diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2023-05-27 16:28:54 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2023-05-27 16:28:54 +0200 |
commit | 6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094 (patch) | |
tree | 8569b1338763364c82079a13c55d56318a3b2e38 | |
parent | 39f69b5fa3db2024fbb837598be1249b3a35c3fd (diff) | |
parent | 6242cca8eb8c28e12c085cc67181f5a36a1cf844 (diff) | |
download | paper-6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094.tar.gz paper-6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094.tar.bz2 paper-6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094.zip |
Merge branch 'master' of git:research/first_order_singularities/paper
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | IsingScalingFunction.wl | 292 | ||||
-rw-r--r-- | IsingScalingFunctionExamples.nb | 10814 | ||||
-rw-r--r-- | figs/F_higher_singularities.eps | 343 | ||||
-rw-r--r-- | figs/F_higher_singularities.pdf | bin | 8097 -> 0 bytes | |||
-rw-r--r-- | figs/F_lower_singularities.eps | 270 | ||||
-rw-r--r-- | figs/F_lower_singularities.pdf | bin | 6542 -> 0 bytes | |||
-rw-r--r-- | figs/F_theta_singularities.eps | 374 | ||||
-rw-r--r-- | figs/F_theta_singularities.pdf | bin | 8379 -> 0 bytes | |||
-rw-r--r-- | figs/contour_path.eps | 440 | ||||
-rw-r--r-- | figs/contour_path.pdf | bin | 9494 -> 0 bytes | |||
-rw-r--r-- | figs/figures.nb | 2399 | ||||
-rw-r--r-- | ising_scaling.bib | 36 | ||||
-rw-r--r-- | ising_scaling.tex | 62 | ||||
-rw-r--r-- | referee_response.tex | 240 |
15 files changed, 15151 insertions, 120 deletions
@@ -9,5 +9,6 @@ *.fls *.out /*.pdf +figs/*eps-converted-to.pdf *.gnuploterrors gnuplottex/* diff --git a/IsingScalingFunction.wl b/IsingScalingFunction.wl new file mode 100644 index 0000000..81d5e47 --- /dev/null +++ b/IsingScalingFunction.wl @@ -0,0 +1,292 @@ +BeginPackage["IsingScalingFunction`"] + +InverseCoordinates::usage = "Numerically convert Schofield coordinates to t and h." + +g::usage = "g[θ0, gs][θ] gives the Schofield coordinate transformation defined in (14)." + +ut::usage = "ut[θ] gives the scaling field u_t as a function of Schofield coordinates." + +uh::usage = "uh[θ0, gs][θ] gives the scaling field u_h as a function of Schofield coordinates." + +η::usage = "η[θ0, gs][θ] gives the invariant scaling combination η." + +ξ::usage = "ξ[θ0, gs][θ] gives the invariant scaling combination ξ." + +ReScriptF::usage = "ReScriptF[θ0, θYL, B, C0, CYL, Gs][θ] gives the free energy scaling function defined in (19)." + +ScriptF::usage = "ScriptF[θ0, θYL, B, C0, CYL, Gs][θ] gives the free energy scaling function defined in (35)." + +DScriptFPlusMinusDξθ0List::usage = + "DScriptFPlusMinusDξθ0List computes the first m derivatives of the scaling function F_- evaluated at θ_0." + +DScriptFPlusMinusDξList::usage = + "DScriptFPlusMinusDξList computes the first m derivatives of the scaling function F_+/-." + +DScriptF0DηList::usage = + "DScriptF0DηList computes the first m derivatives of the scaling function F_0." + +DScriptF0Dη::usage = + "DScriptF0Dη computes the mth derivative of the scaling function F_0." + +DScriptMCasDξList::usage = "Computes the first m derivatives of the scaling function M given by Caselle et al." + +uf::usage = "uf computes the singular free energy u_f." + +DufDut::usage = + "DufDut computes derivatives of the singular free energy u_f with respect to the temperature-like scaling field u_t." + +DufDuh::usage = + "DufDuh computes derivatives of the singular free energy u_f with respect to the temperature-like scaling field u_h." + +ruleB::usage = "Fixes B given other data as in (38)." + +ruleC0::usage = "Fixes C0 given other data as in (39)." + +Data::usage = "Data[n] gives data from the fit to nth order from Table II." + +PrepareArgument::usage = "Converts scaling function data into appropriate argument to function interfaces." + +θ0Cas::usage = "θ0 from Caselle et al." + +gsCas::usage = "g function coefficients from Caselle et al." + +Φs::usage = "List of numeric coefficients for the scaling function F_0" + +Gls::usage = "List of numeric coefficients for the scaling function F_-" + +Ghs::usage = "List of numeric coefficients for the scaling function F_+" + +Begin["Private`"] + +β := 1/8 + +δ := 15 + +Δ := β δ + +OverlineS := 2^(1/12) Exp[-1/8] Glaisher^(3/2) + +Φs := { + -Gamma[1/3]Gamma[1/5]Gamma[7/15]/(2 π Gamma[2/3]Gamma[4/5]Gamma[8/15])(4 π^2 Gamma[13/16]^2 Gamma[3/4]/(Gamma[3/16]^2 Gamma[1/4]))^(8/15), + -0.31881012489061, + Around[0.110886196683, 2.0 10^-12], + Around[0.01642689465, 2.0 10^-11], + Around[-2.639978 10^-4, 1.0 10^-10], + Around[-5.140526 10^-4, 1.0 10^-10], + Around[2.08865 10^-4, 1.0 10^-9], + Around[-4.4819 10^-5, 1.0 10^-9], + Around[3.16 10^-7, 1.0 10^-9], + Around[4.31 10^-6, 0.01 10^-6], + Around[-1.99 10^-6, 0.01 10^-6] +} + +Gls := { + 0, + -OverlineS, + −1.000960328725262189480934955172097320572505951770117 Sqrt[2]/((2 )^(-7/8) (2^(3/16)/OverlineS)^2)/2/(12 \[Pi]), + Around[ 0.038863932, 3.0 10^(-9)], + Around[−0.068362119, 2.0 10^(-9)], + Around[ 0.18388370, 1.0 10^(-8)], + Around[-0.6591714, 1.0 10^(-7)], + Around[ 2.937665, 3.0 10^(-6)], + Around[-15.61, 1.0 10^(-2)], + Around[ 96.76, 1.0 10^(-2)], + Around[-6.79 10^2, 1.0], + Around[ 5.34 10^3, 10.], + Around[-4.66 10^4, 0.01 10^4], + Around[ 4.46 10^5, 0.01 10^5], + Around[-4.66 10^6, 0.01 10^6] +} + +Ghs := { + 0, + 0, + -1.000815260440212647119476363047210236937534925597789 Sqrt[2]/((2 )^(-7/8) (2^(3/16)/OverlineS)^2)/2, + 0, + Around[ 8.333711750, 5.0 10^(-9)], + 0, + Around[-95.16896, 1.0 10^(-5)], + 0, + Around[1457.62, 3.0 10^(-2)], + 0, + Around[-2.5891 10^4, 2.0], + 0, + Around[5.02 10^5, 0.01 10^5], + 0, + Around[-1.04 10^7, 0.01 10^7] +} + +Data[2] = Rationalize[#, 10^-20] & /@ <| + "θ0" -> 1.148407773492004`, + "θYL" -> 0.9896669889911205`, + "CYL" -> -0.172823989504767`, + "Gs" -> {-0.31018352388662596`, 0.2474537923130002`}, + "gs" -> {0.37369093055254343`, -0.021636313152585823`} +|> + +Data[3] = Rationalize[#, 10^-20] & /@ <| + "θ0" -> 1.2542120477507488`, + "θYL" -> 0.6020557328641167`, + "CYL" -> -0.38566364361428684`, + "Gs" -> {-0.3527514794812415`, 0.2582430860166863`}, + "gs" -> {0.4483788209731592`, -0.022032295172535358`, 0.00022200608228654115`} +|> + +Data[4] = Rationalize[#, 10^-20] & /@ <| + "θ0" -> 1.3164928721109121`, + "θYL" -> 0.6400189996493497`, + "CYL" -> -0.3563974694580203`, + "Gs" -> {-0.3550547624920263`, 0.23465947408509413`, -0.0019083731028066697`}, + "gs" -> {0.4410742751152714`, -0.034817777358116885`, 0.000678172648789985`, -0.00004305140578834467`} +|> + +Data[5] = Rationalize[#, 10^-20] & /@ <| + "θ0" -> 1.3403205742656135`, + "θYL" -> 0.6238113973493433`, + "CYL" -> -0.38002950945224295`, + "Gs" -> {-0.35127522582179693`, 0.23704589676915347`, -0.007319731639727028`}, + "gs" -> {0.44371885415894785`, -0.04609943321005163`, -0.0007458341071947777`, 0.00005966875622885447`, -4.403083529955303`*^-6} +|> + +Data[6] = Rationalize[#, 10^-20] & /@ <| + "θ0" -> 1.3626103817690176`, + "θYL" -> 0.6462147447024515`, + "CYL" -> -0.35576386594103865`, + "Gs" -> {-0.3520586281920383`, 0.23316561297622435`, -0.006649030656179257`, -0.0016899077640685814`}, + "gs" -> {0.43845335615925396`, -0.05312704168994819`, -0.003914782631377569`, -0.0004080160912692574`, 0.000026262906640471588`, -1.0974538440746828`*^-6} +|> + +PrepareArgument[data_] := With[ + { + θ0 = data["θ0"], + gs = data["gs"] + }, + { + θ0, + data["θYL"], + ruleB[θ0, gs], + ruleC0[θ0, gs], + data["CYL"], + data["Gs"], + gs + } +] + +t[θ_] := θ^2 - 1 + +g[θ0_, gs_][θ_] := (1 - (θ/θ0)^2) Total[MapIndexed[Function[{gi, i}, gi θ^(2*i[[1]]-1)], gs]] + +ut[R_, θ_] := R t[θ] + +uh[θ0_, gs_][R_, θ_] := R^Δ g[θ0, gs][θ] + +InverseCoordinates[\[Theta]0_, gs_, wp_:20][tn_, hn_] := + ({Exp[logR], \[Theta]0 Tanh[x]} /. + FindRoot[{ + Rationalize[tn, 10^-30] == ut[Exp[logR], \[Theta]0 Tanh[x]], + Rationalize[hn, 10^-30] == uh[\[Theta]0, gs][Exp[logR], \[Theta]0 Tanh[x]] + }, {{logR, 2}, {x, Sign[hn]/2}}, WorkingPrecision -> wp]) /; + NumericQ[tn] && NumericQ[hn] + +η[θ0_, gs_][θ_] := t[θ] / RealAbs[g[θ0, gs][θ]]^(1 / Δ) + +ξ[θ0_, gs_][θ_] := g[θ0, gs][θ] / RealAbs[t[θ]]^Δ + +ScriptR[θc_, B_][θ_] := (θc Exp[1/(B θc)] ExpIntegralEi[-1/(B θc)] + (θ - θc) Exp[-1/(B (θ - θc))] ExpIntegralEi[1/(B (θ - θc))]) / π + +ReScriptF0[C0_, θc_, B_][θ_] := C0 (ScriptR[θc, B][θ] + ScriptR[θc, B][-θ]) + +ScriptFYL[θYL_, CYL_][θ_] := CYL ((-I θ + θYL)^(5/6) + (I θ + θYL)^(5/6) - 2 θYL^(5/6)) + +ReScriptFRegular[θ0_, θYL_, B_, C0_, CYL_, Gs_][θ_] := C0 ScriptR[θ0, B][-θ] + ScriptFYL[θYL, CYL][θ] + Total[MapIndexed[Function[{G, i}, G θ^(2*i[[1]])], Gs]] + +ReScriptF[θ0_, θYL_, B_, C0_, CYL_, Gs_][θ_] := ReScriptFRegular[θ0, θYL, B, C0, CYL, Gs][θ] + C0 ScriptR[θ0, B][θ] + +DReScriptFIrregular[θ0_, B_, C0_][m_] := Piecewise[{{C0 m! Gamma[m - 1] B^(m - 1) / π, m > 1}, {C0 θ0 Exp[1/(B θ0)] ExpIntegralEi[-1/(B θ0)] / π, m == 0}}, 0] + +ScriptF[θ0_, θYL_, B_, C0_, CYL_, Gs_][θ_] := ReScriptF[θ0, θYL, B, C0, CYL, Gs][θ] + C0 I Sign[Im[θ]] ((θ-θ0)Exp[-1/(B(θ-θ0))]-(-θ-θ0)Exp[-1/(B(-θ-θ0))]) + +ScriptFPlusMinus[ScriptF_][θ_] := ScriptF[θ] / t[θ]^2 - 1/(8 \[Pi]) Log[t[θ]^2] + +ScriptF0[θ0_, gs_][ScriptF_][θ_] := RealAbs[g[θ0, gs][θ]]^(-2 / Δ) ScriptF[θ] - η[θ0, gs][θ]^2 Log[g[θ0, gs][θ]^2] / (8 π Δ) + +uf[params__][R_, θ_] := R^2 ReScriptF[params][θ] + t[θ]^2 R^2 / (8 π) Log[R^2] + +EfficientDerivativeList[n_][f_][x_] := Module[ + {xp}, NestList[Function[g, D[g, xp]], f[xp], n] /. xp -> x +] + +InverseDerivativeList[n_][f_][x_] := Module[ + {xp, dfs, fp, Pns}, + dfs = Rest[EfficientDerivativeList[n][f][x]]; + Pns = FoldList[Function[{Pm, m}, + fp'[xp] D[Pm, xp] - (2 m - 1) fp''[xp] Pm], 1, Range[n - 1]] /. + Derivative[m_][fp][xp] :> dfs[[m]]; + MapIndexed[{Pn, i} \[Function] Pn/dfs[[1]]^(2 i[[1]] - 1), Pns] +] + +CompositeFunctionDerivativeList[G_, F_, X_, FSupp_:(0&)][m_, θ_] := Module[ + { ds, dF, df, fp }, + ds = InverseDerivativeList[m+1][X][θ]; + dF = EfficientDerivativeList[m][F][θ] + FSupp /@ Range[0, m]; + df = EfficientDerivativeList[m][G[fp]][θ] /. + Map[Derivative[#][fp][θ] -> dF[[# + 1]] &, Range[0, m]]; + Table[Sum[df[[k+1]] BellY[j, k, ds[[;; j - k + 1]]], {k, 0, j}]/(j!), {j, 0, m}] +] + +DScriptFPlusMinusDξθ0List[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_] := CompositeFunctionDerivativeList[ + ScriptFPlusMinus, ReScriptFRegular[θ0, θYL, B, C0, CYL, Gs], + ξ[θ0, gs], DReScriptFIrregular[θ0, B, C0] + ][m, θ0] + +DScriptFPlusMinusDξList[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_, θ_] := CompositeFunctionDerivativeList[ + ScriptFPlusMinus, ReScriptF[θ0, θYL, B, C0, CYL, Gs], ξ[θ0, gs] + ][m, θ] + +DScriptF0DηList[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_, θ_] := CompositeFunctionDerivativeList[ + ScriptF0[θ0, gs], ReScriptF[θ0, θYL, B, C0, CYL, Gs], η[θ0, gs] + ][m, θ] + +DScriptFPlusMinusDξθ0[params__][m_] := Last[DScriptFPlusMinusDξθ0List[params][m]] + +DScriptFPlusMinusDξ[params__][m_, θ_] := Last[DScriptFPlusMinusDξList[params][m, θ]] + +DScriptF0Dη[params__][m_, θ_] := Last[DScriptF0DηList[params][m, θ]] + +DufDut[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := m! RealAbs[uh[θ0, gs][R, θ]]^(2 / Δ - m / Δ) DScriptF0Dη[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + Log[uh[θ0, gs][R, θ]^2] / (8 π Δ) Derivative[m][Function[utp, utp^2]][ut[R, θ]] + +DufDuh[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := m! RealAbs[ut[R, θ]]^(2-m Δ) DScriptFPlusMinusDξ[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + Derivative[m][1&][θ] ut[R, θ]^2 / (8 π) Log[ut[R, θ]^2] + +ruleB[θ0_, gs_] := (2 * OverlineS / π) * (- g[θ0, gs]'[θ0] / t[θ0]^Δ) + +ruleC0[θ0_, gs_] := Exp[Δ t[θ0]^(Δ - 1) t'[θ0] / (2 OverlineS / π g[θ0, gs]'[θ0]) - t[θ0]^Δ g[θ0, gs]''[θ0] / (4 OverlineS / π g[θ0, gs]'[θ0]^2)] t[θ0]^(1/8) OverlineS / (2 π) * g[θ0, gs]'[θ0] + +θ0Cas := Sqrt[1.16951]; + +h0Cas := a b ρ /. { + a -> c2^2/c4, + b -> (-c4/c2^3)^(1/2), + ρ -> 2.00881 + } /. { + c2->Ghs[[3]] 2!, + c4->Ghs[[5]]["Value"] 4! + } + +gsCas := h0Cas * { + 1, + -0.222389, + -0.043547, + -0.014809, + -0.007168 + } + +m0Cas := -Ghs[[3]]2! h0Cas + +DScriptMCasDξList[m_, θ_] := CompositeFunctionDerivativeList[ + Identity, Function[θp, m0Cas * θp / RealAbs[θp^2 - 1]^β], ξ[θ0Cas, gsCas] + ][m, θ] + +End[] + +EndPackage[] + diff --git a/IsingScalingFunctionExamples.nb b/IsingScalingFunctionExamples.nb new file mode 100644 index 0000000..c522108 --- /dev/null +++ b/IsingScalingFunctionExamples.nb @@ -0,0 +1,10814 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 13.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 554332, 10806] +NotebookOptionsPosition[ 548041, 10697] +NotebookOutlinePosition[ 548438, 10713] +CellTagsIndexPosition[ 548395, 10710] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell[BoxData[ + RowBox[{ + RowBox[{"SetDirectory", "[", + RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.857727143976652*^9, 3.857727184451297*^9}, { + 3.872827316271285*^9, 3.8728273233104467`*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], + +Cell[BoxData[ + RowBox[{"<<", "IsingScalingFunction`"}]], "Input", + CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}}, + CellLabel->"In[2]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], + +Cell[CellGroupData[{ + +Cell["Checking Convergence", "Section", + CellChangeTimes->{{3.88717558687833*^9, + 3.8871755894618473`*^9}},ExpressionUUID->"c6615333-57fa-470a-9d07-\ +45b7998853ef"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"expansionData", "=", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"Rest", "@", + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "10", "]"}]}], + ",", "\[IndentingNewLine]", + RowBox[{"Rest", "@", + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "10", "]"}]}], + ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DScriptMCasD\[Xi]List", "[", + RowBox[{"10", ",", "\[Theta]0Cas"}], "]"}], + RowBox[{"Table", "[", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{"m", "-", "1"}], ")"}], "!"}], + RowBox[{"m", "!"}]], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "11"}], "}"}]}], "]"}]}]}], "}"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.8886448431935587`*^9, 3.8886448702334423`*^9}, { + 3.893236672936851*^9, 3.893236714190187*^9}}, + CellLabel->"In[7]:=",ExpressionUUID->"80831edd-bcaa-4fc0-b1cf-e561a87ed645"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"lowExpansion", "=", + RowBox[{"ListLogPlot", "[", + RowBox[{ + RowBox[{"Abs", "@", + RowBox[{"Prepend", "[", + RowBox[{ + RowBox[{"N", "@", "expansionData"}], ",", + RowBox[{"Rest", "@", "Gls"}]}], "]"}]}], ",", "\[IndentingNewLine]", + RowBox[{"PlotLegends", "->", + RowBox[{"{", + RowBox[{ + "\"\<True value\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\) acc. \ +(\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",", " ", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-7\)]\) acc. \ +(\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 6)\>\"", ",", " ", + "\"\<Casselle \ +\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ +\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "m", ",", + "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"-\"], \ +RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)(0)\>\""}], + "}"}]}], ",", + RowBox[{"AspectRatio", "->", "1"}], ",", + RowBox[{"ImageSize", "->", "300"}], ",", + RowBox[{"LabelStyle", "->", + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"FontSize", "->", "14"}], ",", + RowBox[{"FontFamily", "->", "Times"}]}], "}"}]}]}], + "\[IndentingNewLine]", "]"}]}]], "Input", + CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, { + 3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9, + 3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9, + 3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, { + 3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9, + 3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, { + 3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9, + 3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, { + 3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9, + 3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, { + 3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9, + 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, { + 3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9, + 3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, { + 3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9, + 3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, { + 3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9, + 3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, { + 3.887182861536953*^9, 3.887182887361492*^9}, {3.888644779680475*^9, + 3.888644805864798*^9}, {3.888645052645789*^9, 3.888645082429496*^9}, { + 3.8886469041838827`*^9, 3.888646906527582*^9}, {3.888651934772694*^9, + 3.888651946156498*^9}, {3.8886519793259983`*^9, 3.888651979938348*^9}, { + 3.888652017390772*^9, 3.888652019678075*^9}, {3.8886521205763397`*^9, + 3.8886521472005053`*^9}}, + CellLabel->"In[8]:=",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{{Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{3., -3.2476887336074802`}, {3., -3.247688656415082}}], + LineBox[{{3., -3.247688656415082}, {3., -3.2476885792226895`}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{4., -2.682936452811683}, {4., -2.6829364235557143`}}], + + LineBox[{{4., -2.6829364235557143`}, { + 4., -2.6829363942997464`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{5., -1.6934518408101742`}, {5., -1.6934517864279734`}}], + + LineBox[{{5., -1.6934517864279734`}, { + 5., -1.6934517320457758`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{6., -0.41677183895602404`}, {6., -0.4167716872504016}}], + LineBox[{{6., -0.4167716872504016}, {6., -0.4167715355448022}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{7., 1.077614026885801}, {7., 1.077615048105556}}], + LineBox[{{7., 1.077615048105556}, {7., 1.0776160693242682`}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{8., 2.747270914255491}, {8., 2.7479117345273405`}}], + LineBox[{{8., 2.7479117345273405`}, {8., 2.7485521444115397`}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{9., 4.572130331909891}, {9., 4.572233685741827}}], + LineBox[{{9., 4.572233685741827}, {9., 4.572337028892852}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{10., 6.519147287940395}, {10., 6.520621127558696}}], + LineBox[{{10., 6.520621127558696}, {10., 6.522092798170153}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{11., 8.58110651715989}, {11., 8.582980931954241}}], + LineBox[{{11., 8.582980931954241}, {11., 8.584851839890053}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{12., 10.747207591575448`}, {12., 10.749355820113736`}}], + + LineBox[{{12., 10.749355820113736`}, {12., + 10.751499443656988`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{13., 13.005829561148378`}, {13., 13.008074231002201`}}], + + LineBox[{{13., 13.008074231002201`}, {13., + 13.010313873595706`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{14., 15.35237777756354}, {14., 15.354526006101828`}}], + + LineBox[{{14., 15.354526006101828`}, {14., + 15.35666962964508}}]}}}}, {{{Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{3., -3.2476885792226895`}, + Offset[{3, 0}, {3., -3.2476885792226895`}]}, {{ + 3., -3.2476885792226895`}, + Offset[{-3, 0}, {3., -3.2476885792226895`}]}, {{ + 3., -3.2476887336074802`}, + Offset[{3, 0}, {3., -3.2476887336074802`}]}, {{ + 3., -3.2476887336074802`}, + Offset[{-3, 0}, {3., -3.2476887336074802`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{4., -2.6829363942997464`}, + Offset[{3, 0}, {4., -2.6829363942997464`}]}, {{ + 4., -2.6829363942997464`}, + Offset[{-3, 0}, {4., -2.6829363942997464`}]}, {{ + 4., -2.682936452811683}, + Offset[{3, 0}, {4., -2.682936452811683}]}, {{ + 4., -2.682936452811683}, + Offset[{-3, 0}, {4., -2.682936452811683}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{5., -1.6934517320457758`}, + Offset[{3, 0}, {5., -1.6934517320457758`}]}, {{ + 5., -1.6934517320457758`}, + Offset[{-3, 0}, {5., -1.6934517320457758`}]}, {{ + 5., -1.6934518408101742`}, + Offset[{3, 0}, {5., -1.6934518408101742`}]}, {{ + 5., -1.6934518408101742`}, + Offset[{-3, 0}, {5., -1.6934518408101742`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{6., -0.4167715355448022}, + Offset[{3, 0}, {6., -0.4167715355448022}]}, {{ + 6., -0.4167715355448022}, + Offset[{-3, 0}, {6., -0.4167715355448022}]}, {{ + 6., -0.41677183895602404`}, + Offset[{3, 0}, {6., -0.41677183895602404`}]}, {{ + 6., -0.41677183895602404`}, + Offset[{-3, 0}, {6., -0.41677183895602404`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{7., 1.0776160693242682`}, + Offset[{3, 0}, {7., 1.0776160693242682`}]}, {{7., + 1.0776160693242682`}, + Offset[{-3, 0}, {7., 1.0776160693242682`}]}, {{7., + 1.077614026885801}, + Offset[{3, 0}, {7., 1.077614026885801}]}, {{7., + 1.077614026885801}, + Offset[{-3, 0}, {7., 1.077614026885801}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{8., 2.7485521444115397`}, + Offset[{3, 0}, {8., 2.7485521444115397`}]}, {{8., + 2.7485521444115397`}, + Offset[{-3, 0}, {8., 2.7485521444115397`}]}, {{8., + 2.747270914255491}, + Offset[{3, 0}, {8., 2.747270914255491}]}, {{8., + 2.747270914255491}, + Offset[{-3, 0}, {8., 2.747270914255491}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{9., 4.572337028892852}, + Offset[{3, 0}, {9., 4.572337028892852}]}, {{9., + 4.572337028892852}, + Offset[{-3, 0}, {9., 4.572337028892852}]}, {{9., + 4.572130331909891}, + Offset[{3, 0}, {9., 4.572130331909891}]}, {{9., + 4.572130331909891}, + Offset[{-3, 0}, {9., 4.572130331909891}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{10., 6.522092798170153}, + Offset[{3, 0}, {10., 6.522092798170153}]}, {{10., + 6.522092798170153}, + Offset[{-3, 0}, {10., 6.522092798170153}]}, {{10., + 6.519147287940395}, + Offset[{3, 0}, {10., 6.519147287940395}]}, {{10., + 6.519147287940395}, + Offset[{-3, 0}, {10., 6.519147287940395}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{11., 8.584851839890053}, + Offset[{3, 0}, {11., 8.584851839890053}]}, {{11., + 8.584851839890053}, + Offset[{-3, 0}, {11., 8.584851839890053}]}, {{11., + 8.58110651715989}, + Offset[{3, 0}, {11., 8.58110651715989}]}, {{11., + 8.58110651715989}, + Offset[{-3, 0}, {11., 8.58110651715989}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{12., 10.751499443656988`}, + Offset[{3, 0}, {12., 10.751499443656988`}]}, {{12., + 10.751499443656988`}, + Offset[{-3, 0}, {12., 10.751499443656988`}]}, {{12., + 10.747207591575448`}, + Offset[{3, 0}, {12., 10.747207591575448`}]}, {{12., + 10.747207591575448`}, + Offset[{-3, 0}, {12., 10.747207591575448`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{13., 13.010313873595706`}, + Offset[{3, 0}, {13., 13.010313873595706`}]}, {{13., + 13.010313873595706`}, + Offset[{-3, 0}, {13., 13.010313873595706`}]}, {{13., + 13.005829561148378`}, + Offset[{3, 0}, {13., 13.005829561148378`}]}, {{13., + 13.005829561148378`}, + Offset[{-3, 0}, {13., 13.005829561148378`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{14., 15.35666962964508}, + Offset[{3, 0}, {14., 15.35666962964508}]}, {{14., + 15.35666962964508}, + Offset[{-3, 0}, {14., 15.35666962964508}]}, {{14., + 15.35237777756354}, + Offset[{3, 0}, {14., 15.35237777756354}]}, {{14., + 15.35237777756354}, + Offset[{-3, 0}, {14., 15.35237777756354}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}}}}, {{{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + PointBox[{{1., 0.3058939805973386}, {2., -3.016888706538089}, { + 3., -3.247688656415082}, {4., -2.6829364235557143`}, { + 5., -1.6934517864279734`}, {6., -0.4167716872504016}, {7., + 1.077615048105556}, {8., 2.7479117345273405`}, {9., + 4.572233685741827}, {10., 6.520621127558696}, {11., + 8.582980931954241}, {12., 10.749355820113736`}, {13., + 13.008074231002201`}, {14., 15.354526006101828`}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + PointBox[{{1., 0.30589398059712153`}, {2., -3.0168887065353793`}, { + 3., -3.215068310215657}, {4., -2.5725384548275394`}, { + 5., -1.4892648280226084`}, {6., -0.13860489379333457`}, {7., + 1.3936280651899522`}, {8., 3.0682292980253587`}, {9., + 4.868772070631323}, {10., 6.787701993282296}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + PointBox[{{1., 0.3058939805973111}, {2., -3.016888706529401}, { + 3., -3.2476886917736394`}, {4., -2.6829364131573383`}, { + 5., -1.6934517950284986`}, {6., -0.4167716527892342}, {7., + 1.077920988068182}, {8., 2.751072257647312}, {9., + 4.580918298498121}, {10., 6.559514124245457}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + PointBox[{{1., 0.30713407270311166`}, {2., -3.067110308065294}, { + 3., -3.4304577212393763`}, {4., -3.0879090822971853`}, { + 5., -2.4123077494594973`}, {6., -1.5399609645024661`}, { + 7., -0.5375360276296015}, {8., 0.5571798344870343}, {9., + 1.7206870273901242`}, {10., 2.937388810483148}, {11., + 4.196416462160851}}]}}}, {{}, {}}}, { + DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> + Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, + DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox["m", HoldForm], TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\ +\"-\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \ +\\\")\\\"}]]\\)(0)\"", HoldForm], TraditionalForm]}, + AxesOrigin -> {0., -4.900657053954936}, DisplayFunction :> Identity, + Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> 300, LabelStyle -> { + GrayLevel[0], FontSize -> 14, FontFamily -> Times}, + Method -> { + "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { + Directive[ + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.772079, 0.431554, 0.102387], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.363898, 0.618501, 0.782349], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[1, 0.75, 0], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.647624, 0.37816, 0.614037], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.571589, 0.586483, 0.], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.915, 0.3325, 0.2125], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[ + 0.9728288904374106, 0.621644452187053, 0.07336199581899142], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], + "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> + Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> + True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& )}}, + PlotRange -> {{0., 14.