summaryrefslogtreecommitdiff
path: root/p-spin.hpp
blob: 15d252512fa9bd50d2e0bb43bf8b057ea6ef827b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#pragma once

#include <eigen3/Eigen/Dense>
#include <iterator>

#include "types.hpp"
#include "tensor.hpp"
#include "factorial.hpp"

template <typename Derived>
Vector<typename Derived::Scalar> normalize(const Eigen::MatrixBase<Derived>& z) {
  return z * sqrt((Real)z.size() / (typename Derived::Scalar)(z.transpose() * z));
}

template <class Scalar, int p>
std::tuple<Scalar, Vector<Scalar>, Matrix<Scalar>> hamGradHess(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
  Matrix<Scalar> Jz = contractDown(J, z); // Contracts J into p - 2 copies of z.
  Vector<Scalar> Jzz = Jz * z;
  Scalar Jzzz = Jzz.transpose() * z;

  Real pBang = factorial(p);

  Matrix<Scalar> hessian = ((p - 1) * p / pBang) * Jz;
  Vector<Scalar> gradient = (p / pBang) * Jzz;
  Scalar hamiltonian = Jzzz / pBang;

  return {hamiltonian, gradient, hessian};
}

template <class Scalar, int p>
Scalar getHamiltonian(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
  Scalar H;
  std::tie(H, std::ignore, std::ignore) = hamGradHess(J, z);
  return H;
}

template <class Scalar, int p>
Vector<Scalar> getGradient(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
  Vector<Scalar> dH;
  std::tie(std::ignore, dH, std::ignore) = hamGradHess(J, z);
  return dH;
}

template <class Scalar, int p>
Matrix<Scalar> getHessian(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
  Matrix<Scalar> ddH;
  std::tie(std::ignore, std::ignore, ddH) = hamGradHess(J, z);
  return ddH;
}

template <class Scalar>
Real getThresholdEnergyDensity(unsigned p, Scalar κ, Scalar ε, Real a) {
  Real apm2 = pow(a, p - 2);
  Scalar δ = κ / apm2;
  Real θ = arg(κ) + 2 * arg(ε);

  return (p - 1) * apm2 / (2 * p) * pow(1 - norm(δ), 2) / (1 + norm(δ) - 2 * abs(δ) * cos(θ));
}

template <class Scalar, int p>
Real getProportionOfThreshold(Scalar κ, const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
  Real N = z.size();
  Scalar ε = getHamiltonian(J, z) / N;
  Real a = z.squaredNorm() / N;

  return norm(ε) / getThresholdEnergyDensity(p, κ, ε, a);
}

template <class Scalar>
Vector<Scalar> zDot(const Vector<Scalar>& z, const Vector<Scalar>& dH) {
  return -dH.conjugate() + (dH.dot(z) / z.squaredNorm()) * z.conjugate();
}

template <class Scalar, int p>
std::tuple<Real, Vector<Scalar>> WdW(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
  Vector<Scalar> dH;
  Matrix<Scalar> ddH;
  std::tie(std::ignore, dH, ddH) = hamGradHess(J, z);

  Vector<Scalar> dzdt = zDot(z, dH);

  Real a = z.squaredNorm();
  Scalar A = (Scalar)(z.transpose() * dzdt) / a;
  Scalar B = dH.dot(z) / a;

  Real W = dzdt.squaredNorm();
  Vector<Scalar> dW = ddH * (dzdt - A * z.conjugate())
    + 2 * (conj(A) * B * z).real()
    - conj(B) * dzdt - conj(A) * dH.conjugate();

  return {W, dW};
}

template <class Scalar>
Matrix<Scalar> dzDot(const Vector<Scalar>& z, const Vector<Scalar>& dH) {
  Real z² = z.squaredNorm();
  return (dH.conjugate() - (dH.dot(z) /) * z.conjugate()) * z.adjoint() /;
}

template <class Scalar>
Matrix<Scalar> dzDotConjugate(const Vector<Scalar>& z, const Vector<Scalar>& dH, const Matrix<Scalar>& ddH) {
  Real z² = z.squaredNorm();
  return -ddH + (ddH * z.conjugate()) * z.transpose() /+ (z.dot(dH) /) * (
              Matrix<Scalar>::Identity(ddH.rows(), ddH.cols()) - z.conjugate() * z.transpose() /);
}

template <class Scalar>
Tensor<Scalar, 3> ddzDot(const Vector<Scalar>& z, const Vector<Scalar>& dH) {
  Tensor<Scalar, 1> zT = Eigen::TensorMap<Tensor<const Scalar, 1>>(z.data(), {z.size()});
  Tensor<Scalar, 1> dHT = Eigen::TensorMap<Tensor<const Scalar, 1>>(dH.data(), {dH.size()});

