summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkurchan.jorge <kurchan.jorge@gmail.com>2020-12-09 15:59:26 +0000
committeroverleaf <overleaf@localhost>2020-12-09 16:02:22 +0000
commit4943c8d5d578396bd3087c1e7609b4973e4532bc (patch)
treef43b2c29b700a29d5979b889f87b928d6318118b
parent4c7e7edb6c7b74ded74a4437d7b15f32c1e6f378 (diff)
downloadPRR_3_023064-4943c8d5d578396bd3087c1e7609b4973e4532bc.tar.gz
PRR_3_023064-4943c8d5d578396bd3087c1e7609b4973e4532bc.tar.bz2
PRR_3_023064-4943c8d5d578396bd3087c1e7609b4973e4532bc.zip
Update on Overleaf.
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 03fad88..fcbe282 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -319,7 +319,7 @@ The number of critical points contained within is
=(p-1)^{N/2},
\end{equation}
the square root of \eqref{eq:bezout} and precisely the number of critical
-points of the real pure spherical $p$-spin model. In fact, the full
+points of the real pure spherical $p$-spin model. (note the role of conjugation symmetry, already underlined in Ref\cite{bogomolny1992distribution}). In fact, the full
$\epsilon$-dependence of the real pure spherical $p$-spin is recovered by this
limit as $\epsilon$ is varied.