diff options
author | kurchan.jorge <kurchan.jorge@gmail.com> | 2020-12-09 13:06:52 +0000 |
---|---|---|
committer | overleaf <overleaf@localhost> | 2020-12-09 13:06:53 +0000 |
commit | 930eb0fd79ce8b0960e86d2b190f4333f1457d82 (patch) | |
tree | b9503aa968253e947936617ca4fe7bd4651d1704 | |
parent | 3b1b4f32a709b87769436c5e0922f3ebf22fe9fd (diff) | |
download | PRR_3_023064-930eb0fd79ce8b0960e86d2b190f4333f1457d82.tar.gz PRR_3_023064-930eb0fd79ce8b0960e86d2b190f4333f1457d82.tar.bz2 PRR_3_023064-930eb0fd79ce8b0960e86d2b190f4333f1457d82.zip |
Update on Overleaf.
-rw-r--r-- | bezout.tex | 2 |
1 files changed, 1 insertions, 1 deletions
@@ -330,7 +330,7 @@ Consider for example the ground-state energy for given $a$, that is, the energy {\color{teal} {\bf somewhere} In Figure \ref{desert} we show that for $\kappa<1$ there is always a range of values of $a$ close to one for which there are no solutions: this is natural, given that the $y$ contribution to the volume shrinks to zero as that of an $N$-dimensional sphere $\sim(a-1)^N$. For the case $K=1$ -- i.e. the analytic continuation of the usual real computation -- the situation -is more interesting. In the range of values of $$ +is more interesting. In the range of values of $\Re$ \begin{figure}[htpb]\label{desert} |