summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-10 13:52:38 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-10 13:52:38 +0100
commit9190995c3182377c184140becbea4f52768717e6 (patch)
treefe29f551c10bb5b776396ded7ec1d8ec805c8f73
parent68045a697a427f7ff8745fbf6a1fbfce0f0acc72 (diff)
parented7030569235796bd96acec289dc0cde37ea422c (diff)
downloadPRR_3_023064-9190995c3182377c184140becbea4f52768717e6.tar.gz
PRR_3_023064-9190995c3182377c184140becbea4f52768717e6.tar.bz2
PRR_3_023064-9190995c3182377c184140becbea4f52768717e6.zip
Merge branch 'master' of https://git.overleaf.com/5fcce4736e7f601ffb7e1484
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 480fb2a..d02a11a 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -113,7 +113,7 @@ Critical points are given by the set of equations:
\begin{equation}
\frac{c_p}{(p-1)!}\sum_{ i, i_2\cdots i_p}^NJ_{i, i_2\cdots i_p}z_{i_2}\cdots z_{i_p} = \epsilon z_i
\end{equation}
-which for given $\epsilon$ are a set pf $N$ equations of degree $
+which for given $\epsilon$ are a set pf $N$ equations (plus the constraint) of degree $
Since $H$ is holomorphic, a point is a critical point of its real part if and
only if it is also a critical point of its imaginary part. The number of
critical points of $H$ is therefore the number of critical points of