}, {-4.900657053954936, 15.35666962964508}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, Ticks -> {Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0]}}], + FormBox[ + FormBox[ + TemplateBox[{ + "\"True value\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\) acc. \ +(\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = 2)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-7\\)]\\) acc. \ +(\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = 6)\"", + "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\ +\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ +\"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\ +\\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #2}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #3}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"], Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Background -> + Automatic, StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"PointLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", + RowBox[{"Joined", "\[Rule]", + RowBox[{"{", + RowBox[{"False", ",", "False", ",", "False", ",", "False"}], + "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"], ",", + RowBox[{"FontSize", "\[Rule]", "14"}], ",", + RowBox[{"FontFamily", "\[Rule]", "Times"}]}], "}"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{ + 3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, { + 3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9, + 3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, { + 3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9, + 3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, { + 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, + 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, + 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9, + 3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9, + 3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9}, + 3.8871778469623938`*^9, 3.887182910688779*^9, 3.8886448295691757`*^9, { + 3.888646811017542*^9, 3.888646814560216*^9}, 3.888646910080586*^9, + 3.8886519498592653`*^9, 3.888651983555497*^9, 3.88865202351644*^9, { + 3.8886521263516397`*^9, 3.888652150779788*^9}, 3.893236723869225*^9}, + CellLabel->"Out[8]=",ExpressionUUID->"7e2943f8-381c-42b0-8f9b-5bee0ef91468"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ListLogPlot", "[", + RowBox[{ + RowBox[{"Abs", "@", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Rest", "@", "\[CapitalPhi]s"}], ",", "\[IndentingNewLine]", + RowBox[{"Rest", "@", + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptF0D\[Eta]List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", + RowBox[{"10", ",", "1"}], "]"}]}], ",", "\[IndentingNewLine]", + RowBox[{"Rest", "@", + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptF0D\[Eta]List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", + RowBox[{"10", ",", "1"}], "]"}]}]}], "\[IndentingNewLine]", "}"}]}], + ",", "\[IndentingNewLine]", + RowBox[{"PlotLegends", "->", + RowBox[{"{", + RowBox[{ + "\"\<Numerics\>\"", ",", + "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",", + " ", "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = \ +6)\>\""}], "}"}]}], ",", "\[IndentingNewLine]", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "m", ",", + "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"0\"], \ +RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}], + "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{{3.887176095335842*^9, 3.887176195096656*^9}, { + 3.887177268477648*^9, 3.887177312454509*^9}, {3.88717809517518*^9, + 3.887178096950481*^9}}, + CellLabel->"In[9]:=",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{{Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{2., -2.199250858729474}, {2., -2.1992508587114377`}}], + LineBox[{{2., -2.1992508587114377`}, {2., -2.199250858693401}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{3., -4.108835370883289}, {3., -4.108835369665774}}], + LineBox[{{3., -4.108835369665774}, {3., -4.108835368448258}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{4., -8.23957016697712}, {4., -8.239569788186014}}], + LineBox[{{4., -8.239569788186014}, {4., -8.23956940939505}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{5., -7.57318515764723}, {5., -7.573184963114589}}], + LineBox[{{5., -7.573184963114589}, {5., -7.573184768581987}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{6., -8.473827235511466}, {6., -8.473822447718424}}], + LineBox[{{6., -8.473822447718424}, {6., -8.473817659948304}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{7., -10.012900713523315`}, {7., -10.012878401308493`}}], + + LineBox[{{7., -10.012878401308493`}, { + 7., -10.012856089591494`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{8., -14.970693198120777`}, {8., -14.967523623359499`}}], + LineBox[{{8., -14.967523623359499`}, {8., -14.96436406306913}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{9., -12.356895535264757`}, {9., -12.354572653848617`}}], + + LineBox[{{9., -12.354572653848617`}, { + 9., -12.352255155708255`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{10., -13.13241371325783}, {10., -13.127375919227873`}}], + + LineBox[{{10., -13.127375919227873`}, { + 10., -13.122363377404328`}}]}}}}, {{{Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{2., -2.199250858693401}, + Offset[{3, 0}, {2., -2.199250858693401}]}, {{ + 2., -2.199250858693401}, + Offset[{-3, 0}, {2., -2.199250858693401}]}, {{ + 2., -2.199250858729474}, + Offset[{3, 0}, {2., -2.199250858729474}]}, {{ + 2., -2.199250858729474}, + Offset[{-3, 0}, {2., -2.199250858729474}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{3., -4.108835368448258}, + Offset[{3, 0}, {3., -4.108835368448258}]}, {{ + 3., -4.108835368448258}, + Offset[{-3, 0}, {3., -4.108835368448258}]}, {{ + 3., -4.108835370883289}, + Offset[{3, 0}, {3., -4.108835370883289}]}, {{ + 3., -4.108835370883289}, + Offset[{-3, 0}, {3., -4.108835370883289}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{4., -8.23956940939505}, + Offset[{3, 0}, {4., -8.23956940939505}]}, {{ + 4., -8.23956940939505}, + Offset[{-3, 0}, {4., -8.23956940939505}]}, {{ + 4., -8.23957016697712}, + Offset[{3, 0}, {4., -8.23957016697712}]}, {{ + 4., -8.23957016697712}, + Offset[{-3, 0}, {4., -8.23957016697712}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{5., -7.573184768581987}, + Offset[{3, 0}, {5., -7.573184768581987}]}, {{ + 5., -7.573184768581987}, + Offset[{-3, 0}, {5., -7.573184768581987}]}, {{ + 5., -7.57318515764723}, + Offset[{3, 0}, {5., -7.57318515764723}]}, {{ + 5., -7.57318515764723}, + Offset[{-3, 0}, {5., -7.57318515764723}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{6., -8.473817659948304}, + Offset[{3, 0}, {6., -8.473817659948304}]}, {{ + 6., -8.473817659948304}, + Offset[{-3, 0}, {6., -8.473817659948304}]}, {{ + 6., -8.473827235511466}, + Offset[{3, 0}, {6., -8.473827235511466}]}, {{ + 6., -8.473827235511466}, + Offset[{-3, 0}, {6., -8.473827235511466}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{7., -10.012856089591494`}, + Offset[{3, 0}, {7., -10.012856089591494`}]}, {{ + 7., -10.012856089591494`}, + Offset[{-3, 0}, {7., -10.012856089591494`}]}, {{ + 7., -10.012900713523315`}, + Offset[{3, 0}, {7., -10.012900713523315`}]}, {{ + 7., -10.012900713523315`}, + Offset[{-3, 0}, {7., -10.012900713523315`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{8., -14.96436406306913}, + Offset[{3, 0}, {8., -14.96436406306913}]}, {{ + 8., -14.96436406306913}, + Offset[{-3, 0}, {8., -14.96436406306913}]}, {{ + 8., -14.970693198120777`}, + Offset[{3, 0}, {8., -14.970693198120777`}]}, {{ + 8., -14.970693198120777`}, + Offset[{-3, 0}, {8., -14.970693198120777`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{9., -12.352255155708255`}, + Offset[{3, 0}, {9., -12.352255155708255`}]}, {{ + 9., -12.352255155708255`}, + Offset[{-3, 0}, {9., -12.352255155708255`}]}, {{ + 9., -12.356895535264757`}, + Offset[{3, 0}, {9., -12.356895535264757`}]}, {{ + 9., -12.356895535264757`}, + Offset[{-3, 0}, {9., -12.356895535264757`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{10., -13.122363377404328`}, + Offset[{3, 0}, {10., -13.122363377404328`}]}, {{ + 10., -13.122363377404328`}, + Offset[{-3, 0}, {10., -13.122363377404328`}]}, {{ + 10., -13.13241371325783}, + Offset[{3, 0}, {10., -13.13241371325783}]}, {{ + 10., -13.13241371325783}, + Offset[{-3, 0}, {10., -13.13241371325783}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}}}}, {{{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + PointBox[{{1., -1.1431595731895612`}, {2., -2.1992508587114377`}, { + 3., -4.108835369665774}, {4., -8.239569788186014}, { + 5., -7.573184963114589}, {6., -8.473822447718424}, { + 7., -10.012878401308493`}, {8., -14.967523623359499`}, { + 9., -12.354572653848617`}, {10., -13.127375919227873`}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + PointBox[{{1., -1.142336471413771}, {2., -2.1989962191985897`}, { + 3., -4.103810189060422}, {4., -8.065760593479503}, { + 5., -7.572071121129541}, {6., -8.412217606083276}, { + 7., -9.901326241951773}, {8., -14.355261061061876`}, { + 9., -12.066885002703703`}, {10., -12.97499027628151}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + PointBox[{{1., -1.1431591915024921`}, {2., -2.199250198756966}, { + 3., -4.108834678398851}, {4., -8.239399371579477}, { + 5., -7.5732366791273495`}, {6., -8.47382080668392}, { + 7., -10.01266927712387}, {8., -14.940294452135808`}, { + 9., -12.353924318358052`}, { + 10., -13.127410732077774`}}]}}}, {{}, {}}}, { + DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> + Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox["m", HoldForm], TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\ +\"0\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \ +\\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]}, + AxesOrigin -> {0., -16.052840588323026`}, DisplayFunction :> Identity, + Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], + Method -> { + "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { + Directive[ + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.772079, 0.431554, 0.102387], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.363898, 0.618501, 0.782349], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[1, 0.75, 0], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.647624, 0.37816, 0.614037], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.571589, 0.586483, 0.], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.915, 0.3325, 0.2125], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[ + 0.9728288904374106, 0.621644452187053, 0.07336199581899142], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], + "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> + Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> + True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& )}}, + PlotRange -> {{0., 10.}, {-16.052840588323026`, -1.142336471413771}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, Ticks -> {Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0]}}], + FormBox[ + FormBox[ + TemplateBox[{ + "\"Numerics\"", + "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ +2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ +6)\""}, "PointLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"], Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> + False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"PointLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", + RowBox[{"Joined", "\[Rule]", + RowBox[{"{", + RowBox[{"False", ",", "False", ",", "False"}], "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", "}"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{3.8871762120034847`*^9, 3.8871773104168453`*^9, + 3.88717753344375*^9, 3.887178350360724*^9, 3.893236946450159*^9}, + CellLabel->"Out[9]=",ExpressionUUID->"22fc8cc4-070f-4958-a56e-3747a3946f91"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ListLogPlot", "[", + RowBox[{ + RowBox[{"Abs", "@", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Rest", "@", "Ghs"}], ",", "\[IndentingNewLine]", + RowBox[{"Rest", "@", + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", + RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]", + RowBox[{"Rest", "@", + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", + RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DScriptMCasD\[Xi]List", "[", + RowBox[{"9", ",", "0"}], "]"}], + RowBox[{"Table", "[", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{"m", "-", "1"}], ")"}], "!"}], + RowBox[{"m", "!"}]], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "10"}], "}"}]}], "]"}]}]}], + "\[IndentingNewLine]", "}"}]}], ",", "\[IndentingNewLine]", + RowBox[{"PlotLegends", "->", + RowBox[{"{", + RowBox[{ + "\"\<Numerics\>\"", ",", + "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",", + " ", "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = \ +6)\>\"", ",", " ", + "\"\<Casselle \ +\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ +\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "m", ",", + "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"+\"], \ +RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}], + "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, { + 3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9, + 3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9, + 3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, { + 3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9, + 3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, { + 3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9, + 3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, { + 3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9, + 3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, { + 3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9, + 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, { + 3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9, + 3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, { + 3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9, + 3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, { + 3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9, + 3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, { + 3.8871780781341352`*^9, 3.8871780927035418`*^9}, 3.8871829559006443`*^9}, + CellLabel->"In[10]:=",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"], + +Cell[BoxData[ + TemplateBox[{ + "N", "meprec", + "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ +\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ +\\\", SuperscriptBox[\\\"11429856398034503\\\", RowBox[{\\\"1\\\", \\\"/\\\", \ +\\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \ +RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\"-\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\ +\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\ +\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ +\\\"1\\\"}], \\\"+\\\", RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \ +FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ +\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}]]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \ +\\\"[\\\", RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\ +\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\ +\", \\\"\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"-\\\", \ +FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ +\\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ +\\\", \\\"\[Pi]\\\"}], RowBox[{\\\"107668955486287134775550584515499446643328\ +\\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\ +\[RightSkeleton]\\\"}]}]]}], \\\"]\\\"}]}], \ +RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ +\\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\ +\"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\ +\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ +RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ +SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ +\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ +FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ +\\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ +RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \ +RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\ +\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}]}], \ +RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"8\\\", \\\"\[RightSkeleton]\\\"}], \ +RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ +RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ +SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ +\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 10, 3, + 31977068536072594118, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, + 3.893236947358164*^9}, + CellLabel-> + "During evaluation of \ +In[10]:=",ExpressionUUID->"0a6c061e-9d22-469f-9a77-bdafbf23ad0b"], + +Cell[BoxData[ + TemplateBox[{ + "N", "meprec", + "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ +\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ +\\\", SuperscriptBox[\\\"11429856398034503\\\", RowBox[{\\\"1\\\", \\\"/\\\", \ +\\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \ +RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\"-\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\ +\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\ +\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ +\\\"1\\\"}], \\\"+\\\", RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \ +FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ +\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}]]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \ +\\\"[\\\", RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\ +\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\ +\", \\\"\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"-\\\", \ +FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ +\\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ +\\\", \\\"\[Pi]\\\"}], RowBox[{\\\"107668955486287134775550584515499446643328\ +\\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\ +\[RightSkeleton]\\\"}]}]]}], \\\"]\\\"}]}], \ +RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ +\\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\ +\"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\ +\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ +RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ +SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ +\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ +FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ +\\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ +RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \ +RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\ +\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}]}], \ +RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"8\\\", \\\"\[RightSkeleton]\\\"}], \ +RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \ +RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ +SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ +\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 10, 4, + 31977068536072594118, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, + 3.8932369473905067`*^9}, + CellLabel-> + "During evaluation of \ +In[10]:=",ExpressionUUID->"373d98dd-b1a2-4d6f-95ae-eed0eb8466ed"], + +Cell[BoxData[ + TemplateBox[{ + "N", "meprec", + "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\ +\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"\ +46681463692889041973700532620906696296885587180818594561\\\", \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\ +\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\ +\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ +RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", RowBox[{\\\"Times\\\", \ +\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \\\"\[RightSkeleton]\\\ +\"}], \\\"]\\\"}]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", \ +RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"]\\\"}]}], \\\"-\\\", \ +FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \ +\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"13\\\", \\\"\ +\[RightSkeleton]\\\"}], \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\")\\\"}]}], \ +RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ +SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ +\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ +FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ +\\\"\[RightSkeleton]\\\"}], \ +RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"9\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\ +\", \\\"2\\\"]}]]}], \\\")\\\"}]}], \ +\\\"383435814415399100830298627422256492275580379991986176\\\"]}], \\\"+\\\", \ +FractionBox[RowBox[{\\\"1995291215029551557786949\\\", \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \ +SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \ +\\\", SuperscriptBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \\\"\ +\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[\\\"Glaisher\ +\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}], \\\")\\\"}]}], \ +RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \ +SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \ +\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \ +FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ +\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}]], \\\"+\\\", RowBox[{\\\"12\\\", \\\" \\\", RowBox[{\\\ +\"(\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\ +\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\"-\\\", FractionBox[RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \ +\\\")\\\"}]}]}], \\\")\\\"}]}], \\\"104122350499534957937152\\\"]}]\\).\"", 2, + 10, 5, 31977068536072594118, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, + 3.893236947398655*^9}, + CellLabel-> + "During evaluation of \ +In[10]:=",ExpressionUUID->"dd61bf6b-294b-4bed-aba1-2e9c5e3c51b1"], + +Cell[BoxData[ + TemplateBox[{ + "General", "stop", + "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \ +\\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \ +calculation.\"", 2, 10, 6, 31977068536072594118, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9, + 3.893236947406246*^9}, + CellLabel-> + "During evaluation of \ +In[10]:=",ExpressionUUID->"e21c2683-2071-4eaf-8b43-f1a927c53e45"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{{Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{4., 2.1203089445691155`}, {4., 2.1203089451690884`}}], + LineBox[{{4., 2.1203089451690884`}, {4., 2.120308945769061}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{6., 4.555653733134874}, {6., 4.555653838211157}}], + LineBox[{{6., 4.555653838211157}, {6., 4.555653943287428}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{8., 7.284539665889405}, {8., 7.28456024759707}}], + LineBox[{{8., 7.28456024759707}, {8., 7.284580828881137}}]}}, { + Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{10., 10.161573447047902`}, {10., 10.161650696951378`}}], + + LineBox[{{10., 10.161650696951378`}, {10., + 10.161727940887767`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{12., 13.124361380067}, {12., 13.126355398673866`}}], + + LineBox[{{12., 13.126355398673866`}, {12., + 13.128345449081875`}}]}}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], {}, { + LineBox[{{14., 16.147654453199863`}, {14., 16.1573163641116}}], + + LineBox[{{14., 16.1573163641116}, {14., + 16.166885815127753`}}]}}}}, {{{Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{4., 2.120308945769061}, + Offset[{3, 0}, {4., 2.120308945769061}]}, {{4., + 2.120308945769061}, + Offset[{-3, 0}, {4., 2.120308945769061}]}, {{4., + 2.1203089445691155`}, + Offset[{3, 0}, {4., 2.1203089445691155`}]}, {{4., + 2.1203089445691155`}, + Offset[{-3, 0}, {4., 2.1203089445691155`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{6., 4.555653943287428}, + Offset[{3, 0}, {6., 4.555653943287428}]}, {{6., + 4.555653943287428}, + Offset[{-3, 0}, {6., 4.555653943287428}]}, {{6., + 4.555653733134874}, + Offset[{3, 0}, {6., 4.555653733134874}]}, {{6., + 4.555653733134874}, + Offset[{-3, 0}, {6., 4.555653733134874}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{8., 7.284580828881137}, + Offset[{3, 0}, {8., 7.284580828881137}]}, {{8., + 7.284580828881137}, + Offset[{-3, 0}, {8., 7.284580828881137}]}, {{8., + 7.284539665889405}, + Offset[{3, 0}, {8., 7.284539665889405}]}, {{8., + 7.284539665889405}, + Offset[{-3, 0}, {8., 7.284539665889405}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{10., 10.161727940887767`}, + Offset[{3, 0}, {10., 10.161727940887767`}]}, {{10., + 10.161727940887767`}, + Offset[{-3, 0}, {10., 10.161727940887767`}]}, {{10., + 10.161573447047902`}, + Offset[{3, 0}, {10., 10.161573447047902`}]}, {{10., + 10.161573447047902`}, + Offset[{-3, 0}, {10., 10.161573447047902`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{12., 13.128345449081875`}, + Offset[{3, 0}, {12., 13.128345449081875`}]}, {{12., + 13.128345449081875`}, + Offset[{-3, 0}, {12., 13.128345449081875`}]}, {{12., + 13.124361380067}, + Offset[{3, 0}, {12., 13.124361380067}]}, {{12., 13.124361380067}, + Offset[{-3, 0}, {12., 13.124361380067}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}, {Antialiasing -> False, + Directive[ + RGBColor[0.368417, 0.506779, 0.709798]], + GeometricTransformationBox[ + LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}], + GeometricTransformationBox[ + LineBox[{{{14., 16.166885815127753`}, + Offset[{3, 0}, {14., 16.166885815127753`}]}, {{14., + 16.166885815127753`}, + Offset[{-3, 0}, {14., 16.166885815127753`}]}, {{14., + 16.147654453199863`}, + Offset[{3, 0}, {14., 16.147654453199863`}]}, {{14., + 16.147654453199863`}, + Offset[{-3, 0}, {14., 16.147654453199863`}]}}], {{{1., 0.}, {0., + 1.}}, {0., 0.}}]}}}}, {{{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + PointBox[{{2., 0.6126028894906074}, {4., 2.1203089451690884`}, {6., + 4.555653838211157}, {8., 7.28456024759707}, {10., + 10.161650696951378`}, {12., 13.126355398673866`}, {14., + 16.1573163641116}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + PointBox[{{2., 0.6126028894906093}, {4., 2.125551226398849}, {6., + 4.569765668638038}, {8., 7.309210808612832}, {10., + 10.196845411019185`}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + PointBox[{{2., 0.6126028894906148}, {4., 2.1203089451602413`}, {6., + 4.555653877221086}, {8., 7.284512472617333}, {10., + 10.160831450583395`}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + PointBox[{{2., 0.6126028894906075}, {4., 2.1203076183853526`}, {6., + 4.555652330600042}, {8., 7.284510465974837}, {10., + 10.161378578451433`}}]}}}, {{}, {}}}, { + DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction -> + Identity, DisplayFunction -> Identity, DisplayFunction -> Identity, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox["m", HoldForm], TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\ +\"+\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \ +\\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]}, + AxesOrigin -> {0., -0.6046080204606854}, DisplayFunction :> Identity, + Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], + Method -> { + "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { + Directive[ + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.528488, 0.470624, 0.701351], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.772079, 0.431554, 0.102387], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.363898, 0.618501, 0.782349], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[1, 0.75, 0], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.647624, 0.37816, 0.614037], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.571589, 0.586483, 0.], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.915, 0.3325, 0.2125], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[ + 0.9728288904374106, 0.621644452187053, 0.07336199581899142], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + AbsoluteThickness[1.6]], + Directive[ + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02], + "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> + Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> + True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Exp[ + Part[#, 2]]}& )}}, + PlotRange -> {{0., 14.