summaryrefslogtreecommitdiff
path: root/langevin.cpp
blob: 5d9acc9fe0c4d88b82b0f33309caead5712be7c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include <getopt.h>
#include <stereographic.hpp>

#include "complex_normal.hpp"
#include "p-spin.hpp"
#include "dynamics.hpp"
#include "stokes.hpp"

#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h"

#define PSPIN_P 3
const int p = PSPIN_P; // polynomial degree of Hamiltonian
using Complex = std::complex<double>;
using ComplexVector = Vector<Complex>;
using ComplexMatrix = Matrix<Complex>;
using ComplexTensor = Tensor<Complex, p>;

using Rng = randutils::random_generator<pcg32>;

int main(int argc, char* argv[]) {
  // model parameters
  unsigned N = 10; // number of spins
  double T = 1;    // temperature
  double= 1;   // real part of distribution parameter
  double= 0;   // imaginary part of distribution parameter

  // simulation parameters
  double ε = 1e-4;
  double εJ = 1e-5;
  double δ = 1e-2;   // threshold for determining saddle
  double Δ = 1e-3;
  double γ = 1e-2;   // step size
  unsigned t = 1000; // number of Langevin steps
  unsigned M = 100;
  unsigned n = 100;

  int opt;

  while ((opt = getopt(argc, argv, "N:M:n:T:e:r:i:g:t:E:")) != -1) {
    switch (opt) {
    case 'N':
      N = (unsigned)atof(optarg);
      break;
    case 't':
      t = (unsigned)atof(optarg);
      break;
    case 'T':
      T = atof(optarg);
      break;
    case 'e':
      δ = atof(optarg);
      break;
    case 'E':
      ε = atof(optarg);
      break;
    case 'g':
      γ = atof(optarg);
    case 'r':= atof(optarg);
      break;
    case 'i':= atof(optarg);
      break;
    case 'n':
      n = (unsigned)atof(optarg);
      break;
    case 'M':
      M = (unsigned)atof(optarg);
      break;
    default:
      exit(1);
    }
  }

  Complex κ(,);
  double σ = sqrt(factorial(p) / (2.0 * pow(N, p - 1)));

  Rng r;

  complex_normal_distribution<> d(0, 1, 0);

  ComplexTensor J = generateCouplings<Complex, PSPIN_P>(N, complex_normal_distribution<>(0, σ, κ), r.engine());
  ComplexVector z0 = normalize(randomVector<Complex>(N, d, r.engine()));

  ComplexVector zSaddle = findSaddle(J, z0, ε);
  ComplexVector z = zSaddle;

  std::function<double(const ComplexTensor&, const ComplexVector&)> energyNormGrad = []
    (const ComplexTensor& J, const ComplexVector& z) {
      double W;
      std::tie(W, std::ignore) = WdW(J, z);
      return W;
    };

  ComplexVector zSaddlePrev = ComplexVector::Zero(N);

  while (δ < (zSaddle - zSaddlePrev).norm()) { // Until we find two saddles sufficiently close...
    std::tie(std::ignore, z) = metropolis(J, z, energyNormGrad, T, γ, M, d, r.engine());
    try {
      ComplexVector zSaddleNext = findSaddle(J, z, ε);
      if (Δ < (zSaddleNext - zSaddle).norm()) { // Ensure we are finding distinct saddles.
        zSaddlePrev = zSaddle;
        zSaddle = zSaddleNext;
      }
    } catch (std::exception& e) {
      std::cerr << "Could not find a saddle: " << e.what() << std::endl;
    }

    std::cerr << "Current saddles are " << (zSaddle - zSaddlePrev).norm() << " apart." << std::endl;
  }

  Rope<Complex> stokest(20, zSaddle, zSaddlePrev);

  stokest.relax(J, 10000, 0.0001);

  std::cerr << "Found sufficiently nearby saddles, perturbing J to equalize Im H." << std::endl;

  complex_normal_distribution<> dJ(0, εJ * σ, 0);

  std::function<void(ComplexTensor&, std::array<unsigned, p>)> perturbJ =
    [&dJ, &r] (ComplexTensor& JJ, std::array<unsigned, p> ind) {
      Complex Ji = getJ<Complex, p>(JJ, ind);
      setJ<Complex, p>(JJ, ind, Ji + dJ(r.engine()));
    };

  ComplexTensor Jp = J;
  ComplexVector z1, z2;
  Complex H1, H2;
  double prevdist = 100;

  while (true) {
    ComplexTensor Jpp = Jp;
    iterateOver<Complex, p>(Jpp, perturbJ);

    try {
      z1 = findSaddle(Jpp, zSaddle, ε);
      z2 = findSaddle(Jpp, zSaddlePrev, ε);

      double dist = (z1 - z2).norm();

      std::tie(H1, std::ignore, std::ignore) = hamGradHess(Jpp, z1);
      std::tie(H2, std::ignore, std::ignore) = hamGradHess(Jpp, z2);

      if (abs(imag(H1 - H2)) < prevdist && dist > 1e-2) {
        Jp = Jpp;
        prevdist = abs(imag(H1 - H2));

        std::cout << abs(imag(H1 - H2)) << " " << dist << std::endl;
        if (abs(imag(H1 - H2)) < 1e-8 && dist > 1e-2) {
          std::cout << "Found distinct critical points with sufficiently similar Im H." << std::endl;
          break;
        }
      }



    } catch (std::exception& e) {
      std::cerr << "Couldn't find a saddle with new couplings, skipping." << std::endl;
    }
  }

  Rope<Complex> stokes(20, z1, z2);

  std::cout << stokes.cost(Jp) << std::endl;

  stokes.relax(Jp, 10000, 0.0001);

  std::cout << stokes.cost(Jp) << std::endl;

  Rope<Complex> stokes2 = stokes.interpolate();

  stokes2.relax(Jp, 10000, 0.001);

  std::cout << stokes2.cost(Jp) << std::endl;

  stokes2 = stokes2.interpolate();

  stokes2.relax(Jp, 10000, 0.001);

  std::cout << stokes2.cost(Jp) << std::endl;

  stokes2 = stokes2.interpolate();

  stokes2.relax(Jp, 10000, 0.001);

  std::cout << stokes2.cost(Jp) << std::endl;


  return 0;
}