summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-10 11:57:25 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-10 11:57:25 +0100
commit24bbfcdf80c041aad09017a554304b3a18f646e9 (patch)
treecb457286e9f60ad0d81afe75e41c9ea369d6329b
parentb8cf57637e7d11e7c1cb27b04f88ed2d5a04ee87 (diff)
downloadPRR_3_023064-24bbfcdf80c041aad09017a554304b3a18f646e9.tar.gz
PRR_3_023064-24bbfcdf80c041aad09017a554304b3a18f646e9.tar.bz2
PRR_3_023064-24bbfcdf80c041aad09017a554304b3a18f646e9.zip
Fixed tiny mistake.
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 92fcbf3..322ff85 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -304,7 +304,7 @@ the numerator gives
\end{widetext}
The argument of the exponential has several saddles. The solutions $\alpha_0$
are the roots of a sixth-order polynomial, but the root with the
-smallest value of $\mathop{\mathrm{Re}}\alpha$ appears gives the correct
+smallest value of $\mathop{\mathrm{Re}}\alpha_0$ appears gives the correct
solution. A detailed analysis of the saddle point integration is needed to
understand why this is so. Given such $\alpha_0$, the density of singular
values follows from the jump across the cut, or