summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkurchan.jorge <kurchan.jorge@gmail.com>2020-12-09 13:06:52 +0000
committeroverleaf <overleaf@localhost>2020-12-09 13:06:53 +0000
commit930eb0fd79ce8b0960e86d2b190f4333f1457d82 (patch)
treeb9503aa968253e947936617ca4fe7bd4651d1704
parent3b1b4f32a709b87769436c5e0922f3ebf22fe9fd (diff)
downloadPRR_3_023064-930eb0fd79ce8b0960e86d2b190f4333f1457d82.tar.gz
PRR_3_023064-930eb0fd79ce8b0960e86d2b190f4333f1457d82.tar.bz2
PRR_3_023064-930eb0fd79ce8b0960e86d2b190f4333f1457d82.zip
Update on Overleaf.
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 2aef92d..c5f91cc 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -330,7 +330,7 @@ Consider for example the ground-state energy for given $a$, that is, the energy
{\color{teal} {\bf somewhere} In Figure \ref{desert} we show that for $\kappa<1$ there is always a range of values of $a$ close to one for which there are no solutions: this is natural, given that the $y$ contribution to the volume shrinks to zero as that of an $N$-dimensional sphere $\sim(a-1)^N$.
For the case $K=1$ -- i.e. the analytic continuation of the usual real computation -- the situation
-is more interesting. In the range of values of $$
+is more interesting. In the range of values of $\Re$
\begin{figure}[htpb]\label{desert}