = (unsigned)atof(optarg);
      break;
    default:
      exit(1);
    }
  }

  Complex κ(,);
  double σ = sqrt(factorial(p) / (2.0 * pow(N, p - 1)));

  Rng r;

  complex_normal_distribution<> d(0, 1, 0);

  ComplexTensor J = generateCouplings<Complex, PSPIN_P>(N, complex_normal_distribution<>(0, σ, κ), r.engine());
  ComplexVector z0 = normalize(randomVector<Complex>(N, d, r.engine()));

  ComplexVector zSaddle = findSaddle(J, z0, ε);
  ComplexVector zSaddlePrev = ComplexVector::Zero(N);
  ComplexVector z = zSaddle;

  while (δ < (zSaddle - zSaddlePrev).norm()) { // Until we find two saddles sufficiently close...
    std::tie(std::ignore, z) = langevin(J, z, T, γ, M, d, r.engine());
    try {
      ComplexVector zSaddleNext = findSaddle(J, z, ε);
      if (Δ < (zSaddleNext - zSaddle).norm()) { // Ensure we are finding distinct saddles.
        zSaddlePrev = zSaddle;
        zSaddle = zSaddleNext;
      }
    } catch (std::exception& e) {
      std::cerr << "Could not find a saddle: " << e.what() << std::endl;
    }

    std::cerr << "Current saddles are " << (zSaddle - zSaddlePrev).norm() << " apart." << std::endl;
  }

  std::cerr << "Found sufficiently nearby saddles, perturbing J." << std::endl;

  complex_normal_distribution<> dJ(0, εJ * σ, 0);

  std::function<void(ComplexTensor&, std::array<unsigned, p>)> perturbJ =
    [&dJ, &r] (ComplexTensor& JJ, std::array<unsigned, p> ind) {
      Complex Ji = getJ<Complex, p>(JJ, ind);
      setJ<Complex, p>(JJ, ind, Ji + dJ(r.engine()));
    };

  for (unsigned i = 0; i < n; i++) {
    ComplexTensor Jp = J;

    iterateOver<Complex, p>(Jp, perturbJ);

    try {
      ComplexVector zSaddleNew = findSaddle(Jp, zSaddle, ε);
      ComplexVector zSaddlePrevNew = findSaddle(Jp, zSaddlePrev, ε);

      std::cout << zSaddleNew.transpose() << " " << zSaddlePrevNew.transpose() << std::endl;
    } catch (std::exception& e) {
      std::cerr << "Couldn't find a saddle with new couplings, skipping." << std::endl;
    }
  }

  return 0;
}