1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
#pragma once
#include <eigen3/Eigen/Dense>
#include "types.hpp"
#include "tensor.hpp"
#include "factorial.hpp"
template <typename Derived>
Vector<typename Derived::Scalar> normalize(const Eigen::MatrixBase<Derived>& z) {
return z * sqrt((Real)z.size() / (typename Derived::Scalar)(z.transpose() * z));
}
template <class Scalar, int p>
std::tuple<Scalar, Vector<Scalar>, Matrix<Scalar>> hamGradHess(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
Matrix<Scalar> Jz = contractDown(J, z); // Contracts J into p - 2 copies of z.
Vector<Scalar> Jzz = Jz * z;
Scalar Jzzz = Jzz.transpose() * z;
Real pBang = factorial(p);
Matrix<Scalar> hessian = ((p - 1) * p / pBang) * Jz;
Vector<Scalar> gradient = (p / pBang) * Jzz;
Scalar hamiltonian = Jzzz / pBang;
return {hamiltonian, gradient, hessian};
}
template <class Scalar, int p>
Scalar getHamiltonian(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
Scalar H;
std::tie(H, std::ignore, std::ignore) = hamGradHess(J, z);
return H;
}
template <class Scalar, int p>
Vector<Scalar> getGradient(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
Vector<Scalar> dH;
std::tie(std::ignore, dH, std::ignore) = hamGradHess(J, z);
return dH;
}
template <class Scalar, int p>
Matrix<Scalar> getHessian(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
Matrix<Scalar> ddH;
std::tie(std::ignore, std::ignore, ddH) = hamGradHess(J, z);
return ddH;
}
template <class Scalar>
Real getThresholdEnergyDensity(unsigned p, Scalar κ, Scalar ε, Real a) {
Real apm2 = pow(a, p - 2);
Scalar δ = κ / apm2;
Real θ = arg(κ) + 2 * arg(ε);
return (p - 1) * apm2 / (2 * p) * pow(1 - norm(δ), 2) / (1 + norm(δ) - 2 * abs(δ) * cos(θ));
}
template <class Scalar, int p>
Real getProportionOfThreshold(Scalar κ, const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
Real N = z.size();
Scalar ε = getHamiltonian(J, z) / N;
Real a = z.squaredNorm() / N;
return norm(ε) / getThresholdEnergyDensity(p, κ, ε, a);
}
template <class Scalar>
Vector<Scalar> zDot(const Vector<Scalar>& z, const Vector<Scalar>& dH) {
return -dH.conjugate() + (dH.dot(z) / z.squaredNorm()) * z.conjugate();
}
template <class Scalar, int p>
std::tuple<Real, Vector<Scalar>> WdW(const Tensor<Scalar, p>& J, const Vector<Scalar>& z) {
Vector<Scalar> dH;
Matrix<Scalar> ddH;
std::tie(std::ignore, dH, ddH) = hamGradHess(J, z);
Vector<Scalar> dzdt = zDot(z, dH);
Real a = z.squaredNorm();
Scalar A = (Scalar)(z.transpose() * dzdt) / a;
Scalar B = dH.dot(z) / a;
Real W = dzdt.squaredNorm();
Vector<Scalar> dW = ddH * (dzdt - A * z.conjugate())
+ 2 * (conj(A) * B * z).real()
- conj(B) * dzdt - conj(A) * dH.conjugate();
return {W, dW};
}
template <class Scalar>
Matrix<Scalar> dzDot(const Vector<Scalar>& z, const Vector<Scalar>& dH) {
Real z² = z.squaredNorm();
return (dH.conjugate() - (dH.dot(z) / z²) * z.conjugate()) * z.adjoint() / z²;
}
template <class Scalar>
Matrix<Scalar> dzDotConjugate(const Vector<Scalar>& z, const Vector<Scalar>& dH, const Matrix<Scalar>& ddH) {
Real z² = z.squaredNorm();
return -ddH + (ddH * z.conjugate()) * z.transpose() / z²
+ (z.dot(dH) / z²) * (
Matrix<Scalar>::Identity(ddH.rows(), ddH.cols()) - z.conjugate() * z.transpose() / z²
);
}
|