diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-14 14:51:39 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-14 14:51:39 +0100 |
commit | 54273f814e454770f11a44f6b7ca97a3dcceb66a (patch) | |
tree | ac84ec6a27da51730956347a9a2e5e7ff274011a | |
parent | 574c5495fbc22ea52927b77b1a1b2b60f2189f85 (diff) | |
download | PRR_3_023064-54273f814e454770f11a44f6b7ca97a3dcceb66a.tar.gz PRR_3_023064-54273f814e454770f11a44f6b7ca97a3dcceb66a.tar.bz2 PRR_3_023064-54273f814e454770f11a44f6b7ca97a3dcceb66a.zip |
Slightly more honest.
-rw-r--r-- | bezout.tex | 4 |
1 files changed, 2 insertions, 2 deletions
@@ -202,8 +202,8 @@ where the argument of the exponential is \right\}. \end{equation} The integral of the distribution $\rho$ of eigenvalues of $\partial\partial - H$ comes from the Hessian and is dependant on $a$ alone. This function has a - maximum in $\hat a$, $b$, $\hat c$, and $d$ at which its value is + H$ comes from the Hessian and is dependant on $a$ alone. This function has an + extremum in $\hat a$, $b$, $\hat c$, and $d$ at which its value is \begin{equation} \label{eq:free.energy.a} f(a)=1+\frac12\log\left(\frac4{p^2}\frac{a^2-1}{a^{2(p-1)}-|\kappa|^2}\right)+\int d\lambda\,\rho(\lambda)\log|\lambda|^2 -2C_+[\operatorname{Re}(\epsilon e^{-i\theta})]^2-2C_-[\operatorname{Im}(\epsilon e^{-i\theta})]^2, |