summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkurchan.jorge <kurchan.jorge@gmail.com>2020-12-10 12:52:29 +0000
committeroverleaf <overleaf@localhost>2020-12-10 12:52:30 +0000
commit3771908cde95f1b8470c06e2ed40bf29168986a1 (patch)
tree3b3240c0e70e2f2f90a94fbd6cd21eda3fa5d1f8
parent59ff2b9c61517ac7f89f38821a09ca4cf9ac28cd (diff)
downloadPRR_3_023064-3771908cde95f1b8470c06e2ed40bf29168986a1.tar.gz
PRR_3_023064-3771908cde95f1b8470c06e2ed40bf29168986a1.tar.bz2
PRR_3_023064-3771908cde95f1b8470c06e2ed40bf29168986a1.zip
Update on Overleaf.
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index eaed1a7..54c8d0b 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -113,7 +113,7 @@ Critical points are given by the set of equations:
\begin{equation}
\frac{c_p}{(p-1)!}\sum_{ i, i_2\cdots i_p}^NJ_{i, i_2\cdots i_p}z_{i_2}\cdots z_{i_p} = \epsilon z_i
\end{equation}
-which for given $\epsilon$ are a set pf $N$ equations of degree $
+which for given $\epsilon$ are a set pf $N$ equations (pluof degree $
Since $H$ is holomorphic, a point is a critical point of its real part if and
only if it is also a critical point of its imaginary part. The number of
critical points of $H$ is therefore the number of critical points of