summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkurchan.jorge <kurchan.jorge@gmail.com>2020-12-10 12:52:52 +0000
committeroverleaf <overleaf@localhost>2020-12-10 12:52:54 +0000
commit98b8725762f2700499005ee9b5d6a0064e80399a (patch)
tree6523d3042c92c0f936ef54e44c32c0a1039ae556
parent357ceadde37599ec164d135913f57517d5427ba0 (diff)
downloadPRR_3_023064-98b8725762f2700499005ee9b5d6a0064e80399a.tar.gz
PRR_3_023064-98b8725762f2700499005ee9b5d6a0064e80399a.tar.bz2
PRR_3_023064-98b8725762f2700499005ee9b5d6a0064e80399a.zip
Update on Overleaf.
-rw-r--r--bezout.tex1
1 files changed, 1 insertions, 0 deletions
diff --git a/bezout.tex b/bezout.tex
index fd1a91f..5582751 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -114,6 +114,7 @@ Critical points are given by the set of equations:
\frac{c_p}{(p-1)!}\sum_{ i, i_2\cdots i_p}^NJ_{i, i_2\cdots i_p}z_{i_2}\cdots z_{i_p} = \epsilon z_i
\end{equation}
which for given $\epsilon$ are a set pf $N$ equations (plus the constraint) of degree $p-1$.
+
$
Since $H$ is holomorphic, a point is a critical point of its real part if and
only if it is also a critical point of its imaginary part. The number of