summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkurchan.jorge <kurchan.jorge@gmail.com>2020-12-10 12:52:30 +0000
committeroverleaf <overleaf@localhost>2020-12-10 12:52:37 +0000
commited7030569235796bd96acec289dc0cde37ea422c (patch)
tree42dd09d6e9fcd11715abfd222c87f468bc153294
parent3771908cde95f1b8470c06e2ed40bf29168986a1 (diff)
downloadPRR_3_023064-ed7030569235796bd96acec289dc0cde37ea422c.tar.gz
PRR_3_023064-ed7030569235796bd96acec289dc0cde37ea422c.tar.bz2
PRR_3_023064-ed7030569235796bd96acec289dc0cde37ea422c.zip
Update on Overleaf.
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 54c8d0b..fe07105 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -113,7 +113,7 @@ Critical points are given by the set of equations:
\begin{equation}
\frac{c_p}{(p-1)!}\sum_{ i, i_2\cdots i_p}^NJ_{i, i_2\cdots i_p}z_{i_2}\cdots z_{i_p} = \epsilon z_i
\end{equation}
-which for given $\epsilon$ are a set pf $N$ equations (pluof degree $
+which for given $\epsilon$ are a set pf $N$ equations (plus the constraint) of degree $
Since $H$ is holomorphic, a point is a critical point of its real part if and
only if it is also a critical point of its imaginary part. The number of
critical points of $H$ is therefore the number of critical points of