summaryrefslogtreecommitdiff
path: root/langevin.cpp
blob: 3e03f76c77ac446543693646e6f7a096c6cda82d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include <getopt.h>
#include <cstdlib>
#include <random>
#include <complex>
#include <array>
#include <functional>

#include <eigen3/unsupported/Eigen/CXX11/Tensor>

#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"

#define P_SPIN_P 3
const unsigned p = P_SPIN_P;

using Tensor = Eigen::Tensor<std::complex<double>, p>;
using Scalar = Eigen::Tensor<std::complex<double>, 0>;
using Vector = Eigen::Tensor<std::complex<double>, 1>;
using Matrix = Eigen::Tensor<std::complex<double>, 2>;

const std::array<Eigen::IndexPair<int>, 1> ip = {Eigen::IndexPair<int>(0,0)};

using Rng = randutils::random_generator<pcg32>;

template <class T = double>
class complex_normal_distribution {
  private:
    std::complex<T> μ;
    T σ;
    std::complex<T> κ;
    std::normal_distribution<T> dist;

  public:
    complex_normal_distribution(std::complex<T> μ, T σ, std::complex<T> κ) :
      μ(μ), σ(σ), κ(κ), dist(0, σ / sqrt(2)) {}

    template <class Generator>
      std::complex<T> operator()(Generator& g) {
        std::complex<T> x(dist(g) * sqrt(1 + std::abs(κ)), dist(g) * sqrt(1 - std::abs(κ)));
        return μ + std::polar((T)1, std::arg(κ)) * x;
      }
};

long unsigned factorial(unsigned p) {
  if (p == 0) {
    return 1;
  } else {
    return p * factorial(p - 1);
  }
}

Tensor generate_coupling_tensor(unsigned N, std::complex<double> κ, Rng& r) {
  double σ = sqrt(factorial(p) / (2.0 * pow(N, p - 1)));
  complex_normal_distribution<> dist(0, σ, κ);

  Tensor J(N, N, N);

  for (unsigned i1 = 0; i1 < N; i1++) {
    for (unsigned i2 = i1; i2 < N; i2++) {
      for (unsigned i3 = i2; i3 < N; i3++) {
        std::complex<double> x = dist(r.engine());

        J(i1, i2, i3) = x;
        J(i1, i3, i2) = x;
        J(i2, i1, i3) = x;
        J(i2, i3, i1) = x;
        J(i3, i1, i2) = x;
        J(i3, i2, i1) = x;
      }
    }
  }

  return J;
}

template <int r>
Eigen::Tensor<std::complex<double>, r> conj(const Eigen::Tensor<std::complex<double>, r>& t) {
  return t.unaryExpr(static_cast<std::complex<double> (*)(const std::complex<double>&)>(&std::conj));
}

template <int r>
double norm(const Eigen::Tensor<std::complex<double>, r>& t) {
  Eigen::Tensor<double, 0> t2 = t.unaryExpr(static_cast<double (*)(const std::complex<double>&)>(&std::norm)).sum();
  return t2(0);
}

Vector generate_initial_vector(unsigned N) {
  Vector z(N);
  z.setConstant(1);
  return z;
}

std::complex<double> hamiltonian(const Tensor& J, const Vector& z) {
  Eigen::Tensor<std::complex<double>, 0> t = z.contract(z.contract(z.contract(J, ip), ip), ip);
  return t(0) / (double)factorial(p);
}

Matrix identity(unsigned N) {
  Matrix I(N, N);
  for (unsigned i = 0; i < N; i++) {
    I(i, i) = 1;
  }
  return I;
}

std::tuple<Vector, Matrix> gradHess(const Tensor& J, const Vector& z, std::complex<double> ε) {
  Matrix J1 = z.contract(J, ip);
  Matrix H = ((p - 1) * (double)p / factorial(p)) * J1 - ((double)p * ε) * identity(z.size());

