diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 15:25:18 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 15:25:18 +0100 |
commit | a30cca363958cd8bb4de480432b791a3711614a4 (patch) | |
tree | 8338de0954606e6399a809ebe3ddb0cd88b2071c | |
parent | d40ca90a33d98d2bc3ec76463497dea1b5cccdf4 (diff) | |
download | PRR_3_023064-a30cca363958cd8bb4de480432b791a3711614a4.tar.gz PRR_3_023064-a30cca363958cd8bb4de480432b791a3711614a4.tar.bz2 PRR_3_023064-a30cca363958cd8bb4de480432b791a3711614a4.zip |
Nudging Figure 1 around to minimize blank space...
-rw-r--r-- | bezout.tex | 45 |
1 files changed, 22 insertions, 23 deletions
@@ -228,29 +228,6 @@ z$, or alternatively the magnitude $y^2$ of the imaginary part. The latter vanishes as $a\to1$, where we should recover known results for the real $p$-spin. -\begin{figure}[htpb] - \centering - - \includegraphics{fig/spectra_0.0.pdf} - \includegraphics{fig/spectra_0.5.pdf}\\ - \includegraphics{fig/spectra_1.0.pdf} - \includegraphics{fig/spectra_1.5.pdf} - - \caption{ - Eigenvalue and singular value spectra of the matrix $\partial\partial H$ - for $p=3$, $a=\frac54$, and $\kappa=\frac34e^{-i3\pi/4}$ with (a) - $\epsilon=0$, (b) $\epsilon=-\frac12|\epsilon_{\mathrm{th}}|$, (c) - $\epsilon=-|\epsilon_{\mathrm{th}}|$, and (d) - $\epsilon=-\frac32|\epsilon_{\mathrm{th}}|$. The shaded region of each inset - shows the support of the eigenvalue distribution. The solid line on each - plot shows the distribution of singular values, while the overlaid - histogram shows the empirical distribution from $2^{10}\times2^{10}$ complex - normal matrices with the same covariance and diagonal shift as - $\partial\partial H$. - } \label{fig:spectra} -\end{figure} - - The Hessian of \eqref{eq:constrained.hamiltonian} is $\partial\partial H=\partial\partial H_0-p\epsilon I$, or the Hessian of \eqref{eq:bare.hamiltonian} with a constant added to its diagonal. The @@ -285,6 +262,28 @@ knowledge a closed form is not in the literature. We have worked out an implici this spectrum using the saddle point of a replica symmetric calculation for the Green function. +\begin{figure}[htpb] + \centering + + \includegraphics{fig/spectra_0.0.pdf} + \includegraphics{fig/spectra_0.5.pdf}\\ + \includegraphics{fig/spectra_1.0.pdf} + \includegraphics{fig/spectra_1.5.pdf} + + \caption{ + Eigenvalue and singular value spectra of the matrix $\partial\partial H$ + for $p=3$, $a=\frac54$, and $\kappa=\frac34e^{-i3\pi/4}$ with (a) + $\epsilon=0$, (b) $\epsilon=-\frac12|\epsilon_{\mathrm{th}}|$, (c) + $\epsilon=-|\epsilon_{\mathrm{th}}|$, and (d) + $\epsilon=-\frac32|\epsilon_{\mathrm{th}}|$. The shaded region of each inset + shows the support of the eigenvalue distribution. The solid line on each + plot shows the distribution of singular values, while the overlaid + histogram shows the empirical distribution from $2^{10}\times2^{10}$ complex + normal matrices with the same covariance and diagonal shift as + $\partial\partial H$. + } \label{fig:spectra} +\end{figure} + Introducing replicas to bring the partition function to the numerator of the Green function \cite{Livan_2018_Introduction} gives \begin{widetext} |