  Eigen::array<Eigen::IndexPair<int>, 0> ei = {};

  Scalar z² = z.squaredNorm();

  return - zT.conjugate().contract(dHT.conjugate(), ei).contract(zT.conjugate(), ei) / pow(, 2)
         - dHT.conjugate().contract(zT.conjugate(), ei).contract(zT.conjugate(), ei) / pow(, 2)
         + zT.conjugate().contract(zT.conjugate(), ei).contract(zT.conjugate(), ei) * (2.0 * dH.dot(z) / pow(, 3));
}

template <class Scalar>
Tensor<Scalar, 3> dcdzDot(const Vector<Scalar>& z, const Vector<Scalar>& dH, const Matrix<Scalar>& ddH) {
  Tensor<Scalar, 1> zT = Eigen::TensorMap<Tensor<const Scalar, 1>>(z.data(), {z.size()});
  Tensor<Scalar, 1> dHT = Eigen::TensorMap<Tensor<const Scalar, 1>>(dH.data(), {dH.size()});
  Tensor<Scalar, 2> ddHT = Eigen::TensorMap<Tensor<const Scalar, 2>>(ddH.data(), {dH.size(), dH.size()});

  Matrix<Scalar> I = Matrix<Real>::Identity(z.size(), z.size());
  Tensor<Scalar, 2> IT = Eigen::TensorMap<Tensor<const Scalar, 2>>(I.data(), {z.size(), z.size()});

  Eigen::array<Eigen::IndexPair<int>, 0> ei = {};

  Scalar z² = z.squaredNorm();

  return ddHT.conjugate().contract(zT.conjugate(), ei) /+IT.contract(dHT.conjugate(), ei).shuffle((std::array<int, 3>){0,2,1}) /-zT.contract(dHT.conjugate(), ei).contract(zT.conjugate(), ei) / pow(, 2)
        -ddHT.conjugate().contract(zT, ip00).contract(zT.conjugate(), ei).contract(zT.conjugate(), ei) / pow(, 2)
        -IT.contract(zT.conjugate(), ei) * (dH.dot(z) / pow(, 2))
        -IT.contract(zT.conjugate(), ei).shuffle((std::array<int, 3>){0,2,1}) * (dH.dot(z) / pow(, 2))
        +zT.contract(zT.conjugate(), ei).contract(zT.conjugate(), ei) * (2.0 * dH.dot(z) / pow(, 3))
    ;
}

template <class Scalar>
Tensor<Scalar, 3> ddzDotConjugate(const Vector<Scalar>& z, const Vector<Scalar>& dH, const Matrix<Scalar>& ddH, const Tensor<Scalar, 3>& dddH) {
  Tensor<Scalar, 1> zT = Eigen::TensorMap<Tensor<const Scalar, 1>>(z.data(), {z.size()});
  Tensor<Scalar, 1> dHT = Eigen::TensorMap<Tensor<const Scalar, 1>>(dH.data(), {dH.size()});
  Tensor<Scalar, 2> ddHT = Eigen::TensorMap<Tensor<const Scalar, 2>>(ddH.data(), {z.size(), z.size()});

  Matrix<Scalar> I = Matrix<Real>::Identity(z.size(), z.size());
  Tensor<Scalar, 2> IT = Eigen::TensorMap<Tensor<const Scalar, 2>>(I.data(), {z.size(), z.size()});

  Eigen::array<Eigen::IndexPair<int>, 0> ei = {};
  Eigen::array<Eigen::IndexPair<int>, 1> ip00 = {Eigen::IndexPair<int>(0, 0)};

  Scalar z² = z.squaredNorm();

  return - dddH + dddH.contract(zT.conjugate(), ip00).contract(zT, ei) /+ IT.contract(ddHT.contract(zT.conjugate(), ip00), ei).shuffle((std::array<int, 3>){0, 2, 1}) /+ ddHT.contract(zT.conjugate(), ip00).contract(IT, ei) /- zT.conjugate().contract(ddHT.contract(zT.conjugate(), ip00), ei).contract(zT, ei) / pow(, 2)
         - zT.conjugate().contract(IT, ei) * (z.dot(dH) / pow(, 2))
         - IT.contract(zT.conjugate(), ei).shuffle((std::array<int, 3>){0, 2, 1}) * (z.dot(dH) / pow(, 2))
         - ddHT.contract(zT.conjugate(), ip00).contract(zT.conjugate(), ei).contract(zT, ei) / pow(, 2)
         + zT.conjugate().contract(zT.conjugate(), ei).contract(zT, ei) * (2.0 * z.dot(dH) / pow(, 3));
}