  Vector J2 = z.contract(J1, ip);
  Vector g = ((double)p / factorial(p)) * J2 - ((double)p * ε) * z;

  return {g, H};
}

std::tuple<double, Vector, std::complex<double>, Vector> WdW(const Tensor& J, const Vector& z, std::complex<double> ε) {
  Vector grad;
  Matrix hess;

  std::tie(grad, hess) = gradHess(J, z, ε);

  double W = norm(grad);
  Matrix conjHess = conj(hess);
  Scalar zz = z.pow(2).sum();
  Vector zc = conj(z);

  Vector dWdz = grad.contract(conjHess, ip) - (pow(p, 2) / 2.0 * ((double)z.size() - zz(0))) * zc;
  Scalar dWdε = (-(double)p) * grad.contract(zc, ip);
  Vector dεdz = (1 / (double)z.size()) * ((1 - 1/(double)p) * grad + ((double)p * ε) * z - (1 /(double)p) * z.contract(hess, ip));

  return {W, dWdz, dWdε(0), dεdz};

}

void gradientDescent(const Tensor& J, Vector& z, std::complex<double>& ε, double δ, double γ) {
  double W;
  Vector dz;
  std::complex<double>;

  std::tie(W, dz,, std::ignore) = WdW(J, z, ε);

  while (W > δ * z.size()) {
    std::cout << W << std::endl;
    z = z - (γ / z.size()) * dz;
    ε = ε - (γ / z.size()) *;

    std::tie(W, dz,, std::ignore) = WdW(J, z, ε);
  }
}

Vector generateKick(const Vector& z, Rng& r) {
  Vector k(z.size());

  for (unsigned i = 0; i < k.size(); i++) {
    k(i) = std::complex<double>(r.variate<double>(0, 1), r.variate<double>(0, 1)) / sqrt(2);
  }

  Scalar kz = z.contract(k, ip);
  k = k - kz(0) * z;

  return k;
}

void langevin(const Tensor& J, Vector& z, std::complex<double>& ε, double T, unsigned t, double γ, Rng& r) {
  double W;
  Vector dz;
  Vector dεdz;

  std::tie(W, dz, std::ignore, dεdz) = WdW(J, z, ε);

  for (unsigned i = 0; i < t; i++) {
    std::cout << W << std::endl;

    Vector η = generateKick(z, r);
    Vector δz = (γ / z.size()) * (-dz + T * η);
    Scalar δε = dεdz.contract(δz, ip);

    z = z + δz;
    ε = ε + δε(0);

    std::tie(W, dz, std::ignore, dεdz) = WdW(J, z, ε);
  }
}

int main(int argc, char* argv[]) {
  // model parameters
  unsigned N = 10; // number of spins
  double T = 1; // temperature
  double= 1; // real part of distribution parameter
  double= 0; // imaginary part of distribution parameter

  // simulation parameters
  double δ = 1e-2; // threshold for determining saddle
  double γ = 1e-2; // step size

  int opt;

  while ((opt = getopt(argc, argv, "N:T:E:e:r:i:g:")) != -1) {
    switch (opt) {
    case 'N':
      N = (unsigned)atof(optarg);
      break;
    case 'T':
      T = atof(optarg);
      break;
    case 'e':
      δ = atof(optarg);
      break;
    case 'g':
      γ = atof(optarg);
    case 'r':= atof(optarg);
      break;
    case 'i':= atof(optarg);
      break;
    default:
      exit(1);
    }
  }

  std::complex<double> κ(,);

  Rng r;

  Tensor J = generate_coupling_tensor(N, κ, r);
  Vector z = generate_initial_vector(N);
  std::complex<double> ε = hamiltonian(J, z) / (double)N;

  Scalar zz = z.pow(2).sum();

  std::cout << zz(0) << std::endl;

  gradientDescent(J, z, ε, δ, γ);
  langevin(J, z, ε, T, 1000, γ, r);

  zz = z.pow(2).sum();
  double a = norm(z);

  std::cout << zz(0) / (double)N << std::endl;
  std::cout << ε << std::endl;
  std::cout << hamiltonian(J, z) / (double)N << std::endl;
  std::cout << a / N << std::endl;
}