summaryrefslogtreecommitdiff
path: root/langevin.cpp
blob: e5b370cc32e4410159ca467b96c73b7d2b5e0048 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include <getopt.h>
#include <stereographic.hpp>
#include <unordered_map>
#include <list>

#include "complex_normal.hpp"
#include "p-spin.hpp"
#include "dynamics.hpp"
#include "stokes.hpp"

#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h"

#define PSPIN_P 3
const int p = PSPIN_P; // polynomial degree of Hamiltonian
using Complex = std::complex<Real>;
using ComplexVector = Vector<Complex>;
using ComplexMatrix = Matrix<Complex>;
using ComplexTensor = Tensor<Complex, p>;

using Rng = randutils::random_generator<pcg32>;

std::list<std::array<ComplexVector, 2>> saddlesCloserThan(const std::unordered_map<uint64_t, ComplexVector>& saddles, Real δ) {
  std::list<std::array<ComplexVector, 2>> pairs;

  for (auto it1 = saddles.begin(); it1 != saddles.end(); it1++) {
    for (auto it2 = std::next(it1); it2 != saddles.end(); it2++) {
      if ((it1->second - it2->second).norm() < δ) {
        pairs.push_back({it1->second, it2->second});
      }
    }
  }

  return pairs;
}

template <class Generator>
std::tuple<ComplexTensor, ComplexVector, ComplexVector> matchImaginaryEnergies(const ComplexTensor& J0, const ComplexVector& z10, const ComplexVector& z20, Real ε, Real Δ, Generator& r) {
  Real σ = sqrt(factorial(p) / (Real(2) * pow(z10.size(), p - 1)));
  complex_normal_distribution<Real> dJ(0, σ, 0);

  ComplexTensor J = J0;
  Complex H1, H2;
  ComplexVector z1, z2;
  std::tie(H1, std::ignore, std::ignore) = hamGradHess(J, z10);
  std::tie(H2, std::ignore, std::ignore) = hamGradHess(J, z20);
  Real prevdist = abs(imag(H1-H2));
  Real γ = prevdist / 10;

  std::function<void(ComplexTensor&, std::array<unsigned, p>)> perturbJ =
    [&γ, &dJ, &r] (ComplexTensor& JJ, std::array<unsigned, p> ind) {
      Complex Ji = getJ<Complex, p>(JJ, ind);
      setJ<Complex, p>(JJ, ind, Ji + γ * dJ(r.engine()));
    };

  while (true) {
    ComplexTensor Jp = J;
    iterateOver<Complex, p>(Jp, perturbJ);

    try {
      z1 = findSaddle(Jp, z10, Δ);
      z2 = findSaddle(Jp, z20, Δ);

      Real dist = (z1 - z2).norm();

      std::tie(H1, std::ignore, std::ignore) = hamGradHess(Jp, z1);
      std::tie(H2, std::ignore, std::ignore) = hamGradHess(Jp, z2);

      if (abs(imag(H1 - H2)) < prevdist && dist > Real(1) / 100) {
        J = Jp;
        prevdist = abs(imag(H1 - H2));
        γ = prevdist / 10;

        if (abs(imag(H1 - H2)) < ε && dist > Real(1) / 100) {
          break;
        }
      }
    } catch (std::exception& e) {}
  }

  return {J, z1, z2};
}


int main(int argc, char* argv[]) {
  // model parameters
  unsigned N = 10; // number of spins
  Real T = 1;    // temperature
  Real Rκ = 1;   // real part of distribution parameter
  Real Iκ = 0;   // imaginary part of distribution parameter

  // simulation parameters
  Real ε = 1e-12;
  Real εJ = 1e-5;
  Real δ = 1e-2;   // threshold for determining saddle
  Real Δ = 1e-3;
  Real γ = 1e-2;   // step size
  unsigned t = 1000; // number of Langevin steps
  unsigned M = 100;
  unsigned n = 100;

  int opt;

  while ((opt = getopt(argc, argv, "N:M:n:T:e:r:i:g:t:E:")) != -1) {
    switch (opt) {
    case 'N':
      N = (unsigned)atof(optarg);
      break;
    case 't':
      t = (unsigned)atof(optarg);
      break;
    case 'T':
      T = atof(optarg);
      break;
    case 'e':
      δ = atof(optarg);
      break;
    case 'E':
      ε = atof(optarg);
      break;
    case 'g':
      γ = atof(optarg);
    case 'r':= atof(optarg);
      break;
    case 'i':= atof(optarg);
      break;
    case 'n':
      n = (unsigned)atof(optarg);
      break;
    case 'M':
      M = (unsigned)atof(optarg);
      break;
    default:
      exit(1);
    }
  }

  Complex κ(,);
  Real σ = sqrt(factorial(p) / ((Real)2 * pow(N, p - 1)));

  Rng r;

  complex_normal_distribution<Real> d(0, 1, 0);

  ComplexTensor J = generateCouplings<Complex, PSPIN_P>(N, complex_normal_distribution<Real>(0, σ, κ), r.engine());
  ComplexVector z = normalize(randomVector<Complex>(N, d, r.engine()));

  std::function<Real(const ComplexTensor&, const ComplexVector&)> energyNormGrad = []
    (const ComplexTensor& J, const ComplexVector& z) {
      Real W;
      std::tie(W, std::ignore) = WdW(J, z);
      return W;
    };

  std::unordered_map<uint64_t, ComplexVector> saddles;
  std::list<std::array<ComplexVector, 2>> nearbySaddles;

  while (true) { // Until we find two saddles sufficiently close...
    std::tie(std::ignore, z) = metropolis(J, z, energyNormGrad, T, γ, M, d, r.engine());
    try {
      ComplexVector zSaddleNext = findSaddle(J, z, ε);
      uint64_t saddleKey = round(1e2 * real(zSaddleNext(0)));
      auto got = saddles.find(saddleKey);

      if (got == saddles.end()) {
        saddles[saddleKey] = zSaddleNext;
        nearbySaddles = saddlesCloserThan(saddles, δ);
        if (nearbySaddles.size() > 0) {
          break;
        }
        std::cerr << "Found " << saddles.size() << " distinct saddles." << std::endl;
      }
    } catch (std::exception& e) {
//      std::cerr << "Could not find a saddle: " << e.what() << std::endl;
    }

  }

  std::cerr << "Found sufficiently nearby saddles, perturbing J to equalize Im H." << std::endl;

  ComplexVector z1 = nearbySaddles.front()[0];
  ComplexVector z2 = nearbySaddles.front()[1];

  std::tie(J, z1, z2) = matchImaginaryEnergies(J, z1, z2, 1e-15, ε, r);

  std::cerr << "Im H is now sufficently close, starting to relax rope." << std::endl;

  Rope stokes(10, z1, z2, J);

  for (unsigned i = 0; i < 9; i++) {
    stokes.relaxDiscreteGradient(J, 1e6, 0.1, 0);

    std::cout << stokes.n() << " " << stokes.cost(J) << std::endl;

    stokes = stokes.interpolate();
  }

  return 0;
}