}, {-0.6046080204606854, 16.166885815127753`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, Ticks -> {Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + 15.954589770191003`, RotateLabel -> 0]}}], + FormBox[ + FormBox[ + TemplateBox[{ + "\"Numerics\"", + "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ +2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \ +6)\"", "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\ +\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ +\"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\ +\\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + PointBox[ + NCache[{ + Scaled[{ + Rational[1, 2], + Rational[1, 2]}]}, { + Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full, + ImageSize -> {10, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"], Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> + False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"PointLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}], + ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", + RowBox[{"Joined", "\[Rule]", + RowBox[{"{", + RowBox[{"False", ",", "False", ",", "False", ",", "False"}], + "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", "}"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{ + 3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, { + 3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9, + 3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, { + 3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9, + 3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, { + 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, + 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, + 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9, + 3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9, + 3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9}, + 3.8871778469623938`*^9, 3.88717835171142*^9, 3.887182957347884*^9, + 3.893236947863029*^9}, + CellLabel->"Out[10]=",ExpressionUUID->"ff6a7053-cfa6-438c-814c-b29d04a9cf5a"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"freeEnergyData", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"ut", "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"uh", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], + ",", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<gs\>\"", "]"}]}], + "]"}], "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], + RowBox[{ + RowBox[{"-", "8"}], "/", "15"}]]}], ",", + RowBox[{"Re", "@", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptF0D\[Eta]List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[", + RowBox[{"0", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",", + RowBox[{"Evaluate", "@", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Gamma]", ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]], ",", + RowBox[{"1", "-", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], "}"}], ",", "40"}], "]"}]}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, { + 3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9, + 3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, { + 3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9, + 3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, { + 3.8871830446215487`*^9, 3.8871830462680683`*^9}, {3.888652445838126*^9, + 3.888652445910111*^9}}, + CellLabel->"In[11]:=",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"freeEnergyDataInterpolation", "=", + RowBox[{"Interpolation", "/@", "freeEnergyData"}]}], ";"}]], "Input", + CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, { + 3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9, + 3.876370747760907*^9}, {3.8871830509234037`*^9, 3.887183054611264*^9}, { + 3.88718324727179*^9, 3.887183248687171*^9}}, + CellLabel->"In[12]:=",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"pCovergence", "=", + RowBox[{"LogPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"#", "[", "x", "]"}], "-", + RowBox[{ + RowBox[{"Last", "[", "freeEnergyDataInterpolation", "]"}], "[", + "x", "]"}]}], "]"}], ")"}], "&"}], "/@", + RowBox[{"Most", "[", "freeEnergyDataInterpolation", "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", + RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\ +Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \ +\", \"\[Delta]\"}]]\)\>\"", ",", + "\"\<| \[CapitalDelta]\[ScriptCapitalF] |\>\""}], "}"}]}], ",", + RowBox[{"LabelStyle", "->", + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"FontSize", "->", "14"}], ",", + RowBox[{"FontFamily", "->", "Times"}]}], "}"}]}], ",", + RowBox[{"ImageSize", "->", "300"}], ",", + RowBox[{"AspectRatio", "->", "1"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, { + 3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9, + 3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, { + 3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.8763718721351347`*^9, + 3.876371879486059*^9}, {3.8871830602203217`*^9, 3.8871830720200863`*^9}, { + 3.887183263600458*^9, 3.887183269024135*^9}, {3.8886524322381153`*^9, + 3.888652436725748*^9}, {3.888652836485338*^9, 3.888652845517272*^9}, { + 3.88866054306837*^9, 3.8886605513076878`*^9}, {3.888660587340844*^9, + 3.8886606095808287`*^9}}, + CellLabel->"In[13]:=",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt13k0Vfv7B/BDSJTC4WTa+zgcw066KUNFtkoZUhENt0Shay6SqTShkEyh +DNdwSaYQZSo+z6VcpZIMRaHIMRzzkCl892+t3x977fVa+5/P3p/neX+eLX/u +goUDL41G66Wu/7vbFUaNrawwgOXbTKysIYC+KK206zcD6O699YcFCXi1/9Fp +7zkGJN79vDlNgAClroo3w+MM4Nutr0OuImBobW9G+w8GmGLpbgG/VeGis+aJ +kloGxPOpbxseVYVr7A44f4cBn7wvdSQ2q0JikkLMexEGtAwmau1IVoXU7pAL +5mskYeDswfoEpipIfjx6WFVCAoKb6RZR2SpQf+TovgY2HTJuSvw0U1cBI1W2 +lwJLHIRGV0YNM5VhZ8HprMYtYtDQPh7ExJRhIey8uIaqKLioGx4vva0EM7OZ +cWeUN0Bn8COPRi4bXrFitle7icD7HIcH/1qxYRf/9ZJN9mvBtbMkjXyiCLGk +trZBgBBs8oknmcKKYJd8om8oVRAslZ6PIEcFaHyMreFJFICznxxSX5SyAFtb +tBWV8sGeSElUL8oCISancTCXF5L7zVG3vTy4WgY/zM6mQSR3bv/u/5iQvly5 +jUinQarsWwWx10xoyx7/kJdAg5k34ev7a5hALp3iLwyjQe7FbdKx1UygZ2l4 +Pnelgbe1msricyZUzXab1vxBA599YSHLmUyQ1bq8XOaxgjroQ659gUywre1u +wGKWUKUnNnfXkAkH9OYcOm8uoe1REq/u7GWCetkGWrLHEjK1gX3BBkz4nWuw +Xcp8Cb37p98lWI8JD2MyksU3LKGsUr07iZpM+Hj2LzfBiN9oQV4nWUqJCQa0 +MZHJ0EXU983X1FeQCSr+q3OK/BZRdEelRYEAEzZM43svOC2i+rkeYw4fE7r6 +j/gMGy2iJv8ekdM8TPBvLO7mrF5EM22kUfU0DsUp3kVfgxdQs0vKZGg7Diy9 +ZfPXN+cR/7hQqmYWDh9F9dQSPOfRePODoycycLjGuSLgZjeP8IvRNdfScOiI +nK+kG84jy4327W2JONzvmVawF5xHZVd/qD2LxIEvhDvDGzmH0jS1Pdj+OHA+ +fUkgk2dR2uvaNxPmOMQ+ZnjR780iu601SlGHcdhz9dihgYBZNMCrF6hhhkMK +u4U3ymYWHWQTewKNcDju2+jSzZpFso+8hK30caiXq9O7lvMLnUozPfliMw45 +jiU/XpTOIOb95eMp63BoOZeKm2bNoC1vTNkPhXGgWd+17oibQYdcrn2PX4PD +MXO79jmvGbQisVE5gx8H3p3iTZrbZtBQzi752SUM/hS+BIWF02hUtlQ8YgyD +YH6b5d2p06gpMMvr8wgGRSsmuh8ippFzwMUO9jAGAtOs8mG3aXRH73RF0wAG +xd8+FaqqTSPNLUk/HXowECrQSM3InkIx22Q6brRhoJmNdWo8nELRTwWEZFox +sP1HSKbmzhRyH2s8VNmMQWl8T/z381PoTaSgtGATBueux0TIsafQgeuct98b +MLjnd+1dPn0KZfS8ep7xFoPyS85CunxTaGt5X6XLGwxEHPfc/rN3EnlzZSWF +/8Og8shkwIP0STR4jIndqcGgz6TrhVI09byPZ9DzXww2GL6df35jEmkofGiy +AwzO7/jncovNJBqO8Fm2rMZAjGXhJopNorTpmgavSgz0ZHfnpa2bRByj7nuh +FRg4ShKDW5Ym0K3g1gsZ5RhUC/E6HPo2gXq9Xt/nlGLgPPX09N3ECVTa5W6d +W4JBgtbErr/CJpD70YG/ucUY1Pv9IbPXfwKt3oE3bqXMphW2L5ycQENcx1Xv +izCw3Dta3mY8gRbn9QRYlG/d3vyweMcEMl1lNX+lEIPva/OPOUtNoKd/hRbu +LqDe/whXc/+aCfQ4XNvz8RNqvfcJCdb8ONqua6woQTlRKqe5/cs4cna/bLWS +h4GVUtYR44fjSGZdQY9ILgZBTn1b2CHjyLTTlpGaQ+1nvuJ6Ht9xxLKN09lO +ecO2jPflx8fRxGDqbrdsDPS9e/JjD4wjF63LLFHK7hXy4Re1x1HS27fjFY8x +aNBPM1FhjKMWnmcm0pQXbnWr8q0eR1I3GK1NWRiYh+uJwcgYKudJOhBBuUDs +5Uef92Mo8M2D9MOU1ybsjNzyZAzxGZztkaDshFeY9YePoTlewzU/HmFQ90h7 +barrGEr9FibxlLKiWunbYwfHkF+bl8BtyjeLt4eKqI2hlq36X20od+mUHKgT +HkPqfsz7uynroq0C17ijSO6a8WYW5QTDoleaDaMo9lRfthDlXw3qgSO5o6gt +WIp/LpPaD4snBo/CRlFdLb/BEOWnXzbRrJ1HkYbeq1M/KIvY5FbTTajnfk6W +nZRd+1QC3qmOokYPPqKL8luXx7uC1owi9o2Ur72UlSfZC7sGR1DRlV2Oo5SD +fDPLp+pHkERx+4clyj3LLJ+87BHUOughIkathwxO17QLGUFefrPsTZT/FmZO +SzuOIA/tE3RjygvRKcWfDoygL5FXv7hQPrFRziNMeQQZBh7wuE+5NCVpy57V +I8izIL4TURZnS4/Oc4bRO+M9shOUL+Y9zH9aN4zkDOTUlKnv/WErw8Upaxjx +ys8In6O8qTxOVf72MCK2xFSmUw7ZTR/44jCMNrmVaXEo7zUVdTBiD6MfGuEx +AdR+pzVFKtD4h1F/5OMLHykvHxfpKfvJRbLvWRIqVL2U2wvbKGdyUdiTzyV9 +lCW5oXLdgVwU3X8015Sqt0segt/i7bjoneZzu1LK6tf4TwoocBHTxUsqkapX +6cqPDwb4uCi/ltYoRNUz/6+ktrecIdT91THzOuVvbhqWkblDKEl0JOdyPgZh +1jaHN2oMoZdhHb9jqH7xTiAiFsSHULKpV4Qi1U9nW2fefZsZRD/xBs1Kyjpm +4SbpFYOIY3IKJqj+69etMCQMBpHU2eGUaKqfP/kGBa1VGERpP9zL9z6j+v/Z +4dpRvkF0Ji372zzleDUOWVI/gGSMr+p7UnmwT1ZcV/fIAAoYCzC8T+VH2qKr +xiGbfvQxPm85lsqfcG0djz8M+lHYxNX1d6h88rm0qkhMoR8tXHIWC6Dy6xA3 +YfNnDgdZ7ucZ8HqFwVJHnYqtOweFG+/NuF9P5XclE/cM6EMWK9rtd6n83P+L +a21p04cG6sP1X37CYKtGWbKWQR+qndxxdZzKW8FcM+lFvj4kFWzoYU/lc2mC +v0RQ+E90iy4n6f+Vqg+/FuH4pF60zfZx+p8cDOZW5kXH/HvRdfDz4PRT/XQb +32j0Zy86e6Yr1XsQg+xYZ8WFjb2ozVxJJJM6H3YX0fTOxPegE+A4oDFF9W+/ +mrtS9A9EcAP2YzzU+ZonlO62rhsp1R1J2MjEwbjC6gn+rguFpy8KbWLhQP8v +raIprAtJGl8MNFCkzrserU+agl0otnP5qr8Kdd5J2a1a5u1EnS/kSNmtOBAh +Lxwi5jqQ0WqOk+xeHD7buxKFvW3Iwk5rat4Jh+rOI9qlWW3oNJEzdsoVh6xj +mvuqnNrQ3KkLUv+64+BltGzdMNaKhlPjhmIv4bBBLSq6f7EF1erY7TwXQK1v +qmQOpzcjZZq4YXQ0DpdXzd6TD/2ANDZ/8VN/iYOPPxHxJq4arasS0exfy4RD +o+NthVlVSP33XLSLCBOUzpXh8WUvqdmtjzWxngmtxvuenmuvRMOFsV9XxJiw +TepMy6JsGXLmWR+0SYqaZy4oaJ42KkT9fOcjK9nUfJSPdVtanEf24jduFegz +ITdSh8z8o0o/4Wba6CNvJkQ43WyzvfVZv2XU+KzFPBPWTR/clW/eq2+tn3RR +LkAevnvVbfcO4uq3HTZsfEPNj6MVZjU+9RP6RoXRCegRC7LupNvah87oq7tu +VvilrgDsX3nivknz+vWq3r7ToABdxXjVLsclfdcmr4wLhopg9eB7CDeKRk6s +U/ORrFWElEfhVQfjeUlZibqgo/vZwHfKbYTfj48MpBFiHS/Y8ME257FFkABZ +96AmaEhTCZ6vk7aedRUkY1ulxHkzlEApUX5g9UEhskh7gCdiDTVfewct5R1d +S7LcazZKeikDd0FGJFtHhIwWNdSyalaGtL/utMgobCALX5dmGmipQJTBu3Ap +tij539/aVab3VUDkQt6eWgkxki7fkVbAUYHqfeVVpdLipLaRmm28niosudlo +HROhk6tKLOlxd1WBZ/WnhE1LdNIuK1fmRKsqaBl51pjQJMkYyRSrOBYBC9/y +ByQmJUmzuyVFLEcC9rnWR5n9kiQ/HHI303ci4N5ir07wgiTJKfYeOeNMAFNa +JnSal0EmPEvRynYl4MDxUNVmcQb5uWb1gqMHAbFNDs5RmgwyK+4rRr9CgHod +NizkxyATJbS8e+4R4Gu1M3ZPAINs1hrWnYkg4N+fVrr+NxnkZrpItXAUAZar +7oUPhjLI52ZiIftiCLhCLqrVJzLIkxfXeA3HE1Bf+dkt+CWDNGccLYtJI0DM +ZEqiChjktOnpnSnpBJxuF6mefsUgY7rwsfx/CBibNRSxf88gZQ85DbRmEiCp ++axgTxeDNEkuHz2bQ4Dtq8Zj/j0Msv6u9UJ0LgE5R7nLTzkMcn1jTGddHgG6 +nqzD8mMMMsQ/ZpV+AQG3eXbPnphikNoHl8ZvFhLwMepkatQsgxRzifOoLyJA +mnn5QP0ig2T6tayIFhPw//+H5MzXksQtJQT8D5MIPME= + "]]}, Annotation[#, "Charting`Private`Tag$3858825#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt13k0Vd37APDbDYncyHANIfuijLkkMh5FvIYMRUrSKymiDEkUpVSihLeU +oTS9QqWkVJL99CYJoRIpGct0M917zeG3v2v9/jjrrM/aZ52z93Oe59lrq/ge +dNtDp9FoQ+T63333w5Th+XkmOJ/4/uH7hBZIzcirm/5hQmJskpfOuBZUbPx3 +x+FJJmyptL0Wy9cC9bYX73+PMEH5WEDSilEtGFjSfbulkwnrM7cH/z2gBSGB +hp7Fb5hQazL1trlVC2LVvoH/WSaYLRWTTH+tBZlZrLQPDCbY7x9b6JGoBTnt +CQddF8uAs8qiHNGlWiDTsNlZQ1oazj+5Led3RROqXDZb16hJwYWAn1JXFTXB +TkPtEAtJwiLHXj32JQ0wKdyRW796GaT7WuytZmjAdKK/pL6GBIwfe/At4Mgq +GJu4c3nnSnGAnArplraVUIHS1pQHM4D2JT7wgP1KMBU8XqzltwS2q33d6nhH +HS5RRkZWMSJwTdLRR0tQHXZne/4ayBEGG7fgx2/91aD+rtLiBZlCQA/VN3pZ +qgpKSx6xcYkAnDWuWp2qqAoiK3rq+wvoMFTo6H3iGAtas4VrOm7RQbZQ6Z1q +NAseyGlVNmfSobv3u1l1JAtcJEPK3ibSgdUaukU2nAXpQtN5NwPpoHmj9sDr +ABagQbGT2zTpIBiQp/nXVhaYlhqueZ+/ACoj/D6bG7AgaMvpq3l5NIj8xvhl +NIzg5lypgeZNGvRca/HfPIigKW+k7l4GDb731TmGcBBQs16CDxNp4C2e71jY +i0AqVz/saRANKt9pu5h2IHg10e7wnx4NjitxhbI+Ili+NmLuWeg8vjJ8SC/2 +KYIziR1rXvrO44er7RreFyMYaXPYX755Hh+Ii1/KfIyg4iz6WmE4j+9+Swgv +KUQQ3FJf9HFqDhff+yiwOA9B+THNPZy4OayKnnfNZSLY9aa9RiltFie5fJc0 +OYnA1nxyz4+4Weyuumoy+wQC3WfitOzQWbxrcLMw/TiCPwVWa+RcZ/HRQwJP +Px1FcDXtdrak+Cwu+nHmWHIEgoa/9wYLJ//B3Q53bocGIHj2/fiidzF/8Npb +fNvJvQiuu1+9eTr4Dy4RZJvE+SMI+uv9F7rTHxyTmyueuRuBMFvLYlb0D5aO +vFDe643AijbM4J6bwdfXRbfx3RCsil6U/yhqBu95ydp80xWBOF95w8GAGRxs +eszQxQVBW69L5G+7GeziVGf/1AlBdP3j9p5FM3hT1O7f2XYIHl8//Oj76WnM +mRP+t9sCATKfc30bN4XntD5Ie+mQ+UuYa2eETWGHmuuNAdoIYnuOCgXvnsJf +zmR0RGsh+HZxqlTKZgqLhXX+vK2B4J8uPstPeArrx81jCXUEAgmcMfrFSazx +x+y1tzL53g7Nhqbjk3iFN+9HqhKJNzugoCBkEi906d5WpYig7FvPTje3Sfxm +3YVws+UIInS63t2UnsTiVdr2VnIIej59zaCyJzB/XYFXuSSCS3eZh6QuTGDH +RulOWeL1xzw29cVM4JiltY0Ry0h81RrpKT4TeIPJQREjCQRbj9Tvb0cT+KKw ++dsmBgIhJ8bGYskJzL4Dn62Jn6g4rTgrMIFN1/Z7PBUj8aypbtTtGcdmFnLl +15YgqFKsNI/NH8eO9nWs8yIIDnMFZN0yx/HepgCOGLHquw1ctaRxvCDOUCdt +MYITIa9zPwSNY5FzP1VuCSMwflO2VFFvHA+FZHe0C5H1XJnpH1kxjukt1YkR +xJeCTCoqJMYxsu4qFiMekX5+JIg3hlc96I+3EUSQv6+482XJGA6yOaj3eSGC +Rt8cZYdcMj5zojKCmOad5P3t8hgWebTNWYHYw3V3y+ShMRwwfMb0IB1BnIMz +M8FvDHcf685RJL5vY+rO3DKGrUZkpuoWIKCbSH40NBjDhZ3tSSbEOmvmGW/R +GNZK9Kzk0xB46nIctywbw5phByaKiAvRm6qwUT52ui9oaUjcsvyhEL2Tj1P9 +bDxm5lVAgJllndrAx5HKOXsqiLeLhsPDh3xc9nUg2If4tKDPnEUOHyecPbyX +Tfxo3t6sLpmPbyc7bxci/j61Nto7lo9TvJ5tbJtTASE+ev47mI+bXg5ovyBm +DzHGj3rzseOEitgV4h190waiTnysXZ7SG0l8tqsnNNOMj/vW+Zd5ET9u/fRQ +Q5uPoxd/SFpP/KOpfPC5Ah/zzTju2sTCHwu07ET5WNWzS16O2KAmPaB5mocd +dtV/Eybe+fbkXf8BHt75sfryzKwKnMMHfo218LBOQZ/DKPGTF9tZp9/z8BJf +49l+4vbijX9LvSDPT1Tk/yIWKdTPuZ3Hw8mcS64/iQ3zlH7oX+VhzY0F/P+N +77olovDfWR7efpH+zwBxUva4p2skDy/uT9fmEpekd6V3+PMwbdrr9R/izpS6 +xoMePPxgxspVhMxvSVLpsnkbHvZ4uaZVntjodK5LsiEPh19X8NUl9j2elqyo +Rt5/o6XLmvhCVGztfSkeFtjmtHMn8fPwQBEzAR5WmHdpjCbuDvawq+Fx8arQ +UutMYsa+9We2d3OxjbbXwzLidb66Ff2fuDjtb5pUF7HfDnl61H9cnNweFiZC +/l+pCzfmyk0uNv7ng4If8S/7tpfqqVxcPMj2v0wsblM99fQEF/fyvfLfE/uv +uxXR6MPFTiHVsqYkn1INkot3O3PxdUaA9RHiMp3oUa4FFwtmxO19TrwMuQVL +KHExXMtNsyL5ar7c4t4NMS4WyedkJBLvk9HsXz07is26Fa40EZeL0Pdsah3F +z0LiQiNJ/gfyinYkZY5i6YPuGa2kXjLWjpruTRzFwtwXUaYCpN6j9BQ2RI/i +AVu+3jViNdrDlulto3jkZ41KAKnHjiX3PQLlRrFX6+5ZtAgBw4VjuHHxKLYf +GYy/Smz+j6Y0mhrBFRNFbeKk/jPl8j+3fB3Bz6LchURIf3BXz3X56+oITqi1 +llQSRRAf8Gu1WsIIzmoelSsgfnxfdemCIyPYWWrboDHpP+IGtz883zqCpwe3 +TOwk/anG8ob9KuYIdsk0PVm7lNT34zXnGNrDmPPoZam2NOn/xsW2laLD+IG0 +gPYvYjPMForlDOGxU6d23JBBMF6je2qwYAirJW6dUJIl+8+vVTG1GkPYvW5q +0kyB1LusYmjiykG8sSrTdkYFQcn1rNXrFw3izemVBu0IgaSa/NBUz298azat +7i0LQR2buT8g9zcOb40XzVJDsMFBYo+d2m/8PSnq5B6yP+jGCm4TYnHw27KY +bVFsBPKlDVf6BDg4WvJNYIQ+AsHxrKbqngHsMd4B4QYIWoP1t1wsGMA4PcIo +0hBBorePs6z+ALYq+EsvYx2CXrMXNppW/Vja2sLbbj2CGzNB+pt8erEqZ+CJ +gzuC80bGoXpWvfjfIieTZA8EkeELHy1j9eLMwaH2T1sRbOJk6DT39ODjfZNn +fLcjmP1WuWrXgR78tMNIJcsHwfbSFcphMb9w1YMvgSGBZL1RjaLpWd14i+s1 +01txCCbnpySGo7txSqCNhO0pEu8zyrJ227vxZN1hw6F4BHmXAlWnZbtxi8NR +3w0JCCwe0cx3pndhfd9xxcUXEQT0ah9QT+3EaVqFybRrZH+9J3IzWKwdq382 +fJdWiqDZL0jzYXcTtuz3+fpjhuTvDxejktwmHF4fbt49iyDXw9D6VUATXrFe +y3JgHsEhuznvmuEv+M4m/2WzC1kgrp2S2jvTiH9YGX0wXMKCv3jFk8pSn3F1 +63Vz7nIWRCycuKByrg7P2XZtPW/JgshozeT3l8txydqg8JEEFhRcNKbu6L2y +lPbSTkhVV4XkgLimXSebLZuky3WEO1VBjO9oet+12/LLu2MaR66qQcehyjWH +4zmWZ0Ls39X6qcPQC6f/IqtGLSvZkh81V6+E3LM3d/mdG7O8FO61oWdgJaiN +35M8kjVl2Vjkq+lavAraHiu/Mt03a5l2ra1MIVAD3K90JHBSaJTrSjHhCFlN +uP7v+VeO6XTqtd/j9nv1miDgFTwoGCVAGb455VZ+SAvqduXfdYsXopK6DV7o +q2jDUzF574kgYaquvyROt0wb1DNV+hY5ilCZ/HuWlzfpwPTh+Nl7m5dQFQZ9 +0r69OsCZVmDkGTMo45yRx5dCdOHG3rONCixx6uCmTfF35nUhxar2vJyaBDVd +FSZadGY1MA7eW/9Gehnl7YZ7GDQ9KLd+/qpEXpIy7PfcddJSD2aDfdZ6MKSo +jNmWwMIjerBg0acMrVkpyk1I7PtAoR6stQv7z54mQ+3sXragrVcPplvv90lz +ZShRz6glcgpssA6qSnEal6G2rT3f8I74wky38elpGWq59XBS9XI2NCXOd5TN +yVA+ep4/mhXZsEJe4RyfzqSe1zIym5XYEJi/lq29iEnRjwtlVyiz4YmxW8tu +USb1oCGTmbqCDXPvguOyljKplwJJbxxV2GC79ZzGZ0kmxRTwtpghvvRxT2CK +IZNS9Lz8z9AqNuhWKv0WiWJSTfv0Ti43YsMRd5NL62OYVOxJuirbmA2vf7qb +Rccxqc7leX1q69ggcij0Z9FpJvU2yZA3R7xl4YXz/eeYVFwD2/6NCRuOUjPa +VZlM6lDv7VSWBRuqSpuDT5cxKYlJVoqyDRuW2fOkXwGTuuN045vCRjbsaGGU +8yuY1BWXLZ9otmzI3afpr/2eSQWV7F9QTzw8YcPw+8CkDH90ZsTZsUHG8Enh ++jYm5WnUsFPIkQ27Kuo9oruYlHxtdfgCJzbkb+bMFfUwKYa4SswvYm6X0N3+ +AbJe66jNRZvYYBaGnFWGmRQH/xvv7syGMwssJjx5TCrD0fZjG3FDyraclAkm +ldD89WKKCxvkV0TYVs0wqf0d/Tk1rmz4//Ms5ZYxlt3pxob/AxlbfUM= + "]]}, Annotation[#, "Charting`Private`Tag$3858825#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt2Hk4Vd/XAPBLptD9ynRKyZThXDIfY3IQSRlDo8hQUUIklEohJEkqQ0mT +TKUoU8NeRVKpkCEVQuZ5nsJvv8/z/nWfz3POvnfvs9de66wr5epj58HOYDCY +bAzG/3265cUPLy0RMNAkcPHzaQqE58Xk9P8RkHaMxdQ5RUG52cN9gTMERCYf +KmwPpkCupeTjwAgBqkxPy/lACvr4O+43tREgE8s03udHga8XtaugjABZdZX0 +cQ8Kzsj+hIMXCTjre3X5khUFKakyCV+YBEiK+6z3kaTgTmuUj+1yUVCevzgS +VawJotU7rEkRERhuSfR8sEMTKm12bP4sKwwtmi+fdAxogDkpGyAjLQQXe62/ +dgdpgN6TfRnfVAShKLmapcmjAXMxB4XUyZXw0G0hkyNaHSanH1zfLy8ATn9W +6I9wqUO5dILmG28mcJ48lTwTpQb6nGcLFN35oTTOsfvavCok0traRqG88Jnj +8v7b/qrgdmtXZ98dHsh4yGgRaVSBb4/WLWdL4QKBkRdJ3I+VYR3/UzVUyAFs +YnNTOskbgFey61tvNjv4CgsHJwUpwVH7iKTMTAbEvn90dclPEe4ulmqw7jLg +vmkVm+sxRWjIHPmak8yAoLZcvQovRaAX9nLmxTDgQuULgUQ3RRDOUD/+4igD +SudMr5s6KMLr6dZt71QZoPpDR49dVxHWap1YLPJbQsUR9c/H2RTBpaz187qE +BWR8yi7SJIUFWwxmPJrDFlCI9Aqh3hssUC4SYNzyW0Dvef/6X73Ggn/ZRpqr +bRdQSljl675YFiQl3L8lJLCADnqy3qOzLKg+cMibJ+4fkt1Hq0x5sMCIMcwc +i55HeY1chpmaLFAI4c56GjyPjGV3Nz9WY4HAhISJj+c8qkduWYXKLGjptjk5 +YD6PLBvG6moUWBDyLb+1i3semWa7v1UWZ0F+WuDTXxFzKOLorHgEFwukDRZt +34fNokBF3dDnv0ioXmmglHx8Fl3RW7nOpomEM12nuLzdZpFCQFH5UAMJP6/M +lgqbzqK7TCaLqiXhWvuEjDvPLFpuHnq+q5IEjqj+SfYrM0jty5NPvwtJ6Kr9 +kUzfmkb5PuVDUtdJSHxEBAhfnkb8q3u0pK6RYHza0aondBpVd4Tmy1wlIU22 +jj3eeRrFmKWbq18mYWfQtyOt0tNoxMdTIDCChErxCoMzWVOIW5Z3ISmQhKzD +BW0vCydRYalzu91eEupc70hsy5hEghnn4pJ2k8BwuuT08/okUlkxuK59JwmO +tm5NMwGTqO7c9+Fz9iSw6wnVUBqTKHt/wcFBSxL28PlDXt4EMjNp1j9vREIE +p/PipjsT6Jjv9rNcNAlPlyw2fo2bQEzP+adxm0jgmpAuHvCeQFoO8Cdbn4T8 +37V5pNIE6vPcflpQiwTeJ+p37meOowlOhY40RRKozHXN6knjSEpun6oriwSX +e7xr3l0cR8ueVPuQJAmFN9pv/Dk4jmzR4/dlciS4nk2IE5cdRweDXL7IS5Nw +OfhMVa7wOLJP6crllSKh2N+LdyPHOCJvnz0zKkEC87Bx5J6OMfT5i8f0J3ES +Sm3GQm/eHUMHnmjpP15NQqdFy0u5q2OoWTw7I28VCQKmn2ZfnBtDDz4lsRcS +JBzUvXeiznkMbTHMj/kqQoKgtJ33ynVjyGNGpVZZkASv8Wf7LqWMIscJn9Yc +PhKStUb1D8WMou1W+tdGePH+BKuuMQkZRc+ZEvy62LKMvKa53aPIROyTRT0P +CX/4cx29Vo+irSrNvXpceL42/ZTZ8lEUxfn6+W1OEgyusUSkZ0dQzT9vQw7s +lNVZ35t+jKAP5VZXfy8jwUEuw2Zr0gj6Mi+7spSNhHDPThXZqBE0Wd9croed +n7v+P7agEVS9cUENMfD6NO5/Kd45gk7d7NL8vqQAhoHtuYlbRpC6Y1ulK/ax +EqlYX+0RNGF8X3BqUQE+G6ZbKBAjyELmSZk89tz5VpKDewRdleckKxYUwDbW +QBAGh5EItyF9GJs/We+KyuNh1Glkca7onwJ4SpRYdscOo+u7eB65Y1c81Oa/ +c3QYNb8/f0oEOyxfM5qpNIzOSe8mz88rQItOwZYKvmE0sXCOsQl7I1LjOtM/ +hCK5Fs8tzClAsunTcurzELKKz8kC7KnPyhcGs4dQxxHX4IvY9naPjR7GDKGn +N6eGbLGf/VBkOHkNoZ2ndZZLYjOds98IWwyhkx0TFaOzCnC0UyG0ihxCdccm +5T5gfzrySD98+RDyMVuUT8eWH5Od0+8dREPCNZWnscODHhSPVw6ivilFHifs +9kXpkzmZg8i658NfGpuOuEu5RQ2iRYN9TgrYt/kkJ8QOD6K7fKm+QthzV9Py +a7cMol1JGuLs2LtWifvFyA8ij081ByZmFKAwLVXFmHsQWdmKG/RhC8mKDc12 +DSBxwdLHHdi+OUm5zyoG0GSjRf4f7K9qxBHPjAG0dOzI1jZsxeLrpFTkAIr5 +VejXiR21Sbjnh8cA2hZSTg5id5UnZMSbDiC9+3K+M9gm21Z6mMsOoHMN3ibc +eD7pNVdkGJwDKNRJ/t5q7MWdzPaiv/3IZPB3jAr23pbYdJ/yflRQIfTPHLvY +nc9Z/kE/kvljPeGBLdofLd56oR/dXxQ4Hont78fz+4ZbP6pMqfPPxq6ejkyx +MulHUdOCMzXYymc4d3PJ9CM+5uaFf9hipdU3ezj6UZdDo5kC3i/OqdSGT119 +KFL7aIoj9m9vdfsr2X1IsOPMnlfYlVkLCX6xfaj7++HyceyCzsqaHcf6kN20 +koYyjp8YJ2frVep9yKqUUywXOzCZFTcn1Id6twdcGcY+UD9Z9XuyF/WZ+XNo +4XjUsYy1uFvSi86eR92fsbs3lpiyjHpRbkyA9xoc/7VB4eH8Mr3oo4N9SSD2 +m+fWZUMcvejhu6rZOuwbSl10QWUP6o/tsEvB52nzWqGNG2160C+jXwbm+Dyq +7moJWafegwY9C7leYq9JzCphCPcgl6kXxarsJIzx0drvG7vR9Ujz2vX4fKfP +H1W3cu5GhjF2+Sr4/Mdq6/ipGnWjA87zKSXYJ/2XPRWU6Ub3GjtdzHD+sOpP +3tDY1YX0vnqdOcxNwsLPCgWXY13o9KtD9V+Xk9AjmnDI2KYL3XxrG+qD81Gd +nVPGevUudDhdbUoQ56/cT+MyvZOd6Fdpgr0rP87/pZISx0M7kbTS25vS/5Fg +NtXvZO/ciWT4rFObsNXUi25pGXUinTOKbtcESODJthSb5+hEJzwP6f6H82Nh +cohIeOxf1BaTWyuP86dQcB3fjdQOlGZz2+LXGhJmlmZXDod0IGLBmL1mLQkt +kRKrzPd0IN3O6F8fcb7OTPRaP7eqA1Vf9ukrx/l801OGwf4b7ahMO9TgjwwJ +nt1Kx+SutiFtG/Q9Swmv/5hdwFnfNiRVGHavegMJmpMnQ35Yt6HJMdJ3TpmE +RfayyBhmG8qR3bnkqIbr77rdd4Yu/UEmL9fnaeD6dCaH9673ilZEZ9UeCMb1 +bWuJw2OJqhbU99Va+Buuf8If0ktqYlrQ5lcc9+RNcL1t16qleFpQlQ2fWZsp +fp6r3ZYtsjcjk6l9foHbSGBFvfSIm/mJ+vcX7pbD9bbR/Sgrr6MBEc8fhsf6 +kvCm2Ua7MKMBSaq/L1h7nIQMR2rza88GVHTtn2SePwkB5otOn4frUW6uxZOf +uL4LKMVf7Z6vQ7O6li7bQ/H8xgtmJIS/I8b+wbCkGBJOLJu+LBX9Ff0Ug7KK +DBwfIay4j9ffIH9tlq9wJ34+QyMNeRmvkUM0pbemmwQ51yKJG0WvkMz1By9l +ekmo37r5mWtTKfr3cL5Zd5AEjdX76+bXFiFeLbbjIZN4f3xkqH3meeiAXIz7 +Nvy+VJ27rtXe7iAyNlm/IEmyIPuKDv1A9bVhARwIMfJnQZxnWIPL+UbDm9bv +ru2TVYQVE9v1c207DLWdBq27finCn4AKzcDwfkPt/E11Xx4rwVCJ5buTlaOG +JTd3ible2AAZF++6uEdPGjZWjX6ZslQG2akcoaDUWUNnv52OkSwVaMmXeK1/ +eMGw/5PkMtNpFXC4+SeqP55B25YcEHu/XxXSHsa+3n6DnR5+Fql+tFIVOPZ6 +D3IGc9CCdrclGhTU4KtL1iO7cC5aTUc8uDRODV6sEHOaPspDF/JeW2ncrwZy +KVI93Nt56UMSjF3HTdRhLjB8IWcHP61rqDtplK4O/XNrmJk6TPrzEFeY7oQ6 +pB+6WLdGRoB+q+FX4LBdA+KNqmJXy66kFVs/klzpGsD0yTEuExGkN3KpxyX2 +a8CbzcWvC8WEaP69Hzi36GvCgrezliNTmN5EX2ah85rAxl2brLggTFt/TgO9 +Ck3QMj/+zoIhSmuO5TRP81Mw9zu3R2RMlG5pdt3Ltp2CzUcr4y2nROmVe5hq +my0puDzfoRMxJ0oXmDx4MWBLQUPM0p9Xi6L0na3hb9rsKJAUWxM9wU7QHWUS +cQk2FHhlaakpcRN0Q1HZ6p/WFDzXsWty48NeVaKqbE/B4gfvsNT/CFpw1QfF +U7sp2LIzmvwuRND+P2zUDRwpSKzx8IqnCDqzxjjhhzMFLS5hgpW6BD1nSRiJ +ulMgP3KrdMmAoF+7fbe85IL7tbPFrtrGBP2t8u8/2/0UlDLreH3MCPo0dZJ/ +4AAFHGnD+RkWBP1yzw6OXwcpsNrAt7fFiqB3m3Je+HqIgqRXcstEdxD0mvXy +rp/w97dtM86x3EnQNeDqEIT7P9Yvpx0RewlaL9Kg9gK+P8AreP6VM0Hv9/xQ +VO1FwZvZxPsTbgSd7vtK19ObAp7op9uUDhN01Cv7u0JHKLBbVTXudpSgW294 +qjZ5UpD6qDs11ZegCwNzlh7j63+1lm3+HkDQKWVzSv7HKVCuWDfAG0zQ4X2T +C0x/CoIc9BKNQwn6l+uG9GvHKHj712FjSBhBq8ht8prA5g3w+/ssgqB5fOZM +nuHx9ssux/ZGE7Sspu6J9JMUpCVkakrFEbRH6oZWTdzv9kiV/96VgNd77Kfq +TAAF6s9aw+NvELR55bos8RMUnKLnlSpTCHrTpqB9b/D95d9E65fSCNq5aji8 +DPfTTGf1UO37BN3X7x669gwFu4YsZX0eEXT+vEb8nRAK7oV6fsnIwfHQLst+ +PIiCAf6IEy15BK1cUPL+HR5P3UoXF31O0J6n6zWiz+P+WvHVe8tivH86O3Tv +XqCgsrTRO+IVQS+WjZ5+EUqBoMW4yGsg6Kvf9oQX4d/b18R8M1FO0Eo6plcq +wijIOMw6qPSRoFe9de/Sj6RgeNqU6f6FoPnN6o+sj6JA5+KBwtQagm5xz4rM +iaDgvGjo/u/1BP2qgn1FcDgFVQ+TuPh+EvQU2xa2XmxR6vkT4xaCXr3x/L+Z +aApcyr85hrQT9MbiSqfReAqydvQvPusiaJHtlx7mX6JgrJ3rUW8fQf/+2fQo +6yIFG49LW0sNE3SiUif3Dzw+km3T9K5xgo4slJptvUJBdfzuO/HTBG0qZdnG +eZMCMckTWyrnCXpteOPyMHz9///PoJc3DDQeiKPgf1Ddh4M= + "]]}, Annotation[#, "Charting`Private`Tag$3858825#3"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmXk0ld/3x5Hpo0h4nouSkOFe83gfU06izIWSBiUqQ6T6lEqlKIUKTSr6 +GFIyFEpJprOTSikapEhpMs/XTPie31q/v+56rXPO3vvs8977nGddJZ8Qtx0C +fHx8Mfx8fP/365uf0D87y4JZF2O+TC1jkJmSVzP/ywIh5eaYDZrGULXy9ubQ +cRY06lql/2Abg9r3J696BlgwdPSLjby6MXTN+53R+JMFdSrzM7cpGcOeQGPP +wmdkXCTn5nzaGMJVm2DnGRbAPNMpjVkjSEpWufhWggVLVMx7K98ZQWpLdIjr +PzQovU8OWRlgBPQ799VsigK0nLfhj6ARVK9xt6lRlYGZ2FJRnGIIdmzV/SrK +0nB9bcqHBE1DMMvbnFmnKwUmi5pf1pYawGTsTmkD9gL4z+eyS6+lAYyM3bqy +RV0SlH8tU4oo14cq5YtGFcES4O2x1StmuT6YCx0v1Nw+D+b3+ipPFenBZcTl +Lj8mBiqNS56cMtAD3xuerV2ponBu1jayy0sX6u4s/oc/SRiWJF7e3Yl0YPG8 +An1cJAj7OyJ4Gy21QWxJW11njgB0V/fnqxtpQfMN0ZofNwUgYbW01io9Lbgn +p/nic5IA7Ile4++vpQVrpPeUPY8VAFkxWZ2CpVqQKDyZlR4oAFT8Cod1lBYo +94pHbuAIQLwGO3N8VBPMS4yNXmXzA3z9ZVZaqglBa6OuZWXxQRHvxb5eR01I +nykx5KTzgYmERd07O01oyBqozb3OB9kl2sFFtpqApjcJ5cfywVDI7UPRVpog +k2mw71EQH1B35i+0M9SE8rEWx0o9PsigWke4CzVhkcmBmcd7Z7HSrgOyvT0c +OB37w6jUZxZfs3ozqNDFgYHvjrsq3GfxJoUIX9d2DlSdUf5SZTyLww9fkIef +HAhurLv/fmIGF1/8tKS8gQMVRzk7uiNm8IfNYfXcpxzwftZSs/jiNP5R0JG1 +/BoHVlmO7/gWMY0vHVtge+UKB3QeS/Ld2DuNW9rFXXoucuBvznIjOddpfML2 +9oNb5zlw7WLGDWnJadzcskne6iQH3m3zCxaN+4u/XakcWxTCgeV8/RK8mCls +32Cen2DPAY0wkeyCw1N4pdzdw+tXcUByWHFFSMAU1gwXF1O25cD39jUHe+ym +8Lhc7OlKxIGwugctbSJT+GtFvYE+w4EHKaEFX6MmsXyjQuBLdQ4oW864Po+Y +wArFR8rb/iH+F1hqXd83gddgq6V2ohwIbzsiHOw7ge+7H5S8J8yBpviJEhnb +CTzHRPh4xBwOXPo1rLJddAKnreR9XTvNBsHo7hGB+HG8dtEEzhxkw4PNnHcN +x8fxiwBppeUDbPDWD8jJ2TOOI4POLGrpY0NZU9sWN7dxnPRXqF21hw0HtH+9 +TKfG8QUN087vbWxo+/DlOroxhrfzpUbPNrPh8h3WfpnzY9jB5p54/Vc2WB/1 +cOk4NoYDrs+1vNvEhhTVeoGErWP4IiOS4veFDesP1e1qUR7DX//tDRerZ4Ow +s8TKQukxvEXtv6C/H9jwUMl5yRnBMZwW80CM954NkjWv63XaRvHo60cbO+rY +UK3wwjI8exS/E7qzif8NG0J5grJuSaNYpU/ju2QNG5a+XMFTPTuKZ6abqaWv +2XBiz9PMt0GjWHfHr8x11WxgnpXNV9AbxdpzAze3VrEh27/wZ2nRCC4IKwh6 +XMGGep9URcfMEdzz9uXxoXI28Hmd9Wq6MoKfdikNGxL2cPVtHN8/gjMOn+Ov +LGWDgJn0e2PDEXyPbfhQ6gkbtI1mJZ4rj+Di5piGvcVs8NTpdlorNYJ3+Tls ++vSYDXnKz6r3DQ7jIrkF57KL2LBx7r+Qnz+Mu1IzY04/ZEOU0NaZZanDuKPa +s0KUcMGsg0Vt3DAun/y2Nr6Q5GtYubgneBijd4mZ2Q/YoN8nMXrEaxg3nHDf +Zkl4c8ek4VznYZxqMXL0031y3s0f8tlawzi88/4nKcLfGip6ixcOY/2RJVLF +BWwQfZ+jaTd3GLc5LMzbRtiwJjHg8+QQzrW3yJ5PeMvzyDs7u4bwuLbMnMp8 +NsTg3a0jjUO4q1av9BDhh082qkS9GsI3K6j3hoTF8gxSM7KG8EJffZnHeWww +zlr8zeDaED7o5YaOE/a+Kbaw8swQLrOVrHYkfPbGqKfrwSG8behdziLCRYm/ +En/sHMLS1FD74D02/EyorQ/xGMLbDWvDawjPO1siNWs7hBWMH+3OJsyNylwT +ZzyEw57zis4S9jl+MU5BdQhTaW899hE+fzj8zV2ZIfxL/aSzF+HifwPFLASH +8KlKpyQnwr+DPexqhng4R2CLBSIs4W99euNvHg4S+mnAEDb10anq/MDDHn3T +R40Ib98sL3C4kodDy+vljAnHewgj0Qc8PAXHRc0Il6zhHbuazsODwVJ2Kwi3 +OnwvVbvAw25bkj6vISxp+3ri0QkeNs9eUuRD2NyqiGu7h4e9uzJ/HSK80/Tm +gfqtPMzOYW++RPiCYVyh72oe/hSdqvSAcJl22CBvGQ/H+o3rfyLcrr5TN1KH +h91DFM/9JSyl7Ba8YDEPZyhP6GiQfFouWpabJs7D/YI75DwJ+9OcTt3pQbzb +28LhHOFLkrQ67hnETgbuUEW4Qkxgh0vzIC6wOxjGT86zU7Dv5reaQaz+Z+9B +a8Iys40/gkoH8YptQkVnCAcO3d98NmkQR0l08BYTvVw3GTT3ix3E3idrd4YQ +rj6st3BF2CBOzRUZeEZYlS+/cXLDILZSWW95mOhx7Yq+4gb7QXwnq36mkXDk +ae1rD0wH8f6bIe+WET3/mHfXI1BuEHPLrqfIEP1LrOk2XvnPIH4ssfNaFGHL +SxxKeWIAS919d2OScJJc9sfGLwN49YUqPEDqZ51a5hr7awPYVUfPVpzU36mA +Vl3V6AFsNCKyK4Xwg7tL5/MfGsDBO67GG5J6lTTMeFu8fgCvKrheG0DqucYq +zUGDNYBX2q8aEypjw2RkC1tQZADL2iq0FRF2PWcpBb39OMQy78Uu0h/mXTeL +173Xj6+91PX4SfpJxAOjGAmtftzprBI+9ZQN35nCVS/m9uPUkk2vayrZYIH1 +hcO7+/Cf0VWTqc/YMFqjc7I3pw+78Q9Muz9nQ1CrxrE37D5898pZ7y7Svzxl +FfbGqvdimzm57bXvSL2kJOtai/Ti4u7Yc82kX0qryvdNtPXgJn/H0V7ST2v1 +WbsCMnvw2wZzyUWf2LDCccEOO9UeHL5jztLbjWzQCRfaIKzSjX9rbuf5/2aD +fMm7qx2C3bhOUbUk+Q8bhEaTG163deE6MfW771vZ0BxssDY+pwvfeVgssqqD +DbFeW1fLGnRh59V6get7iR4tnthylnfiouhgK/FxNqRNBRm4bG3HmjcX9eD5 +HDjHZfbqLW/HTxQcvdYu4MDBf+cUSKm0Y4HoH6XdUhxw6b6u/bmtDTeZuJiq +0ByYbnqh4b27DWvWK04/XMSBjSVLFPcda8UwK9q6jcMB6cP1cxOTf+Ml7ke6 +PpD7d3x2YkF/2G9sxOlp6CL38/fTirJ2G3/jgnKVdiEnDmRdDlw6KfsbX51Z +5m+7hgPLCvgstyT+wumO4Tc7PTkQ0K61W+3CTyxtZp5WFUju21yx9GDxFuxz +pHLifgIHPm8P4uT/bsDVEd0jH/+Q98e3NdyizAbc02Omt4e8VzI9jG3KAxqw +W2roRQnyntlvN+NV0/8Jf81SeeHaT94HWgkX2qfqsXb6UN7gBAfshwrHFWU+ +YrtHCXevzNeEA3PGzivF1OKtz5YXbLXQhINhnLhXVyrwilO6a2OSNSEnnkG3 +9MqtSvXja0/4a0FcQESDd+RnK02l07J/N2mD+LCT+V3X31aLzCS2dDjpwI/9 +L4xCT3VbLd77WnjHJl3oe+JcebB60KpEK2P7jJEeZJ5J994eM2K1I+2kVluh +HqiO5kofSp6wQrVNc4Qs9eH7A8Vyc/9pq8ur/TZkl+rDuqs/orsT+NDzbac2 +9hgbQMrtc+VOiQLoDYi+/fvYAAQ3BfcKHRZEsr3Hay/rGEKtd/Ydt1PC6POt +bbfacw3hkbi811iQKPrE8O94qWAEaklKHSJOYsj1RygVHGsEk6GnpnPd56GH +p2X5O/8aQffkQoksRgIdl1V7mbTdGNL8ztQvVJFEcXHI/fN7Y0hY/uacnOoC +lMK8dlQ1MwGJkFzrZ5QUOpnbYBN+1QQqbIrLi+SlkdZoa9uSaROYDt5q4iEh +g6Y7WtdWe3KBX+TDdc1pGdS7QHj36YdcEI7eTzP8FIpYdtSng7DYP6xLNkIU +EtyxuEkrjwvzY5/Md/2HQs5dVXETj7kgM3fzOS9xCmlZmTHvK7ggd25GNHAB +WR/o6eGcz4XF4ulRoRSFNh69KR9XzAWVuBUCJ+Uo9F9l6i/vF1zQmN8WHq9A +oUCPV53LS7mgnRA9laxEodbzB9+pFXHBYIHmoSxVClH3C+vvv+aCycW3ww/Z +FFp18+7Ej+dcMJfes/epNoVq9q2ZYEi86LJU31t9CmmrNJcsqeGCDfUosMmY +QiZKNuyBt1ywT1zf3mZKIc1lhbrHnnLBhTXpO2RJISONqbsXXnLB/dqNH7PL +KRRbv8ht7QcueMpZec1bSaF5Gqa7eG+44JX0s1HWgUJzx1P5v1VxwWfhKQ9V +Fwo9zVa4tYXM97uh9lHfjUILI/TNBT9xIUjh1eplHhTaZuPnv+EjF/ak7Hrj +sJFC7fS1VJFaLhxQlLBfv4VCQX/3PtnwhQthaQXPfX0otGG6yUKuhQvhSu7W +e3ZS6MYp2uVSHRdO3hypOBpI5l+g79s2cCFa5Zp5zG4KpYrU7afauHD+llnx +lX0UUpPe45X5gwsXVb8Z3QylkLD1LzkVsv5q5vH7eWEUkr968Gk1mX9DXVmn +NJxC07cVn0b2cSE9qyrnZSSF+FbjCZvPXMhk+6nXn6bQ29XKf+uIvZycf279 +iCX7eZwu9GiUC/mad5f0xlFIOq7ua0w7Fx7edflv4iKF1qYveLacxFesPSgn +fJVC+lZ9vv+NcaE871KiVDKFVurHi9XyuFCpayKtmEoh65htkVs6uPCy4Eu8 +ZgaFjIcWHNDs58Ib/SPzmDsUij5+xPUy8ff+gUKMTS6FNuelPjEl3GAIQq75 +FBoayfGSGuTC14c+kV6FFIoZDFWfJfzDWGg24DHRS1RseuhfLvwpunMktJRC +T17euvyKn4FOrsN4JKaQZNpGvxjiv6+4Z3/8MwplBu8WNpzgAs80fjD5JYm/ +pJFXIcbAWIn+7qwaCoW3tFlpCTDw17y+62Ed0VuPeopGL6mn8lC/px8ppDwl +XflOlAHhZXJ/3n4m+ZGc4/mRZmAuLvVu+kqhn2nLou+Nc0ESbfnW1kKhxlq7 +4P4pLlBP+TYO/abQ+53O/SlLGJC3zmiYbadQ/KX6x2clGFj8zNZ9Xg+F+M/9 +Tgol+VSx6aiTHSD+lka/WyTNgMbzWCfVYQr1bT/i+kueAa2V2q/0xylU9ihx +75Q4A/ov62yX/aWQwegkfXKG1JPdvkoHPhqdD1lqPyjHQIzB3P4FgjQ6k/Os +Zc1CBpoX3VrYKEKjddceH58m8euKWNqlzaXRjpHuozxiL3Lw036/+TRy4YiH +9ZLxT193p+tI0+hIjqKllxKJ54VI7QhNo6+ZAvPYagwcKUibLJMn602TVfLI ++tokU/VTi2kUUPPvazWyXinqg7ujMo3UMprFsjgM7A/ZdUJKjUbnjuRbjzEM +vNwgeK+RTcbLlHrXS5L82PzXmKZNo8jleWa7WAwE65gI++vTaFu8RWKOCQMg +W2ega0wjVw0Nq1YzBmTm+G8dZWik/uIYz4H48+vlO1duQSPktrnakeSr5PP1 +4lOIRiGesbbXbRiQqDRodbShkWKj2uPj5gxsu1uzQNqORlJFuuFJigw8TNy+ +rMmRRnnPU08sXcyASMR0YPpqGmnlJq2psWNg467Eq/7uNFooWfd3ypKBe+t0 +q3TX0yj10LbLGloM8KHqgdGNNPLWbNqkp8yAO2ebQsUWGlVa71FwWc5Apsyk +fZQPjXbOBh0eJzwxczHUaSeNaoRx2w0Sj1OnZoZ0II3wDv8NbnoMpH6sqmsK +plGj89x9b0wZ4JV7/U3fSyMrdofi+5UM2GaNagQcoBFHzpYd4syQ7/34dXqH +aSRT1rP6M7HXfVQjcuwojfrEc2rnGDCwzO9pXsUJGs2x5JPMd2TgguvGr1Gn +aLRfeZPEc28G/pgPiThH02jw56jIEMmXXqtHScBVGj0bP3DDaTUDJ+v62/SS +yf7T/VbIqzDQ8CRaejyFRtWWL2RVXRlg31JC+CaNrq8PPXwsjIGjcSVBpzNp +dNlysEJmIwN1h9yvO+fQaEGc19Bjcp7Kvj3PZfJoRJ2un7lN7Ic6R/G+3qfR +VbdJ/fr9DLziLlbMeEQj3z1qkfO3M7BI+bFj4BMaaXivbjrlxMCeeWsO6ZfT +KJ2lrr7FgYFnox23xoFG+YXdDk67GKB/RrzHVWQ/G5DgFcIBNfIzp6uJHkaU +kk19GSh7VMhxeUMjL32v/tdrGZif5rSeekejPUfH0qK9GPCJbT3Z/JFGSdvb +y+t2M/Bof3hBxmeiL9a3jIZDDIhuZX0L/Eojybpf6c77GNhkX/CPQQuNWhTs +jpeS/OYZ2ptM/KKR8e5PRVJBDPAv/uUDbTQyenYsPSqWgbWiR+LPdNFILERu +QOoMA3d40mUufUSfncOBC6wZmGy+20HxaNTQYb1zuw8DNkHVCc6jNDp78Vxi +bhID56d+M1GTNKKp3ZIHib2G2NkfZTM0Gi495vTXnoEl8gtjhgVY6MGq0KM3 +QhgIzDbR1xJhoT2rH086FhK9M26NvnNZ6L1/TPfHUwzMvAyOSJ7PQjzGL7DK +nYFV62PYH6VZaPWM5GzYSQYS2m69F5NlIcZ2yxf7DAaaDsBh60UsdKAvIds4 +moGlQs1KYUtYqMZi/ZmmnQzsvjz26v5SFto3nt/5MYGBYhXpfZ0aLDRln6eo +TuLnL9SRV9JmoRcdb27cvcyAg7VDpac+C/0++WUil/i7/H5HYIIxC/m8umAx +eISB794RUtWmLGRdmSh69ioD6gM3SmYtWchr35zW+TlED8eLfbjWLGS+Z6FX +5G1S/xL1YiErWWjc7ZagODl/wZT+B5kOLDT0/XrLceLfRXvupu8uLFT2bxnH +oprUT5naHNqdhfg2evCfvcnAT0frXOf1LGSz6I/TPaIHzlcv96hNLHTo0YnF +t9JJPws8PFW2lYXywncHPOtjoGLicsawLwtNJzd8YIh/0ZgCRy1/FnJI1fGD +DQy4yb4Z8g1ioVg4dF48l4HkO+3JyXtYqGGX0PrwblJ/JnNsPu4n9u4HDoTc +Y0DnxeIescMsZJp2bvbRXgYOrTO7bH2MhV5PF44dfsjA0z/rLMIiWGj91WEq +o4kBsf17/9yPIvmtsFh6oIToa875c50xLLRETu/nuwsMpFzMMlKKYyF7ya1O +/MUMdChVNXteZKGk81fWHnrNgMH9llMJiSxk52ko+JXwETSlVZ3EQuJlr/4t +Jfaq6uhPsykspHQt23+c2JPYanCMm0H0sVO698oTBjz7nFVD7hB9mUnyfJsZ +uHks4G1mLgt1bPvPU6CXgZ55UQe+57NQVcSotNpZBoxvpCnQD0m8C5VrzmYy +EK5Z9ty5mIXYOLoji+SjuuRzcFQZC8mamX0P0zAFKYchqhxYaPTZbx87or/N +jRIVw1UstMqMr3A70VemP2en1iuy/tCOEL9hBvrHbCW2v2WhlLgR23wjU2DO +bCtKfs9C35QO8V3C5L6jj235+ImFnjQ+YgkdZODN7WvCc5tYKEoqOD+IR/qH +8cM86+8s1E3f7LPXMQXvqjqPsF8s9JO3WSz0GwPZ7t0z99tY6Ez9wcwuol/e +L+E7nV0sdPkNvq70mwGLfcqrlfpZKLLmdkmVvCmc5l825jnEQu1/e/hMxhl4 +l7AhNWGMhXI8Ew/KE/3JLzmwqnqKhV4J7xXXfcnA////gEAjZdXpCQb+B2Kp +/2E= + "]]}, Annotation[#, "Charting`Private`Tag$3858825#4"]& ]}}, {}}, { + DisplayFunction -> Identity, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None}, DisplayFunction -> Identity, DisplayFunction -> Identity, + Ticks -> {Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + MachinePrecision, RotateLabel -> 0]}, + AxesOrigin -> {0, -25.205799457979587`}, FrameTicks -> {{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + MachinePrecision, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, + "ClippingRange" -> {{{-5.999999755102041, + 5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}, \ +{{-5.999999755102041, + 5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}}}, + DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ +StyleBox[\\\" \ +\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\ +FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \ +\\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], + TraditionalForm], + FormBox[ + TagBox["\"| \[CapitalDelta]\[ScriptCapitalF] |\"", HoldForm], + TraditionalForm]}, AxesOrigin -> {0, -25.205799457979644`}, + CoordinatesToolOptions -> {"DisplayFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& )}, DisplayFunction :> Identity, + Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> 300, LabelStyle -> { + GrayLevel[0], FontSize -> 14, FontFamily -> Times}, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None}, PlotRange -> {{-6, + 6}, {-25.205799457979644`, -7.661000555932736}}, PlotRangeClipping -> + True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{"2", "3", "4", "5"}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\"n\"", { + GrayLevel[0], FontSize -> 14, FontFamily -> Times}, + Background -> Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Background -> + Automatic, StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"], ",", + RowBox[{"FontSize", "\[Rule]", "14"}], ",", + RowBox[{"FontFamily", "\[Rule]", "Times"}]}], "}"}]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9}, + 3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, { + 3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9, + 3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, { + 3.87637134045012*^9, 3.8763713522979193`*^9}, 3.876371879846971*^9, + 3.884692135165325*^9, {3.887183224363449*^9, 3.887183269387279*^9}, + 3.888652370069249*^9, 3.888652437166812*^9, 3.888652624199464*^9, + 3.888652845863263*^9, 3.888660610541423*^9, 3.893237180256803*^9}, + CellLabel->"Out[13]=",ExpressionUUID->"fd2b4eb1-d3d0-47e3-9856-c74924a73143"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"magnetizationData", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"ut", "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"uh", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], + ",", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<gs\>\"", "]"}]}], + "]"}], "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], + RowBox[{ + RowBox[{"-", "8"}], "/", "15"}]]}], ",", + RowBox[{"Re", "@", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"DScriptF0D\[Eta]List", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], "[", + RowBox[{"[", + RowBox[{"-", "1"}], "]"}], "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",", + RowBox[{"Evaluate", "@", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Gamma]", ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]], ",", + RowBox[{"1", "-", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], "}"}], ",", "30"}], "]"}]}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, { + 3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9, + 3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, { + 3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9, + 3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, { + 3.87637139299862*^9, 3.8763714209705677`*^9}, {3.887183678121203*^9, + 3.887183686457292*^9}}, + CellLabel->"In[14]:=",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"magnetizationDataInterpolation", "=", + RowBox[{"Interpolation", "/@", "magnetizationData"}]}], ";"}]], "Input", + CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, { + 3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9, + 3.876370747760907*^9}, {3.8763714277972183`*^9, 3.876371431900972*^9}, { + 3.887183690448813*^9, 3.887183699080945*^9}}, + CellLabel->"In[15]:=",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"LogPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"#", "[", "x", "]"}], "-", + RowBox[{ + RowBox[{"Last", "[", "magnetizationDataInterpolation", "]"}], "[", + "x", "]"}]}], "]"}], ")"}], "&"}], "/@", + RowBox[{"Most", "[", "magnetizationDataInterpolation", "]"}]}], "]"}], + ",", + RowBox[{"{", + RowBox[{"x", ",", + RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",", + RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\ +Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \ +\", \"\[Delta]\"}]]\)\>\"", ",", + "\"\<| \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \ +\(0\)]\)\!\(\*SuperscriptBox[\"'\", StyleBox[RowBox[{\"[\", \"n\", \ +\"]\"}],FontSlant->\"Italic\"]]\) - \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \ +\(0\)]\)\!\(\*SuperscriptBox[\('\), \([6]\)]\) |\>\""}], "}"}]}], ",", + RowBox[{"LabelStyle", "->", + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"FontSize", "->", "12"}]}], "}"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, { + 3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9, + 3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, { + 3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.87637143608066*^9, + 3.876371440221603*^9}, {3.887183707042214*^9, 3.88718373222613*^9}}, + CellLabel->"In[16]:=",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt2Xc81f8XB3CzJNkhFZ97r33TMCvq3lBRVlFpoNKgkCRKWkKEjBANo5CV +kbKScxAZZSVSRsiWvefv8308fn/dx/Px4T4+j8/nnNf7HChnrxw+z8bCwpLP +ysLy36dVWuDw8rIoun/ip1hqK6DwvLiMxoIovlBfLL2wRwE/74s75Twjiq/S +t9PtGQoo05pbPjgiis/rsgg3DQXs5+l83dQuipqT5+pDlBXQ4ZKqWWaxKG4/ +Ps7IpSngHelfeOGhKCoW3G38xq6Az57Tgr/xiuL92/v7qcXyGNXmfeXQKhE8 +a91xnV1ZHkVqTIzk167Fxo9aRpffyGGZsYlOpbQw2ijzZiesk0NdeWknGlUI +V1+N8d7uKos7U0/FV28RxAgln16OPzI49+iCkJK8AGoU8p3iU5bByenYUAtZ +fgwZP3vt5QNp/EwNVimw48XWy+9u3v4thRqcdzPp53gw/NGZGmeKFIYw1dX3 +3ObGBLOYhg2ONLR6YdbVH8WFnOX1Xwy+ULH6jcQq1mcrMH9Fo36JEBUleNK3 +QRYH7j0g9XvUhYL2f+WaA1I5sIo3/LfjdQoW5Md4nY7nQEPeAcNJRwqa2z35 +zRrGgVsKop4t2VHwRZWzp851Dry+YpcE7RwF1wXtaipX5sAvq2+9zjKmoLBI +5b36dHa08rnWL0Gn4LkhbXpcAjvqbPV+Xi9Hwfel+T+uR7Pj1NUJBT8ZCpq4 +pCqIBrLjuodW4yxUCgb/DKo/foUd5096BLGuoyDfczO5NkV2DJUd1j27koLc +RHd1XxIbGhvrluV3Edj8gqvyzys2vCEhQ4FOAt+uo5c2PmPDjOfZUNxOoLGQ +Q37JIzaUosy0fG8hMGzFXELMJTZ8vZKLn7+BQOq/Ne7HFdiwaV15x3wpgRp5 +qirliayY24QrIYlAHnWzLRjDig8XvygLJhLYmumqkB3BiopN45ut3xDo/haI +OB9WDD2jE7chlsCyaL01921YMaqiUjjhJYGmD827t8uzolizsYJBEIG2pp7h +CQksaJNXi2OuBMYs5SkrxLBgXNoPU7hJYEPCSFVyBAvuPzb39/ENApmLJznT +HrFgL+xcre5MoHC8kuMHWxZ8cLVjIPkqgZ+m2w4WbWVBHOseo9sQOBaztkdb +ngW1kpXOKVgTKKt/0L2EwoJXDwaKb7pIYFB0Vk6ZIAu+7wm22XGewMpg8YOR +fcsA7jGibmcI3KB2fSn76jKc2hfHGn+CQK9Hf1Q+nl2Gl5Y03t/HCRxpPXi5 +wGQZfGzE0oRIf35I/flZdRniqvYUBxwj0K6pOqN2dgken9UvyzQl8KeiRm99 +/xJ0vVrBs4K0lnu8xM/fS+AWgrynTAgUod/2bf20BI/OiV0UOkxggZvC+YH7 +SxBlELCUZkSgXG3o8yHHJVB9qfWDIB0szVo3arUEX4RTnoYaEnihqnH3zN4l +CIhIn3pkQGANVfv6vNoSXKAMRq4mvdMlNXlJdgmkJSUPBOoTyEd4inFyL8Ea +/42FcQcJdHUaMeSaX4Rgj+ZwNdJ/y056rh5chDOnXH0rDxCYc1VpTKBqEfg5 +3zWxkqaWvpRbC4swWPx0z2s9Av3EV1mKpS+CRdBEsy7p08VtlRLBi5BsSf8S +rUvg/l0z51vuL0J0tFOxPunN2fwsL64ugkfK4erF/QSu3Sb/7MSZRVByYh/P +JL2QtEdl3aFFaH7ZoHaFdKfUiapG5iKY9iq+3kK6ItLROmzrIrhcuc2c3Edg +hpgv2xFiEXYI6Isi6fDg1y+E+Mn7K1LeGkj6Lk++Wt3yApR3tT85T/qCV31N +4PAC+H4QPcgkbcDy75JR2wLAsyQLgrSKKycnb/UCfAzwaOQkvX5iY9TXggUo +CYgtGNlLIJu92g7f1AW4Ny2xsZ10X4/hd73IBVj4t3GhgXTNmYt2XI8XIPZX ++7k60tm/7678cnsBlKoKT38nHXkkPMbTbgGeLtJnm0h7Vqdr6JgvQMPWePVu +0rZ65T/YDBage3eV9Axpk+L2K4WaC7AccOIbH3k/O3fNrbq3aQEOPRXfrkia +ki0Yu3vDAuw3mb5iTJprG3334uoFeNs+fucm6eEk7Z8f5+fBcUHxSgLpBqlT +jq4D8zDl13qghfSnSCeeHb/noWjXiQ1i5PONFfOPn66YBzsBwSEz0r7Bccys +vHmwmn9SEUXakafgl1PSPJi6+eYPkt7DMsw75jMPvxsJngjy/cq5rkxMv0le +35N2d4Y0/4Sk9hWbeXiYH6piQdZHa4+xy6DuPARPpwdokvVUcsZGIHn7PFwL +aNH/QDrl9/1kG7l5WH/B5KbKf/VZ/a6te+U8lPMGGu0j6/eMXuXNuOk5eEyz +F2girVvcKXSuZw50EkocHcl6F8kW1m0vnYNrbrl7c8n+eBfpnP7bcw4MzSKD +ww8RGCEWcODZ9Tlos5b5cIbst3vBb/6anZ+DPwa0tm1kPxp6/RRr0JkD68Hq +ez1kv/bb7bxfwz4HUi7iPolmBNb2HF4fMD4L06DolEL2f86Zyx8MOmfBfLPf +r6z/8uLIi76KolkwK5U81nGK7JddS4dK7s/CC32PqlAyX2oEdm2KcJwly80o +G88SeKf71go7q1ngySVCx6wI/BUwmye8dxYM5VKsL18g8EnHBO0c1yw0Hnqw +KvMymR/ZykvqszNQorRZWdSOzCNfx5+r+2dgX+jZcnd7AvVVR/wyK2fA937W +LQcyHzm8BybZAmaA/cua8jcu5PM4pVDTcHcG0hiHZPTIvD29zSYpyWEG6rMb +Xf7L4/xf3RaHD8+An+GGPeZ3CLyu2PElZu0MbJirvRfqSWB33c8I5otp2Gt0 +3/1VKIEhb0SdhP2nYXzthhtfn5L353bUsPf2NNilt2csR5D1Ll3PFmg5Da8h +0dQ9ksBjN6ovt1GngdO0QWaePD9WGPDuyxSahpZjytyO5HnznmJAPOSYhjUJ +vRzjKWT9VFbUb+6egj18Ve+F3pHny8bSXXcSp+Dpr7ZD3/MJdB7jEDv8bArO +lWsxIoFAqS/aY9K+U/A6+NhupyLy/ToUxn+znYKt1gkLe8oI3F6cz7dx6xQY +mW10tq4nMNE6s/1j1iQ0lusf5BgmsP5slOTB+EkojKFuaxsjkMXc1/xX6CT8 +dLdRqJgi8Oghq6YZp0mIplRY1i6RebBTqFZVeRI27GF/kMJHQUWVZd4S6iR4 +vpCP4xOmoNnmAX1TwUko99pC8xSjYCq1uMxxdAI63tl5JFAoeGL1NUxLm4BR +J6GsXyoU9OS0XNodNQGZAY73fu2gYPryAc2qxxMg6dbxdHg3BVdMUHMG7SYg +fHrNxZN6FHzXXJcmv2kCdnfYuu2zJOeDVKWo1wnj0Bdewt8RQEHVBIkWpfBx +6E3s4nUKo+DpV9zrix6Ow8VnMT5SLymYFdYR9ucCef0l96a/SRQ8ezf48Ubp +cXh041nR1BcK+t+88zVFeBwoiZxrQqspmHPtErcmxzhIDyobH2+kIK+1lteJ +zjFI2uJsbdZDwTzjsdtPY8ZA7bvspOkqKnYdaP0oEzQGt0Vmi/YJUpF/b8Xs +h3tjQAufeGGznooXdry6Xm85Bl7RXQF6m6koSD1sJyAxBgn7tl1MOkrFXRt2 +J0evGYPFIZg+eYaK1iIKfVsWR4FhpTJvZEvFAm6284bNo6CdWD7H/YCKl8Yz +Tvk+GwXO09l3FN5TMUJtVOPio1EIzJjaxFtIxbKbW9dru47C6KkX1oZVVJRm +SWuaOz4KHVvqD8/0UdFUeyinQW8UUnd6TtnOUNHdSzH83Y5ROO1xj266koZ/ +eFKOXlo3CgY6yB0mQ0Ne4wHVfatGIXefmA6LOg13PVFYS50dAZ/KoRML+2n4 +bF3i96afIzDmzfhcd5mGR2TijfXCR6B2r9WTE/k09LDp2iLtPQKZLFaBGXU0 +fJcixcd6YwRMVhxYEuynIb/y6285x0bgvvlzisUGKWQ4d6SE7B8BgYw1773U +pdA+l+LnoD4CWuXt+jtMpbCSEX1ATnQEWqrN9ZeDpXDOvU2eY+UI2JWcvev3 +QQoP+e0SxH/DwFfwe+zFLylMFcyvcfk2DApp8UEhbNLIE7EzYMvbYTA+Lp0y +oiiNNpK5Bj1+wzDAqX7mkLk0lsap80TZDsPfhr8/HgZJo9SmrIqj+sMQvTjv +kVIpjfffqfjwbhoGtcWpLu01Mti6PXN/6ephKGP1pd4xk0FN2LbizsAQxNYY +rU5Nl8GIvemfVSuH4KXjsuiu9bI4Vbn5wb+kIVBVSzToipFF08Nv98Q9GgKh +lzGKrMflMOMnncX80hCs7NjR5XVDHnktkwqEDwzBDlYON0OdTWjbJXf7q/wQ +GG/XsORrUMCKy280PFYNwa6Hc52X2eVRdkx6TqPvH3AUhfOGCMmhx43YnPGy +fyA7rKO18qosdixRXZIT/kHGn+eV45MyyPSMUbXy/gczeb7be4Jl8OVqYkLc ++h8E37eVW8Uk95egyHd1+//BoGJ8cM2MNJqJbbz6SPYflFCXzc/kSWNW5PMt +Wiv/wRaLPoEad2kUkhYfmu0eBBZv35wiY2l0SA5PySgdhIuK9/w1adJYtU30 +sk38IEif8NO6OyuF9JxQeYrXIJj3vJudrpNC793CvT/PDwIXV9mcUpoUah8U +OK8rPQjvbcM7/e2lMLo2gMbCOQivctZ10g5J4dIx3o7svwPAJvDI9oyqFOac +W20pGzsAXXb2axXYpFBkwGdj24MBWO2RWH6FrLdrV7maw6wG4GK7MkvNdxpu +vsN5fAVtABauxdq7J9JQPK/maS/HADis1hGZD6Mh59Tzhoruftg/0RUk5UnD +Zjsl04CkfvC3uSt00oqGZYmLwVf9+mHb0UduJiY0zOwqqzWx7weHUim179o0 +fGRuaSSm1A9ioz2iemQ/OUcoPJ4T6ofqAOVt28RoeObH5NfmyT5I2XvvqAc3 +Dbcb+B2Iye0DxlrfiCMjVOzRzN2rsKcPtNqZlyWRinU3PDx4aH1gv8E8tZHs +/4L3RsVDHH0wVMLP+zORimGbupmZZb2Q1Bw0GRtCRZ0NQpqaxr3AOffCW8qO +ilvNWl0llHoh4djD7bVWVFwfkpjLItwL6j+y+N6doOLYaqZ6SWMP2P9QqOLS +o2L0vK2SoWUPKDSzbmmWpaKf+varW/f0QOGH0IE5SSq6XGNPF6T1wIgn37E9 +YlQ0HIhQbOzuBh6/7AtMMh8Xf5XKnbbvhrhStazeQQr2igRf1DLuBse/e4qk +uylYf9g8XkqpG+zV0je5t1EwpWKc1jfZBVFmO8pD68jzI4+QdLzdBW6HDAoE +8yi4b2rA3NSyCwZtdgurvqfgNqXsF2p7uqD8/O1Jh1QKciUZiM9zdEHIKrYp +pddk/ke4rvXw+wtfd+TY1fhTUOhm/eqw552Q0J3XyXGRgjPLswLDrp2wafCE +GvUsBVu9JMV0T3TC+oGvFabmFEwIuSQ1J9YJboVTy9MmFNydzrLLIqwDWi0U +j9C1KCilLqOdfb0DdOqDTXp2UXBVwUE9/iMdIBb73PUDeb7VV4YdKRLqANlD +DcNe2yho07PJXiaoHSo8zQsnyfPR0P6w012HdhgrcNDYKUFBlUkX159G7cDl +5eDyWJyCS2zFXo9420H937TCeSEKhkgcjxry/QP73udGfuak4J1k7hi7NW1w ++1r14rp/BOrlHnkr+bUVtHOxaXc/uU9+ic6tfdQK/MEWKx16yHmgQ61OlasV +gvvsEqfI/bl+nRX7ElsLvGyNuBPYSGCUbCpfemEzLJz7eUToB4GXVGfXn73X +DKoifRoxdQQuGweolC7+huhD8rEt3whU8P54/vHMLxBZSJH48ZnAydAVjszs +X8CjuCI6hZxP8PWhO2PXfwH7KiXaYyTwCPSEHR1vghNd8MGenG/uTQmVSQz9 +BFZfjZZX7wlsPGerkNbZAITXyacQT+6LLcbqWfEN8MIuoVYnjsD4o6o6n2wa +QGL96WO1rwl00l0yrxz+AazuOQvL0eQ8tSkwqGe+HqyHTpZkPCdwOtYpcqig +HgIj+K9ceUbO5xuPJ0/er4e3f7h/K5PzWwoftYSdqx72qF7Iqwkjn9945oyk +8Hewvfe41yyYwK224ZyyjXWw3sdh4gC534t1uQluflYHSaxzetqB5LzYsHeT +JlEHb72mI/Y9JtA9r9HSbFMtRNa8Nw57RKCNcr6t5XANDL4+R8/1IdA4Jfrm +hXc1cL+w6m+7N4ESkTZPnLbXAIdrX6HOQ3IeZZ/2p/hUwfqvtrWGHgTqTMKb +LXxV4JvToh/1gEDBHu/CXaHfQCnPb/+kO4GpFeKTx2O+whW5v/4Z9wl0y+/k +tZb9CnpXfYpFSR9ITZFzflsJz7jO6z+4R95v0O5TwbkVoHdcW/HSXXIefbDS +OZpRAUICFg5d5Dzsfr0mILWkHOQ/tzSfJy15/GxxRW0ZiOS/WeV8m8ChA/SW +n8fKwGgDXxYn6XzNianuli/A4yh87pkbgWaElwJ7fyl8+uceWXeLQBlBIx0B +h1J4eXxO1Jn0BLuYheRUCVyRpdtJkC6a/OOi6FYC2fs6QyrJ+TyoJzFIg60E +Wll5vG6TPt3kmKzn/Rlu3EhUVyG9uVKj5BjvZyiQ/BU9TM73FanfZq6JF4Nl +4LCzE+nw6DBB9+giaPQPrNtF+kKw5aZAmSLgVtcsXk1axUNuX2RKIdzy9Ge2 +3iCQ3XnUMkWpEIqW1bQ+kK69mHczLwfhjR4bBpKOOv7gSdluBI386gwH0r/C +wk+89QGQWAjlO0LaxVXhcXloARwLPVO7i7Th0EhDWvwn6HsSqE0nLXM2WzIs +Ox/Wscq3bSC99OO2tVvZR2jb2PtCkPQPPZ2Ms0158Fss8joP6ZRP3HO6/blA +fat4lpu0x7ZarS3zOdD/0ffkf9dPxT31XcuTAzbr4cR/v6+8zqJ+fkM2EPv/ +mP33/dz+Uhs7FLPg/pKYkQLpDpaB82W7P8DbFbFqmqTznDJSU43eQ+7yV67D +pIN6XaZDTmfCwd/DBZdJW5/azbx19R1ID9w47PPf36dqOHzOuGdApu7f/CTS +YjqVtfufpENI26fpatKtV2iqp3TTYGwoemGGtP+x9FK5S2+hYla9RJp83pqM +XWaTvslw8azmwaOkB2Qq+grfJsIWE2fvR6Sf8R679bj6Dew7ku9cRFpvqpPn +5Ggc9JqM8y2RnmlxiJQVigXqWl7DXeT7P/r2USEejQZ+i+XoUtLcClvixUdf +gB0uJ/KT9WQ9q1ueqRIBL83VmRakaeFufN0fg4Aht3WRnazPmhSJNtPDF+Dk +hr3iN8n65ThzkPDWNmREckb/ayWduPmVC0+eI+NjhwZFl6z/liabtBhDb0aV ++csnUmS/uKQZHBwUe87oH9Ll5yT7S/yPspzJj0hGXc1zY0/SFlz+bC26MYyL +B9Z/4SL7k2XHtTZtzjjGqgULrXVk/+o8Y0QI3ElhZEmc6bYk983Qd+9W7j2V +yhgrVNefJX2tS1BDc2M6o9YqB0O9CPy86Jl4ZT6DwdBPKmok8+HCZluvhuwP +DCK5N/4umS9JAduZsVs/MWpL8kdPkHnE8Tkqf6VKAePGuJCqCplXljMrdlxW +B8YW5ZmP/GSePUrvF1sXhQz50tw7358QuHtdrsCfuCLG949PtO6S+218/xF2 ++8xShkfkrNrlKAK/e/gUSqp+YYDfvKYzma8skp/u1mZ9YaywVFTxiCHwhInU +gkpeGeMrx+eOBDKP+fLHJuaxgvEgkP2jcAKBN/wDun2qqhjXoyV1HDMIjJMt +jtUwrmZsM+qVSyL33brCqbP/aqsZqxQ4PvzNJFBkPvVKwqUahgtnccaZLAId +togMrravZWjbw2fXjwRKh//9W+f0nXFyJiNGupTAxzb3G067NzL+dTiu0moh +0LuS9cPfgkZGzIfY+pRWMs8U3Z9Yzzcy0jtD7q37Q76/UXdjB6efjPy4EfuZ +DjJfbnpU3L3QxHj8ZZvp114Ct/k8LIg88JsRtVu2qHyCPB8T/OObBdsYPS81 +J1byUnDNhL5GyqFORhNzcwvbXgry/1KycnHsZKReSsqc3kdBYRTz1XrSyQie +m2QZ0qWguN/fXz/rOxkn7ghMtupTUE7KzZXT7C8jLOjjdK0pBbVMk3MtLLoY +0fNWa+fOUdD5/artApd7GIa6g41MLwr+cSpVcfYYYHxqblkr9ZWCQ7kGRS5l +owy97h8z7RZUjH8Yc/qczyRj54bgppAhct+bSha68XyWsfFWoIq9Pw1b30l+ +0rBeZAhlzKpkUqTwyNM/3gOBLEzpKzf378yQwsg4v0/6YWzMRYvSBy/1pJHj +pN0/zpscTAkD07ft38l5/XTim8MeK5g9uQJF7Odl8MMacfNpWy5mWtafgd89 +MijzjNK7Up+bmfIp7fx7K1mcc/ZYTDbhYcq2cYhQu2RxYG49b8J2Xmb8xcNr +rpL7TfTFh/XrafzM2uZS1891chi456vfOmkBpsFUdNyhveS+cyVZq3itIHOY +I7naIEUeC3RyPmWJCzFDHDdfGRNVwEU7S7WjvMJMbyUPqYYbCsi6si6CvijM +NHjVdPBNvQKq6ToWHWARYdI+u38YUaHjXHNK79oxEeYh71K3r7501LEtCzSY +EmHeexCszPCno/9853bPORHm/j+dpzIf05EQX+8zwSbKvGCUERAdRMf9x3zk +vwuJMkvoIjlBT+kYUnv+UqCqKNNbU8XL4zUdN5dKDHLfFGVeyvkiyvORjjeO +7AzRuk3+/IWZluv5dCz8e0TT9b4o89bOUZf2T3Q0Zff36/MRZbLMurkWIB1v +Mec3lT0TZQYLWkc9KaVjWV6jnWe+KPOkUgbjQh0dBQ+Mr/2EoswU5RsWFd/p +eKqJt2DisyhTea3cqq0/6Dg8vZf33DdRZgPvWz7Wn3QUUX2fqtUqyvwVEKuK +LXQ8/bn6qGuHKDM+MOSJWhsdE00GljK6RZmW/FNn0/7QUdORakQZFmVGDEfo +JHTS0Yt197TZuCiz/9w1ulwXHWsCj0cFTosyhbsLfyd201GcuL6/bF6Ueb30 +KZ9iLx3///86JvPVKu6IPjr+D05eNpg= + "]]}, Annotation[#, "Charting`Private`Tag$4159201#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt2Xk01N//B/AZO0X2QQvNe8YylhAqwhSKtEgl+pClKEVJpBRR2StLUqhs +hRBKJcJ9FUlZkiT7vivr2Lfv/Z3z+8t5nOPc98x93/t6vZ5nNjtcNHdkI5FI +WWQS6f/+nsqJGFtdpcBQ1CvFw+pKILooJauzRIGMlT2OJ1SVoGzPC+srcxSI +qCMfPqWiBLLtBd/+jlPAJuqMhwdDCYbX9qQ0dVEg3EfC+wFVCdzOaVrmlVIg +dy6svkxYCXzpzeAURAHy9Koaa1IR4uKJqGoBCmzM66q+9UYREjqCLx7mFQfr +M6NW01RFEK89ckhBTAwaBL/Ocj5mQIXZEcNKuiicseMzElzDAGMFugdBFYFv +SZaHPrgogHa2deqPLcKg+S0+pO6XPCyEOomoKwjBL68nxBt5eZieff7wpJwg +DCmq0lOuy0EZNUqjxFUAdELfvb/WIAs6nDfzFE+vhVdkz+u1MrIQzdy2bZcP +H+x+t8d9vRcdTj2x7BtO4AH+Myo1pHoa/EjbxEuO44IsSh7pphIN7P4B2SOK +C4Lsm9sZDBpMqp9a6A/lAsMGzbI/cjQQLUkbqbrOBWNcja80CBpY1qvWPLbh +AofveXqLkjToJhk8UN3MBS8eZ14q5qbBjNWZjXbpnBC52/2NXC8BQQm84r8S +OcEgZnHnfBcBEn2ZAntiOeEhZYNMVQcBOm7jq4qhnEC6YLbo2UKAX+C17tnz +nNDt+eJocx0BfHlhaeFbOGGfa4zk4CcCNq3NVUPvOaDOppqsnETAhV751vBs +DpCMeJPEkUBASVFSoF0qB7i9dzNpf0KAjeuDFnIMB9h/Dvj06DEBT2quBBh6 +csDBTyNVRAQBkpG6Td+2ckDnxlrl5zcJEBWv9KvPZYfWff88newIOD1qoPgi +nR2efj77J+gkAW/Li357JrLD2ZR3DZnWBBzxymZQIthBOsC/dNGSgKjGyHqr +i+ww1N07+PEwAeviLeU7lNmBQWsX/2yAv49M/4+hDDYQ8Hf35GcQ0PqEp7Iz +mQ3K1XV2RcsT8EpSsfxPHBuUCdTt3iRHgJmIW9GXUDaQOXR9VYdGQAzXQnrS +OTZIY13gTdhEAPUf/y0rBhvMru37wyNKAMtZ1ceMygYbfioOfhEm4Eu/+dW9 +UmxQX2X2IFCIgLOdjy5o8rGBfiD5t/A6ArJ/bf5PaJgMEsmqZcf58Pso1NT4 +9pIMLhJOLrFkAtZus9wCSWTYPip+9gGJgPY8b0Z+LBkukMMuRq5S4dYrJPMi +hAy6p6tQ7DIVKhJN+P2dyfBtwUqndZ4KcRtdeK7ak0Ek1Onc7BwVzsfdZ79o +RYb2w03d4tgC0b/mrU3IUPhj8IfDDBWOBtn0b1cgQ24bm++WKSrIcvh1bdlM +Bllz+RbXSSrM+iW3ykqSwVHbvDR3Aq/vPVAnyksGs8rvFobjVHCZ5a1ZQybD +53JzkYdjVND1UPrGNk8C5TvmPsOjVOh0vYTGB0nwk7JwI+UfFd4MPygc6CSB +tvhlGjf27TPv37U3kkDTmuvpxb/4+faLmVUVJGCsztMPjeD1jwY8Tk8ngZO+ +eLzJEBWSVgq3MpJI8O1i653WQSo0pI/XZMaS4NXASMdlbObyf5w5oSRgvc/m +zR2ggmdaZKLqbRLkKbgPHsXOOPxV5811EvhtSLRc6aeCaKq6+zsXEuwepwvY +YpuYneXf5kiC7enU0+LYvgtP0z/YkECHp96lro8Kec9/GWhbkCDKo1j1Afbg +Qd6OjwdJEOJz5YMl9sZ5PW/dvST4LJO5lsA2T/EQQ/okUN+9QWuylwrBBzJy +mdtJMLYpUbccu3i2w/SzKglyoqlKCdiTSWIDBgp4//Re8Plgy+03vfVlMwlK +/mN222Jbz/ht3CtFAvtmatFe7MjE9x8qhEkgxPkgSQO7fN/fI/vWkGDuxmi8 +LPYia/NYJTt+nnTm243Ydno5ovFzq8jO6Pi0JHZllJTps6FVxMeIO7MeW2sg +wD+peRWFh2qIUbETdSbyn1euoqJlEo8KNl+E9Wha0SoaOMky0cf26P1Ky3y1 +ilIebuo7ht2+fet/2c9WUXVpRs8lbON7zyJfh6+iPEbnoQfYb7p4K976rSJO +e6pGIfYGLc+V/Eur6PXYRFw/dmBop8ZHh1XEte3ffQm8f+PtpudLjqyiZ7dq +pcywT2zNT/pkuIqCubxM7mGXBVEbyzRXEbdDC70WW6X1nkCFLH4eIfFRAr+/ +x6rzhpUU7NtnRc9guzb9eP1zfgWdn2pkiuHz0KisM1g/vILKFyQUPbF330rd +1NiygnLVs7lbsMUVfcLai1fQN/+krx/w+fK7OfipK3sFHTffVaqKz+PwryNz +vQkriM3/Y1c2dskNhuOI/wqSULhQUDxMBfmfD+NH3VeQQSpx9yA+z1F0ct3E +qRWUbpHztg/bqeaP3pzRCmo/JrZTDt+HWqqB56LWCqK4lb37ia3tlZ25IreC +rqpOF97C92mdTIAEJ98KOsV5K2EO3zdvj/GDPIvLSO8kI74Y38feiv8C1vxd +RjfoYydC8H39cEl9UqhmGd3JfmCvie+3XWlH5aaoZfQl44p6F77/e3XnHNv8 +l1Hb0JasqVm8f/mCpCeX8P/bc2UL4HqylLFLQ/LwMkpaOfXs5CLez6iUJyKC +y+g5VSH6LK5PN9cWadWtLqHUqarsT7h+OQXW10aMLaHXmZ/ZaewEaHhzcgr8 +WELTXduLObgIqLU/48pzfwkFjIgq7lhLQH7LTe6vPkuI4a9T185PwLNjj5MC +XJeQM7nA7z6uly4m336zHVhCvdOPTq0VIYBHTVFvec0Sco/bcDFAioBdpDGB +yZBFpJ/fJRSsSIC8N/fL3GuLaFE6L7hVmQBBlrTBRedFJFOwZZ2uKq6nA2Ze +f40X0bjIrgGqJgHeP9509HMvIh2+UZ1AfQLsTSqvvZhdQFmuvsn6uwkwLu0R +OT2wgBL9fzpzGREgni9q3FW+gPqa9/wp2kfAm2dXclsCFlDetGxsnQUBsRLh +++I8F9BO53nnJSvcX6PSei0dF5Ds3RhNTRsCDgY2SjQYLqDu+F/P608RMOyq +7V/LvoA0lKyjf17C/UV35fAX/3mUb/zdahX3y1ohXaVY93mU3CsjNxZNgG// +dS7XU/MoQSO8bwz31+bw+UJRo3kk7BTjQMf9+UE3izjNM49WTdM3Or8hYHf+ +1pVt83NI+/Y9+tB7AsbD3BvXDM8h0d7mghsfCdivOX43r3IOce/ftqazjACO +4JFptvA59DflZHpyI/5+1ozahptzaMIryuJ7GwF2as4ZGW5zyLG4dZqnh4Ci +5v6T5uZzaCtPK3f1PwI8lbu/JonNoXmXkqibHDTor2uMZT6ZRZ+lLUKkttEg +Oo3iIXpvFgWmaarO69Jg9w2Lg4M+s+j51r74eUMaPKPXs0XYzqItZQNPTh2h +wfGrP853UGdRx3ur6flLNOA6ILAnT2QW/VUQV+HwpsHbzQdkgjhm0Q3dPTt3 +3KKBYOX3epX+GVThbRSh8IAGFRvLdX1fzqDTNaX5h/JpcGWSQ8I8bgY9s7tU +1Qo0oH01mKSHzSAujvW+yd9p4Of2KbXaZQYtavz80NlOg+2lRes2qs4g7Skb +RTc+OvQ/Whwal5lBtVIJZF5xOkS7aJeVCc2gnNfxQ+Ob6TAu9uGqy9Q0cko+ +bl6sTYeXZ/O6Pr6fRmCgvKfcjQ71DgnSpqnTSPi13rMIPzqQbMJsmh9OI601 +wo0DEXSwOHyqac5jGh1/8FT6VB4d/E0PUYJPT6MPKUutT77QIctI5xjl6DQS +fBGhGN5IBzZtkZ+aW6eR+5QzeyNJFpQ1VgW+UKeRmd9DLzNxWbBUGdl/VHga +2fhwLX1RkoVsammF+wQLTX07Hs5jIwtNG3K42LpYyJyZzrnOSxY4KPGGkbUs +FKnmMBUYJQsn1lyGnBwWunc5NNi7RhYCOG1X9BJYaK/x9VmHMVnIXd23s+Y+ +Cy0MjYnGC8tBy7yWt40vC8VPPbH13i4HXCzqh7+uLCSXFODpai8HaqMCM9dt +WEh7lst7+Z4cWA8ubF1zgIXkja/wtpTIQVB3/6W4nSw0mZm/MsqSgzetdTkK +Siyk1aa91VNNHtoaSv59WM9CMfaXzBWuyAPPzwxF4zUsFBXCVhTzRR62VsY4 +/1mYQn6L6pFvCAU4+eVWmtPwFDpBsqmnP1KAEHShb7ppCpn9yvl5S4kBbwtO +EAHfppDMbRkLS5IidOTtsRctmEJXPLw37HJTAr5s9YSU9Cm0WTcpa1VFDTTT +N7WpP8brdX1D87pKYJfMt/5z0BRa5Q6W2jHAgLAnM5aHvaaQ0e/0i2XrGfA+ +pjum02kK5TkW1D4KVYCuiJr6ixZT6HL3Ff50SQVYG1YovGqE13vpeGBHsTxs +C0g1u685hR55aLmvXJAHh5tR9zfSp1CXuYapqqI83LvmW5UlOoV85Z4vW4/J +wYfL5/h2ckwhW6qtcmOBHPS4WhhXTk2i1LbckoshciBwdnfgiZ5J9Fan7+gu +GznY4aBSNlQ3iVC/TF2ihhyctpZiu/Z5Ev34fc+YZ50cFJpN+jxKmkQl845x +JyploW9f+0fZyEmk9Uo6/GWWLAgafZ9/54fXo3goQLgsOO1I9qy3nUTvEldq +g0/IQuTW+3mnDk2i86Un7Ed3yUKRsvfEpN4k2ttiz+vHkAVhqrmr0KZJpH4y +6/enFTrobtDLTOSfRCEmLYN7hulwVpwxtGV5Aune155ObKBDCR+b48HWCZRW +LJ4e85oO56ZeW4fFTSCkH8RSuUiHWK0JnTOhE4gdDX3dYUeHimuq6w28J9DZ +iffqRYfpQCflNC1YTaD9UcXT/Fp06FybZXFOcgK9ndD9ZcpOBwGzEc09vBNo +6c66e56zNNB9wBCjzo+jr+H1D0dHaBAn+fJXU+M4oqzj/gq/aXBMNtXM5PE4 +WpK4axCZRYM7zn1b6MHjyMZ0TL4jmQZvsmjryFfHkfpI/rBjLK5HW1OqPxwf +R+JbnL6LBdGgUj9xnzxlHIltjEiuPE0D/zcaIQJKY2jjU/H1+vI0PD/l7S1f +M4bmuWOlLTbTYCdS4/IdGUWqL7cS4VI471Wq3P6XMYoEdmeGneKngUufvE+V +wigK1EQffFkEfD+fpnOHdxT5vAjXuz9KgNwkfUFn6B/ybDtwpWCQgO4Vqldm ++j/0uuvhWTtczy0lNl4KlfuHJNc3ZnZ8JeD9s/gtu7n/obu5Mj0fPxMgQpca +ne//izoELXRzigmoUaOcd079i+7etLzclEeAgamQozH9L9LRe3RtC+4/Kr6c +VlzECGqLmdEIxflOqrD20SDHCOKf1Ts9dJ0Azpn4hu/9w0jQK8T7+FWcx1zV +j4ZnDKNjV5XdbHH/C7WxPSShPoxUmDMOEqcJuBLLuL8gMoyEOIOSBnE+tP89 +XdU6PYSUGKNi5bifbj9wd19SwRDKyLDqSjtOwMDOAiPGriEUwLq0hm0/AXVX +79xZSwyh/QP35rRMcF59e6h0lGMIpbd9KfTag/OdUj8zr2IQrXkdsXnDLgIM +N4js3Gk2iBx1HW3/ahGQuOiiftB2AJ0NDL18F+fBu9u2X1LdNYCOlzLJF6gE +eF1mzxUmBpCDT4GplQzu7yOxyn/6+1Ee0yR9/wYClpvL5e0u9CM2+YePUnBe +HBSPOrPbrB9FKs9uqsV5sd7cJpWm3o/ePTr/gBPnxazvU8TQdB9aZzreG4rn +oROFMtLuPn3odKhd1hKen/bMjNgcte1DaUs86y9wEqCmnv9Ea1cf2pPvUTaA +5y2ejANSixx9yJ1o8pzC89n7WG+xO3d70X5VfcY5PL8l/zY66nShF5Etvhms +X6DCPSGhB8ZmvYh91G35F86Hp0PSBPlFe1G/bRWvNZ4PRa7Vr4mJ70EnrzxJ +KcPz5NzqvNCYdw9iheROxuJ5sz1QWsL4RA968rjykReeR9Ojz9EWJHpQ6N5D +0aZ4fr2/PoJxZK4bBT9LLduF893l5HeqWX+6URVX+5I+nn/1ckm6J2O6EV+g +jvZRPD/Ttska5Ht2IxgslzqH523eElMTwWPdKDBsviAIz+P1lTHHPot0I9ux +naNNeN53HlC6IBvZhUia180bu6lw8IK5x023LmRn7b+Pga0x7eXdeKgLPeYv +vH67iworbKWBoQJdqPpKqqlpJ56XQwbv9vzrRBK1zZUFHVT4JijwYGd1J4Kj +TOMt2NGbrBJGwzrRRP/8gko7nrdf+L7Ye74TzS77iBa0UcFW6Xlm4r5OlL0U +MW6CbZj37fW8QidSvWrs39VKBYb2WL45byfK2Dj84Sb2plsKN47/7EAZPcMh +NOyhcI9g3ogOVD31r/9HCxXePkXRHw92oIvRpZ/9sX0z+ZJc+TtQtMNZQW1s +k4Jjr6Sr2tE1U47SuWacX78mFvwMbUfbY4aqi7Hb60e+3DZpR3pENC0E+2W3 +Vp0mTzsC//TCE9ge4/7tA+VtKGRp8rY6tt5K1XBsQBtqXnHyEMTmXSsxa2rY +hsx3bfJjNeH9ljzFvsLWhlq+H49vx06Qy16X+6kVSbp4FdZgn9OcX+/g14qq +JjjqyrA1DAzlRfVbUfy1zAbAXjUL1yhfbkE+iduLP2N/P9nMvFrUggTm472/ +Y0e70A8wrregGL1+9kZsW283q9YdLainxfjgCDYj+KPj/blmJLdD7BAH/nzT +D7ncmfnNyIi7aJGKDSmHfSc9m1HVhyqTvdihr5+EPtdoRk2c0yqXsI+hgRiL +qSY0Lk9KSsSWqVZP4XnThOzvNDz8jT3c7JNT6NaEzs/eYBfE+/tusOKjy5Ym +lHRCtPMQtt+MSMWm0UY0Kda0+SG2KYdtfW1WI0pxo6IObHHhjM5b5xuR8UGH +7C34fWYpM+f7B/8gRzcBmw5sL50wzti0P+hofDuvPj4fu00ahEyd/qANyi49 +Kdh/Trswcnoa0Fxh9NwNfL5K2sy2vU9tQGwhyUZD2KkWmobFzg3Inqdrxgqf +Rw/jFZvKsd/IO+G5szE+v4JKEZEDi/UoTKqp2hKf99nnHs9GS+pRanLAtQHs +9o1WmdP+9YjxwsPcuwd/vnXUL+w89WjyVdWlLJy3Taby5qRFf6HDOTde40QE +qi6POeX+1KHZlCGhCWyJvhvCKnF1yMzI0+U5vo/9DUZKO2Xq0PYNJ2fFcb69 +VfjH1lLpJ/qlGPCRge+7J/vsvc0hNSg83L2dm4XvwzRK27KuBq1Q4qRY2MID +wZ90H1YjnQcHWD3TVMj+LjVtlVSFwhhl52pw/uyP1LOOKviOFh0YP6pxvbKU +CWSwD5cjDumz45c4CJAVPmQo5FaOgp7+inqI6x+LXeKk9MwXZBQ961eE62Pk +wMtIHbYvaPHxNmVRXtwPs6vnLkuVorgOiV3DuJ56eTPuf3tYgn5HyR5QlsD1 +enS8ISe1GFF9XxfdkMTrO+RLx+QXIc7Ls4I/cL78bWL42qGpEFlPex6/sZGA +rZIn6xc35KNY2uTIHK7/7RcJTWvjHKTOteHLFRWc17I2dRw1d0KzCXwr5/bi +PGVvKhNscFA/zEMrdh3uPy9Vkr3WFrrrO5meTX6P82Nbk3NO0sFg/TnkPLHm +IP58OQdM/0rE6xvwI9qvo7gfxenHCvlm6X+aucr104GAjPDtzOeqxfrrnr8p +9/DD65clFHFrlOj7Pd5aHXqLANs5rh3ntyF9O1aQdsod3E9zhyUkE0D/NBA6 +LcEE6EkWCHW++Kwf3BV88UwkAanDx9gv5JXrH6O0hv9LJuDqvfD+kJoa/SSR +fdOP8Txw39m/we7WH3369kCNInEa8LP262Qd7tH/lR66jfSRBp0e5RpX7ozo +95Z+sJb3pcNowYHPXhUT+tLktqWtxrKQGpRkdzpkWn+T+JSOPa8c0GcyRa7G +z+u/MI/670irHLS/kS7WObusn9t48+PmRHk49qgzeCSCxDQwfmTkaKMAz17c +Ld4fw8Z0FBzi8JNlAMd/rv84r3EwlQxrtP9rY0CN3cs08ztczAxX/o+NTxXh +Hb+UzawLD/N7CNl/0lQJZOM2D3Lv52OmPs35s3tCCRau3FnOPLKWmdN4KyHm +mTKMLKwXSN8uwHzZm/n2t7YKJJ4Jql9PCDLrpNdVH2pXgYhdVXcl6ULMgw0u +R9df2wICFzN3l4oJM8U3r24zY1OFEsMPxe+lRJgqJbbpTqaqsOxqq2UhIMpU +FI11tLmnCmTuuljFZVHmffOPvWxVqqBl7P55H0mcWVGW0/abXw0WWrMGxSbF +mb62eYSBiRoYulREHJgRZzJqE25o7VODe4s92wMWxJnLO/Ie7jVVAxmp9SEs +NgqT5Da40+WAGuw9HqLwS4TCZFENGq0Pq0H0T8dzEZoU5icX5ZQrVmqgUr7p +L981ClPPXbL8tbMaXD2mHb3bh8L0ybZ2KD+nBp96j+309qcw3YcsYn6cV4Oj +7PfuDoVQmJ3SgWnlrmpwnbmoVBFHYXr8J9MGl9SgovCPa0ARXv+Vsmr5NTUQ +3jclVgwUJh+57k2ttxpYNwmUsMoozMIgakPddTUYmzUSOF1NYe5b/ltb5KMG +4ppvs3e3U5hCDc9USvzVwK7sh4V3N4X5jfk07OstNXh5ZGTldT+Fqc2/klRx +Ww12ulMPbR6jMA3PDGllBqhBIFlv1nKKwuyq25wXFqgGtRFWCRGzFGbx2rXu +3kFqICXjubdikcJ8WyvNHhesBv//exXzxWjFwawQNfgfSt7a1g== + "]]}, Annotation[#, "Charting`Private`Tag$4159201#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt2XlUjP/3APBW0kbrSCpF8TzTriGKmZIlpUKUJdGC0q6FiEqRiErShvJR +KqGFFi33UpJCi7RYivY97dP+e77n/P6a8zrznDPP+/2+977vPSNv43rAnouD +gyObk4Pjf5+2r8KHFxdpyBHxyNJFnIHis6uUdOZoWHyi9tNXUQaW7Uo+7s2m +4dF6DoM9IgxUain4NPCPht27MgkFYQb2Cbb/1/yXhqylu9O7lzLQzZFhmVNK +wzd8TYNHZ7XwiuIPPH2DhpoiPcuk2rQwLn5t5BdhGn7XFFvW81ILH7eGuO5f +Jok2EQrGH3S1ULLmoCkhIYGXBKbJNV83YoXZQYMqRXGUSPb1ema1EfcQip5r +FcRQZUMCcrRq4taXx1Oq1UQx2bV31MxOE2dCT4tpEiI4sXGT/LkfGjgx9fT+ +ifUrcC6Gv2qdiQaWKURqlTgLo7HTz1Gdj+qow3s1h24niOfKfgRu0lDHKNbm +zXp+/LioG60ev1MNbRMsO/se8+EXu6wLXiqqWP1Mdhln3BKM1E+1C+BSQVnB +TA3I5cHGRx99Itl0dOnY8OvuSx4c9It+oztOx5KipOsnU3jQICImq2eYjlbO +935yRvNgbPv78Z3ddEz46h1s4MWD7R/GVkk20FEqYlvzp408mGB6+d6K13QU +l6zyr8/kRmkpj8Tb7nTkX9NV3ZvOhVwBGSrJYyT+SuCr+vOEC3U5bXvHhkl8 +IUUvb4zjwsZ9el47B0g0E3Mr+hDKhReM/4iMdJAYvWQmNcmRC70dswcdG0hU +GBQKPEJy4b2s9PzBAhJ13jK0PqVx4umE853m10gU3GyphkmcuK5eoWmpP4kt +Ob5kXiwnFvBn7yq5TGLgC1iTfJMTy7/sfsnwJrEi0VAowIET361N2W3qQKL5 +DasubYITN9fdzdM0I9HJPDgmNZUD57amMjvWkJi08HYjmcSB4p8/PNaXJbEh +9d/X57EceMNiz8un0iSy5o/xvgrlQHaJQP95SRLFUzQ93jhx4P7GQU+mIInF +U61G79Wp56+229xlEziaJNG9g+BAmnfjavokgeuNjQI/yHOg3+qXzZVjBEYk +5uZXiHKgZuF7d8lhAqsiVxk96l2Emv+mX7d0Erh6k9dCnvsiyP92stWuJ/B6 +6B+tQptF+D2CbZJ1BP5rMTpXcnARzlQcKJmuJrDshkJTGWMRWvduS/pcRaBz +c3VW7fQCWMVO5D8rJZDaI/v+gAXoH3h9RPs1gRtq78cPeSyA4BEDK+tsAiMV +OetGbBegPFJi9a1MAk9/bdzO3rkANPf1Hf8yCFy+JnglL/8CCITPGU0mE3iy +tLVKNnIeTFOnuYZiCNy9jW3/O2Ae+Lusb+s/IFA1bwVHgvs8yBux5B7eJ3Au +XU9Lav88+D84c80uksCYyP8SxFbMQ2FABWPbbQKvChZtqlucA1EWffZ9KPX7 +1+trwofngCdDb7npTQK1fHl5havn4FM4udv3OoE1p844892ZA4cs21GZAALz +fl5d+tFvDj5bBhONVwl8dCgmKdh5DsLFpdnRVwh0Mvz0nWvfHNjOrQsgLxPI +p0HfPi8wBwqntux74kPgcPqOpsLZWQCtOcMIbwIb1h338O2fBcN3/PQbXgQ+ +XRmWMlU5C74C39/dOE+gHsew8OjNWeDRkrH67Urtp+/StMyLs7CSOzuah/KK +cbkdrg6zcDtpx5KNLgS2dJv5DOyZBb+Ub1nJTgR+OOUg8lx7FuReGHL3nSMw +42fAc4cNs5DFk/GGQdm3Oru1a+ks1LZrObQ7EHjKsOpi8tQMeD6M899JeU9p +u5hd9wxkbXFVfHWWQLVtcy8UGmdghlvcdg1lyTzxPX/LZyDhKP/O2DMEzqur +tD3OnYGcusEGKcod6Tsvn0iZAcbqC+uenCYw+5F35s/gGbjYwKFQaU9g7Mq7 +e+O8ZuA3KdDnQNk/8lmHpf0MFN5oeihC+YwgXqEdmgHH/Wj4zo5Ak+tNKxsM +ZuBa/taZC5QZHCPZUVozkJ7SWahNebXvsn0H182A7zP/eA7K3OPy3SLiM7BC +dDi5xpbAPuetATXcM2BZptOTSrm2+4D03bFpsPwS5XqTcv6pc2/2tU9DzOAB +Qw/Kj39eMxX8Ng3b5cYCbSlfP5TQW/l+Gs6ekCOtKDtXv752M3saXvimGVtT +Njf8IrPnyTSUsO6yHSjrlHbmLYmcBhuOGR0/ygrbFvZ/CJgGvg6WYizlGpFt +yrEe02Ct8E2wkPKVrktLnG2nQeJ89v0OysqFb/+wzKch+j67SoJaz4+702/F +d05DvE9XoQnlEDvt+z2MaSjc3OZ+l/KmLT6uRUrTcPXNpZlGyh1CuYbhtGkg +5h1sNlD7ea9tfK0d3zSkPrmT609ZP2/jwuZpNjDGJ7n/Uv53y6NJoI8Nx7J/ +WBhS5/XoZFZ26w823JJOhALKxox/t3Oq2GB/4sceTep8Z5apnblRxIYd74w5 +cyintjjrHXvBBgmz/kkdKj54QvonuO6yYV2jV91pKp6yj5M1DVfZ4LN813c+ +Ryq/NRzS093YwGmy3DSHctGPrhMHDrCBvf95uzwVv46vFLco7WDDJwdpmS7K +K4PsxGY2smGN/3v+HGcCvVTaPiZJsMHVP1j/DJUP67jkn3gtYYNFpdILEzcC +6xqsLxtOTcHu5cJCTHeqXvj/Vh9pmgJV7/v/tlL51VXXFMtKmAIFlYsaSVR+ +Rj2jeYqHTcFEsata3QVqfy4fNunxm4L59sksQV9qPxTrucKtp6D5zbbIR1R+ +W1yoPteqMAVHPpaNbA4kcMk+4V05YlNQK7DGIO8aga/l9625wTMFfl4OwAqm +8rWqsl61axJMVY1DPUIIrJAp33YlbRJalA/NHbxLoPcoz8oDcZPQ32gluz6C +Ws/HHaOKtybBSUhsA+89Kj/c3qV8cZoEfZl1x9qiCdQuLVouoz4JhQnSOuse +E5h2NudvYe4E1Ep/L2zNIrDe5rGcUcoEcPmY0VOoesxhdcvqx/0J+KN0L+NS +HoGH99s2sz0nwLlP64l5MYFcW8VqGRsnIHvHeG3pJwJVtBaFPyhMgLpEFZPv +C4GWqv3G5qIT4OhfYGVVQ+BLhdIKj5Fx+HJ07f2tjQQeFTiPr16Nw9YIs/cf +qfslmNd6YfvjcTgucsI7ppfAzMW9ul/vjENX34k/lwap/RpXyB9wHof2PQWL +lyao+PhV94pQHoc3l9nijktI5H+p+fi/1DE4UmA8b6RMIiNV9rdmzBh48t8J +cNMg8eQTfun3N8agZWRl5otNJOZGt0X/OT0GbM3t/J56JNpcjbwjozgGhMsY +Mi1JDLt45XOG+BiccBEO0T5BYv55R35dnjHoZt0KMLEjUfis/vWj7aPgpOb3 +od6NxLdmo34PkkZhfkeIhfUtEjv3thQqRYxC27o4o8ORJK7YWTn9xn8Uine5 +FbvFknh6yxOveutR0MtZMS2WSqKowgFnEdlReDZolqTxkcRtq7c/TxQahR5h +h+U21SSelSR71eZH4N7uezRoJLGEn8ve5NcIhGQ8zePpJdFxLOv4rbgREAo7 +qNkvRMfYTSM6Z0JHoKcIZq/Q6FhxUV16h+8I2J/9IWskT0dFjlfNM0dG4IZ7 +5rL7DDr+Ecw47Cg1Aty/LuVsPEVHYbN+xq5lI9Dk41DzxYmO2+6REgrT/0Dd +gi/lzQU6xkmlfWtu+gfWXeEr/CLoeEgpxcww5h+YViiXnPpIxyCHTjXFkH9w +OLNcqvU7HbMz1i3nvPAPUuwyN9V00HHFxv++5Fv8g883/ZwJHmVkerdlRO3+ +B56X2kWSxJXRpUD+ttvmf7B1c8bb54rKWMVM3LuB9g/izeyznhgq40xgK8Gz +9B883XZMNuW4Mu6/vU0UB4ehs0Vg/Tk3ZRSM3XpX7cUwfOg70X4hThkd5Ar2 +dd8ehpxgGcWuTGUsT94s+NhpGIzZ5S0nKpQxIFvrprDyMHDUhEX+nFHGFu2c +3eUCw9Be6GEpK6mCuqCx5Er/EDBrvfgGNFUwdmdmGaNqCNRyJZef36+Ck1Wq +1wbTh8A32vVZn7sKmh94oZccOgQuUZa696NUMKuJzmHlOAQMuerk0gIVFLZO +LxHfOwRbojLTm/+qoFPnBr/PxBCMsPnOmQupYuW5ZzpBy4agMl+x9JuuKq4f +VZzR6R2EQaeQixvcVTHowtP8sYpB4De56Of4XBXbFhR8nqcOQuFsrqvMoCqy +gpMYtiGDoPts/Wo3bTV8KLBmfNXZQWCnSf3LDlfDmYhH2XW7B2H/+mef986q +oeVKGffQ9YNwzz+peoyljrmP4tX0lw6CedhrPbsEdRRTXDU03TUAGolmM2/p +Guj2PCYjq3wAjlsb6dHuaOJXDdo5h5QBkBONObKnRQPp+fcJ+esDIGiX2ZM4 +po4h28V7muwHwLZMeNjjkjp2lUWmhO8cgGFu77UypDruMBKx36M4AO4+QT3K +zWqYWHt3LQfvAEwuellqe6vhgoVwW15HP/ywLH94ea0aHmu5neha1g9JVhpC +zr9UMd9OwHr90364djDtAf2RKkr235RpvdYP3+JbHladVsXz7ny/om37wePC +IfdRLVWsmboeZ7KjH+LDXnx7slQVVa/wHlmyth9YLL61si0quOptzYMenn5I +kS/4bvRWBXkn4xsqu/rgl86Da90xKvjLWdP8bnof7G7WM9E/roIVafOR7rf7 +4OCxG0vCWCqY01lRe9ClD7JKygsslFQw1MradKVmH4T9Vi37MaGM3rHknRmx +PnhlKnHpcKsynvo+8fnXRC+E796l0vhJGbX33d6bVNAL3pq2F6OSlLFbt2An +qdcLj2348rSOKmPdhaAgwbXU9ydeJ7KpfCh5bVo6xNMLlx+ePGC8VRmjlbtY +ORU98N2jvs5/tTIarBbT1TXrAQXB/1iHu+iobtniK6vZA3Mquj8/NdNROiqt +gEO8B+aH/3LHfqHjqABr84fGbuB6bpOtnUvHxFknTRPrbkjNN60Qv0XH25u1 +3dX1uuFbZ07AtD8dfc5zZ4qu7QbvQWtBWR86mvTHqjR2dcFDHEhebUfH+R/l +G066dMHK4/5m2Sw69khGntE36wLBgQ2lh7XpWH/AKmWdZhc4bIoIJdXpmFE5 +trZ3ohP+Dn3+dWQNHY++XSPn4dcJCTytOzK56Lhrst/K3LoTCrQdnZ7Nkqih +mZewSa8T7Lqem5aOk8iXvm/VLE8nPOKRX23fTdX7WF+JoNsdEGo7orrpK4li +F+sFouPbQSGwd8AyiUT24rTIsG87uFwRFyiPp+a563Ir9xxth0IXu7em0SSm +Rjmum1nZDrmOlrRcqr5vz+TYdiK6DTKMIwyKfUhct1lpR55XG6TTDTTmPUhc +VmJkuOJQGxxcXNFp7kJifVX0ofdibSD6dvGJoT2JDt3KLkoRfyFxWN5Dx5xE +E5cDnlfd/oJ+1HpXZWoe1Jrw8W0y/QtuPqaJGsYkLnCVXg8V/gsX9oWv8jEg +MUr2yOOhW3+AVyrDp4NB4pXn/EnOQq0gk/Egm3M1iYYFh17IfW6B8S2egsJS +1Hz4MbGgNrQFrrrI5xDUvJjWtqmOwdcCYRlXJsJWUO8nZcu9wPUbXjTyCfJQ +9+nj9S+XZ777BQdipv2CuKn7hTEtbeP/C5pyev1FOUlcNLurVT7/E+ydi70O +zxFIhhTa32H/gDweP46L1Dw5cX+JByvvB1iw0xpOjhCI/+2/Mur1A8pC+b+Z +U/PlIeiOPjzWDDbatxJO9lP9yqRYhexQE1w5+nIzdweBRjzW9TUZTeBnUzy/ +u42aH0TT/wSeawKftUVFD/5Q84kKa7qrpxE+tw8+tPhNYKOdE/mqvQF0FsWs +D1H9Rclvs825KQ1QfCnjB28DgSmHGQbFDg0Q0e4mANT86rlnwapq+DvYHkhR +NaLm12Pv2hzrsr9D0futYzK1VD+39aNPs9d3kN2wXeR/8+wK5fCI7tl6UC43 +4aqg+pupp56PhkrqoYvMTC/8TM1TMkeeTwTUA6+NvEUeNe9mLFf4wM1XD5am +rY7lVH9kOJbDlhP/BlY+Fy30yglUd4rhXd9YB2z0n/L4QPWrnZdFVePq4JLJ +Tc6MMqrfbNiprLumDmZ9nAW1qHn5iym5ZUd7LZSnnOsLfE/1ixXCu/am1ILQ +yoyBpncEBr5ttLZUrgUNeVI6Dgl02FjkZD1cA9ZXXijxUjbLSLx4OrsGHiVP +ivsAgbKPHO55ateAxheZY64lBPKrJrCmJquBS0Q9aoLq75rk7I/y+lUDxwEP +j0DKXtxTYfI3v8KIhWP7qyICDSbgmdryr3BJX+aIGWXR7pB32+5/gWebJrZM +FRL4p2n/TyPpL5DbNe7zlPLLylUTR5I+w82i/byWlC8XtQufXf8ZXue61YtQ +3vsyY4P3iypY0djTWPuW2o9EL/2gjVWwxyuQK4ZyV8T245EFleB5W3O3HeXX +15Z6JzIrwWerdOwmyoFeNXdffvgEld23+oUpm52JTSsy+gTJyhyagwUEyh2x +Ka2srYCJvXInaykP7aX/brKogC71fIdCykW645Ndvz/CsFmZ/nPKoarFKyZs +P8LBFXatiZQt11wnufvKQdLv78YEykqipgYibuUwZJ+u9ZDyOPfKE3KTH6Bq +/6GG/yi/n/jjo3L5AwwPJghlUo7oTovQ4foAWf3W1e8on2z2eG4YUgZbOxJX +NFNWrdL5YCFcBkafgsonKM8V8bTaR5XC1n3mXTRqPZUvv7DPryoFqbwL9kzK +MYnRooGJ76FS4PIWJ8qnI62Vw5XeQ7LuMstHlLWCNux6lPEOjrf15X6nzO09 +Yp2h+Q7u1wsYi1L7XXvm7cW3+Qg/JT2FzCk/PnLtXsV2hDub9o7EUfbxJe98 +ul8CWnrnpjdT52sy9K/hVUoxfO54sO82ZSWbPLnovCJ4m+3r1En5u6FBlk3z +W5hmnutOpuIlo5h/Zk9fAbzL3q4pRMVXkEatvtpsPvyYMVO8SHmj1In62dV5 +0PmpuO0EFY/8Yetk2lRywXB9fEIT5TaOfvuK7W/gjE7e78NU/Eb0+ExFncwB +xYvPvp+k4r3FdS3j+J5XkB/TgGlUfoRZZJZvcHwBIV+CmnZR+aPL3GY5ces5 +xJ8P2NJDOU7Y4tKd6meglNhTsJnKv8MvQt/h4UQwJKX7+Kj8rMmQbTU/cBo8 +r10edqbyneeU0ZqQHSZMha0xxsbU/JKm+sRH8K0HM24lb7AqVR9+Nzu8SjIJ +YbZsD3NZoOqHz6t9RgMr45lVCn7eVVS9MYhjxopcyWB2/VGQkmgl8H529tKd +x18yw/TH96tS9et8p6iOrkwm86Se1lKjvwSWzQenuc5mMavFl9XeaafOU9Xp +ekPeG2bEbPFeZg+B6Xe1WU/Vi5kSb5JZzFHq/coeFy3VKmGGooZxOlVvrdlL +tpzbDMyAap4VUtR8FJrZt1LqMTJ9pRqecbIJ3C5VIPIn+T1T2eehy8I8VQ/7 +DnG75JQzT3L3aiXxk3gh7G7Xza9fmfvGF//aKZGYvL70qY5ZNdN5VqhPZwOJ +de8mbQZrKZ89MytBkig5+9I11bGGuVGgTOmbColuapIDAi61TGGOYGl36j5S +jOnoqPP8xkxYV3p+804S7zgENJwMbGQK2G7QqD5NYkgV55uOkkZmqJjEluaz +JAaqBN47O9vILJ+2ce50JNFnJNDMzbOJmS5/zYTHlZrfLgZVXj3dzDx9qiz+ +GHXfaty8UfJo70/mhV1n8p1DqPsrNSzll2grs6yDL1wgg0ShcWOdjP3tTJaV +kdkDNol/PMu1vIP6mTzH1wrwZdNxqGDfe5+KEabHjZuSL32VMeVG0km7mxNM +zSC7ADeqf1OcfC52IX6aaVNqUJQso4ot2XLFOmfnmZaf5W5sGFbFQw/+hPSH +c7CS4z8sChar4aPk28XG0VyswLQ6ofB96shzzHmQ9yIPCyIGC/7mqOPXk2nP +DgQtYY3/Nt3UtkYD3witsppy4mNZr/VWuhmkgUpx8j1LjflZdoWcS/k6NHDG +O2j++UFB1r+nZnu5DTWxf0ZaOFVbmFUXZTUITzUx8cyNeum1K1i0e25H7Hg3 +Yrje59tSiiIswwyH+CunNqKw63P9UglR1umlJQ9HX2/EEoP84txVYiw+rtst +g4JaOO9svemwsDjrJNeGe8HHtZBzaV0sfV6cFfzfhpP6qVq4aY/H+70ckqy4 +zoFD/GwtnPmV0SMxKskqe1f5QZbFQAOnivB9k5Ks3+HD02f1GBg2264dPCPJ +ynnHIZu6g4ENoYt/ihYkWdev/Ln9y4CBa1ZJ3xznorHWq75sWbeTgbstbhLf +xGgsNwurnAt7GRhVa+8YzqCxJNy9Ljw0Z6BquewA/0Ua68nZooG6swy8cGhr +lL4fjRV7fbWeL+V3HYd0fQNorPDvhw/7OzCQ39O9IyuYxvrkKCR96RwDzbnD +bvfepLFskoqeVDoz8FFkqpb8HRrrUHWqopkLA3vky35ZRtJY6lstjP5S1sxq +DQqPprGW5Iusa3Bl4CXWrHJFHI01zH2mb5M7AyveNjoHF9FY1sK8uf6+DBTd +OyZRjDRWSFq+Us4lBh5vFi4ZL6OxOt49YV7yY2DKWfK08ica65z2zf5nVxk4 +PLVT2O4Ltf7zZ+9KBzBQ+8ap3PhaGitireuJA5QDJf1OfPtOY1UGTb1qp/w5 +OWaJwA8aq3nHtZz+QAZKMl6/1G+hsfiD0wYNghl4sqz6sG8bjRVwrDVnbQgD +0w72L2R10VgewgNaUTcYONq25FlvH411J/Cg1iHKuh4KpvLDNJZK76vAX9Tz +1zm3T1mO0VjnX51uv3SLgTXhRx6HT1Hvnzulf/oOA1et8dpdMUtjOZi/aNQI +Y+D//x/Gerq6f/lHyv8HHOr1Jw== + "]]}, Annotation[#, "Charting`Private`Tag$4159201#3"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmXk0Vd//xpHMyXxQyRznXvN0hRyhDJGU0qikMitR8YkQKioSomSoyJRC +RcJ+l4qigYQo86xkni+//V3r95f1WsvZd9+9n/dznmddGWcf+xNsLCws1aws +LP/7e/xp7L+VFQL+9Oyr0nuvDSKLkooGSwQM6z9SfFmlDe+2ZR46N0dAyON0 +U9m32qDY/urjnzEC5uXfsfIhbRjm63n4s4sA3yjZqdpSbTjtruNYXEVArvhG +e/t8bQhWaIWTVwhI7D5SRN7Whrv35OI+8xPQtmj8V/eoNqR1XPXZxS0G5zZy +/ykY1QKxb7t3KouKghkqUkYhWlBjt9usVkEEWE5RUdKCWmChrOAnJysMuyLk +96fd1oTNBYeyvqoJAd+sAN1SUhMWok4KayoLgk9HrP7WOA2Ynn2UcGSTAPxV +IWKcuDTgnWycdqUXPzh1dOkcDlcHg9WXimkufPBoKF+a2asG8ZSenkkQD/js +sA+50qAKx1Mc+4bTuGBok5bpWLUKfH0sxc16lwOeyCRLcxfSQYrvmQZ6yQ6P +xWsSe4AG3r1Kv2IK2GETt2SmQAUNKsszIo9mscOn08xN1CsaHPa63caaiNl9 +Ni2rkAYpX85FmPmzg/OP8pFbD2ggccvo50ctdrC1dEzrD6eBiFhtSOOzVVCe +77T3qTUNXEZNaZnZq+CVV+AVHQsaPP9Q/sM/fRUIni7rrDSjwe7zBSQRuwou +qxHybUY0iGu51bjfBz+f+uvuZnUarL3nqNShsgrkb22puStKAx7p/q9DuWxg +1cf+bU0PCb9SuGo7H7BBxqriFOFOEp5I0D4032UDnuVE4w2/SbATPl3+PooN +IlVk5AybSUjkWMjOcGcD04Fh6ZxaEmT/rgnbT7LBt+oNIttekDDlph5kJ8sG +VVXR4deLSHjfb39huyQbNLvXGzQ/JcG18463Dg8baK+xTwnIJaHgu8xBwWFW +GPrkMj2RRoJBmY72xxxWqPYuzauMJoFPz1ENMlgh9kG7oM01EtqLA8mSZFZo +2b9LvzOShLAnSDrzGisEuPL/EQkjoSbdck2oGyugwF3vSi+QsOfK4X6GMiuU +jcuHjJ8kQZE9pEtNhhUispp+fHUhYTbkwS9FCVY4qZ/qW+xMwt3AgQYRbla4 +Y571KOoICZ1eZ9DYIAtwcyn3BuwlwXNPRFJ2Ngu8aSA+H99OQsZymRaZwQI+ +Jvt9XpmT0JQ99iUvmQWKuM4piZiRQDEPrn4axQJyQn+WWygSRLI0fV94ssAx +M50NGZtJsLRzXaN3ggXO+vntldYnIXjhfnbpYRZQitUfeKRHwqAtd8drWxb4 +2YDUK7VJqJjtsH6rzgI6BTF2mmokTGSIDpgqs4A8x23N3yokbNphHfZehgXs +H7k9u0En4Vb6y9IaIRZofzfyYEWZhNo4SevUoRUUSDc4oqRAgu5ARGhG6wpq +cAiQYJUnId1gvORR7Qqa2DpX2iFLgl9vtXzekxVUX2X+qUCahPW6/sslZ1YQ +y5i1ScJ6EiKjOrVfO6+gf9f1lVPXkTDWbu1RuRuv9z166xNJEt5dkW15p7OC +5s9c1GgXJ0H11w3+GsUVNCDsso4Fc5L6vFktsYKQj4mTEkGC18+vhfXzyygs +xUPquigJLSoGg43Dy+hHUkVBtQgJW8OypFralpHyBr4qbsxitKDo9opl5GJV ++SBDiISQS4NvugqWkfjL8cuzgiQMf98915u2jNZmvxXZg7nyInliJHQZHdNg +85URIEGpPuHeqO8yKuBc7xC3loQ4BdaG8ePLqPABKcqDeSnAk2t6zzJS2lhX +cZWfhJNfmrfMmS+j339fH+DH/E3W1H9RdxlFMVpn764hYfP5grzlTcvId0Im +QxXzWukI8dU8y8jSqczCg4+EQL8xW65FJgrIzHMSwdxbczCC9w8TcUatFL/j +JcF2Q/Vr/t9MdMjXyf4i5tIzmhOCX5jI8/Dt7QaYZT/cVxJFTJRteSWdFfN1 +SW4n8WdMZDe4y/0rDwkz3n4J6zKYSJOpXvQI89GqjlqpOCZayxsaEYp5u9Hc +id+hTNTUpj1zHLNqiQBLyhkm2rvBx3UnZlEN5bsHjjHR+muDf00xL+WaaEvs +YqLRuYQkE8w98ge+NFNMNN2fE2iB+VOqr2uiOhOdMLuT5Yi5UDyazUGaiWwd ++NV8MSfFPUwRFmAiL8bqTQmYL/GV6zasLKF6r+cZbzCfjGz8FvtvCUmX3y2a +xWzD8td9Z8cSGrsR7KWHv5924OrV/F+X0Pdjvv0hmNdNbUirq1xCu7K/aTRi +ZvPW1Y8uWELFVaYuGvg8hwZsv1umLqFQm6q4JMzfjp3y4rq5hEKyUhq48X2U +tF3irA5aQuN/fPQjMKc6JGVEeC0hX36t3zz4PiO+PjMwO7yEHq3RbryL2dPy +4w82myVkKLZBRwfrYXdVl88bwyV0o3pWrBXzZqMF7hD6EjrIoN+6hvXEpUHb +wuRdQtnW+gVcWI//ck1bXi8uotDKztAWzE3yh3wDRxYR4XR5Z7EwCY/Eb2TN +flpEudJ8xlFY79FxmdTLskXE6a6fEClGgi9fZatf7iJy6FmwuYnnw4TlH//E +tUV0Y1TEASSwfgM5c54FLCJ547S2YTxvAlMbTX3cFlERQdORwfPZPmB3/o/F +IloTnNJcKIX9+JibYB5jETnu2HCYD89zfltonpvSItr1pkP1rAzW59eijn7O +RfS6QVzvJPaDY5a1AZmzC6j6uNLTCewXFlU9wi4DC0hR8MVM9CY8fyUiFl0f +FlBcgMSlPpKEotRzz9oiFtAaByEPhiYJyeIxVnf9F1Aj2mOnhv0rJO5xr+OJ +BeR0RFZNWxfrPbJFvMlsAQ09LA12xX447LU59NuqBfRCJUk2xJSE+gH7dTGT +84g+/y1qBPtr6TGPFzY98yhcc439SQvsPw4pQ5/eziOT9e3vo2zwfBgt73of +Oo9egBtHgiO+f0EjerLvPJr5faDK9iD21/7/OLyOz6Nz5qsPE9jfW2Pmy0TM +59H838+jP46TcLt7Ss6Fax4t7nDdxX8a+02J1rLe/Byqvry20Ows9rdo3xbe +4Tl0JjT6QfQ5EnbojF0vrp1DHbJKWjuCSGC/OjLNFjOHZpytN6fh91fRIfJb +06U5dPkE7DgWg+dRwy039/QcojWQwrq3SShv7T9ibz+HrmomT4vfI8Ffpbs6 +Q3QOZWhs0/qcR0J/Q0sylTKL3u0t27a1noT4x4SfyI1ZlLkgaHqgCe/v4l7b +waBZxJZhZhjdhvWs0MgW6zSLxPyvU5v7Sdh34atHh+wsSvgaGfRriQQOG/5t +xcKzaIs2v2odG84TMjbSV9hn0f2TOo9/ctFAoPZTo2r/DApzsmq2w3mhZsMH +o+CcGWTnoWDwQY0G5ybYxe3vzqDogf41Zbo0kK82nVCInkFTiUzHBpw/Qk6/ +yfrsOYO4D/md99tBA0ZV+doN6jNIJHR3ZqoHDfrvLA6NSc8gZDmIfpylQbzn +5nfvBGfQtnhzfoOLNBgTLb3gOTmNZs8N+CbeoEGOa3HX65fTSM/qdQkU0aDR +OW2jddY0Cr0d+Nwb5y2Ww9GHWxOmkVNZMXKpocHeXcd/zvlNo/vN3rk6HTQI +td5JXHWZRpu+X/UlRmiQb27gQOyZRpwHNRV3ztKAbbNwvY7WNHqT5KxbL0AH +Fe0V/vey06is2KBLXooOjqojO/YITaPaew2bumh0KJCtqvEdn0L3Ptyqy7Wg +wwHes/D06RSq7G20Mr9Kh4jVTstb0qbQ0Q5129RkOjxbsTL8cnMKpfv8+5KW +RweOKdnSP15TyN+0ftuXejpojPLP/Hd4CtH5E5lEPx0ODS5o8dpMId0eDw2z +RToU/Wp4qkyfQkpn5aTjlVTgd1Pl39J1U8h5KIlngFIBrvpcmgXvFGoTcJv9 +74AKaNUmujUvTCLzyIVLfv4qcOR92OOTw5OIs1K5d/aWClxD3n3TPyeRj+D4 +Me1nKvD81QG5iI+T6M2xkvmj31SAp0Az7WH2JPr2TMA6g1AFnWyp35pJk+jx +r/FKV2NVOPqAZ93bK5PIQ28pIc5dFaJTZhx3nZ9EMawnSyqSVeFlYndi58lJ +xEvaRL/6rApdsV8affZOohy9gIV7nGrAF10mtGI+iaJ/Hw/vs1ADvYgsu5s6 +kyjrs3oruq0Gzpfibm5QmET23voXfUfU4EZAcF2+yCTSsc+7nU2qQ+lZdx5D +9knUGqwlfNZLHXq89lrUTk4g2RIll9U16sDvujXyQM8E2niE5eF+Bw3Qd1Z9 +N9QwgZ7w5bhm5mqCyyFJtoC3E+hyvuBVf1FNiNnLQXEVTaAKyejXUgoaUGY3 +EXQnYwKNbikMDshThz6r9teKtyZQUCQHj/d+dRAw/zT/ImQCHc++8vXcOtwn +jF/qmZ+eQBKbCp33f1fDOfKBf6PTBAp99eOgbIga3NK6WXx85wRq3ZHNVsBQ +g3KVwPGJLfj/mwe/iy2owsCmk2phqhMoppf1u8dbVRCStfcSlJpAAytFd3bG +qoLR+i156WsmUO/9EokqZ1VwFSOH1JjjiOPJQBCHvircFhDbhP6Mo68VNp8j +hFShkofthO2vcRQron+5blQFhthHH/yuHUd1Dzk3B31WAZGVn52er8eRdMuL +v9YFKuA+WXgo+u44SnL42m2P9ZKsO25wKmociZbyn844qAI1AerrTAPHUbHb +/BkjUxVQYHn6c2H/OFrqmwkdEFWBPaajpU2W46j0+cvhKhYVCItUSSrSH0fW +vdFG1/7QoZMvf6+7xDjyGzjCfe0DHfjtRnS2cY8j7vZ7FzOf08HoNikqOz+G +gm7GmXk/pMNdiZzvP1vG0LaA3PMtYXRwUMyys0waQxIu4TQBPG/hbn1qClfH +UGx7cGXkZjwf+fJrWS+MoX9BOc6nVOggoPXwc+m+MbS2mjVzlwgdao3TrZSI +McSIud5o1U+DhbAOZXbOMZT80NEqpo0Gu64bCcHff6iiot5kfT0N+JI3x6g9 ++YeCo6UmVmF/CS3SvsZP/4c8zjzve3OHBu2M4u0feP+hfVkD3iwxNDBEGhzB +I6Nof/esvF8kDWZqVS//zR1FQp5BfZP+NPDsUwqqUx5FDLPq65v20eCTx2OD +cO5RVPAf7VrXThpsmlBYMBj6i3h3PLv2Dve77mXZ83nZf9GI+4HfLAY0cBTf +cCZq01/kHnWgVFuGBi9T76lt5fyLptYJ24qvo4GwguTofP8fxNnDCuuxX3/R +IDzcsv4g4XPKE+HcNDC1FjxhofAHtb7gD6yYxHkvePV+DrkRdL9p4Z7RZxIk +y77dGWQfQXaZRvcUP5KweuZe06f+YcTj+zBG7j3uh16ae2Jyh5GlEdW/r4KE +qMNOO8U1h1HavPzn9AISziWTNxeEh5FmLnRtxO+rYz+m635NDyHJZk7bZ49J +YNhct8p4NYR4ZU7wsWeQMGCIW5LJEBpUSMz2iSeh4UJ4OJ/cELp8VXLyzC2c +z5/vrBplH0JxbFPhl2/ivknvp4prBpFYu/ed71dJMFsvbGhoN4g86hbPywST +oO7YHiilOYgi49dP3PkP58P4nFcsIoNo6T3Bsz4A9yNeSu998wBqlrbZt8MP +95tFT01bpwGkwKpwycID52c9xhl1kwGUn9E4q+hGwvmzq54JyQ0g4/TUQsFT +OJ+MJKs09/ejRL/SHbw4HzBbPygd9e5HXNTgmmicJwbF4k5ttetHxRk9/tX7 +SWi0P5wlr9mPTM4+WeLH+SP/06Tc0HQfcj3c0VO5h4QDZdIbfYP60LP05ZxU +WxK2zYwc3uPUh66slMSr4/yioVmSomvShyRVTHLqrHGezLWRXGTvQ0Gjfp2y +lrhf94nv/93fizhZvtX9wv2zQ6b3DqrpRWMT+86lbyPhZXKgaPj1XiRyrD7Z +DPfPBz/M95z07kXv73t0yeM8dUNQ8LaFXS8yee0fyr+VBJdrjwXWiPSi6GpF +D6YxCcIBjbyJ93pQsKvOke2GJMytzAv+C+xBYfdtNx4xwHkycqO4xYEeZNK6 +iuMSzmvZ8e7yC+I9iD3odGs7g4Sb62LJ3XPdaNsz7/gNmM8+eKGe39yNHE/d +5DuJ++yWZyxGRxK7UY5XaaMwzn/yeoqmJf7d6HFz7NQFHRK4K60tBRy60V4V +Jd8BnBdHzc7sdNPuRn/entJ1wtxYm+jwVrgbrTmSQXZqkfDKvvzguskutDYw +guGOOfVn1zG/hi40f0vKionzZ/hRTtfPhV3IV/SnZTJmtwG6t+KtLpTH9Jfd +gtnW297v0ukuVHdXGI1o4L4xfT6wZWcX2q24nvcBZomL90M01LrQXPieiaOY +l9mqIqP4u5Bc99ejSph7rw1e7/nbifLbxrbOqZPwUYD/tuHnTlS/83jEN8wF +d7SSE/I70XfXTaKFmOOl9qeNRneiVUMBHcmYAzODM7d7dKLnMX/qozA70R/l +pVvh9ZJsWi9jNiv+WDiv3ImSiKL+cMzk5n8l9tydiN3Yv+8GZqkw5Yv76jtQ +nJbq+1TMQzF+V7ljO5DIo1d+JZif30fxr207kPxJlZ5mzMF5PBleazqQ9tLv +lRXMlq8cnmysa0duSUfK1PD3EalOf1Uf1Y5Ytp5jO4W5vXHk/WXLdrRhF60m +E3NOt26DDlc7MskvXfzfefmNhbYPfPiN4pxibujj89yyXDecHPEbmSjv9b6J +uVHi+Kpltt9o9MTBTht8P2mbCtY+e/MLvQnp3V2K2V1nfp1zyC80E7zYqozv +d8UuRvsDsw2NNV0elsF6+HSklbpQ3oYSTrzbm4053lPBhvyvDXlPK6fqYP2Q +V1+fuDnXiuz/m7nigvU1ncDhS5W0oonUqLUcWH/wcFfwhH8rsv3w0LAAswMa +SNw7+RNVPIjcLYT1GzIjXCM12oL8ZRIElYxIsGZ3avyW34JY0guPMTGLCeV2 +hnm0oIsKFydbtuB5VqHm+webkcTRvvwHFAnNLp7k054m5Ov5TusSnrfK33Z6 +L7OaUIKN+euzuK9k7dUxq3BrQgV/tFy98Hz6WSwfrv33AynkKK09jfuLAD32 +1sBiI/q9+X5a4Q58H5PFcxtFviOf0SOhUnuxv3kmrd7U3IDOGjHdj+0jQbzv +opDq3QbEXnBjJhv7S3+TOd1QugE5yZn9MMd+FFbW7ORIr0eSzJXOF0dxn1g1 +e0Pm2hd0fyc54OqJ9TSNHqut/YJeWiZGTniRIDRw9Y1Rwme00dFmb4gP1usn +yen9GXVI7oqRZ7YvXv/WlkNxrz4hRl9puTL2U0fpSHLV8AdU2CzoMxKJ/TKQ +vPkxoRK9Vyy6bpKJ52l0rOlpVgWKFC/VMcD+r+hcsjGxpBx9+iSpwcgh4Yel +WaHzzzJ0QCKM1/AJCVoSRxoX15cg1dPONe4vsN585HQOWTxFDv/FWx79gPtb +vlTHHvuTqPRotO71YRJyYxjUI/UKYxupWVd2/H5kf5dWzqldaRyTtiAzgvuH +0xyHvoceMi74KpnQSNEg6tmwuEQaGIfrTSQ93UaDLRKvBDsz3xpfnOJ/GGFP +g6xhh1XexR+MDeK9dQvcaXDhRkz/tS9fjIvaTA2aUmhw0y206WhYs/FILjpS +xkmHNVM7DPJ39RiDXHfx+m6cb/w+aJ8LHzGmMzo/PO9WgdFXNm/P14wbK9lG +vjkzogpZVzKOulybNpbcNRw0N6gGCjN5whfuzRtvSfwWlXBJHdqLNlYYuDKN +nSNSLtxl1QCHO51XR2JZqAvHq5bNQzQgNfN6xY5ENsrgnCvPWi5NYD/o9Xd1 +ADvlHPov5XG4Jnw5mvPYPpyD+pb9oI2dWwterJE8POvJRQ07EqfqQ7VA8a7M +IOcOHur5XFn8hWktWDgXzszbzUdV86ZPvvDRhpGFdfzZDH7KbJmjpKJdG9JP +XWlcJydACeVattfs1oFYk7rrEgqClHp9g7RvlQ7w++RtrRIVomgX2Za8lXSh +0qy04qWkMNXzvPPl7du6wPRy0t3LL0Idzuy7lDKlC6ycDck0pgi1mFl3iMte +D3QtfN9asYhR3vZhX4+90IOFX/mDohNiVGFdVJAhLwPMPGtibWbEqOp8ssaZ +YMCNxR5GxIIYNbfI6fRMlAFNUSud5ctilPvNmoqz3AyQllx3bYqNoDRaHr1u +EWKAe46uBp2ToJ6Gm99+Ks2A5wz7n8d5CUq1YNzlpgQDlqu9Qu+tJahPOqJS +3gIM2L7vmvJ3YYLKq17NU7GOAbH9j+p5xAlqxx+u1TOyDGj1h4Ct6wmq6L6x +oexGBsiv/iUTKE1QFo+GfM7g9bzjZz8WyhPUhb5ea0qOAaVywr5DSgRlJeWl +a6LIANZiVUkZFYJatXjmvC9mq61Wbx01CCre8VagnTwD4utPuMfqENRJp55/ +f/Hz7UdDhWr0CerXf9WhT0gGbBpLKVsxIijvT6cfHlNjwOlLpc56Wwlq1rLj ++ifMZfyNPD7b8H6WPW4IKjCAPfVfUZYVQZ09sTpfQZ0Btiq8B9ttCSqSeaLi +sT4DksoVV4ntJqhsaduHitoM6LLemmezj6DuPDF6lY/3R7Yd3h1xkKD4ffm+ +ntJlgJ97wGK5E0EdmqZ9+WnGgMr5+IdTxwlqYJIz/wZej+vaM2u6Kz4fX1bX +w3i/9uJ1k8c9CWq72GikuBED7j0euHfvNEGx3doX4WvJgF7dVWbf/QjKc+dU +JivFANUPUn94AghqqnxZIwfv54LD5vitQQTVxBM58caUAW96HQwDQwlq2D8A +3lozgMfvTG9hBEHVys+5O2xnwJ5VN64PXSOoE/WWsefwev9Ri/Sau/i84lwK +/rNhwLuvYj9WUgmK2bz5kus2BvA7aQbpPSSoy2cMd+bvZIDjqI2Cz2OCGoUN +Dwz3MeBBkNvnrDyCal/wOm95kAF/+CL8258SVMKlxatJeP86KekbxJ4T1PlO +r4t5dgwIppW/tyklqPdFDcY1RxhQU9bsFVFOUPkzJ/ZYujFAyGpStAIIapu/ +1NzN3Qw49JO/cuodQTnJsRxKxM9nuZIn6R8JSu+laKrGCQb8mzXnd/lMUC9v +6xgKnGYA48qxl/fqCapySlFXAq8fJhZ05PsPgjJhdvPQ8f7rMpM4eFsJSrko +vK8Of56YzvOCre0EFaWro7XdjwFH333dG9hNUK5X91kluDIgZ/fIcmE/QRU+ +3eHTdoABE90cj4eGsX6LmF6rPBlg6Cu7U+YfQfnk8H387xwDIlm3zDpOEhSL +1br1Kr4M+Ba7Py12lqD8rxxKD3FngKS0//aaRXy/qZWlwR4M+P/fF6k1sEVS +AD//f6I0RVc= + "]]}, Annotation[#, "Charting`Private`Tag$4159201#4"]& ]}}, {}}, { + DisplayFunction -> Identity, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None}, DisplayFunction -> Identity, DisplayFunction -> Identity, + Ticks -> {Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + MachinePrecision, RotateLabel -> 0]}, + AxesOrigin -> {0, -24.4628263145363}, FrameTicks -> {{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + MachinePrecision, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, + "ClippingRange" -> {{{-5.999999755102041, + 5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}, \ +{{-5.999999755102041, + 5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}}}, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ +StyleBox[\\\" \ +\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\ +FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \ +\\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], + TraditionalForm], + FormBox[ + TagBox[ + "\"| \\!\\(\\*SubscriptBox[\\(\[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\ +\\*SuperscriptBox[\\\"'\\\", StyleBox[RowBox[{\\\"[\\\", \\\"n\\\", \ +\\\"]\\\"}],FontSlant->\\\"Italic\\\"]]\\) - \\!\\(\\*SubscriptBox[\\(\ +\[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\\*SuperscriptBox[\\('\\), \ +\\([6]\\)]\\) |\"", HoldForm], TraditionalForm]}, + AxesOrigin -> {0, -24.462826314536354`}, + CoordinatesToolOptions -> {"DisplayFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& )}, DisplayFunction :> Identity, + Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> { + GrayLevel[0], FontSize -> 12}, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None}, PlotRange -> {{-6, + 6}, {-24.462826314536354`, -8.136370804376675}}, PlotRangeClipping -> + True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{"2", "3", "4", "5"}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\"n\"", { + GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, + Background -> Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.038000000000000006`] -> + Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.038000000000000006`] -> + Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.038000000000000006`] -> + Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.038000000000000006`] -> + Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"], ",", + RowBox[{"FontSize", "\[Rule]", "12"}]}], "}"}]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9}, + 3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, { + 3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9, + 3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, { + 3.87637134045012*^9, 3.8763713522979193`*^9}, 3.8763718090898647`*^9, + 3.887183948573832*^9, 3.893237432392331*^9}, + CellLabel->"Out[16]=",ExpressionUUID->"e027c86a-5f73-49af-9682-15a84fa4ac67"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Plotting as functions of scaling invariants", "Section", + CellChangeTimes->{{3.887175601990197*^9, 3.887175605174004*^9}, { + 3.887175638310907*^9, 3.887175648462943*^9}, {3.893240667249942*^9, + 3.893240669191936*^9}},ExpressionUUID->"af69f70f-b3b9-4794-8398-\ +01134650a149"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Eta]2", "=", + RowBox[{"\[Eta]", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Xi]2", "=", + RowBox[{"\[Xi]", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DScriptF0D\[Eta]2", "=", + RowBox[{"DScriptF0D\[Eta]", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "2", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DufDuh2", "=", + RowBox[{"DufDuh", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "2", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Eta]6", "=", + RowBox[{"\[Eta]", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Xi]6", "=", + RowBox[{"\[Xi]", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DScriptF0D\[Eta]6", "=", + RowBox[{"DScriptF0D\[Eta]", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DufDuh6", "=", + RowBox[{"DufDuh", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}]}], "Input", + CellChangeTimes->{{3.887184974652775*^9, 3.8871849902010813`*^9}, { + 3.8871853260317287`*^9, 3.887185348663872*^9}, {3.887185471338563*^9, + 3.887185487738577*^9}, {3.8932376555040216`*^9, 3.893237683200816*^9}}, + CellLabel->"In[37]:=",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]2", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{"DScriptF0D\[Eta]2", "[", + RowBox[{"0", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]6", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{"DScriptF0D\[Eta]6", "[", + RowBox[{"0", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", + + RowBox[{"{", + RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"AspectRatio", "->", "1"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{"\[Eta]", ",", + RowBox[{ + SubscriptBox["\[ScriptCapitalF]", "0"], "[", "\[Eta]", "]"}]}], + "}"}]}], ",", + RowBox[{"LabelStyle", "->", "Black"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "6"}], "}"}], ",", + RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{{3.876369742606814*^9, 3.876369749518669*^9}, { + 3.88717511572079*^9, 3.887175133863171*^9}, {3.88718492600924*^9, + 3.887184941792713*^9}, {3.8871849972905684`*^9, 3.88718515068447*^9}, { + 3.8871852002698402`*^9, 3.887185200333082*^9}, {3.8871852346862307`*^9, + 3.887185259919454*^9}, {3.8871853538970222`*^9, 3.887185366488626*^9}}, + CellLabel->"In[23]:=",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], + LineBox[CompressedData[" +1:eJwVlnc81d8fx+2tjOwtZctexTkhKyJCviolQiKjkhClhZKVPRpSMoqshs4n +UYokREb2uNbljs+1+d3fX+fxPH+9x+v1fr/lvC46+TAxMDAIMjIw/P/l7Uoi +iyjcxPoSxerV/7AcdOq6byV+6iT2myvPpz2kGg7PtKlW2B7D7E77cfQwPoUW +3xYvxBx3xNLUzI+YG2ZAif7r1AwuO0zo/ECbYMxD6CbEuUNh0hobPNbAdVrk +HrT/V1eTnWGJOZxLCuFwi4OvyWbHddstsEFg6F/HGwtJKVZRgqfNsXaLFm9B +x0jYBwX0BLXNsINXxhbzy8KhaLiqQoLOQUw2JbSitOsSnDoo7bGpD7C3Bxip +lWXBsMMzTZttxgT72VtREmASBFv/e3raEjuAsbKYRLbkB8A730f57b8aY702 +0VyyIb7QM7I6VW/eCBsVDUmkfvaBya2xrSQFI+y1k0S/p5U3PNMhr6PRbIDp +Rt2VfdR+Bsp6ttubpehhpfdYFCUDTsCqd3O8LuJ62JP+EonnzB5Q9bNsUuQr +XSxiLMWx6r07PPUxICPgnw42K1sWHHrFDbrXtU82xWhjQvurzFMGnaGx3n3t +Em1t7KdBy2qupDNs6iHX8M5oYSYdoetK/k6wXkMy9binFubWyDThtvsoXAiK +IJhc0MR0E//e6WU7Ai8GhoivtaljMnyVzzgHrKBk+5ZfdIQ6ZuSQIFxuYgXf +CbMOpCqpY67zf02cX1jCguA8ZsoDNayhK859/sEh+M3+bnlYqCp2KYfTh7nA +HFZ+ZSxlfqiMmW7ckYlLhFAw8NSTrGPKWNVqLO2qFoQl/DYexRLKmJHHkxNX +agAs12pQXyxXwhhtlcKXLpjCtEczuu9GFTHhZ2+N/KUOwNKoh5z+UXsxqZ4k +FRNHQzh52nl3gJUCFumcouc1pw3D2u9JaigrYEZ4f0x/sTY8C4+XBXMrYO8H +Tv1ZO6sNC4OCps793o155eyaWR3TgrOUdAbktRtrLHnIH0vWhNPW0slvsuSx +i12+hOJcDRjw13841EwOc1Bzvj9+WRnWVjI9faQphx14Lx7bpKsMl7Mel85L +y2ELb1rff6IqQemGzBKdDVls5U277ES4EtQfDbXjfieLjakN9x5MUIRtm3/+ +7d4vi9WO/dfr3r8HrrtdesdXL41pfNHNl+HYDb9aiNUKEySwKzH8R8f6pOAv +sM0+1i2B/XjSZJH9XAp2Njv5dn6WwMZ18i5PhUjBHKdnl2TzJLDf1lVLRjxS +8HREvZWPkwTWdIrw/paVJNzubJzXaRbHuBRfKrb2iEOZfu0Zu89iGLpf265z +WBSePep/fo5JFFM/d9+VdmAXPH/qAOd+XAQrvi7rUye9C4oGGRk9nhbBCNO+ +C4hhF0xMV/J/1SaCyQ07PH3WLAhHlHZu1mWKYKBcni3PSRCaU3GBBC0RLF9r +IC35qgB08ZBJ/xQqjJlIScUZLfLBrg6d2iF5IYyNfYilrJUHapM8GNWVBbEX +54SzW0iskPCo1DHjOj9msU8y6ugwA1w1ddqVpc6HcUjx2jjkrAEJ4ZtMKvY7 +MHuxk7dexOMgOxaPnfbmwbQ9+j64GJDAFNt6RHMvF1a27VZ+eHYO+EcGNTlE +c2ITtm5Z0hlTwFGoqeaRKgfmenviHl45CsKPPdIO4GXH8g3eiwcmDoDPjXrt +U0usmI77jyNtMt1AJ3THOJnIgs0WWsoP+7WC5ik5qsYOFqx7VCgVL8VAhp96 +8jclZuzvBrPU0/CXoCIwLXzzJBMmG7fxemZvJlK0JZen3GfErEucOg/9qkN3 +54wuvfrGgHVMzNryyDShhomrOQHCDFht26tzOUdbUXiAWQVH/Raqjvyjaen+ +G1UQu5XqvTeRWmwun9/jbrQulFV9W3oD2VS1Pqmq6UWFyyq5OxrX0CeVN3CN +2I++RO/45Ba7ioaHIucO9P1DMqcmiqr3rKB9w9FJ6VdGUMLK5nL9bxoq6PS9 +JkkaRXURc/wuaThyiXv7t8ZuHCnbSTON6FNRTn2jY/7nCRRdMJA6ME9GQXVF +DekSU0i65vCm+DMSuilr0WIaNI06G/eH8uouoTQORZv+IQLqRzFHlosW0M/A +ZRZfo1lUM+iZ8/ruLLLY36/3vWYObbL9rReJnEZ21kY1qjILKM+9h/+K8wTi +X0/34o4novFMsYCu0hHEmC0sIrRjCfkWc0RyLfch80IhzLhjCVUUGw6ma/xG +dyw5t31fkdDX4qHKvysN6D+VaZ60eDI66ZEzpDlaDFwi6qu1vCiI6HzwbqL3 +S8BFIPgQfSjIaEiNDyeUgJCC7oJSfwr6e/92zTq1DHgfLC5SDKEgrlzuAJYH +lWB3cSBhTywFnc467zDUVgfm/W5fNy6goLubiirOno0gq46D+KGfgkoC5oaz +VTqAyMuIc1+OUZHZ0WnukjMdYNBc76fLcSr6PtjpMZXVAewUvc0IHlR0tLyh +YZ79N/CWy7DjPUtFFy3mRbQJv8EOJ7f7biFUdEqM5yWxsguQtbknZx5Qkfq3 +2vGRC73AS8yqcO4rFZ14KzR+4VUvuBpcvnb1BxXBVNNSHUIvePg0b5K1nYpC +urSvhXn/BYTxo8ek/1ARyede4XfPPrCT+wbNepyKMmv2Hz7oNQCKDiviMdtU +xD9USDbJGQapHaeIZgY4KvSEkT+GhoGzSNTCM2McuUc33+rgHwHJjgbZzKY4 +MoosDBBxGwHzz51+fbLA0cXP9ziCx0cAZ5p21m4nHDUf/1mUyzwGwsb9qXkX +cOTw1P+nh9IYsLQ8XzV+EUeMQyufLO3HACn74DmlMBwR497kFGSOgfv4/NXS +CBxltml2n9EYB2HhrB8z7tDZhNc4y3sCqFYbmlALceRduxxjeH8CjGycdBB8 +hiP9vaCWq3oCcN/85ravGEcHH3uuWLJMggLe8q2TZTi6IOp6Qv3FJIjySwpL +q8fR92PUeLXlKRDnfYBwuANHKYE1V9Xkp0F3LClQswtHR+wfuvraTwPKvvEY +vh4c7RWMCEoumgbNRuT+xgG6T8p07jW6EEC42ZjtwhSOKvfzGJo3zQDWO1i5 +yQaOqmx3ThxangEvSuJ4WLZxNDLLnZSrMgtIDMZNjYw0xEq7I2yROgv0GIND +ldhpdJ23lr30mQPkCT1CEj8N8bvbDJzJnQMipAQ9gV00dFlAhTn89xxIKIqQ +vi9MQ2UMgXvem84D2RPzX70kaKjmvarLN6kF4FvfpJyuQENntTJb4lwXAG90 +mXDzXhpyY9woKn64AJJbxcJnlWjI4k63wx5mIpAYSjjOr05D42lKPLdMiEBb +dENfYB8N7b2WxetwlQhq/7wwZ9OiIfkVOz7NRSKw43G991WXhq5mypraqC6C +x2ePcKXq09CIfj7XH99FYNECjzgY0tCxvT/1D48tAqdoodT8/TTkYOB+S5Jv +CRwKqmxWN6Ghonz+fY77lkA0+135ClMa0ojyDw4JWgLXHwjkRx+kod8vZ6ZO +Jy2Bluecf1rN6Pm4GQ0nVyyBOJXY8xwWNLRYFOfK9GsJ1Lx9O6p9iIZmqXEO +tYtLAPaLfrC1pKHNtxWd5XwkwG5vGOZgRUNXEj2IM1okoBOYcBNa09CRXaTa +AGcSiPA8elLKhob0xQWsdC+TQGpMSNgknRdj2pBFJgnkyVprZtnSkELPd+uC +dyTw8Xbsmu5hevz1N/jMBklAdWNK5wOddVmC7LS2ScBqy8hIxY6GNNehUaA8 +GaRbrp65Qee6QCmJ5UNkMF2nzYDROWWjw6TDnwwObNmdnqQz10M+fPUBGTz9 +8atlic68QnV5l6vI4Fe88rVROme+Zsu26CUDpUuhFbV0Fjwx7+q3QQbRXWrZ +F+ksBC3txuQoYK87ky83nf2q1VbeWlFAocd1k3h6fGKapuNDgRQQ29lkTKDn +o6dPLPROp4Dc0UOXFekcfr73h+UHCnj6NXD9ED3/Mgof990xCkikOHaZ0esV +73xXQJGLCgrkjq1J0uu5b+R4gZI2FQju7vDuote/kks//MF/VCBlULnpTe8P +S1FziFscFWAF/MUd9P6RjvJevFdGBZXqv3SF6P395Wulr8iAg8vzbKoKdD08 +tGOjfFLEAcOghLcgXS9cAdGwzgEHE285jAfpevJ6F5bU8RgHl6oIOjQdGjq3 +J1wN/44Dzm27NQu6PoWiWDJvUHAwNpv6xE+DhlT7fR71WdGAYRfxlDJd78y+ +9moloTSQamnR8IXuD0/FrgxCPg2QQiiJ6nJ0PVR4xyOcBuZNdKP8xWjIbHkN +4y1dBoTsibsudH/COfbg3L5lIP7q8mNTJhr6cE13uJRjBZAWzApn6H7XEpT/ +7um3ApyYe8yiSTja53NtkCN7BQRlDFScmcNRvHvVGPixAspINQ+2J3CUOPRk +9qzGKqhfSQOneul8RNHI7cwqaFhr3C1On0eaxjzCk+mrwOIkyrndQp9n4vUa +Q5urwP2ftulp+vyaSOxkLOtdA2+03Z530Pf2o/iL+/t2rgP/T0elauNxdDZr +/BKyXgdVF7r+acXgSKpAKK/l4zpQDkrqGfTDEW3Q56xTxQZoSXrImqiPo7E9 +O51b5zdAj7iXcoUSjjRYyhcV1DZB9w3bCXNxHM01zCeklG8CcluEeOU6FV0/ +5GnL8HELqOxJWSPU0vfbI70j6kzboELx8eDKMyr69EB18KLNNnj+u7bAKpmK +dGyt97oMbINP4ozON85R0TtR8eVvdxhgp69gkT8HFd0y4PUtrWCAHTmDSuFE +CnKJb/ts0ssAay1vm13poiAddrLybRVGmCVf+Fkkh4IcHG6XWfYzwuux5zS8 +RSko3cta7g0vEzQTkZ4xXCKj3HYzY10zJlj/bF+EwlcyMhUabaivYIJKRhH+ +vwPISE+p0XtHJjMsTbKSYssloWuXiB1F3cyw6g53icxpErKhXDP+LMgC26q1 +pvTkSWipqNOuM4MF8pXadqfmLaEAy+ATt6pYYe2T7NLz34iItdj2ZtgWK4wS +m3Ab3kVEgbeDSzLt2OB/Xq0ThscXUNg1QXvaIhv8hJfq5DbMob8lipKhh9hh +S/R+A9q/WWQc+4S1OJ8dfhWRM+hZmkHJk6qLPa4c8ErgjYXWmWmk2NZXoVbP +AWWJF3dc+DmFXP3nv8xLcsIM0Y/uBQWTyPDSYnUCiRPyqYpl6zCPI82hlLH4 +dm5omGqQ8c+gD3FgDjK+TjzwquPdOU/fP+jMTNwPgUEeyFH6Y1vyMP2+pOjo +VjHtgB31wyuvJTDUTQllr3u8A2JDuTxJLcXIz8YTvbHcCWM7o+peRRYDwWiG +6/WufDBZMlT6xIVfYEByAaPV8cHYexCvEekFKc6EjRlpfiirMnOoXncYuKyM +1p5jEIAKjpOEafYZcCnla9D5KAEY62SPrsQTQepTsrk8oyAUz0+/l+VGBiX/ +0guMlXdBC9WtHs6KVdDh6CIT9GsXrH5sJFclsgVeB/acFrslBN/46N6cSWaE +L0hzLtdthKEhW/wiTzgLPLEZFe0jLwJDI5ZX1rrYYVhV8Iq1gChUwc21lJu4 +oc7WmcYUKTFY/Pz4ixZ9Pmh74ErIRIEElK3tvPLBVxh2jbfcuLNXCn7yExge +zxWH2dGs0b1EafjHdOvR8TkZ+Cy5Jxi/LQs7+CW2rp3bDXfKfW8Y/SkH7zz/ +eYbIoAS/9SS49ND/GTKCB7QuaMBIc868xqt74JaTWaw3SQfWt+xNaLdXgk07 +SY8lru+HVttf3OEtNUhw4VcKu28B/wctisaw + "]]}, Annotation[#, "Charting`Private`Tag$4160507#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], + LineBox[CompressedData[" +1:eJwV13c4lt8bAHB7Zovs1yZ7l9Q59kwh3xQlI1pWKSqySyQaopBKRpGokJHz +kJCkrOw9sl/eZWT8nt9fz/W5nnE99zn3fe5zpD0DHM8y0NHRnaOno/v/tbSh +6U3Z+VuY+Ffhta5rmzDknbsSNcsFY9l8dKf0bSHMv+R++QyDA1boWuEvbZMO ++3o03+n62mLdoQXN2jNJsCDRJ9gtyhK7nJc7qaEcB/f7JxXrDJthZYunbBqU +I2F3vGOnBtEEaxEZ1POcvw6HRwk9WYHG2Mizt/3E8KsQZLw9VH4QYjQLv28d +ppdh8VTfAamoQ1jOxwq7168CoPCKhfTZP0bY+9NcLz+0XYSWccaT9nsNsfO5 +R/SWDH2gW9OGjRv/fkyTWFj3S84bcswodGSI7MPMSOKYi6cnfH559WFokD52 +Sr+eV1XVHVoKlmznVelho+oS4PGcG6wTLgnKEtDDtP4Jk3OIJ2ECi9/DLws6 +mNkxkdamF8ehs0+ZD6OgNrakGHw1qN0R3o9OMXQo0cJy+p88dRtzgKVA4WOS +oxamjcRfVzE7QBfPxdbcPE3shcC/djLTERhRVqXCxaiBnSj96hdkYAONu1Vm +vkapYxdPhwk/M7CGN+El3hMs6liK+au1cCsryKqDQq5IqWF7rW7vRD2xgPRM +Gt867qhgDQbKDyPqTeFd4gV10w0l7FuKfmnpUQAZcxl/mHxSwiY6eQbfRRyC +tgdS2S4EKmFaXUIExs8H4b/kQPmvS4pYg1yh+zkTI0gXS/3GQa+IBRbPsrqU +7IddEiT3VxflsWD7I9Wvs/RgQdqTo68N5bGHqYUvXBX0YM60Gss4hzwWdPNi +0dWPuvCnT+D7oWI5jMfykeRinw4k5wUmPGGUw75/eyR+3lEbUn5znx3qkcGu +eH2UycrSgLmU+MnOMhnsOENIBDe/BhQTjx4PeSyD7VNxt3mcoA5ZKFPbpU4y +mEJmP7f2HTVIb340z71PGvt0yd8h+q0KLLuVN/J7i4AV6nKrvw1XgtFKTOGB +kwRsK42+01BWCWpLhjPe/EHAyFNxGlstitBg/rTLt2cEjHOs2rWFoAgHh45X +Tx4kYAb36QMzJuShxZOAs4lKUtivSKv7TJWysCbMpqB6Vhy7NVZVKeFMgE5X +U659/iGOLR1kGQR7CfCDlHn/rmJxjC89pVSMjgAzHnS0l10Rx3KVum2HXKXg +0ciiqUEGcWzhmaisiKwkzGJStzXREMOO+QmKNs+JwbHJRFPCZxHMdG0n/Y/u +Hnir+yWr6UlhbJpnaU9PGz8UjI3yF7IRxiSrqiyuF/FDeC2tl81QGGv2jlG7 +lcAPB0oilK1FhbHMEs62N5b8UGe1xURtUAi7zMj37VQjH7wYzJyne1YIY4t0 +5Njq5IU9tKw4gYTdWHBnwqj6EW54MoH5kBGfILZY3dbKt84GtwRX/7xlFsSw +vpoPh9rZYLBsZojKhgB2I59X6/sbNti425XPc0IAc9PS21pxZYMnKn6lZpcL +YEGvC9SDGlihqSQlUO+MAHazhHpROZcFsrLONpfX8mP8Ke+d7zxngjr0Xsdn +XvJh6dH5ChVm9JB0IdxiZpoHM//ht3sjaB0c0s9n1d7Fha15l75hKSCBQp+E +yaJGDmxbW53j3et5ILny7o3iFhvWfP103cfSSTD03PZq7lFWzND3sO+myxBI +Ya0Ie77MjDXPlUS5i3cBf0hqOVLFhJm4yh8c6WkG/S4R553iGbGjjM/zYic/ +gY3MF+ztUQxYpMC89mpsHDr8p1Tc+To9NhqbFz4bVolKPfOi2W/TYUe5C/cc +/9OIoh7tVe06tYMcfzj5MF//hfYnRH8fyt5CkWTnz+aCXeiMbxRQ49lExMju +h0UjPehsSfoV0wsbyMWZR76rbgDV9TlVafWsoReCTUE0jxEkUZzzuvTsKqoY +fCaWdnQMJe+uZM/voyL6tnP664wTyJ3jImH7PAWxBCbWMCRPoilTjc2H9GRE +eBjY1sI+jUS83hgGh64gxgFf4eNZf9Ef5sKTT5iX0Zq9g3QV7yySTaCz7etb +QB23zvQZZM+hwJqkh/2vZ5FJReNinewCSv3NXvXmwTQqzr7o2XhvEZWb8Hxu +kpxAj2lmlDQBIprZcyppX8IIeqVmmyEBl5F0m28fKupFmrlhDD9Jy+hpFNoX +3PkbVfE9TvP/tIJs/cTDpkXr0QeBgV1Hz5GQR6abfYkBQKxup+Vslcno6PDe +wij5ejDsVl5Y2UdGQS8M9zs3dQBJv++GVpEUhBkv2p4ld4Dmc7qbLDEUxMOy +anZHqhNYV78jN8RRUBk/UZU+tBOcOJ8XfiiRgrzuiL5rU+4CbycGWhSfUJB1 +QOz1kZRuoJ4hmd9eSEHCyZZKzn69IKs6KTT4DwXtn2JnbsjoBbfPaB8Q6qOg +vTdPsVu29IKLj5nJ5QMUxD8u0nNXsQ+kspL2UUcpyHGXfinTRB8QD/s74D1P +QcGhC2xjpwaAow12ipuOitaWorSbvIbB+qSqTqgSFWWl+rVlPBgGYMfJ6/te +KuIUU7WMRcNgc7HCQ0SNinaVB4g+EBsBy9ueqEyLinpTE9wyu0bAHxffzyOG +VJRqd1rGPHcUZFi7edDsqIhlNfmYkuw4YL21cEUskIrcSt9neR0YB7y7r5kb +X6aiu95GYm+dxsHTosP3zgZTEe8bllGX2HFwnsvQ700oFRU8TWs5ND0Ovuwe +kJaMoqL69yFK+kUT4E/RTf/PD6gIDK1FKxhPAZUs1cG0Uvx/V6KjWU5NAea8 +ypnij1TUnx8URA2dAjxWcs+/llGRmWb3GbrSKaB6/9HSVCUV3SRPe7ZKT4OI +Va0Urnoq0rXu1Ldj+QtUsZCdiXYqytjqtpKV/QtKvKfYOzupqFH2nxcHxF12 +zgt14/E+padjv/EXWOCjm4znvUH136HvS39BfjX1Jc8YFZ2WH+a6ODADhqws +uWOJVCSf8Dzfdn0GSF07xW++QkUzkotRB4VnAXNZ5BYDGY//bLSNs9MsyO2v +vnSVRkUOknpXjrfOAhrLyJTOFhVVvpDr+lw3B8yRBuLloKFw4Y/eFaNzYFE3 +pS6Tk4aME5WSm3fmgDHi1ZbnoqGSPwZcsofmAWNippEKLw35C2ToV1fPg1zm +e1ycQjS0M/6IPalqAez2u8rCL01D/93j7VXuXwC5idLdJ2VoqObXRZb+9QXg +80ipMFuWhp7TaU0E718EYesbVhIKNESZP22dVrkIyK1ZVn/30tCh93vq2/sW +gRZjwREeVRriohLdCRuLQKpXTEBHjYYY+3oCNwyXAMGVscBPA/+ed0HV6y9L +oNqndOWdDg0lvtVRjxleAlPtKQ0fdGno5SWbtGs7S0DzQhvDRz0aOuPaXpZp +TAQGpKUnuQY01JG0SZhtJAK9lNQlhwM09FDI3ujyDBGU2hIXNY1oqF7u92M2 +5mXQJrlAx3mQht4PyVxrVlgGQKhDp+QQDd0/fi/r54VloJ/XGfvFmIau2Vmw +zt9cBl0iqX1XTGhokqOsTSBpGQjEz4zLmdLQ0yH+j3feL4Pced+xa2Y0FJt3 +fakDWwY1Vk5fhM1piEEtrkG5Yxl8y7MX+4g7bbb81gZlGYwfj1Hus6Ch4i6j +6GCWFeBT64e8LGmoO1TRfUN4BYiGfn81g9v6p86U8oEVsMLzSWzMioacbPOK +O+1WgIhHb+oxaxryLZd6ePf0CsjlSFeox11yXmpWJHoFXFW45ZRoQ0NN0ivh +lEcr4OVJ3s5p3PUWHgEDuSuAFiaoaWRLQ8fcfdraKlbAdNmIayJu0Ctc1PZ9 +BXi+zLbswj1zvFhkYAB/v/3EpJAdDbXyxypRFlfAuaPzMk64dwi750ToSIAs +wUaJx13etRNgx08CfsWGVp9xb/IxtybKkUD22QmeMdze+Wy8vfokIM277wDj +YTz+fD57LWsS2D5pWiWJe77BJj3NlQS8rSfDdHAfL2Kg5/QnAaWCn5eNced4 +FT1LjCQBvoi4RCvcxvkjISKPSMA+0rv8//5rfaLwUy4J9F9NHf//87t5l9nE +K0ggym9IQQ/318AA6eRmEvDxVN0ng3tJw4eJu58E3IrOs7HjnrWIrEufJ4EW +GZe7s/j/MqveOaexRQJJ71KLvuJWFfNk7+AmA7muZ15puHXchT5FEsiA07Yq +2xu3RmZT6AFtMmiOIDiq4LYV/ezLYEYGzrKdF+fx8dzDb/2g25kMPn0oGXqN +23l9g7nMlwyWtwLSj+Nu+u3358V1MnB8l32PETf9FQ+Bp4lkYPAt920BPn8M +k2U/s7LIIF4RjVvgdljN2W6tI4P+XHsPf3z+5e1epq12kgG7w6U7q3i+yN1s +IqlPk8Eb1/nb13FbszfpNXBQgEhaxC9fPL9m/uM3lpGggNbXw7ROPB+lOS46 +J2lQwK8PWp/24e7ILBhLOEYBkfGOhfN4fh9M3nNLwpcClhc26vbjdmgouvTl +OgU0e9gqReL1wD7wN0E+mwIMPRIzqHj99BS5DqfPUQDjAUvhKLy+KP45Eulb +FPDzhVF+Ml5/J5c0rXJ5qSAmkWclFa/POPnk4ll9KmBtuO911xBfn0wdqOKx +VOBn+TWFXZ+Gtva/q09KowI1k6kvnfh6ALjdJLkKqSB0+it9Kr5e/NA90W3Q +QQUhdRMhm5o0NOFBlwmkaaBUK7/CTYWGVqXXdBX1aOCHONAfUqYhU+puDklr +GsiuLBY5pkRDhU8Evu4PooEhwvlSOXk8P7/UkFTqaWBHYCrOXpKGXNjC6Xh9 +V4FQ3PfZYm4aYsuNlqsKXwXVE1Qf1114flPaV0MerwJn6kzFBjsNlTUza2rU +rwLmWmYLPma8/kN4HiZLrgG/n1y8zzao6EtiRl+/3ho4yOKr0reK75NWGUYN +D6+BsCj3ZXYqFRENjlbsD1sDn5LY+gDeLxLPeMXqD6yB4Ij6srVxKtqkbH9S +IeP3Y+g/YCNUVPTA/Ls+5zoYGpTlvj5IRcPN9PrJB9bBSfN1/Sq8P/nFhp89 +nLUO+KyFPK43UVHkS8NkmbMboOo8e1tdPhWNSRhVx9/aAETKXdYbOVQUsOh1 +ijV9A+ib/c6Sysb750pyhf2PDRBjXcqm/YSKPnLyfePQ+QfAq4RGvxgq+rXr +77QH6ybgER3+wXWSikworqFnZTZBv9L2XOQxKkoK34yLPbgJmmOrC4fsqUhk +5u7s7uBNIDFkwOxkSkUbnudrEsc3wWvzzHh5FTx+T+ogpWELCBaV0e2lURDt +hRFhZGQLfGLw67pPpKDcLaXgyY0tkIZ6xAdnKMhCdFjUWGsblNw6sK6O73/M +a0vFrbK3Qan3T6XiWgryn3mfVhO5A7Tl7Y634/uzCNl0gaCsHdAozbI/I5SC +ZDXDhcyqdkDRdEWbVSAFEQfDXltQdoDu3+Law+4UFNYgcHxclw6KTfuwUg9Q +UFVn6zP/d3QwSu95qi+RjKqnTHa11tDBx249DcZTZPTt9/V2w1Y6WG47V7ze +T0YFrIMzdvN0kDs7n56+kYz4VnzdLffSQ5mNeB+PZ2S0tb18u6KQHt4xNUmg +NyKjlgudDe+/MMAgn4+VIu4kpLwqYqz2iwGekLY9xXiUhIIb0DtslAE6CmLe +1ZCEvB29ZfcyMcL7n96sP5ImIUWHWh0uO0b42st9d9foCuJV7fptOsoIwx7Y +kReOraCbS8UP9pMZIQtnzyFfkxVU9Lu7zoqFCWoPuJBzNFbQ1RPDFz6pMsFa +j9sED/YV1CTjv9B0gwnGn+kMaK9cRoJHxPaIiTNDVn0h1Y9cyyi+a1ywSZMZ +im7dZW5aJCIf3se9KebMsLY/duEeIqLDzRlLtwKY4dlmLU3gQUTc1BaVtgZm +qPb2XcZG5hK6xjRbHHOVBX6ts2a5T17A+yN73NwKK/R/Nmh9jG0WDUeuU2W5 +2GB/yxuOmeoZFHzqgW6yEht8CCHN3n8GWTKJlGy5s8Hnt7kVIn/9RXE1OV6H +8XPfpOWlkJ/R02gjl7nDpZYdhj4mn76TP4H+IwoHMA6xQ7YcZqcL5hNInauj +av4fO3y2z622fGwc2Tm8Hg415IB/wuTvXNw9jv7FyA8+r+KAx5zBqvO5UfSq +wRzSmjih0tEW4Rn8KJGfsoeeOMcJWzdPczuc60XVuov1ety7YI3zZwVH7x7k +dmVY9YPzLgjFd1lW2Xcjd3P+0wkzu+BRrie/red+I24HbI4oyQ1H/2wRje/V +IMeXd75K+vHCSBh2WcarHey7+oDOM4YXlpRrjhrydQKaUbXI6FNeSLjy2+NW +Uxe4shyj+6CJF8Zr1HCeONwLSuvNaNPyfBCLGqqMaBgBciKyvDeJfNAsxHpI +2G4G3L3h+HSbnR8+3qcu3nF5FmgHjCp0yPHDAvEFrtrsOaBwrHInwBW31U2W +kV2LgLG72/lzKz9sDiTIN4uvgO3yD0H76wSgxdXcf7Usq0BpXK0qZ0wATj4l +1Wr0roJQUuOHCAZBGF8pLplevAZiU36WpZkLQp+e0UTqhQ0QzFkS8axdEDbq +6Fe0K2wDhyctT4YYhSA1V9m/5RIjrP3ovTqtKgRj2aOUpdjxvCTS52T8JwSN +bfr9at8wwW/+hvGiRUKw3MHsRNwaM9xXgyYYzwhDUd49+/4/7/rzPAd2lvdA +EieQ8nzJA1lGH7NS1ESgWww29cCNF6YJz1pZXhKBXoUfG58u8sLx27nFcFEE +ugg7R+oS+OHWiWdpWgxicJFnKsTmtyAMenRYp9lWDPZE5cVtJ+2Gx8yNMk3T +xOD55iexaU5CMOJa2TDUFYeUr+HPT68Jw4mqvgy+uxJw8bCDyY8KMdgYoOsT +MykBX73jH9j5Kg6Nvaa9y0wkodhORy7/kAR0udpYQWSVgpbScXSfxQmQwTiy +HJwiQFqztdmHQRmoElIs6JROgN1tgSdgriz8UHahMb6bAO1Pu0XrXZeDtf/J +K/79TxraW5M/q1sqQMayqhiWGzKw3kZHaylzL0zZUvb/1CIDg3/4eXSPqUBV ++iNFzFKy0LqFphN1UA2Ol9+3r+2UhSx8/yZ8pDXhtxhQ2K4rB4WmhTl51jWh +eoYU08QzOVhvN8PdN6YFL/1Sd+4NkYc2q5RRRaIOfO497P6bKA9vhToEfdij +B21lyCYUfwV4R47eNfmUPtzDlT87EKcIjf50D/dY7YdF4oeDunT2wm3XfAOF +VxDKSf4Ie8SgAm3+PfJWIxvD61UMA0kTKrCPUFkTGGQKS9Xqv1jOqMHzMU90 +bCQsodFp6allAQ24fDE7wdTHGv5q9HYR0tKEjg9fuFfstoP79hxSrKjXgkXH +3s97P3CAl45IKrh+1oaX5MOUPIlOsFWSb2L4jw40q63oa5j+D0ZqNIuu7tWD +JjemWNLLT0JvP12LnCZ9yM3KhWoa3KEfX8Ht7pZ9MNzPj2h2xgtyGzrZyPoe +gFrtpstjoefgfxujhMiNQ/BGlUJOlXEgpG+ckkYKJjDmRuIt0fMh8H+wBV26 + + "]]}, Annotation[#, "Charting`Private`Tag$4160507#2"]& ]}}, {}}, { + DisplayFunction -> Identity, PlotRangePadding -> {{ + Scaled[0.05], + Scaled[0.05]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox["\[Eta]", HoldForm], TraditionalForm], + FormBox[ + TagBox[ + RowBox[{ + SubscriptBox["\[ScriptCapitalF]", "0"], "(", "\[Eta]", ")"}], + HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> + Identity, FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], + Method -> { + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "ScalingFunctions" -> None}, + PlotRange -> {{-9.122028587832348, + 5.702485161797756}, {-1.3938681721411004`, 4.730885255577823}}, + PlotRangeClipping -> True, PlotRangePadding -> { + Scaled[0.02], + Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\"n\"", { + GrayLevel[0], FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{ + 3.887174570806945*^9, {3.8871751231427803`*^9, 3.8871751344236307`*^9}, { + 3.887184932693384*^9, 3.887184942173463*^9}, 3.887185280438054*^9, + 3.887185367237939*^9, 3.8932376045625467`*^9}, + CellLabel->"Out[23]=",ExpressionUUID->"9917cd53-ba22-4159-9239-28c8a5b2c68a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]2", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{"DScriptF0D\[Eta]2", "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]6", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{"DScriptF0D\[Eta]6", "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",", + + RowBox[{"{", + RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"AspectRatio", "->", "1"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{"\[Eta]", ",", + RowBox[{ + RowBox[{ + SubscriptBox["\[ScriptCapitalF]", "0"], "'"}], "[", "\[Eta]", "]"}]}], + "}"}]}], ",", + RowBox[{"LabelStyle", "->", "Black"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "6"}], "}"}], ",", + RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{{3.87595272795855*^9, 3.8759527743037024`*^9}, { + 3.875953429388359*^9, 3.875953486484068*^9}, {3.875953717122241*^9, + 3.875953824002554*^9}, {3.887174580406206*^9, 3.887174580749688*^9}, { + 3.887174986510387*^9, 3.88717510283072*^9}, {3.887184947721171*^9, + 3.887184948225855*^9}, {3.887185289392242*^9, 3.8871852985195312`*^9}, { + 3.887185371553924*^9, 3.887185377032762*^9}}, + CellLabel->"In[24]:=",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], + LineBox[CompressedData[" +1:eJwV0Hk8FOgfwPExRY6MhhyVlFhGIhlXbJ6n6WAtEVFWGNHB0OmVWgZJKis3 +uaJTiaaLaKPnm0Q6NNK60jDuo8YRQ4P2t78/Pq/3/x/tfUdc91MpFErof/1f +xabECXXdGMid8dZzazwLrk0Jdst9vOEKt9TY6soe6Bx6Z8hz2AVTw2Eo7Koz +bK0bDY7a4wI3atf7TXraw4r2yMlMeUdwjfPKHGduhd2qcjTdPnv4lCsuE53c +DE5fysuyM7dDoqeRyO2nLYyn2EWosLdAfqGeT8yNjdCGlc1VTFkwOSrvT55Y +gkaYoW48czOw8csplqYF9G/W8pq3QPCXJXVEM50JcfVCulOtNUzfVBrn65iA +b3hpqvnXjXASuypw5owh+W3023HdjUBf75Pz5oMR+PHXMI1fWYLrEFVb9MIQ +Vvs2OLFSzMFRdJSXG8sAz/KGvpooUwi9MLo5abUuWJsnmBaZmsIdkbOsV6kO +1DRPlCkObYBbSQVNx5x0oMJYM3WP7wbwT4xdNnppDXw7fHpwU7AJrAuwcjND +2nAk5NhyyTsjuLhHOL+GrQUPa6WKFyQZgMWDa55PGzRAJcTnWtYuA1DN+1CV +d1YDiui/eRWuMIDpdb5hidYacG9DldHoPQbc5XR1beGpQ1rGkNlToT7EmdXn +vr2rBsURSXKBEXoQ4a79fO3wUuhju+lw7HRBur+wAZjKwGkN7DzO0gbX2sdf +PG0VoXbrsidqgytAfLv/+KdGafDfGRg0QtWA9aToiEapFDTxmU8Ea1Qht2WX +RHRznpiOe0kZGajAwjPGtbldP8hgRrFLZiQdtjmFMnzaxOSHrevSLKMlcCxm +bHVJ6iRZoRZDXetEA57IyoAjnCDZ0VPRAwGLIag1MO7TvnHSLzN7+lWLPGis +FJ4MthkjgeGHa5y5clDuuJm55ZKIuKjWlGUYyoLf0dCvUfVfSdiuDFOO4iLI +eqQ3IM0eIS+qzRv6x6TB77dikz2Kw4R5nNYzIVoI19MD3ejfBsmrfu1JY9pC +yF4bdHWGMkgyDxkl1zEWgFncteS3WgOEF5IWNu9NBVvrgku+/v1E32HiXkqC +FNyf/GOlLK+PnB/ZGHq3jgIhngZBSbQ+UtV7KoejRoGSu7S82vO9JIzD4slW +/CTDfMqGMGov4Yk+MSoC5olg0+8fVZN7yKxqVuk5rTlSuTHlRp1+DymYXptL +q5aQlVzmC6jqJi+5tOe7o3+QBPy3rQa7m6zy6b1Z+ssM4R0SmXf+FJL4mfnp +ikYxCTP1b/W4LiTlp0fo7mlTRFImWH7ASUgMHLWoXRaT5HRrmnfIeBfh5n9O +/fx1gjzLrZsJzukiWmW/zy+/MU6ENPvvb1hd5GO1zXFFszGi/q7pxGLSSdpJ +1I7pm9/I8Jt0yUOJgJR1+ObcPz9M2NPcqmBVAZmXaa1QDx8gqWJpFYbhF5Ln +2Uw/6dZLRlvzbRYZdZCey8s4TcVdxOGwbaSsuJ0cLJQNl59uI5vs1U/dudNG +eIVWHenGjST12PvnrymtpLZQ8LB1popkJsxnKMo3E2+vHIGJsBBJFPrGbtc1 +kSLOSGf2Wj5SuPzAZdd1PqELCiY25XSiik1DbKZzPXlos9hqS80Q0kh7m3RW +rZJ8OGhnoU+ZQs46mF8iLEJJjjLfn+tPIQsLh7xD8cVInsPF5c5TqLvvQjTd +6h7a9/REIv/qFBqNLUzdvvMBMmzfn9FmJ0YbmkssYj4/RqxpCSgWT6Puvf/E +FoQ/Q71/fZQqaZEgObnHT2+V1qKMi0ds2pRmUYpzSBbbow75Z/WEEvtZpNyo +NJQhqUMr81XzXlfOIpOJGeZDh3ok7tjv78qbQ80tj5IyFN6hyG2+DpTKn8g7 +iMEWLGlEzs7nSra3S2Ha7Vfb2++3ovR99toPFKl49cBFkcfONpTbwLI2Y1Fx +Al/IEojbkK2qsKqCR8WnZtM8nu34jMwZ1QG0ywuwb2Xhv/KWAsTZfnRv7CNp +3FRzqE43uRtJFzrEnPgpjT9ULZ8Q0npQyLmjRZcdZfAfbF+fjpQedOJPFSfx +qAy2co0OjrzVi5L7DEebPWTxxPuP910UBpCJIKX7YoMCPqiTfZzJ+IZkwXnV +QdfF2Gf3E4tFaiLkN3T2jXLHYtwyFRVAlEYR7zvT7BGVhtu2tWueyhhDKlxK +ZIXHEhzBWHSGpfwdfdb8BuLyJdjVb1/4lTffUYrb4NyQFh0rvagON0yaRO4z +wicHKMq4yG4uIpolRkVf0vOtDZbiHS6lyf4XJIjv4r7q8Iel+EAKgl9bZ9H9 +kGb2slhVLPxqv+O9/TzaOx/B3b9GHRvxE6MSd1Kww68nj/Xmr8BL/cxttHX+ ++9Lz+kyc3ko8F6+iY/OPDM7mSnNbRFr4VrZpwVizLFbSrq8SvtfGs3I39CsR +Ddc1x7s3H9DBhkus/S0X0XH4Frm86lO/YN+BHePrE1VwxWu9+AYnBnZn6VtO +a6pju39feuLYdThIFHB78LIm/h+D2LN3 + "]]}, Annotation[#, "Charting`Private`Tag$4160616#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], + LineBox[CompressedData[" +1:eJwVxXk81OkfAPAxjsG2mYlyD3IkFjlWSL4PU1RabLJF2XJHjiaKIhpCtCps +pCTlLBJpqEk9H/exiAhTznEksSYUEe3v98f79VZxDzrgRSaRSMz/+f9ldY0P +2L6RsK9604Kj3kUIfXRM88udw5AkOpPB5ztCgf+x08fJv0NO3glr/at7gdu7 +7ZGRjy1cJ3lWxuUyoPCKd8hRlg1MiVmsHrRGYBqYVGI4uAtsS763HZE3h7eX +D3TpzVqB6JH0O7enTIC4/dCiYieCP/wz+hh/G0HJOHeHEssCQhOCtYOEDUH6 +s7WKV485XFc5Nuj0XB9sYi3H7LTMwIoTeDbKRQ+yTi+mhDGNITj+bPfO1q1g +I1W6ls/5FRy8/9QfAU2oli5l3pH8FZR2qQXtbt8CiSIBKS+nDUFhJaV+nYYG +OHmzvQWlDGDjSo7S2QRViGJztH8W1AMXoccMW5IyWL7Vnqxl6cJ+77ZzoQeU +IBz5U51FdGEpRLlptJgOFEMcGqykA02ttOS3YYogIKRX/yZeG+qoGj/l/SkP +CbN+uoxlTchfl9feKiED3Ypzx+6fVIfwI+6NsTcloTA9zSHXTB22c3ldh45K +Qs6EjghPXB2iTfknOlUkoc371OOBEjUY1cM+wWUbYD7/VGKaoBqM3TweVj5C +g4WO9V4DvZuhTWSbLj5PBXZk/lDHqjKkLUIZ3F0HVRH7Cl98VIBu5Z7Lr6ZE +IPLtPQrDRRpExlKUMUUAXBKFLcxpUpC8YBecemMFGwp4HJq8R4NMeVqTnMwi +nvO7YD05IQGOiYq9lvoL2MK4gGKw7mcIt2HmNo1+xkXeiWPFDeLwUCSve48e +H9M/P3qwZVUUVsUjb3kOzeCBLNszeQ4U8Cqnli6Vf8LXKZURWXxhUJV40iC3 +fgoHorkWe44QTCe4n+lkT+J3h6N8HS8LgkPXtZKqiA94OTNbrJNFBgdGqIF/ +7AT+radMwemcAITVj19buzuOy9zzo8XiSKBn7/tobGAMs1K1ful2/YHfzMTH +U4gxbJoY3TxwdxWPzOJvC3mj+LgPi9CR+I5dg93bPdVHsVfpzWCG3zL2bHJa +1czn4WquI0e/dwkXb3JvCTLgYcWSnNwyr0XcVrJX0bl1BF/b+FysgPsFi9tB +ULvbCD4mflJ5zXcBv9p7tOkgaQSPM/S+pwjM45avsz2r2cNY1uOBWUjYZ6xg +Hl8objKMe4SLXNKE+bhfvyV2Y/4QVk0k2XK50ziVK6oAMIhPVSWlvMv9iNPL +m/tVOgfwjQ4xzoPkCczbxrw5M9yPK6wknjXSRzHzU8F4bv17PCnjmmSSOIR3 +tL3ZL5TzDqu0+3BxcR++71N4z+0EF2ewsElIVwe27TueVTfVi20DFCIm5Gqw +b22NpoZzD3bLPGpXup3ANX+Zq9B9u7HDoFYRS72G8PswsCh78A1mZpuZOjW+ +IVjJz7aM81/jpX9ZBo0eg4QPu2hFdrYZEwNL0RqW44SE5kBGrmUt/sFLFUvi +TBPSAc4y9fNP8Ye9zkVP8+aIrbX3hzTr3YjDohdIVJ9FYuZFqUYthUPMun/p +X6hbJWJZj9Y1Wb0mWvy66h6/JCOacfaV55HviZJusdipzxR06fzkw3zXCeLA +vfhaegAVVRWcT842nydMziST3GOoqPSf8jvN3vPEV/MXssMZVFSWQE4JTp4n +gvkxRsmNVJT9l+eeg5PzRFnNrq8T6jT0Q8nqVGrmAqEmq0oNn6UhYvvhjiyV +r8RaxROmabUkSl3hd3ZXfiM0eTqcnBFJ9O8lz8DypW9E2FzDkyiyFIoOk3a4 +YbZMXLrexk7fLYVm9CdjL1QvEyE/lUbd6pRCQu1NkwX9K8TvaS1pA4Kb0PH5 +vlM37NcI408SO37wZVDO4/CeNTMyEhn+m7KgI4u+3SEPWkaQUbr0xz02/rLI +dXOcsRYmI15cXgmakUWZHhsi9fcJolXnW+n6ZHlUZUhm7w4VQqMc7m1agiLa +FLly5SyDghqCjLxjxhRR2+CGebmHFGTpMeHJtqIjM+d+Nz0pUXT4TEPlLEUJ +SapLkAPnRRHZ8mIF4aqMLguVC6SOiSNBNidG5PxmVJphfe9IrwS6vro18GnL +ZqTJpIcP2VLRLwL2xcJKqkjHrurku1Iq4lVctXvVpYpOP1BJaE2kIf/Xuk59 +oeqom3rUbn2SJCpW+I3ZbaiFUg0tUOxVWaRG/ycilayN2NU2SDhTDp3jkN8n +jWojwbg8fKFWHpXp1Ly0mdRBPGmjwpDTdGQiY7GlskYfRfV1XPOkqiJ/e7rG +kWcGyNE1b7+QrxpqpdNGB3sM0TSTd4hE0kCeAUbWOY3GaGfmlNfiLi0UQCuM +e9tigprv778iyNBB680c96n67EC6JRtctDO3oT+Wh5UvLlugW2EFRa7uhkig +YVwFa1ghfm1xTOj97eg/eLmEcg== + "]]}, Annotation[#, "Charting`Private`Tag$4160616#2"]& ]}}, {}}, { + DisplayFunction -> Identity, PlotRangePadding -> {{ + Scaled[0.05], + Scaled[0.05]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox["\[Eta]", HoldForm], TraditionalForm], + FormBox[ + TagBox[ + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]", + MultilineFunction -> None], "(", "\[Eta]", ")"}], HoldForm], + TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], + Method -> { + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "ScalingFunctions" -> None}, + PlotRange -> {{-8.985689911395795, + 5.4752540344034974`}, {-2.2687538849550464`, 0.8696374890668941}}, + PlotRangeClipping -> True, PlotRangePadding -> { + Scaled[0.02], + Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\"n\"", { + GrayLevel[0], FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.875952731520175*^9, 3.87595277495057*^9}, { + 3.875953449526909*^9, 3.87595348700035*^9}, {3.875953781918692*^9, + 3.8759538242573233`*^9}, 3.875956884814212*^9, 3.884691471720155*^9, { + 3.887174577531348*^9, 3.887174584665642*^9}, {3.887175035431831*^9, + 3.8871750787266607`*^9}, 3.887184948578662*^9, {3.887185295337936*^9, + 3.887185299115622*^9}, 3.887185377502866*^9, 3.893237607053919*^9}, + CellLabel->"Out[24]=",ExpressionUUID->"9950232b-1eb6-4bf2-a1cb-424ab941d88b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]2", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{"-", + RowBox[{"DScriptF0D\[Eta]2", "[", + RowBox[{"2", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Eta]6", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{"-", + RowBox[{"DScriptF0D\[Eta]6", "[", + RowBox[{"2", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"AspectRatio", "->", "1"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{"\[Eta]", ",", + RowBox[{"-", + RowBox[{ + RowBox[{ + SubscriptBox["\[ScriptCapitalF]", "0"], "''"}], "[", "\[Eta]", + "]"}]}]}], "}"}]}], ",", + RowBox[{"LabelStyle", "->", "Black"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"2", ",", "6"}], "}"}], ",", + RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{{3.875953835258749*^9, 3.8759538464750853`*^9}, { + 3.887174587589929*^9, 3.887174689823798*^9}, {3.887174745816722*^9, + 3.887174892235113*^9}, {3.887174930671193*^9, 3.8871749732205553`*^9}, { + 3.887175095902635*^9, 3.887175104950508*^9}, {3.8871849509534283`*^9, + 3.8871849518418016`*^9}, {3.887185308184392*^9, 3.8871853124795923`*^9}, { + 3.8871853818416777`*^9, 3.887185394801072*^9}}, + CellLabel->"In[25]:=",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], + LineBox[CompressedData[" +1:eJwV1nc8Vf8fB3AjipCZvUo2lUgo9xrhV0RGlMyMpIQUZSSphKzISCpKMu+9 +mYX3ITPrmtmjjGzusvmd71/n8Xycx7nnfD73/X6/PpLOd81dGejo6G7T09H9 +d2XvjiHxS4UhFF+3qQDmSTDvjjYUsrdDHHHHmnpnx2BstlWh8IIl4jjL5ti/ +fxT0G5dvP7YxQ9bt5XmnFodBeDCE8obVGGmdsxv+fWwYrPlYOKSmjJBPhv/i +cyOHwGSkrCT1jQGiwvDMeezgEBSRdG1U2/UR7JMpndwPg7AabxjE46iH2DDf +nPulNwgDWG41HhVdZNCvzWB0dQAE/BWkIk/pIK28ZiaJOQMwrSNmu3Mag6iG +MVZUyQ0A0eG1CvPsOWRJ8mUUG6kfWq5lOhogZ5GQP1jJwOp+eN48wWXSoIn4 +sjzARjv1g0NgcYLaggZSp09Hs1Hvh7iW0JZVKQ0kp/M+fcyhfnAiHjmlXK+O +BIzFXDvR8BskHNpNdOPVEMs2RE3R8DcQKubZrYTUkFqr4cfl8r9BoUYiJjBX +FYk5fuOY06HfYF/p+cZz5BTCLf2u4dtQH1wta5+qe6yCbNdENj0P6QNNtWiV +ryoqSGmudSarRx/U9ZFK2GdPInHsr61OWvZBubJIgo3DSXQFgTK6in2w6PXw +37nbJxCi7r6hpD+9cPeOj9BmqxJSXOmSPeTcCyLtuzeDHyohfibvKm5Y9kLF +YaahBFklJFq/Rl/NoBcyvNMZya8UEUdmzuNf5Xuh0eRFwT1fBUQR56IYTesB +fAN9HmOsHLJ0j6zuntIDPHfsP6ZYyiEhabNjEdE98JXrf7bZwnLIlcfPxIdC +e6DgZJXScoEs0r9zm/3grR54nTSrWjEhg2h+KDb01u6BvKBYFo8gaYT1fokX +ZqkbphwtjnoaSiFdI/XK2Te64V57hIiynBRy+klS5E/bbriBtcn3PiiFiHRm +ilEtuuG9l9e0W+dRxNFUS+a1fjfMkRPpwPkoYnZ8dV+RdDfMGInF4VKOICLq +yvbcS13g2e8x5qsriYT/WUu59aILSvEMmUknJJHW+BGR1iddsJbyIW9BTBIZ +Ny9lVQ/qArGq5K+ntiUQ5S/uUbI+XXB6wtf4YIUEEjlvKfnAtgtad3pHjmpJ +IJZ+teIZJ7tgy9qvgrNcDFlYD9u+8rcTpCrlQm5kiCF+TWrLOaOd0FS9XUEK +F0O82ZTq6AY7wZGva6HWXAyR6lioqyF2QsS29heuVVHktn0W04vqTnC3DjYi +qIsiXRwFZRxvO6FBX7D08D9hhNXnxdMs607owOzt/9MjjPjOrGp9tuiErnpz +964aYSRdGanKNe2ENPMsP4l0YWRh2WUVMUTf97Dc0NVcGJH6Tl4QONMJe121 +C6fqhRDNzPIrXoKdID6oMmtcI4hon5iQvTtKhBuXPW7NMwggrS6yedLeRLhl +f5ZFi8qPNKV0ZMXdJoKAl4bGhxl+ZFOmZHL7JhGiEmU9clv5kZxxWZlhJyKM +yx7aKUvmR/xCb7KWWBBBj0LljjzJjwTpcrq0qBPBylY8sdr3MOLtH5ruRk+E +buKp0tEjfEg14zBnm0oHzOwZm4wI8iG3a78yTCt2gHJpudE0Jx/ibaV6mF6m +A/Lfswjz7/EiUunjseeEO+BGuPDe6hAvQrzWatLB2AHPKyN3ApN5EVZoFTLv +bYdI9YanLny8yG6/wLXyh+2gsmpLryTHg7Qe98jDNrZBpTxtPV+SB2FmyZO8 +VNMGok63vqkK8SAiVjtcdj/aYLHFV8P2IA8iy7Jp8bioDVjCPdkZl7iRCG05 +pt7kNiCGydgSirmRcdtav9qbbSDldpWsYciNHNBhbI8/2Ab/kvLM3oRwIQfs +bGYeWrbCrjPL08YALmR9fdlz/lIr5N1Qy97x5UJGbVSa7f7XCj1Oth8D3LmQ +a9kG+89rt4Jr1UxGjhkXIvb5oauobCu0XHd9MXeUCwkK0bGibLWAj7GvS2Mb +JxLwvFvs5KcW2NA2501R4kRumliczqT9AuHDYQzyJhyIy5EYkdDyZkgNpYbO +uLAhhcMXWfjdmmCaeeth/W9WRMXf70fY8UbwCPSqMw1mQdis9h4K7WsAM766 +kiSFA4hU+7Gnr+vrwN8yScWTfT8i/cFd2CjrJ9TUqrVPrzAhfTjQCvWphVO+ +HH9JS/sQScV5qVbTGqiflqQoc+xD7vq0S1w1RuDNTaW4RllGxPJqhg42tBoK +77z237FjQHx97lqPZ1eCzAVSQXw0PXLlZC+3V8N3eDGv4ZfbSIfoVmr+4uau +gKrJgDTPw3TIcbrYxrD0MvD31C08UL4LVh11piNKpVC41CNb7rIDPaed+Le3 +i2GLL6X4mdg2LLk+vqxP+wa83Z4rLILb0O6i90aC9A18JcOfx/Bsw7amzqu9 +xW9QoJ4CKQe2QQrfllA/9Q2WORat8aQtmHa7zODb+w3SB9NLSQ1bYDNhl2Vc +8g1CtPWGCXe3IKzQ2JnV/xu8X5N/y1G7CWeRgHcEhm+weGdWjaFqEz4QOwQC +9ghwnsuQiVa2CbvvO9Yw2wQ4J+KCHS3YhAv5xhN9VAIIFdaL4lM3YTG2yVVy +lgDuvZePOPpsQoprrJkckQDLdOrV4xKbwPVFIYzpAwGOWderDQpvwsusykL+ +dwS4Yynf1314ExYw5bqKaQQoa6aPa2TbBJsu24/XEwmA580bwa1vAFlC9+xg +BAHmYqViI4kb0CDpuWfkS4CfwRzV1qEb4Mp504NqQIAwJqL03KMNSGL97SWi +T4CD3zvxQfc3wPfJrwsGOgSoXa5UzLy1AQbMhc8ztQigW2DwdclyA/4ddeUK +PkEAB7t+q1dyG1Aa3fryuxABzQdNvdGudfDWUS6xXsUDF+nKIb+2dXhjvlE5 +sISH/kPUJZamdbiBu5Zhv4CHspWRabWqdfj+W3XJewYPhJXg/Jgv65ATElVX +NoIHvEiHjF7QOjDr6Nu1/8KDuP3kp+Jj62AssYmIf8FDXkSznqvEOpx6SOXd +/xkPgYbnZ/iE18F+xUJ+NRMPCvFYTX/OdfD7ei+1LQMPdmeZ9mlurUGWbmPk +lzd48An/XAfENWhoCK0fe44H9Tt3ZpoC16BGX3zVyQMP05CAefhgDUYdrkR+ +dMdDZLp2jJzPGlzl8Z7+64oH/6Ou7JFua1B0zmfG2xkPVf0Rzy9cXgPLj/ns ++bZ4SDUcoGuWXgNMWRYp+xL6/PrOWnknDeoE7loWncbD8GXNP7WtNEhZfhvo +oIaHbI7fZa2NNChajWXlVsXD8s8fR8eraOj+jDqEnMTD+BUqmSmXBg/6ov/d +U8TD6AdOKZMwGtxOfXa/6wgeDn93SrEKpsHM7p7QV0k8sD1WJdkF0ODwdpBs +mAQeTktPWXp50aAzOzJQSwz9vX7B1lfXaMD3Vo+hRRAPmbttyo0qNGgpcUy0 +48KDmk1re5sSDX7NY35c48TDw4Lrl3pkaVCpZ3Th2iE8RBOL58bF0O+/MvTB +kR3d/4vNr9ZZafBpWf1EJAsemHnuyUn+pUKlwVq/GQP6fSxJScdGqVA8z/vU +jx4P0HV+SG6ACj/i7ial0eEhRpm4erKDCqVBo6TFXRwk6M5isT+oYIHg4/Bb +OCh7OM9l9ZoKO5U+NvlUHEylFlDnXlHh9I9+wxkKDt6Z7fscGkGF27Stg8dQ +Xwp86JIXTIWjmfe5v5JwgOwgNrvuVLgkLCPQvYyDU+tuUQnOVODodyqQQu21 +gH8mbUcF3IwF/8MlHKxePNthYk6FWJVrHvKLOMhO1clJPUuFMOFOpqI5HDhy +HWdVVKfCg7gcLD9qo46m49UnqaCwX9ksbBYHrmT6uglpKvQLn1t0/IeDRfkI +BmkuKnzyx4hjp3GQr9R3r/QgFcr3ru1VT+Gg+Uj7JwNmKgwY8BdjUZshZXpu +WxSg2d16azyJA+vGi+6ZUxRo79dxev4HB9UP6hpPjFPg/R/5aWHUhOTBv9WD +FLiylIUpnsCBTXOv8WAHBSKqz3ovjuNA/kdJivsvCvwEa8MY1NrjshmUOgo4 +nN0gnfzPWZXd7N8p0PW5vvHJGA5u1/QxpBVToP7B/IoS6hZu/9ljRRTgiX61 +NDyK7reD1tDZTxTQHdJy10Mt4mM91ZhBAWKO7p/NERyYTsx+Mk+lAPbP95Ml +qCfYHHXdYyhge41iooL6/S1N8dUICgz+LRKiDuPguGdA0aOnFDC72/njO2qr +WNZ/0QEU8G7UDLyEmq7fIpbvHvr+jKBUEdQH2edn3t2hgEaUQPTiEA4WvOZz +C5zR9dwxX0pG3a5hxKtmR4GEU3N2PqhjFQcVK60pcOxbx0cT1AmpQhRdcwqs +1e1VKKKu/xDm0WxMAaWz/tkcqO2PR0WbGlKAbVrFnTyIg5i9/Ou9OhQoijy+ +PYhaNMVx4NpZCiguerjWo5YzFmMYP00BXMtoJgH1dfdkpdqTFJjStijIQj1c +Tn/okyIF/E8MKCejNri59PmZDAVGlu/IvELNf39p1e0I+v82cyQ/Q21VmkAy +FKXA8QMVwaGobw96fpEVoMBTksdQMOpZN1ZOFh4KjLeJ4f4zpnxXYZYdrZfh +nq3HqGPpBzabDlCA3ulldThqD2O5oBxGCiykaKxHoU4KeFz0YpcM1rV/cpJQ +d2t5JrptkMFcMIz4EXWGZJD8eQoZKP28d3GoSZE6PkeXyTCgmRJeg5qn8MJN ++jkyKAewcPWiNnkjfWhskgwCza6886jxR11cK8fIUOKaG8OI7uc/1oRbqYNk +cHjW81gM9XiPttiDXjLkO0zMaKHOGl1/bE4kg4Zie4Mtararl2KVW8hQeyRF +JAR1hFHbRdYGMvQFnp3NRM1REfIL+UGGWQ2WGTLqSufWqLelZFjiURSQQOvD +rOvh+n08Gdw1xZD/6kfdUbZL7gsZpl1c/b6hFtDU02bMJIP4bHHoLOpws1WL +4XQyMP5oYjyC1uff3DOPXiWQ4aODilca6utqcy9dX5HBrS7MahD1aISDzrkI +MiS+jf4mgtZ/PXvd5/lgMuhM1XTnoH6dWqSu70GGjic3P42i/ZNc+yNA0IUM +/AyaOipov9m3/7VbsidD71CRZQRqLLWIO9mSDPH2IWNaaP/yWBoJTmLIIHvI +MRxB+1uwRt+rVJMMx3LZ+2T+4qCqMudGhBoZ9AsuZsSjbnBvVlJQIEOd092E +2+i8uHrJTOX2YTJMnuBl+W/eBGcMJQwtkCDw37iSHTqvEo2yV2tmSOC4NcI1 +i9o512zxyx8SvHhBsPCfR/s3+n6Fbz8JNiiDK2kL6Dxhv5jCWEcC+viNuF10 +PpZsdbBwvyVBRhmXuzo6b3N3JvdWk0jgs1EvM4v6jemzqM44EgT80zB4h85r +U/0op9jnJFB1vJ7OtobW/5fkLSZfEpT63C3Yv4mDy06XQkaNSJB1hN/5LpoH +tJiGxDI9ElD1ru8aoHmRdvGcRpw2CcydrNYl0DwJEtOSx6qi60l3ZhpmxEP6 +7a2MNHESLP2deuq1Hw9emUNuGrRV8IjJ52ZC80qs5OKOUNYq3H/dHrgujgfp +/+ma33u3Cq/Kj5aqonkZSLvA0ZK8ChN5DRX30DwVcKGUB0SvQhsPveimFJr3 +CtoNrfdXQSk+3UJWHg+yuXyK1karcKk5NJwVze9u27RbKwsrcEhpjHfaGA8H +nF9bqc6swBX2gdBANP9dlKbi/SdW4JFSVSmPGR5+kaq3tnpXIIHfOdTYAg/t +MS6h29UroJC/ETV2FQ/yTRX5Q3Er8CCgPSoKPX901Wr5squuQLzvzXtb4XjY +DBg+mKG8Anc/faQ0oecX3+zddSW5FXh1wm8yJQIPivWGLRfFVuACPzcnNhoP +Fmk22o8PrEA1nV9K3ms8sDBPfnhZsQxnzgQGrKHnpdLlbK1olmVoH0/rcf6J +h0F4fGnt0yIoOxtlRB0kgKB6NFKfsghuUa/15DgIIGxTcTohehEi3uY0N3MS +wIA2InPMbxGqCUUBPIcJML2vZ0ZFbxGYRWpcmyUIsGVrq7QwvgA5Z76kwmkC +eLQyrzQKLUD22M9bfS4EKBl2SCt6MQcu1sfky5oJsMPcX84fOANmea8Fwz6j +5/OrfVwPLCbBbMgwIO5zMfxNFvTszhsH5iNWfS/nSsA9+0Ag69oAtH7kX+k1 +KoPC7DPDicqdwPlskmq6XQ4N2aP4/vUq+ECru4TMfAc727TRExPZmAmLY4Sv +1Er46jk/lipPxGgbeu6aRgNwjb4nnUsbwwhdvBS0q1YDeC22M3p1s5hh72ph +zEotEC4cmjy/NovBWIVX4ddrYXzuYMxb+TnM9fIUQWX6n8BEe35YP2EOc2TD +wk2f+yfQp7bk57jOY2ZYR0/Mqf6Eku8KVo2iixhOge9UlaCfoBzk4e3jtYL5 +rNThmcxTB505s9OOMSsYXc0PuYGidXDDWmMsrnAFo28GLXdk6mCO8tS0dBm9 +Xz3lGqRVB6eFuA1V769iJsQN6Y1c6oA1lpO68YqEefsjU7quvA463A1Py9BR +MVc/n74y5VUPscbM5GoZKqZBJNpf4lE9sHoGY8tMqRjkSt81r2f14FxxL4b4 +gYoheAk/0UuvB4VB16QBQxqmWtTcduhXPeiubSLseWuYN09X4vYrNsBkVBd9 +/u9NzKfKdRcaXSMkvbyrNXBoC1P08jjXmUONcCPlrx8YbWGe8T15miraCKIZ +fOlNlVuY7x5xytWajWhuud4wL9zGNLH1dn940Agh5x0u0FXuYqoFx/K9qI1g +avos32CQHkvAbz/6ztcMic5Gkjh2Buw+bFnlqkIzvG3X1VTVZcAy2t/CPdJt +Bm2+iaryQgbsk5k5cpR3M6jJ1rpwJDNi501oTFvEZvA08L4eTmDCUn4bb7Jk +/wKm7Ath93aZsBdfenybqP0Fd555f002ZsaKj57ZMBz/Bfce8ZjQlpmxFwp+ +i/eLtEDclMJy35UDWIGl7Ov171rgxGj8n5ftB7EPGFUeJDa0wgHEVNzdnA0b +yuP+/sxKKzjNPv3FPcyG3T7z9C+XcBsUkk+pEhg4sF0maqt4vzbgCaYLKb/C +iU0/4+OF1WyHIZFFhFbGic1PPZct6t0O8Rb/tmfFuLBB57uL2HLawWp9otSN +jhvbnsme1i3WAV9HEjM05Xix0wmRWSf5iUA0sxL36uDFStZ/14s5R4SiO32O +guF82Isil+f53IhwfSco2PUIP/aja7F9bTUR7hG81424BbD7Iz4OpC4T4dSu +U228qCBW6P24F6tUJ1w4+8BnMkMYuzT4/suJtE7o/tv05Lm0KDYzU/9I4kgn +pAYzBf9eEsPeLr+Zzi3bBVlxfd7UZxLYYf/WdrvALjgk2Vw10SaJPdF3puX3 +QBc09kVa9bkdxV4ykm2lN+yGQD2W9NqAY9ji6Tvx5k3dUN4kHdluIost/MhX +zOjeA4Z7P69iwxWxjvhPSKJqL/wfXweqsg== + "]]}, Annotation[#, "Charting`Private`Tag$4160705#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], + LineBox[CompressedData[" +1:eJwV1nc8Vf8fB3B7z+xCZvYIRRHHiNCQBopkloyIQl+7CFFIJCqSFdU9F2XV ++5DsuPbWkFLJ5Q7jon7n99d5PB/ncc7j/Vmvz1ve87KjDwsTE1MUMxPT/59o +a3tFrV8MVud62Cbk3iyEv3BXpT9yxiLslI3bWD9BWYD7lfMsxzGl+3yf2+Wn +YXxU94XBBXusgEPj3wDnFJTf9g1zjbfBVj54ZLw3m4R9Qekv9WessG0e1IB7 +zyZgONlxUIdsgYm/fdTSqjwBM5/lRh8Fm2NVsmKJtxvGwSz/uenrAwiWod4Y +VOY2Di/nxo13xptiTVUnL9XyjoPEsrW8z4gJdvKsXJBPyxjYJJp/O6q+H3NW +q1+MsxwD13aGneu2fdhY5vexdt4x4JnfNZAvZYTpsV75pjU2Co+vrGZFhOzF +Dv1e5Nb8bxRsRAl/Sxv2YNmjm8cWHUahWYIQ8khkD9Zram4nqTYKqRyBWW8X +9LGea3/zn34agVO+tb6sonpYVTRx2Pf8CNxJyNh/nLAbs7JvL561HAHUbFd1 +uuNurIrrl0aU6gg4e/7pKSnVxVoMI19W0YYhtrZBg59VBzPQ3DGnnzsM5sMa +8+/jtTHHnqR9xfHD8B8SIOTCoY0dVo1qqwkYBk59CA/dqYWNvAn2y7MaBmY2 +nQ8DtzSwozcjDNMZQ5BCvqRtyVDFjsb6aNAjh4C1hLXbokYVmzDaX3POfwjs +je9zXQpWxTw/+4kJuw3Bxt1g5feLKhipIPGjlfkQMN2kf+BhVsEwG6OlJ3xD +MCRDcX/qr4yVxlQmHXkxCOW5OQ7P9itjkkZTtpZFg1D8XYvjK48ytqB1+vfF ++4Pw0Tf41fRLJUzBJDPkQMwgUEuDU3NYlbBz6qA/e3wQaCQBn+lRBcyucmxJ +iGkQamNKP5G25LBnO1DvqpABSFBliw7+JoeJLv0SuuU3AHqy0az/dcthFy81 +Wlz1GADD3+ecPzyUwyiL85dTjw/A1LRT47cDcljPvIVFmt4AWOdc9rmtuhNr +CCQFPVzth6You/LGn9KYw/FDGx9u98OJqxnX6rqlMYVioR9Dif1A3Hlwgu+l +NCZQoFGxENsP+ZkD/bWh0ljw1H3JvWH94BBXNTfFIo1xyEZWabr1wyM2bXsL +nR2Y3J21C7d1++HLt9uWcnVS2EkL+qD1FAnY9k0dTn4qhfE4VdgajJJA5ND6 +qkK6FBbESJNQGSDBE44z8n88pbABbE+gdAcJst1NlTAhKYz0x+yPZQ0JJMJ1 +LDvCJDGWHa5wLZ0EMcNFnJZnJLAHAm3Nfy1IIHozPkjcTgJ71zOJppuSALmW +O8a1XwJLDQxY3rmfBJOEWDXb7RIYh4ONwdHdJNBf7bLQmhLHrikLl5F2ksA/ +jL3UwEccm3r95UInow9GVx4liqSKYXdS0sMlr/bB+eI92xWjxTDZu5+cvwf0 +geaDoTWbYDGsjppVW+fdByyWkeWk02LYQDZP1aWTfXD1nmvGqJIYxhBkUmIx +6IMoRyONtFZRrKE4OplG7YUzqeymJsKiWEzJAiHvWi9sia6OPGcXxQZehDCM +gnohTLEgXIMhgrFpiy5P+vRCm9hZYc9ZEcyxlFaveaoXXN703X/yWgRb6kjP +WNPvBUtZWvCe8yLYTOCnGF3KR+Dk/Nnx+t02rOqBb+uX4I+gz+zlNF8kjLE9 +87d+frUHKCyEjxYPhbErgZ6514J6YHlq+1JJljBmkhyQaHWhB6R62OiJN4Qx +IRs59TnnHljqPKZR6SOMPdsK0ttn0gPqoRbGURrCWE/bho0aaw8YZT1vJTUJ +YWOl+lyiWd1AuRRtPf9dEAu6Gd+dVN0FVgpfP0lNCGInI3/fEarqAt1NHV/n +j4JYW4BqTP6zLii7UjG1US2IBXTnjtXc74IUz8vU8XhBLIE9xo4e3gW/qbZ3 +Pu0UxJ5+nympNOmCpkxVgXhvAUzaV2Jitq0TTPeWcerx8WPJri/9rGY6YHhV +//UeFn5sJDvUT3e0AzQXyh+Yr/Fh1xpSD8mQOkBZ5GV7yDc+7MFLw+L15g7o +DfOJ0HvLhyVn7mxuKukAGbJiu3owH7apOOoeENgB2goHf5VP8mIJ/2pmL2+1 +Q6Vv6reqNh7M1DpqmFOuHWSXX1SobHFhuh+cUhPTPsD0Y/urJQ6cGCH+RELj +9/eQwfkm6vESO/aXNYjFOagFghBK17EGNqw75HGXvVAzTDjH+p1IZsW8y/e+ +kHUBYBQUcvfHs2BMZj8u7aY2wZERVPpUJDPm6nXxc0Z2A6CepQncSUxYFv/N +mIXYOoi/p6455PYPGHHiZac7X8O+1ITO6Sdb8MOStdBKuxb+KhuOxuZtQYHo +5/EPqrVwpDR8QOHeFpxLutdsp1gLcz62d/yTtiBf6PhDd8lakCNwsnEFbsHI +ZuvlWpZaUOE/rhuwfwtkvrk8Eh6rgQ/Oz+YnhzdBDFLCbyfWwPkL8WZagpsw +q09ujPldDWF7HhDjuDaBw5n+Jfl7Nfg5ObMMM2/CcFyNQ+6XavAYVTeIo21A +VZorZ/NoNVzkymr/PL4BDrY7B2xaq4E2/f1r57MNSLY9VqTwuBrOj3IQ9xhv +ADX+kCzvqWpwfFi79dRgA/69eUB65FANRu213MLaG9C2oNFicLgayiPM3Mly +G3A3pMnjsmU1XNcrma/h2ADMoD1ZQq8a3CZz3ngOMIDh57hLX6gafAgPQi0v +MeB9dTsju48ISUGaXnNeDLjjHcbc3E2Eizz3KbfcGPCk2F10uZ0IOcTJP70O ++Pedp93cMCL8rdpm7m3IAJtPl4J9UdyGi2glGwNuPw4w3Z9NhKNx0enlT9bB +N1YvfM6VCJshHexueevw46iKQZYL7uaDHNvurYOqbzjZ4jQRLGbWCqKT8Pcz +tu6EY0QwqTXmPxu4DqL6seKNFkQYsmc7o228DnxqHeF31YjQPH6iYffoGjjm +5WbqMlAoSBn7db5/Ddqp9OK0VRTkDINjMrrXoJhuq7BAQ8FvX1HPEqyB+C4Z +j1oyCpTITHpt+RowzvtMBs+h4MWV/Pf49TV4aCDhcbsfhRfSvjIfZdag4Ijj +ffsqFLZFcxdxSq6BScrJw6LPUai77n7NYtsaLFWweXwuQyFjmUW0nmMNwrIy +ixKKUYi8cJTvOXkV0qgWV8gPUXAvJF5/2LwKdmvm836pKMi8LH6G+qzCucSI +rhl/FIrIj+si3VdhL+Pe899+KAgvkiUtXFbh15tLgZsXUOCZoDcOHl4Frm3w +QM0bBcXJo5EM/VUYnFQMI7qioGNcb3aKZRVmtAZeRB9F4cItlm75zRUQYaoK +6DiMj8fL/MEifQXYUTKrhD0KCSP8K8k/V2DeQ6webFAI1fpThZFWIFwmSMPM +HAXlSxURxk9WYODQv3y6AQrGv5JGePNWYKNQJytaH4XK90oBU1kr4FSnfppb +D4VbeVImMUkr4H+9z0pTB4VPBUZurYH4/9LmK56o4fNfYytxxmQFeJyVN4x3 +oiBufrtEa+8KKKkXRzHJovD2R7QHs+4KqBRwNHdIoyARuOpeobgCmqZNd723 +o3BiqsNng2cFgsWSdneKoXBXrJ67bJwOfwt//zrIjwL5++zA3CAdbokd3unE +h4/nplWjUi8dgjO9Mv15UchSK/nxtIUOgiKBmo+5USj7MVFYWEmHcy6jWuoc +KKwffn7qcwkd9h+ZMTvFjsKeyhfKcoV02MfOevsGG75efxzECrPpkKZ0uusn +CwqGPNuUi6LpwHTyz9TUPwJoa6WUfAmnwzrxRZk87uqrhgcUrtDBizhf6veX +AEahJoRiXzpYGVxHWLcIcIPClFt2jA63G2r6XBkE+Jdp+37elg6/c2lajesE +8JPuZ1G3okPvK5YmadxfdzytrzLC63+n6/NzlQA/40LXiPJ0UNJxnyynE+BY +0wSBtoMOcy8LyuRw906kRewVp0OUK/VxPo0ATt/H9Bt46MBhf5cvn0qAa9cP +Hm6h0gDpJQ/AMgGelhiFsC3S4M66zw8H3PTIpCLreRrMGxkpzC0RIJTPWKF7 +igaNihlcErjzrWxzhj7QIDHL41bhIgHa3jtySWA0WJDif2eHe3NHV7xLAw1k +lB3E1/7g45nmS5l5SYP6C0Zqrrjly6bF5Cto8EWj8us23Ck8KuVexTR4lO7Q +2LNAgIBp7cn5XBo47fzYbot7Gxf1ukYWDZa4Qhh8uL0tjGWD0miwzPrFdvA3 +Ad7fTG0lJNEgXutGbQHuxX6vQGocDb6mvDXxwz2x105y7380uMy2MmOEO6IL +a424io8/OCufF7c7j7/cXz8ajJHTPRp+EYDJb0+FmzcNHhB+iufiPv3j6e63 +52jQ+vfqh2u4U/8dqJd2wevfVRTggntNP9Ms6gRe//lxXjPc6wIqrZNHaFDd +m/ZUBTemkGptfIgGUbFquiK41bkPtj20oAFboEwNM+4Mr68WDBMa+EePaFF/ +EuDxxEKjiyEN/iW0FPzArS5L1q3fTYMUk2NMn3CzzIUWSWrS4PmpX07juN8t +sPNH7MLn35e5eAR30bpO6KgcDQRWmL/83+dGogb37qDB7WsuwhO4106Ea+WI +0eCA7VX9z7gzbZ/H0QVpYPS2xfon7v3ZhT0neWjQI/jKjo57QHxOqIaNBqUB +ZaZseL0D9SxHRP5RQXdRUkEct4L/zbgr61ToexRMU8e9JEN/3k+lgnrYjloL +3Eldn7p1F6lg4JLk5YZbMqjv6915KjQqyf67jvsxzzHy4lcqBDw+disfd0Xp +z6Uj01TYGXNr4x1u3SPqP6pGqcAWoHd2Dncgf0E/7wAVOJnflgjg61fF6Hx1 +qYcKTO33JvbjVtE0i+9sw+sxUlz///p/bEo6qNpMhfKWUab/74/tkfXP5mqp +EJns0cmF76eh3w2mVgQqDJ8STLHEnWLf2Pn0ORXWzt3Tice9HjdHcH9ChSBi +rzY7vl8Xa5T53uVRoUrhXJI97p+Zmaels6mgsyOsJRv3rLTUm7FkKpz2nZ3T +wc9D3377nr03qDB1XbQnHrfRl+He7Ggq2BX8lz2CO7Ze/qHDFSr84MrvTCYT +wCqi16T9LBUO7Z6rEcTPY+/Lf6+UTlPhbll6QQTuVv9ZvgQHfH4lOj2+4fZM +IMebHKRCTk5pQiuFAHVnTx0maFPBb6Oevww//ymbp5j41ajw4EJd/y48HzK1 +vB76KVJh0+5ZUAVupr2kGAVJKghKLOu+WSHAnKXOZhYzFY5Hi7XT1ghgE299 +KGyDAvv6HVUf4HnUMP1fyCk6BeRf/5g2xfPL4uSCs8RPCpD+yFrmbBBAnJHl +n0eiwGr00ucAPP8Eue0yIrsoMPlPgqSO5yNX8tV0l1YKrLUX8y/gfvNkSECq +jgLK3IvBEcwoVF1wk8l5QgE9i6vv6/D8PXrEkx6WR4HzIj+EMvF8LsnULTpx +jwKESx2lAXh+R6sOhgjdooA+06dyLS4ULC4Ofb8VRIEzKXHLI3j+X/zYURB4 +gAJp87V/Pojg9/eqsb+tIQVErJsuDoii4KItzaa8mwKqU9ZyX/H7xcqsO2tS +iQJt83/MeSVREHh7VcSajwKFyeX7b+L3U8Gyu6zQ5DJ0aLCeFdqFgpRXxf6w +iGXoebMpn2aMwp/m0Bb0yjLUPTr+Zc4EheooHV5ywDKIxEa5WZiiYJ2aNn3R +YxnchH+nsOL3rZTZyQgXu2V4dv3I01JrFG5yPZHSll4GfT0nu8uOKMh6QXER +LMFFYyNLjgAU9j2lO4/UL4GbhkLo60AUupKTgadmCTLLXhz2u4zCdGXP4yvl +SxAkZc0YuYLCbi22B6aZS9DO36U9EInCq9M5HO2eSyD5rjHcJhmFEfbKMzns +S/C3hOihhvczC8FZgkl/ybCg3cnsUoFCYG727ZllMiz+2lN1uxLvn651zKaN +kSH8qogM4xXeb71bXpopIUNmBtllow6FIOvzbk4IGRSmRfPudKPg6ObgmxG2 +CE7jswwKBe9fUpnsx8cXQPmnhnaqHREKD12X1vq4APe3XGYvHiGCNjdrWyy2 +AEdlM1zsHIjg0M1TIF+2AAmxnklieL/Y8eKsjlPYAuTMdvX2eBChXXKwJ1lg +AW4VZtx8F0mEAkZu3qb5b3AwRaYqKokQ3JSeNfHsJ4wHHsr7T6Ia7pO4Gyoy +v8POv2dcd2xWw2sLwbp22VkwUPnFyNteC/OSbulGqZ/gi+H9bJdDr0G+98I4 +VI3hORhf0HnnDeTFg1HYIAmojXUFFOF6sA+Ujvq+vQV4bn3M0M5rAI8C16ME +QzMQnecWjPdoAocZ9cp45RYz36Yroctq7yCkcP++U+0DZqZkjwPHWDFYW4zX +a/eaMetesb4oLNEMZtNrCbvM58zs+EMMBdRb4N/Xe9zpDQtm7D++aY35vYcf +ti6VNSUUM6Kn0zXa21Zw5opmErqwauap0YsdkmwDsid9ita6ZXap1t+loL4d +ui4Ntr56y4Jc3spPvnCtE9RWpcy1+lgQ7Zb0+eboTghrhRfYZxbkTKm+tHxi +J3g7eiuqs7Ei3wyDFBbvdYLK8Xf6/IdZEau1bZXv0U4Q0hwiWX5mRei54Tw+ +i50gemyH5A5pduTgQqpkl38XvBziTvy1zIlU6Tg4forshpm4dboiPxdS/jbm +aNqNbghzyzS4q8qF6L/XIlukd4MNmxRhy50LMZHRTfxY2A2JTcVeR/q5kBs+ +PH/OdHQDo4R9wPkdN/LJvz/gslQPPG09iKy08yKvdgjJnG/tgbIMSWbyL15k +Js3wbVRfDzQa/GnZI8CHjLuW7y2b6AHX0BlN4ik+pKdU8eKu5R5wP7jtXOo8 +H+J6xWl8QPYjCBzHfpFlBZAhWmKVYPRHcCy69V42UAh5lmmfh1r3gtHVTCbP +G0LI9svbWIVO9MKKSaPU5zwhZGkx3iDevRdCl24YZLYLIRZhm9yPInoBbbFa ++a4sjGze1M5vqewFJSlFof/IwghP7Agvn3gf/H1NDNnXLIJUuZopIVt9oPpV +q6H4iwjSff6Y1wkOEkRQ2oixLKKIyvDMU3EBEtzM+Fibe1AU0YsIUe2VIUEY +LyH2Yb8osonYhfCYkuB4TlfONKs4cqtwgcydQIK9vwWN/y1JIi7sUlZBO/qB +43M2J01LClGM5erWUemHXImfh2wCpJCqPjXb7fr98DWp5CXyRwrB2NmPX7bv +hy2Xh7m7WXYghJWa3eYx/TDbMJ4vnCKDvDUNM2db7Ie2ywa+N77JIFtbb2wk +t/rB3Ou7d62FLPJ0xggL5RsA56ttb8icO5HrMqkc/JoDwGIe99rMTQ5JelRw +SPXyALDWNtzguK6AEOuSZWe5BiFjSy2opksBwWS5S8/LDoIm87Eq9p2KCIV9 +mBFhMAhfX985+m5QEVHi/aVZ5DkIAX3ap8bClRFCGzendMcgPPaecSeRlZHe +aCeLutlBsFegWtCCdiEPFzhr3JiGQJK/7OdkogqymGFIlTkwBFXSR0KG9NWR +gfd05+L2IVCS7Y66x6KBeLJJmhIWhyCygWUyfVYDwRLPpsxLDAOq1fLWZl4L +YVo5cGk1ZBhMzsnPLYnoIBej1Wviioehr83bWXy3LvL8eVx88dgwGEmaqrxp +2Y20zHGE6DiMQMAx2V1n6/SQiBLzYOvsEeiRFZ6dGdFHDhO/zEZ8GoE4nY7t +q+p7kODSqVsR+qPgHWhgXdy+F2HzPhJSljUKgcLlScNdRkjSMdmZJKYxENh/ +wk7xgjFiN41mpieMwWnGZ7k4hinybdRkG11+HJjb5uRhlwXyTDL2RfvyOPwP +XQ72hQ== + "]]}, Annotation[#, "Charting`Private`Tag$4160705#2"]& ]}}, {}}, { + DisplayFunction -> Identity, PlotRangePadding -> {{ + Scaled[0.05], + Scaled[0.05]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox["\[Eta]", HoldForm], TraditionalForm], + FormBox[ + TagBox[ + RowBox[{"-", + RowBox[{ + SuperscriptBox[ + SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]\[Prime]", + MultilineFunction -> None], "(", "\[Eta]", ")"}]}], HoldForm], + TraditionalForm]}, AxesOrigin -> {0, -0.4306807289133189}, + DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], + Method -> { + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "ScalingFunctions" -> None}, + PlotRange -> {{-8.955815089046379, + 5.4573291409938625`}, {-0.4306807289133189, -0.06583390760243146}}, + PlotRangeClipping -> True, PlotRangePadding -> { + Scaled[0.02], + Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\"n\"", { + GrayLevel[0], FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{ + 3.887174806703617*^9, 3.887174840687421*^9, {3.887174885053684*^9, + 3.887174892708169*^9}, {3.8871749475866947`*^9, 3.887174977753584*^9}, + 3.887184952567544*^9, {3.8871853867115717`*^9, 3.8871853957260027`*^9}, + 3.893237607785204*^9}, + CellLabel->"Out[25]=",ExpressionUUID->"4fd8761c-1544-4b9d-b5b4-9faa986a6608"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Xi]2", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{ + RowBox[{"-", + RowBox[{ + RowBox[{"DufDuh2", "[", "1", "]"}], "[", + RowBox[{"3", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"ut", "[", + RowBox[{"3", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], "]"}], + RowBox[{ + RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Xi]6", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{ + RowBox[{"-", + RowBox[{ + RowBox[{"DufDuh6", "[", "1", "]"}], "[", + RowBox[{"3", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"ut", "[", + RowBox[{"3", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], "]"}], + RowBox[{ + RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"\[Xi]", "[", + RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", + RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",", + RowBox[{ + RowBox[{"DScriptMCasD\[Xi]List", "[", + RowBox[{"0", ",", + RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[", + RowBox[{"[", + RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]", + "}"}]}], ",", + RowBox[{"{", + RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", + RowBox[{"PlotRange", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "3.3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "1.6"}], "}"}]}], "}"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"AspectRatio", "->", "1"}], ",", + RowBox[{"PlotPoints", "->", "50"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\ +StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\ +SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \ +\"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",", + "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)|\!\(\*StyleBox[\" \",FontSlant->\"Italic\"]\)\!\(\ +\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"|\",\ +FontSlant->\"Italic\"], RowBox[{\"-\", \"\[Beta]\"}]]\)\>\""}], "}"}]}], ",", + + RowBox[{"LabelStyle", "->", + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "2", ",", "6", ",", + "\"\<Caselle \ +\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ +\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", + RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{{3.875952981547227*^9, 3.875953205695381*^9}, { + 3.875953297097693*^9, 3.875953297193099*^9}, {3.875957011270492*^9, + 3.875957047134419*^9}, {3.875957125424335*^9, 3.875957151767858*^9}, { + 3.8759571836897497`*^9, 3.87595718748908*^9}, {3.875957237810454*^9, + 3.8759572647954397`*^9}, {3.8759573310521803`*^9, 3.875957359900523*^9}, { + 3.876209125582448*^9, 3.876209130718493*^9}, {3.876209246657913*^9, + 3.876209255553268*^9}, {3.884690546688959*^9, 3.884690577225401*^9}, { + 3.8846907201244907`*^9, 3.884690753852927*^9}, {3.884690875959548*^9, + 3.884690937551785*^9}, {3.88717520576867*^9, 3.8871752589375753`*^9}, { + 3.887175361564186*^9, 3.8871753678913107`*^9}, {3.88717542408533*^9, + 3.887175425325357*^9}, {3.887185406738522*^9, 3.887185422722349*^9}, { + 3.8871854939327173`*^9, 3.8871854996999493`*^9}, {3.887186514007268*^9, + 3.887186516174284*^9}, 3.893237649954227*^9, {3.8932376911772757`*^9, + 3.8932377173060226`*^9}}, + CellLabel->"In[46]:=",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], + LineBox[CompressedData[" +1:eJxdlnk0FVzXwK8pZB5SkjEkMkTIQ/aJVHhKxmRIZCjKEJIImWeSylAhlSYZ +HuWaQsbkypWpaFBEiju6E5f3fv9+Z62zzvrttfc6e5199qDsE+Lgx43BYIic +/X/n/18CgUqibFNlCBCYqlHEAWhGTMSzTfdCvNT5VEWcHfye+u/whulBiDtZ +8V0B5wVGwbt9NpnZw9vPSdY7cCEgvGQ+rGLmDZN71JYkcPFgEZCeXWgWBhId +CtcWBvMgy4PQ6m5+HZqsjo5aDJZBo+ceG1tMAXClbFh/yKuF6WeSAwx8CfR6 +yAg/uoOFrR5TQfjeCihSEZovM+mA80jxNRQ+BlN1i/+Gorvh1qySf9fO51AT +5/lZIrgfdCs9J0S21QKXx83xyfpBYFHuli4/qIchCZma8yHDYDejYRQr9QoO +DRoclfMagb3DGB3iUCOEdYWJ9kaOgs+Tw1ZCEc3gYz/kJO0/DqNeh85OqrWB +5R5P20nrSUiQt2mekO0A+bM2PumOn+FuwfsPGUWd0OXoP2RpPA0nktRcR451 +wa7tG8626CtsWrXFG27pAbZ9ejUofAdfkZTyhsle2FCdCR8SnAGXmK47W2f7 +4XOlZ/AY/w+IzhBckyYNQAHwvKum/IDtP9/1arvioFtvBPGTf8L5SIl7bYsf +IGN9f3jr4iwolIypm1nhQU632WTLyBx4EETSPcZHwM77ZOXVwV+AvWVLVLg8 +Ch/SNnr2vp6Hf91EklZNx0HGVr+5vHQBfEq30in+k3BZXyfN69ZvaL1zb9ft +hs9gfFX49Lv4RXjeKH2DVfgFtpU9+iWd8AfOb6KTtS99B7xNf9tc3F8ovmks +9vLQD7CnG4hHhi4B/6uHyzEPZ8HiZdWQeOwyFDx7FW77chY+9pqf4UtYBmHn +kBoV7Cykn230ZCUtQ2K2fcjCew67St2fy1qGt4dlpEYos/Cmm4U6S5dBh867 +R91qDh4r6kTmtHD0m316ZZbnIC7P+kvs6jI0KzkoR7vPc94jKv1jLAE8GO8l +bQPmoXzhrf1IAgGU45Jld4XPQ7RPfwU+mQD7PRaK2Znz0GOuN4nPJsDlbWV4 +tZZ5sAjGV0/eJQBm/4m2YPkFmLh2KBrTRoCLpbymhxYXILBet7iVTQC36Ijy +008WYbM6uzkZEWHyMKX6AnYR9i1VXe22IIKICBzN6l8EFuNgBa8VEeReraWx +FhaBR1teLdWaCMJ6ZpiHmn+gfy1ROteBCP96e301qfsDYxbP1up8idA6J/F9 +3+BfsDu++/yxDCLsVbxZbYcIkPxNAEv8SIQIkas/ME4EOCg581JtnAjuH6SK ++wIIMErrl3ef5NzfOiV9O48AWIU5v75pIsj8ebfN9DsBQgIPvXw0RwRnheTA +Hxw/ZbOxxdF0IjjQel6EkYjgcfzXaKIcCfCaTxN614iQZGD0o0+eBN6fTqRq +CJAguJAZLaJEAofhpARpRRJEWHvZlqiSYHLk3MvcYySI2xWd1qzNkW8aTFOq +JkGKSi5tCyJB5YGrGoFRZDjszh12wI8EGcPxN2pTyDCsyk7pCyBBMtcHy82F +ZJA8d++kQyAJ6myxcoxaMkglPt8XGEIC35fz+M4/ZM7/8SU9iCYBzbUqSM+P +AnI0hrNJLgl+sXwtnp6jgujWOG0uLAmqO7cvP42mglBj/fjDZhK4KhIvdmVS +4X7n8GnrNhJcefil5WA1FbIcborfeksC/+mii2EUKvQv6u8wxpGA4hbPxiWv +QM3Anj+Pf5Cg9aexgGobDeI74u+bi5JhC/8ptXUOi4bfn3PnsHl+aklgJw1u +siuz8BwWtHRWdhymwecAq0m8OBm22xc9vP+TBsz3VUw/KTLsKN07nbWZDs1r +Woz8bWQg72eN95yiQ/+/YvxkFTJUKH2PJLLpgLnemDljTAa1+BAfIS8m2Oed +vRfvQ4aE9DNTNpeZsEXvpqu+Hxmu4MQ7anKYMChwYtevADJEnWpR/9PKhAPD +D/nsL5Lh9KOIbfryLNBGOJLBFTI82jGUbD/HArsWDEU3lwyzE43epbfX4FG3 +V7lwCxnKe2TeNNSvQTSXZOd4Gxk+XHp1Z31oDTBcgUoPOjhxqMdWqAmw4WZp +/gOzXjKwc+XjhmLZQOX5ZzEBT4babzsJqyHrUGB7AR1dIENqxuqHEYRBvZLS +Td9lKLCYJy0S5IBBXU6bK8dlKWDBDq1W9cUg/2pV8aEdFFDWjbrOTsMgw1Nl +1zpVKKBU9+m+HR6Dvl+Z/tOsQ4HK64Fm7wO50M5OHTfWYQqEgjhhWys3En/Q +RnhzhaPfHLOnYJQbGXVaW+vGUkA85La95RI3irXMG6uIp4D62bu7TyjyoJuZ +BndyUimgkn60SCOVB1UnzRsnFFLgVS9OM8mLF70x2vZtrJYCruElt8ZjeNGJ +zOUrQQ0U8DV43RJcxIueFnbl8mApkK9+Zil0hBdppWRZmLZT4ER9bOOENR/i +rqh3e4ejgKxUPpf0kU1oNKIH4/eHAp/0TpponduEWlyIY6oEClzFveErytiE +mnmfxc2TKcBVO2kZhduEPJNWfSJZFIg0e0MMOcWP9vpnqjYIUsH3r1NOTJIA +OhqUYdylQQXDAi48n5YQyun9GnXqPBW2K7e35rkIobOff1BNLlLhwvwF/4JE +IXTxS2aDfBjH/kLRScFpIfRqSl+WcIUKKfMusZRCYWSxW9W2OZ0KT8MF0tKV +RFHfvVRgPqHC81tHWvOdRJF2Sk+OBCdvOk4HEA0yRFH+a+ly7ToqlGS4JTpT +RZHwfmXDsCYq+IdcvWk3Iobive6p7Rqgwk78uWL8hDja7fi8weUvFfa/Vnvu +TBdHP6Xc+2uIVMiv2iwNWyWQQWEZElmhgqWK+1ZrVwkUZWGcPcamQsLAi3PB +3yTQjlzz8btiK1DWqW/bzyOFrAW4uCT2rcDZmlDHmVdbUOU1sSZiwgrc6Z/C +3lrcgs5qJFu6p67ArZhQc1UlGeT0e+9WXNYKdEloXP+ZI4PqvN8we2+vwKX2 +JwJxEVtRYm+Ht0z1CgiK3TA/Ei6LPs4cEDGdWoHuOlLoYawsiq8kearPrEC6 +aO/3xHVZdGrcsXb7/ArsNtCL/5i7HaWfip5WoKyA/7JG49t2ObSl3lCwWIgG +jdZJuGNBCmjAGTMXYU4D+rO/47H9Cqj0YaAClxUNNhU7Hc7ZpYgOhO9rLbKl +Qaqeznz6H0XkncD9ZdGVBpvfX+u36FVC5sVRTMUIGmCpW7O12EooGDtTKBxD +gwLaeqqFoTKS6D6psimRBlWRG/cVnyqjn4wnJKV8GlB2JPE/K1dBQs/tu1df +0IBmaLdZ5ocKGph5be3SQINH5bL6PGo7EUv+QWV7Cw2eZvs/L6jZiQTLK2bb +Bzh1rIuHG/NJFX3MNgqJ+83xv1xVYjlzFxpcbRcw0aRD06nr2Mbfu5C8Qq/7 +NX06WGXPf1qz0UDDhs/WRv+hQ4uGF9Nly25ExKVi223p4Hz0vvu2QU1kF/wA +mxtMB3qFNzP5oBbSu9HGHx1Fh4MPLhYcadZC0v91yF5NoEOViBTL5fUeFD+e +l/K2gA5BQecL2qZ10PPbWn4xWDpEBdXilkN1UcFGdInmWzrYVk1lTfPqIcWa +Cb6V93SY3u4pRnmoh8xKKrZ9/UaHPVZErnA+feTa/AUrLciAxTufqwT99NHv +wv9466QY8KUfpzvbp49SmjA+wQoM6ChtL+ArMkD5o/sH7PYxwGQ79QDB3xCp +YN4V9Xlz+EJ1Y/acIWoedktKvciAZqMiPuY5I/TXMjwwOJoBjkZmN6zijdFj +pciVthsMsFozefqXZIIYx/sjE7oZoBoYn69e9g+6K11x4TmeAZJKDZ96HU3R +LyNq8OZvDFhwMcfzjJkhsoN5QBCLAYnlp6PXVRBqvWbRtmTAhM5SsQnf+wh1 +hqlrLVkwYcUv8eiw4kFU+Y9Gk54DE6oKJB6dMbJAGfZHfHPDmNDAKHK7NGiB +jimoU6uvM6GJX3PAN9AS1Y5q5u0oYIKEeF2YVcch1NE+fpfyHxO0hZrSkqOt +UOFq4pxPDxOQkUCs9YHDaN9dnyWdCSZcSshmDM4fQVmXF04vrXL60sXoUNKc +LXKbbPFLtmFBzmDO/ezVf5El/3rpsicLlLzPhb1QOY4uZXDG/zAWYHEKBr+c +T6CVORs9RgkLPJ4RX78SsEdNekYPHGpZIKxbbbzUZ4+Ci6cI+3tZoBjl/D0l +1BGZkIifeyksqD5p2Nbj4YSGMuLH4oRW4eVb7w1jd2dk5BWV9nPnKlC1dEUH +b59EgQX/zE65rAL9SXt1w6QrUtE8aZEatgpqLdMSV4zcUNFIN31zzipMRMjp +FDp6Iied0fgvvatQxYOzPy3nhRYxl4X/nVsFSXF1mnj6GRRjNj84zrsGkdOe +8iJ3vZEIjdxXoLYGEZJaXfY4H2Tw8+vZO0fWQPSAk4+5ki+aKXPrXg9cg/PV +/S9FSvxQhLKe6a+8NUhLYxpM7TiPxvOfzLd9XQOtTu/Mj0ZByNaoXGid02fx +GLGm6JKL6AN31YKXIRvkEqm6Ulqh6GOaeaqcLxvO/Uq4SmkLQyUDa/iwW2wQ +vaDNdLsRjkJGmLdfvmPDi1kDPdmGSBRR78KvxbUOWsdtuLNMrqAfEcUi9mbr +YH+l71GAaQyqNhdvKItZB6b2mN+l6TikTY6SqWtfh+qrCrXHH19Hmg9Gcy0E +N2CFyNB7F5CMZsWU9dGpDdBy5K2r+ZmGan/j3cZqN+DZgdV0m7PZ6P1fSuFb +AQwn7z6clt9zA13nF+N/Yo5Bu8oKx+wP3EIrbuZ9UTEYlJwkfKibuxSV5LLl +5DsxSN6dxIgcqkD5PIt+gZJcqM2Y8iL18RMk2TN3+W04F9LYjb5et6lHFy4v +csf95UKZ2Z+d6ozfoHH07cWxTG7UQZf9prZjCL2uiJR2COJBLSIH37u0/0KX +Q8e/Zf3mRQanv6rr5xLQ4ZndMXxn+ND/AI4HVkY= + "]], + LineBox[CompressedData[" +1:eJwVj3k0lYsaxrddZMhWpkKReRNRZg7va0chVA5CXYkkkp2ciogGYylkFx2R +kg5xVBIdhYrM0iAU0VEuShK+79uD4bp/POtZv7V+61nrUfVnuwXSaTRa+mL+ +343qNhkfDv7EhO3aai7+wjhW6V0zq9OAydIVojcn6ajO3LgwmlSJmZHyVJkF +HY1Swlv7v5SiWpvMD+GHQigfrHQhm3kbN7KNI5iOQkiTTfDZ3JaLM1Gimzyn +aGg6cXW//fRV/Hrx2gFaMQ0z+D71sjaXMcCmIv9BMA1XufbnyP5zEdk5jGzl +TTQ8fYQnUVGejHl3+o+X0Wg45iJR8bMvHvNfndGPKFqAo32jHx/0ncGVab8E +jbsWoPI4U3FwIhbNbFpWLGMswI6H1fiMEY2fUwL+Xd86D1khDKv9gycw6KjY +04AL86DVF8scNz+G9mWNmsI756FzgCiweHsUlSr/yJSXX/RPDqxufXUEWScT +96kPzgE98qVGuHEYBtgKyz0smYPmxgJrdDqEgyF9wvui5+BgBjER1HQQQ9te +bO11mYMBxZPrM64dQM0HPZdfq83B6Vcze9VEAvDSmE2R+7tZ2OPzknp3YR+m +vqzaHFM2Cz13/2ANW/mh9bXeSe8Ls9CrLGobss4Xz5JXXrcEL7JwdWTIsj1o +12GxvtRxFooivMz2a/jgd5mKd191Z6FbtE15xxEv9LTKveMjOQsNsy63rGI9 +sP6o/3zhewGkOiWXzJi64yMTowX3JwIY1xJRbJb4HUn/ldnTNwXwstqdkzu3 +A92NfHobwgXgu9c5I01uB6qW2nl+8hFAieWM5uNYVxRrnOm8byeAgf6RL1rn +tqHiKr+svYoCeG495Sa7wQmTQku9mSICKD42Hd086YCbOOY9iVN8kFtXwVN8 +tAXvnU7RGmnnw41tN375iW/GcSxjnU7iQ73kfE0ki4UhHd+yrU/wwSFHzNs1 +0RYLH003+wXxIb/OVuxvfUTZmAhOkwMfoso2RLmqACZvcLZbYsmHKg2T/qgZ +azRRDBjnrOfDmo50dlGHFcpl5j0pleKDj84j+aROS1zJVr2jR+cDL5Ht4Dpg +gccLCkXJGR4Y3J22slAxR6cThxJ8+niw86zl6RRFE0wvC5LSLuHBbc/29eps +Y1R6znQuu8GD2vKuseA2I2Q8zegP5fAg5qA9aXFtE9b5hHxOjuWBv3pRsGGc +Iaqo6JtLefBAcqzQ+jcRQ0zLMjVU38aDV4SPOkvDABfeBpr52/Jgxn+I+Bam +j0r7Y87t2cCD4ZKlTXb7dXE8595WNXEefC+sixqp1cH08Fp/IToPujumIrVV +dFAL7iXM87iwM7fF8dxPbRzdOszd/o0LbceNv59q0UQyQy/9t3YuRCdq7q93 +0sT3xNGH3AYuXDc3ujrXqYHlvUN3Omq40C55ubN0WB1PPJ1vqrvHhYAJob0/ +LNSwNrmZXcnhgoiYtX1dtyoSHWphupe4oOydyGAfV8WobC2bh0lc6F/DquDX +rMPlTj05QtFciLuolynVrYy3p6XmEvy5UG/glrfcQxGXMAOl+425cMpBIt/s +vQKe25H/mG3AhRTHXU05XgrY9ljoirQuF9yL1Zi3D67GEC/hD/EqXNBtnQmi +lchjuXSyq6wEFypcFMpN78jgVoYH8+5XCmLOv83cuV0GCyPNPsp8piA2ZlOb +L18a4x4+UUzpo8BlyYFqeU9pPFvZeuHKWwrYn36XT1RbiYHTvfYbn1NwbNKz +1EqcgWnp32e351Nw/jS9LylDEpf1pvgevU7B/K7UTjMlSdwutSUiN5uCv4tv +tcabLEfru3EWkhkUBErkyVnGi+ODI+bT289SsO7XGo97scvwWciKFscDFHCS +Owe6NJfhezFpYsyfgi/hpwqvvBLB0YvZahl7KVhxzPLNCw0RXNs7oDXjRcFl +Gmekc2gpKueOHRJ3pkBH/1e04NBSDNsT5j2/hYLVJj8i8vPoyPJv+BJoREGp +361LCbvpaBjqbBtqSEHx9Q/9yQp0dBE97xupT0HZh4vVb7KFsGrQOfOmNgVd +LNE3rQU0pE72ypiuWWRTj7+TO+ZgPIdf4y1CwY+wQe37S7mgYcR21h0goZDd +VH2ulIK2z4w72X0ksKbYcv94UFBztfu5xAcSnMzzVuiXkvBxbaY4rYsE45/R +K+IOElCeK3lCpZUEleGrdyMUpuGaiiLDoIqEkdQPf3qHT8C7Y+55dhwSbn2k +4/UlE9AesuG18WUSwvp19/pn/QBGutphZjoJauE8lm/9OFg/aW1USCXBp+U1 +10/vOxgl75bViCfh9oic7T7rURC79Nrx9R8k2Jybrc0x+wLerqYZHl4kiCt7 +nQyYGQLPP9NuPPckoahY2GHqwRBYl2T918CDhIq4zfe9DYZgWXDAchk3EhSS +azLoRv/CM/Mwi+ltJGg9O3x/pnIAHMyOu6/Cxf/CJRI6rF7I9c66+VaHhCg3 +8SMyX3uAoxpWc4pJQtquR+VziT1Q1ePI0dUmgbM2I76hsxvMol8FpmiQUP2p +eN3z0PfQVUH+tluFhAL7usKON28h5dZ5gbMcCQGnrFdEhbQD96Ojsjt9cd/q +VHP0uzYocdg1yhAiITlH2oxp0wbik3igbYEAkeHca0GrW+GLUBHbcY6AcDsl +w5HBJigL2uflzSVAr6Sr8kBlPdi5Jl55OUFAIxk9nvbiMejZOvz1Tz8BY1JP +p1THqyBfZOjm7T4CcmVc9UZXVcFhpZ3j6R8JcExMrCWOPQLLhajAw70EmEZf +v+6zrRwgC3NMuggopSq2pJQUgYpQwX1aOwFJa/QKmPAXMD7d9V1oJeAFe7dL +SHchGBTOGy60EOAySdCKpQrAK+GnGb2ZgEPp/9ncsysHWHGT8XINBDQ9SJQb +rcwGW7utEmvrCRiPr1bKWnMVQn825mu+IMBtwUFwRpAOHEb5hMUzAhwaVM0N +xlLBPrjrpn0dAc1JNMHcSBJwqFRvt9pFPyfUfdv0WUgMMJbxqyFgyUBa5bBc +DGx+qtoe9pSA/wG+jFnf + "]]}, Annotation[#, "Charting`Private`Tag$4175432#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], + LineBox[CompressedData[" +1:eJxdVXc4Fvz7NXrMbLJHMovMyHrvT2ZpWqFsopfMl4ykVHorpYxesiIricgK +GVFWiwhJVmY8PHsYz/Pz/fd3X9e57r/OH+e+r3POXp9Q+wtsLCws1B38b/// +qQoIHlNlqMK4h9m5EUVrKFIzHFNjGIJNKYb8XfEsEDk8RzUYNiBmquo1rOgP +2mq7h00ZzhAtWr/7i+JleKmV0xPPCADxJL/2OsXb4Kh7vSieGQ0/Kp+lnlb8 +DwYKB7Hx7Hdg99UE+xaFUnA5KveiWuIJcJhelq3kbARN3MjcjeZnYFPC8txA +5B20HbRtI80+B+GS4tyzV7vB3yw1v6DxFVBSLyhGnP4E26Pn/cT31UJMCLdb +2OgA+O1/EuA10AD2onP9Oo1DsKDbdqw9vRnkSqpNfiWMQLkolvs/1Aao9fiB +K7t/wOpJjM200TuI+nC5L/XDT5BRky87dqoLqglLp+WtJiGoKWSZM+4DOAXX +veg6Ow3Jgb8b6lh7IepAOMHh6Qy4sK69yXvYD3Gp7JD5aRZ+nt4v+SvjM1hR +r9wo5puDyuMvnmCCByD2NcakxGIebnzujjov+w2yHVTT07wW4PstlqZe9WG4 +ahIcmZ+6CBf+fKn7bD8CuCkBKeOKJZg3G82YZY5BHEcq3+cfy3DnuIzeTb4J +KA59YfoX6wrc322/cs9nCtZn7s6EiK7CA/Wf7/UjpuC6NpVXUnIVGqM3J5YT +p2AOT7bokl2FDD/PjajCKcjW0p0UV10FD3MhG/GZKVAcTuh+Z7QKnOn5pZY6 +04C7dbBNwnMVTtytZ7FsnIa5BBuJkfJVyFz4sL57dAbcPIW2SwALKc8/Zk5N +zYDrorAcpyUW8mtPdL5ZmoGkYxk+F49iISc6vyVhYwY6BvOdD9hhYZtrkPec +3CwoRuRtvfbBgjI+qMwxYBaaH2bd7UvCQpVcje4jxizcK6HH7fmEBciv59+0 +mINT4fJ6Nq5rUKO8HBZzag7OvTc9kO++BmJ2l9QZLnPwlHzPk+y9Bo5xZe8V +Q+bAizsxoThwDfrNpJsHs+bgsdr5Z5j4NdBTNr71dX0OfPHHFofy1+ACvy8x +o3geJAx9y4rm1kB04Na1oQOLcIbRvvPideCJnTw+arQIJptOcuSodZDJU7i0 +ZLMIiwRjvfa4dfgznE/Q9VsE5u+PxY631mFM9KFKUN4iRJ/Z33Ircx1iny8I +xwovQe95L5eN1nXokZZ+8YRzGU68czhZgMHBul1T/KLiCjgifYVaBxzc0WUv +q9dbgepI4+sMJxwUqP64lWG5Aq/UVFVsXXCQe+NEyy3/FchpNLGadcPBaCKm +TadiBQJW5H6K+ePAtayeY9hwFQIwZa33YnDgE/SCQPDAwt+CJ/Sr8nCQ1KmR +wx2Bhc9fTMXZC3DwlOs/R/2du6/yHDzp8gwH7b5v/umuwIJ75fda9jIcODEi +uqbpWChvq47xqMZBsw4ugjt7Dbo4BK2VunBwmm+oYs/KOlxYvnaYtIQDwcLF +iz6sOOBcprv/u4KDq5fr+234cBCoNEyRWsOBFwMzaaaMgyYhmyQLIg6uZdzi +GN/RqeZYrpq9jYPWtxl6y004SImLlvQQxsOVPfKHVVLw4L+anGtliofnvwWf +bubgoUrY6tbSX3h4WoH/PVuOh3NuipTkI3hIa/s7efEDHhQnA64MW+PhX7P2 +7U8MPIzF6ytessOD4HGNKZVIAvQoeD1u8MdD8u5OinQIEaJkfKmtqXh4KeJf +oZJAhMJP4UIBGXjoULHSsUkhgp0yqV8wEw8p7nmu/VVEELadk/fPxcMfQdlv +v3BE8DtaGyhRhoe1At9Ir1gShCa32ee+xYNFSM9h5TwydLROaast4cGSK+Gk +ZTUZdJY4BBb/4EEzyev8tS4yTJ5kfVmKxUObaLut7R8y3P7Rp6JGxEOqhT/B +yIgCkdG3/9Lf0fHBwux4wwQFTIKaieGiBIhYOKJDMaHB44WGD8lHCGBdZKN1 +w44GFvnMCj1LAqgTduE0A2hQ2PnRdcKaAGkYpc75NBqstpwS1D5BgF9jaryT +KzTww3JzzZwlQEdSxtODxXTAKywpBF7a4XNUnfHT3gRZt/yze7MIYKBvybhs +uwnmGTLhc9kEqNmL1ar124T3LrTY53kEwIZ+Si9/sgmvKg676RUR4NvHn91Z +mC0wy42561hFAMt22bej81swqwfvP7wnQPFcT+PnfgZoBerphxAIMBNjGJ2G +ZcCV1jeRj8gEcJJ+GZklyITNCVbOOhoBRG6n/Ah0ZkKu1HN1JoMA5m+Csk2X +mODyp6+khJcIqpPa+3OSWdDYfPnVQ8pEiC8JKBAcY0UiUyK/w12JkKMQcN1q +jRXxttRvd7oRIUIy7djzXWxI7WFos5gXEdR5rSroOmxI/2y3coc/EQxca4rG +U9hQa3fHHvVIIggmDE2L2LMjjouRAqceEiHdbX7yKxsGiWzVeG52E0ErM5a5 +IYtBK4034m37idCkIu7nZYRByiQT35zPRPA0ia2dCMMgGR7THPNhIij0xIm+ +mt3ha9EFy2aI8C+XtYP3Nw7E8zKd5+MWEWbJ5XNDi1wIDPBdWfqknZwfmh7k +5UaJs1SK6mESjJ5eXlPW5kYzrclBTSYkUFiXejscy43EuVgP/DYnweNn/P8G +C/GgSCG7RHu7Hf45IbkCe15U9SuptDiEtNPrKHhShR8JP6LcMK4ggVnr4MBh +Z370hMV+nPMVCcJ0ViVE7vCjk1U126OvSVAu5VB9aoUf+W2adFxvJgETuTqL +vxFAaet5k6Q+EshIpwu4NQii1fuFAsHLJPjzpFObZUgQfWox2BOIJYHT8Ft5 +8rogwu8LPxOIJ8E7Jue5kf1CKJf5OD6SToJSvLdFdrEQunmEnFjNTYavW5K6 +HuXCqPwZy64v+8ngbCwXVPNRGAW/TfzOqkUGT92B85fWhFHvuVkXIz0y5AaU +aSscEkFMWlJWrQkZ6sw3zGt6RFAldpz2/QQZroV3v1JhF0OPZl6nj4eSgZzS +JWv4WxxFYt1PaTbt+NDchHuXtASSXzx5zb6NDNwammqlDhLoiCdX+dUdnwqc +0Ki40iOBFj2YmgufyfCUYLVnrUkSKfGssrD9JoOyJb00/Is0MmuikKL4KfDQ +yZ1vSUwGRTzjrWUXpYAYVX77rocM+ubFXpklSYGRs5o1QUQZ1JaR/HpMiQKM +SwmGYRpyyNXAqKrWhAJXIh3LLMMV0OTdONvVQArws/ypP1iggOy/Wbyjh+3k +wFHnQMJXBRTfLqgkGE2Brdb45zK6e1HseWNNl5sU6GkJa3vKqoiuzCSuu+RS +IOTBYSfloX1IUkes0HSAAiWTLBFFwkoo0OvVkeURCozbbu8NclBCoS4iioW/ +KGAcJe64NaaEkthMnfRWKBAjd/eDKVkZpbhHFy9wUAEXNCljEK+GpHF3yuoR +FfZcHrf0/6qGqGpS/JU2VAixaGjyUFJHReoyijWnqDCnOdwzOaSOyM6FKtNu +VHDaGK+ssz2AArC0xqlYKoh847dtrTyALIblsswTqeCpb63GLaKBDvJZ42vv +UEGhcY9C3ZwGOuoTIdiVSYXS9lfEm6UHkbwwLji7gQrNkd18X2W1kFnfoeiY +NioQ/pS4Y7K0UIDoxv6AbipEmD5O/2SrjW4GRn+NHqHCw83Ofh03HdR577lh +KJUKjTNRqo8m9JD+4v59XGY0+POFQ+WngT7qnqDISlvT4Mzw1+o36fqoI9R9 +wfI0DRwEv35OdzqEsG0xY5PeNGA7LxOB3zJAF/W/kY3v0MD9pbI3LsQQrYmr +0IR3cjfcYXQuZs4Q/ZDL2c+RSwOJr5mGXeOHUeOB4CpUTQPmLvM6Nroxun5s +0EtynAa8i5DEed8EDewTwf2ao0GX99RxfiVTNIHVCelap8HN3kV/MT8zhO8s +ziVh6MCpzSR+EENookv2Erc+HTz/CRzniEboZabz8hrQIZOoa0P8iZBhdSf/ +9nE6RGpeZGbUHEHyYVLUTD86tEhYl2ukWSD7gKr8lUw6rDwLmzqjaImeBEvz +nSulA3aiaECsyRL5jK+yYerp8PBk/bfDW1aI/bYYSWKIDmKsgyJ3y63Rb6k7 +wbdn6WAeo3/My9MGxQvdCzEi0AGF5SqxLh5FI0cF/OOEN4DawG0i3XwM2d34 +vMS3bwOK5Al7vLJskcRrNSGC3gb0USUZHbEnEM8hVoumsxugMXAtjevyGWTW +KH+ovGADrH2bS9Wl7BDrusykSt0GzEQ+K0zstUPbhapY0d4N8Jxci4y0cUDD +5ItXnfEbcKRA1l1ByhFZ0ARTGzk2Yd6X2aix6YjG+LzMn8psQqjpaibb2lnk +GvWteO9Oz+WUt/7hYXdBD7DY/o/em/CiccCFqeGKJiNb/5OJ24T69JG+d73n +kejNZ7FjL//Xk2f8FsAd+Sl5f3fp2YRc4v1XHSMeyIjGkf5idhP2SWXJPjDy +Rh0+0xY06S24OCj+goB8UAKHZqqw8RZUctEx+d6+KJv067SJ6xYUlecVEvP9 +UPY/HuNJsVsw5dXBidu6gFSjrMs4c7bgo5e71rHrAaguifhkrHULOP1SKrMO +/o1EvYt8RGa34HpYF91KLRg90rdiN9fahgrMnYOJSaHI316096rLNpSdXvOR +lwxHYhFcDXU3t+HZf1t2xfkRSDF2112Jmm0IMBbYddstEmUhxs3Z6W3wfd9q +6OFxGdmZf8c4iTCgfzjDm/g6Bhn8uPug9SgDZg01GhyDryCpsXuO0YkMUHbV +ehNemoCMFC82rLUy4OeR5rhGSESXGZENJQwGRF0YXEhNu4m4LqlLG1sygYGN +m28JvI2+H+79HvyQCQOj/mnrxLtIYB4/pDvDBHMpGb784BR07m+RXR6yLGh/ +4wEBD+k05JPPdPp4igURC2L9vfCPkdaxqKtLSSxI7Qzt5T3tHPRLsIQh/Z4F +bcZ4p/A5FKKCAvcET15WdGJx4H7ifCm6mdv0MseDFSU5D2ar9b9CPD6bl106 +WVFR8T2bvspG1N6ZcF73Lza03+XCI8mKLlSv9Ho1YJoNsR/VquzrG0IsPHKe +yb3s6EyqguaXvDVUeP+0j+NZDPLq9RSEp1T0pMVgk5OKQf8Hv++MCg== + "]], + LineBox[CompressedData[" +1:eJwV1nk41AsXB/AxtqIkRiZL1lwqSciSnINsuTLShkJCKWvpVVFETZcspVDS +kOVeZc8WkVDhcgtRoXSzpBKhd36zGu+8f5znPJ/n+zznnD+Phl/YngAyiUTK +Fdb/+6zhpau5N1jYeK1v71mOOC784sf3qfyDh60cIw2CRDHkB8fDaP8zDNSM +wq5yMrqd/lb7nVyLtwf4f/mtJ6P3tB810L8MnXPn5ewbRDBfMKjT0F6El3z5 +ZWm+Iuj68L5VQXceijXXPrujIIJ3ZcwaHj7NRlUpUe9PAyQ0iv99MLw/AwN8 +FXylckgo304/NaebjsETTJnzQSTc0dOZIqhPxQf0vM8kSxI6MRpnKfuTsDhY +bLRZjoTJewwcDN/R0TKu4PHy4SUoVby1JkXkMm5mON9m3FqCiMNSdY2ll9C/ +ZkbHf+8SHHuxkHM2KhYvhiiZl1GXwDdJueDB1hjkDS1OTP8rgEeqmgXuJ89h +kAU/6mGpAMTkKWGBy6Pwsf3DXfRoAUQkzlE8uJH4Mm1obKOLAA5siemvNjiN +e9c9Et2rIQCOYi1vm2U4Rht2S0HvInRoBN9oFw/Fb7FtDxgPFyHPLmRY4f1J +fFX+tLWevgiHzGcPp04GYXC01b1A/0VwLDogK6VzHO0S3uRcs12ErVezmlrT +A5HR3syQ0l6EF+fEvSV0ArB4zcZLf4svwo8eikZbmR8empUR1PTwoXb07bKK +7COYlXeA+7iKDxbpMzDE8EWHtRLylVl8eB2gqcZ9cRjTmr+mWgbywab3iXzB +jkMY7Lf5Xv1uPgjKlN2W+j2xd92dwTlTPryyKnY55nwQUxejd0Wu4MNbB9KV +DL0D2J6081UJiweM2VxegfJ+DF2I+hw9zoMKZUe7EOO92LTBJr6jiQdXavb8 +/WS1G6pLj+XsO8ODMa8tQ7RAGkZXRitk+vOAU1VUlJXoig6S1xlWe3mg7Hxd +V9LcBa3TlS7UGfMgqkztwKSzExL1l+4Mcrjwx4pPj0zDHbGkpjr/6zQXZCdN +fGJzHTCgz3jcfpQLnhUeb5RV7FFCRVF3uJ0L9gbWSS0xtvjE0MtAMZ0L1trp +ifu/26BFwdH15+hcOCqwq7f0tsGLA2tKVkdzoddNOinlgDU63L9+/ZM/Fyi7 +BbmHVwG6xRFK7RZcyORPU37tsEIlbr1T2RYu/HCJkbkXuQNvx9Tpt+lw4WYr +LSKNvR0j5Nx2HZPnwontNzfM0szRcrnLt9hZDoTQVsf/qjVD+cuukXmTHNht +8nXVUXUzfKYzv3P8Awdys+IDL4uZIudVmkVPNwc2vj/BKhY1wfnnbT2UEg78 +PrDjh2etIZpWsco+h3Igh25yMNHDEIe7VFp6jnFgcsJT5iTJEM/u+bz5tS8H +RpofqY3u24Lx2xz0qO7C/Tcbn7eYb0Z1moxXmRkHvOV06fryG5CfNBtMl+SA +XWEUO+GeHvrWRGY+EuHAztKhqXcb9LC7YmXuTx4bbIOkz8jt1sWEANmVd+fY +kBxxmmdTo4PO0z0yFcNskLc6mMSc0cKMarWAtCo25BiW/udklhbmU9SNrUrZ +UJN0MZtro4WdHoU/eX+yQdJgdYh6niamfyxSLchhwwq/MdH+cA0sPMl3ufMH +GybbOsU7WtZh2uqDLfN+bGi7yVaiOa7DsTixj6e82XCkY6TuxBtVzP8c7Lnk +wQa9pZ4MqXkVrOgMaDZ3Y4OzVkmTnKMythw74mWAbMjuMRgmH6Ti8CazRq4a +G0olpXv1yFRcM5S+b50KG3psQy5wyhQRE1eN7qKyQSauWeG4lCIqVv5m8lSW +DYYOT12PDyqggci3TCkyG7alUK2VS+XRwStlQf0LC9JrP3q+05PFEsFdzq1q +FuxccSVairMKnRkfNg5UskA+ws2vPXcVbna9EkMtZ8GaVm1Nw3kZPFykD5XF +LKCvJ1LsClbim07bViUGC6ifi53WgjQm913W7k0U5rTkbMetkqjtw0wN8mfB +u+RI/l22BI7MVuw09mNB+OifyypbJLA27GMR2ZcFvs5UiZU0CWR3xdg/9GJB +6YftVTbnxNGtRFxa250Fa0P0Y+SmRVGr3cC90YYFTt31m7osRNAuv/+dpTYL +Qm1/bG+UFcFMMe0Ze00W6Iu0fzKcImFd2AvzveosOLRxWK80g4Tjz7I9z6qw +oCMqWVd7fgmUwyKmJynC3Ku3YbR4Eb4H266jSbCgPnuZhWMVB7I3PO42miZg +2/SztOdRHLC6Pdac9Y2A+mbm+wkrDvTsPq8qmCKA8s+WQcnXbCh8GynbP0HA +udKEmiyCBQ+DwswzRwkYlnhZLnKEAJPNY/7X+gmYGY8/8injF0gbi5tKNREQ +H69vXRfyC9oOVuk2NBLg28R5tGD3C/QKL0wHNRBw+0isZhZrAZYor9/21hHQ +m2Ome9JnAb6cL/lSXUWAO3Ug1BTn4Whm5tqevwhYb8AoIl+cBZx78NYgg4CQ +hm7/EtGvwLkf/GNrJAE3KV60j0NT8IfRJgPaaQLKc2PK/Sqn4IZuX1ToKQIi +bj2O8PeeAo/ZMkp5OAEVSkFh+k+/wPizG3vMQ4TzVh4y1U2ehLyYxqyLgQR8 +by0ffHVoHPxOi+Q1ehCgLqIkpuTzCTrIhqnVNsL7cc/ZCJ1PsIqeHMuxJmB5 +fHG/8ewoGBUqO6HQP+P/NeBdHIXYEJ5PLxBQbeQ8c6LoIyRM0qK5lgQEBY+1 +ksU/QNR6Nf8zpgQod6//LFg2BPobZnYJNhGQOKMh6OC+gQjmCFdbiQDpvJU7 +js53wcS2ba06i0zw43WN/K76EjLbdxVb/pcJcz2J/kN+z2BO5wblyxcmVNEo +IpUqj2CfqC6TPMCEtzWTzcMpeTB5lckyfsmE3xIUjCRs82DXmatHBS+YMLDU +sFZ/PhekEjcv6xS61mT32o4uBvz06eN5CR28oMWwvJwDfAUZOv05E5ab9v2t +r3obBsWC/zvZxoSxd28rtCvSgAUjdT0tTLD43prIrEoFz8qw9zlCk5O2hSvU +pcC0585NIUJnUms6LdquwUjwRJCM0PeSvm+c+nYVVP6lm7o/ZYK5x6Fo/TNx +0LfWdX6yiQm3tkjd16LGwnl+rVqD0MYZUnE0xwuQf9/1QrLQPAWN7V0V54R/ +gs8LI6F9XyrS32efApNlHxIuP2HCfafIZP+RcNCobdXxELr6qrFZpGUovHY6 +ztIXWnzKZaHk5QlQPZ/PJAvdVB4zHLTvGIzo22q8b2TCejlS2l9fj8JYnOr5 +MqHvBbEfe8f5QnqbGClBaLX0fKqcuSeEqi2vPCh04d0DaXjeHfJ/Y/O9hf4f +PjPanQ== + "]]}, Annotation[#, "Charting`Private`Tag$4175432#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.560181, 0.691569, 0.194885]], + LineBox[CompressedData[" +1:eJxdVWk0FfzXRVxDRcicZKqoVIRS7B8NlDJ7CpVHCEWkMiQJCRUyJdIkFSrx +CClJEjIkFBqIhEzXnV1TXv+v71nrrLP2l70/7L32UT7ia+POx8PD0ze//7v/ +f0a3pZRdKpKBVOFloZkuXTzLFFKJLlqFa84PZGa6dmLLnm/vYor0oa64xG6m +yx5lg6rmCUWmWG3xaudslzsq2oI8c4v2Y/3r44t4u8/gzFRRj/hzDxhpeq5a +0h2FoJuKtKLiQNA3C6Tt7U6F6uxd/ZTyGGSo2ud11j/ECZdbQpJeSTjHSR58 +MV4A+k/IFTvfQFHDy8pc5xKsdUk8umzwNgzvpC6uNS3Hz/Dih1kxWQifdWj5 +MFCJZwVHSgRHH0AmYeu6GwPvcPVzYr+fRS5WXEnICfhWA63acoGNl55A+avP +zSe3PmC726VviQsL0Hlr1HnznUbk12oM2VYWws2fuTDYrxkqFnZRXwKLoK2Z ++NREoQX5yw27l7kWY/jhIXPb261YdJwt17qtFNrM434+wp/B6+FVtdm6DHHF +EUyn1C+wtc9+l3TyFZZa/Yh5vKwDSuEKGmsiX4MTfNR6w9VOBBQ7xBf8eAOT +txT7AcVv2OHVvylU6i3y1XP4F974jmsf5Bw3e1TBZ/p75l3dLnzRKU6JrX0H +naMCJzjN3djV654YqP4efyJXzIRq9KD3QEF70qsaHNcX+9A+2wOvsJ57L2zr +8Obrbvfyml4M3t844LGgHtTylcHe8b9wTkd2TIC3ESQrm3X6WB/cw6J+G4l8 +RCPliZDD1t8obdytssfwE4K4QvfkVPpxLkBVRyClBbNWhlqZwgPgcXHu15xu +Rfq5XP+UgQHYVB572l78GdbPCr3O/RjEGe+cq76J7WhKC7/cVPcHzpJqA61P +O7HiyOCCT6VDSMheolbs+h1hqnIijdXDSJPTcb3v141lyqHGIfUjeM04ELY5 +rBsCG13LFzSPYCLE7/i3uG4Maa5XjmsbQXFSz+SOx924+CDkcdaPEcRKveor +GejGtIJWZyd1BHP0jROK//7Ed2lL+EuOolTXxqpSqwcBCmO/Dh8ahf5+P+m8 +7b3wfhzCsWSNgiT4LNm+txcXjNfsqeOOwjnCWvS3XS8e/OZmGM+OwmRH/3aj +o704K2Olr08ZQ2/Wky672F4UWnb4a8mO4ceMibVUSy8O1G56sW/bGNaf9TTf +5vELEf56n+yjxmDtV+C/vbAPfsk7uVXyVBw/UJm8pLwPCbcyVh9TouJJdjj7 +T00fDkWmxUqoUaGeFlX16kcfSp//7T26jooh/YrzI0K/IeAruWg5oeL3Dqme +SNffUE1WNa11p0LAXbhM9X8+2Ve8WfwfFU+/5Z87r9WP1ffN9nWVUKGlOCgy +aNCPinXO2vmvqLAxtPnda9sPj/fRQnbvqQiwM1ENv9SPvnPXRQo65/WN0reH +UPsxZf0zI2+OCkXrez5S9QOIZtRTnluMQ1z4qmDi1wEcZf2IVLQbx+U8/6YV +QwNQ7HNpjHEYRwIjISRUaBBG2ZQ6N7dxUAxnG9abDUKXYputfXYcQo6GzMyG +QQTTPrSsejiOaFOJova+P0hJe9gWPTeOrH2KZWs5f9BwKiAyjY+GViP5l5lC +Q0g/kbzKW4AGt5MesQ3rhsCv65oiu5AGzAVeOhY8nyv3abXz0jQ0r2mx7ZUa +hvxXY8vQdTR8Wb2K4+c+gvGc1HL7gzSUVnQt5T87Ar4KVpa8Mw1brkmynseP +IH9NfnqPCw3yW6RYfi9GoJcc+drXgwZ3nxoVh8WjKJ+I47/pT4PZHGVE/fUo +LPWtalfG0mAneHf2hd68r3a8xxRLaQhgR/+Mt6Si+p/PKoIvabggELroqicV +7bt7FRjlNJzUuFM6m0GFnuipLw1VNPgW6N+r4x3HT9k31+M/0jBTvpvftmMc +An5iPTYDNKTP1F9Ma6WhfIVdXZ80HUUh9wXV+mjIv9Kss1WeDjsLsdZmJg2/ +U9jOKYp0GJnNpV+SosOr9qLAXjU68iXvVZ11pEMzVKD900Y6eLV3rvs0TIeO +/82VOvvo+M5Xe0FiNRMue6NH/KLo4NkhqmduyER89nkfSiwd7GDFwQIbJqRC +GLK3r9IhMGt2XOA8E3715dNtyXTUn4l/86udCbN7y50ds+hQNKgMZSWykCbf +q/3lDR2uHqrJG7Q5+FfRf13WDB1WkR/r3u3jgH+LmOApHgaqeCWUbnhx4PZ+ +OGIXPwNhielPBbM4kKRJB7AXMhB9qLFQQXoCXKfS7lMKDLy5G7eFtpALy7+9 +iRMGDHT166oJruXiucc/y9lGDMgb/lX13ctFU8TBR2wTBtycTgvrx3PhsVCl +bm4PA5yYIp06qUm4cwW4m50Y2NyYKSGhN4VkByf6jnMMUD0rlrc6TSE4adW/ +Zy4w8NHfMYsbPgWlSM0tuRcZ0NBmOIU1T0Hj2VEzhTgGbnf9PHXPdxpaNi6l +GrcZkHktz3r3fgZOIvGiE5UMPAsPEfnbMYeCjT8fJAszoXM3ydZGgIdwSyLz +6IuZ2JPu8pi2nIc8CVn8zFaCCWXN40GStjzkqk1It6oCE6yIQhnpNzyEnbty +jL2WiaApR9beR7yEUmnC9bJmIm5FUAjnPS8ZrplsXvQPE79ib6fx9fMSiysX +bZ87MnFlpvvJbjU+cj+mI17cjQmfmOqg2kd8ZB326VECmWiLE+veXb2AtE4p +0vpuMfH6xpVtIsMLiI/Xx+yOLCa6Q16oWi7hJ2IdlJ5Pj5gIX+bL9TvMT4Qa +Xqz+XMjEBLUuwIVXgISvCalTqmHCqUBiQ4YbhcjpJjl8G5/X+2PixZdCIWEx +4y5abCY+3EOJcjWF3Cr/sCh2iokCU0WH1JWCRCzXPNNGgIVmL27Oe5YgeX5S +jrtZgQVjuU1dji+FSfAvz0dHzVjwT9VPOj8jTBr/iF58YsHC12VhvO0QIYOD +AaPTdizkDGwSIvUiZNFsJrXUhYUKg5K+cepCsqS6pCYnhAWXv28CcUGU3O3e +I5ZYyIKJDTV17qsomf0QIhrxgoVrKW2MG7piZPap9uawNyxQU8sEExhixLfV +oON2Ewumn1OVr1ctITNl/ygFD7Nwc/3Z/WvjJYjCV4ODTSvZMHbWOPyySYJo +WzxouKnFxpmrj1AvKknSHfONzuqxkeToX3I/VZLs2CPt6rmLDfET/hsaSpcS +VXXNWAkPNvp9fh9m8EsRHdGGES9fNqZjrPsk7aTI25wJVlsgG/d2OnxN4EqR +Xk/mud4YNko1bAzuH5Qhy0Uo6WOP2XCO4slvfiVDihbDtv/5PPaYsbqvKEse +utwRZr5mQyUod+zxkCwRdzU4YPOJDZMlyn8vPpQnZWmn+rQ4bJiHF9xc07ac ++AXtzfm1iwNzCAdePaJEqk22O9ZZcRC97X2rD0eJaK91//bBkQPfWeEuXF9B ++lA8p+LLwSWKnL70qDLxvPzsmEk6B7KZT60HzFRIJBllyGdz4O608ed4jgpp +dis5LfWMgy3Mt542p1TJ+i0ikqffc6BwV+D7ET11gsHOh0wmB22dch2zhepE +den6/Ik5znyfFtHctVeSvzituHLRBD6ZROx7arKKxFVcsxVUnwDvwJmv2bka +xCTn1kE+hwnknZKVUbDTJNSqkMsXjk6Akue9R5yyhuTdsBbTPT0BYZFf3s4R +a4nYgPhls2sTuFzy7x3GyHoS5x34waZhArLxYRfb/DaQPYn6ueXfJsDeqqwy +SN9AZq2rL50YnkBrQFpkjJA2UTbLii0W4SLtqpOB7B1tEkBZ89ZKgQs94czy +QUMd0rqwWpnM95SuELnVdX0TuTK29ZGGJRet9pI1wTa6pDKaP3KNCxeOkkpR +O+X0yIlNLXPXTnFhY5QRYtyoT8TmhE3S07k4axpmJD+0ldDrnV9oj3ChYVq/ +X0zJkBSaH6nq45nEfwmzP72PG5EouTKVVTKTWNn4wuJIDiGHMrY/ido5iSaL +3Ta3A41J5wpTzn+HJjHVdGllxn4TYm8cypsWMInOpf16xdY7yBm7c6sK8+b5 +lPZ/i/bbSWrES/p4aiaRHF334HbuLjI1Njhq8GsSFBth9UM8ZuTI8eFQ37lJ +OLSoGZUF7SbLVHRiChSnAJ4SKUcZc1K9Q5UpbjgFZsXSnoreveT6kPxg7qEp +fFI7LHDnshXZIvonpC9rCjvNX3ZseGtNHqdlP+WrnYKs6ZGeJEVbcqB8aGfF +6BRi6M2hlg/tiOH9W6u2LZ0GmzHT4uv6D7ELn0l8ZDgNnh7ptOHDB4jpIeN1 +2l7TqF9aF2rwwJHofx93kkqbhkh4ovK6XYdIy2TTQHLtNJTOLtLmW/MveRhn +rTIzNY3RKP5FsRMuJCF1RVnexhkEMk/GUeTdyJ/L9xxFvWdwOIKt+i73KCkY +9M57kjeDJLXDy1NqvAj/xpiZ1dQZREjf2M/K9CEpMVUl+/RnYfFXLt1C7yS5 +z0x5Jhc9i66D+o/f7z5N0j7ibVv3LNQf+5TesAoid1c7Oq6eT7Uc9QeltTyU +FLr/atn/9C+eS5VtjXwYQUR3ZJtFaMwhPSy9XUQzhthM7urSLJuDf+W53vT9 +18h/5oXGqRt5SJ1G+w/xoDQiInf4wr70+T/iqb6vwDuLbAjxW3FTkZc0/bda +3LKqgMQz3a0zWnnJNYm/q3Vdq0nr7uCpJaN85JKpfZaYdwe5IG2fIcnHT/4P +ohvibg== + "]], + LineBox[CompressedData[" +1:eJwVkHk41Psex8foaoo2e7bIUkN6JjWZiM+3HKayjlu2Ials6Roq4yhqKluy +RIe599JF6rR4GBdDIbJk63BslRnFsUQkW+Y3G+O6f7yf91+v5/163gbnGe6B +eBwOx1jP/3umSs3zrOUndHdg0/D5v21AD4qiCPRDlSiEsYFzeScefVgLrNZp +fILqbhPda93lUIua1+V9fv9CFcuWJvhWHNoySRv1M8lE+Zx65WlvHDpopeWZ +1J6Mekvc9j/G41BDWMBFn5Y7KCRxlX3z6hrUEH5h5YTHoUjqYYsGTAZby+rU +B7nRqK5Z0XHtngyGFGbr9eKvIpJ3I6+bKAO55FCOkncEyrlce6mmfxUsbTm3 +9nSGIc1Pxld+JqzCJefEp1eng1GZad0dbVgFewcKfaHzImKv0OQMZSsQf0SB +NWJ7HqX0u7kebFoBFtvqg7/hOTQ/cBRXkLICmgojuMoGX9SnbZ762WMF9MOe +91u0eKNr462CayYr0MwPlnVRPFEJqz6cIJbC+dz+R8mEM4ha/NzPvlsKoV98 +pqpv0BCribTIuSWFjVfGqiwJbuhRYWxNOF0K5edeMkdZzohVc04Fo0ghfume +U6q1I+qY/7mgpymFY88uxRWQTyJGyICsVSSBV+zmD+QgKjqTrDP5J18CAh6p +YeqdPQox8qjSq5fA0Bv1K5OS40j1YMkNUrIEKCd05fNaj6FJnIjdGS4BIt/l +5GwJQvrWbGcvDwlcM3D13Jpog9rvaPO275XABzM2KeSTNTI/PuOmryyBYofp +UWtHK7RcQjg9uyIGlZ+ZH6NTLZGXxiOnjAExHDp6ZH+q1WFUuI/7vrpBDDHZ +ZBsleTIqzWra/KBYDObW1SVLgxYIfzUAR0wQw/Rd3bTF0QNIPWyb9eAVMVww +ra1grpCQxCpUXTVADH89+bijqGE/mmNy7quBGPLaNlhPOZqj10sfz3TvF4NG +uLvUfcEMyfsEbZLoieHem6FgbgwROYr1jLJxYsigkvLYAcbrvoX23u0iOLl5 +ZsKFZYRCkncUGNeK4Guv9OTDYkM06d2ZfbxUBOq1C4eOGO1GT0uJ1QHZIjhA +zH4RrbwL0XDOSpNBIgh9UgbzP3TRw7gCpSm6CESaAV//+0kHERiutw1pIiDd +CvNM79NCu7/dfe5wdJ3f8M44wk0DRR4LuoZXEwE3hzoam6yOnO6u9b5UFIG/ +BUeAOtRQ9puxVyy8CFZd/k7HX1BFgSZNeZwFIZx+a1db+n0HiljY5IV1CyFq +oNSG6bcDKfXcMphqFcLy7XHx4MB2hHPqGJDWC0ElPqSi6Pdt6Lq3ztY0jhDI +fyxOuG1XQmXcrmhylhBoLT9mroMiIpE15s3uC2EoMvGFGXMzOtBDD4R4IRgx +d1c2iQgoUbiHUcMUgm3UdxrllAJKV5DAnK8Q+nJV1b0m5dBaiAelw1wI+WnP +LI9EySFV/RStor1CYLN6xs5ulENvjQcvpBuu79X1XJQdwiHZg0vd7J1CUFiW +42wOXAVl88DVywpCKD6XI2/wiwgK7Nofj4xh8CxLSugqF8KJ1F35xcMYnJZu +eW5hLASKSd+deD4G36TyA2WqGLQFv9L17cOg76Vf2UXtZRiT/VaX14SBTMF9 +kVa+AFOZ2imUpxhoOGyqjHZbgAScq0ptIQaSjEpc8+g8oPDbSdT/YHAjr6op +LmIOzPS358SxMcDhj5n+Vf8d/kmYtfVJwcBn0mMtbeMU/Mh05ldHYiCyJcvm +bk5CU1lUWns4BjX7QmiHxV/BR7FeYzQMA7XqNnkzbAKSzjDtiEEYGI0xj1Zs +G4dRCUFZhY7B6KmtameDRuC0QfLaYQcMMoi/mWbeH4bqpYh4hh0GTJ0gbib3 +C5gN181yEAb+lv3UGI3PkOGuKaRaY5Di8l4nfRsPOpm6a70kDGIDqbD7dT/Y +hfBmLHUxyP1R9XpUtx8Y7pA+poUBnrpL2pXQB4Oa/LSHmhgsUN1Nhs/2wmyj +gyth/UfGv19MFAd3w81CXqmVIgYUh4BII24rGHSU55dLBJDW6sZf6n8HvJgY +jRqRAIg3S7iawhawfq/X0YoJwCYl22njqWZozJrOnV8SQFkSj/V511twqFKk +x30XQNOirU3sYiXI5++ZiP0igH+0xI7ZPK0AFTPywd4hAfB+5YVq+ZfDjKHi +CJEvAOetho/tOjig37ZX99tHAWjQxm23BP8O+/oU5nJ6BOApDG0IIz4BFzL/ +s9KfAuCLxqV6WCEU1Tl0JXYJgC2jZvnSc0H2a1JyYqcAGIUFjfYkNqhDuq1S +hwBMb1D8rTQfQtCbzD+y2wRgydfdWW6cDjHk1L2GrQLg0q/HJEAirPo+OlHZ +IoD/AZPoZSQ= + "]]}, + Annotation[#, "Charting`Private`Tag$4175432#3"]& ], {}}}, {}}, { + DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}}, + PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> + Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> { + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ +StyleBox[\\\" \ +\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\ +Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\ +\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\ +StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \ +\\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], + TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ +StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)|\\!\\(\\*StyleBox[\\\" \ +\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"\ +Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"|\\\",FontSlant->\\\"\ +Italic\\\"], RowBox[{\\\"-\\\", \\\"\[Beta]\\\"}]]\\)\"", HoldForm], + TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> { + GrayLevel[0], FontSize -> 14}, + Method -> { + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "ScalingFunctions" -> None}, PlotRange -> {{0, 3.3}, {0, 1.6}}, + PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Automatic}, + Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{ + "2", "6", + "\"Caselle \ +\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ +\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\ +\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\ +"}, "LineLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\"n\"", { + GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, + Background -> Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #}, { + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.560181, 0.691569, 0.194885]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.560181, 0.691569, 0.194885]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #3}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"], ",", + RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.893237708747595*^9, 3.893237717793868*^9}}, + CellLabel->"Out[46]=",ExpressionUUID->"f0d6a512-a16b-45e4-a62c-27480dbdbe2d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ParametricPlot", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Xi]2", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{ + RowBox[{"-", + RowBox[{ + RowBox[{"DufDuh2", "[", "2", "]"}], "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"ut", "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], "]"}], + RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Xi]6", "[", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}], + "]"}], ",", + RowBox[{ + RowBox[{"-", + RowBox[{ + RowBox[{"DufDuh6", "[", "2", "]"}], "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}]}], + SuperscriptBox[ + RowBox[{"Abs", "[", + RowBox[{"ut", "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", + "]"}]}]}], "]"}], "]"}], + RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"\[Xi]", "[", + RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[", + RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",", + RowBox[{ + RowBox[{"DScriptMCasD\[Xi]List", "[", + RowBox[{"1", ",", + RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[", + RowBox[{"[", + RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]", + "}"}]}], ",", + RowBox[{"{", + RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",", + RowBox[{"PlotRange", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "3.3"}], "}"}], ",", "Automatic"}], "}"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"AspectRatio", "->", "1"}], ",", + RowBox[{"WorkingPrecision", "->", "20"}], ",", + RowBox[{"PlotPoints", "->", "50"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\ +StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\ +SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \ +\"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",", + "\"\<\[Chi] | \ +\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[\(|\), \(\ +\[Gamma]\)]\)\>\""}], "}"}]}], ",", + RowBox[{"LabelStyle", "->", + RowBox[{"{", + RowBox[{"Black", ",", + RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "2", ",", "6", ",", + "\"\<Caselle \ +\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \ +\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\ +\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",", + RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{{3.875952981547227*^9, 3.875953315769273*^9}, { + 3.875957061887289*^9, 3.875957104302837*^9}, {3.875957134472674*^9, + 3.8759571357521*^9}, {3.8759571703214827`*^9, 3.875957176129848*^9}, { + 3.875957284251436*^9, 3.875957289963092*^9}, {3.875957366732642*^9, + 3.875957382812718*^9}, {3.8762091878796577`*^9, 3.876209192631675*^9}, { + 3.8871754989267273`*^9, 3.887175499101399*^9}, 3.8871842906781693`*^9, { + 3.887186114918988*^9, 3.887186135551132*^9}, {3.887186188946741*^9, + 3.8871862078981543`*^9}, {3.887186291595374*^9, 3.887186300211134*^9}, { + 3.887186502030856*^9, 3.887186541775611*^9}, {3.887186589650141*^9, + 3.887186636184795*^9}, {3.893237725683463*^9, 3.8932377363942547`*^9}}, + CellLabel->"In[48]:=",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"], + +Cell[BoxData[ + TemplateBox[{ + "ParametricPlot", "precw", + "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ +RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \ +\\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\ +\"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\ +\\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \ +\\\"3\\\"]}], \\\"-\\\", RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", \ +SuperscriptBox[\\\"\[Gamma]\\\", \\\"5\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.0069902635549525935`\\\", \\\" \\\", \ +SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ +\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ +\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ +RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\ +\", \\\"2\\\"]}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \ +\\\"8\\\"}]]], \\\",\\\", RowBox[{RowBox[{\\\"0.`\\\", \\\"\[VeryThinSpace]\\\ +\"}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"0.29442726651162515`\\\", \\\" \\\", \ +SuperscriptBox[\\\"\[Gamma]\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ +RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", RowBox[{\\\"Power\\\", \ +\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ +\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ +\\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"]\\\"}], \ +RowBox[{\\\"17\\\", \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", \ +FractionBox[\\\"1.007010684856479`\\\", \ +SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \ +\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ +\"}], \\\"]\\\"}], \\\"]\\\"}], RowBox[{\\\"1\\\", \\\"/\\\", \ +\\\"8\\\"}]]]}], RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ +\\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\ +\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ +\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ +RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\ +\"(\\\", RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ +\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \ +\\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ +\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \ +RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\ +\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}], \ +SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ +\\\"}], RowBox[{\\\"31\\\", \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", \ +FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\ +\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\ +\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ +\[RightSkeleton]\\\"}], \\\")\\\"}]}], \ +SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ +\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \ +FractionBox[RowBox[{\\\"1.849387959639662`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ +\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", \ +RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\ +\\\"}], \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\ +\[RightSkeleton]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\ +\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ +\\\"]\\\"}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\ +\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \ +\\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]]}]]}]}], \\\"}\\\"}]\ +\\)) is less than WorkingPrecision (\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", + 2, 48, 12, 31977068536072594118, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, { + 3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9, + 3.887186542059218*^9}, {3.8871866239697943`*^9, 3.887186644812742*^9}, + 3.8932376097362757`*^9, {3.893237730015683*^9, 3.893237736870389*^9}}, + CellLabel-> + "During evaluation of \ +In[48]:=",ExpressionUUID->"50c6b3be-692b-4bb3-b631-dd6ed0112f44"], + +Cell[BoxData[ + TemplateBox[{ + "ParametricPlot", "precw", + "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ +\\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\ +\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \ +\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\ +\", RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\ +\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \ +\\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\ +\"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ +\\\", \\\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0069902635549525935`\\\", \\\" \ +\\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ +\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ +\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ +RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"31\\\", \ +\\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"(\\\", \ +RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\ +\\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"0.27286889266851116`\\\", \\\"\[VeryThinSpace]\\\"}], \ +\\\"-\\\", RowBox[{\\\"0.21290826693346554`\\\", \\\" \\\", SuperscriptBox[\\\ +\"\[Gamma]\\\", \\\"2\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.08126249520877327`\\\", \\\" \\\", \ +SuperscriptBox[\\\"\[Gamma]\\\", \\\"4\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.04524698238633043`\\\", \\\" \\\", \ +SuperscriptBox[\\\"\[Gamma]\\\", \\\"6\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.03293140750785288`\\\", \\\" \\\", \ +SuperscriptBox[\\\"\[Gamma]\\\", \\\"8\\\"]}]}], \\\")\\\"}]}], \ +SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \ +\\\"1\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ +\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\ +\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \ +FractionBox[RowBox[{\\\"1.849387959639662`\\\", \\\" \\\", \\\"\[Gamma]\\\", \ +\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\ +\" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \ +\\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", RowBox[{\ +\\\"0.017576083976367313`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\ +\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0069902635549525935`\\\", \\\" \\\", \ +SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \ +RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\ +\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \ +\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ +RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ +\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \ +\\\"/\\\", \\\"8\\\"}]]]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \ +RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \ +RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\ +\", \\\"2\\\"]}]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \ +RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \ +RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\ +\", \\\"2\\\"]}]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}]}], \\\"}\\\"}]\\)) is \ +less than WorkingPrecision (\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", 2, 48, + 13, 31977068536072594118, "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, { + 3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9, + 3.887186542059218*^9}, {3.8871866239697943`*^9, 3.887186644812742*^9}, + 3.8932376097362757`*^9, {3.893237730015683*^9, 3.89323773779261*^9}}, + CellLabel-> + "During evaluation of \ +In[48]:=",ExpressionUUID->"1390bb82-7e0c-4a82-8be7-3aa0578e2c3d"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], + LineBox[CompressedData[" +1:eJw113c8l9/7B3CbeL8zM5JNyV4ZGdcxC8nehMieoYQkJCshK2RFklHIB1lJ +RlkZ2ZvsGVmh3/v7x+/+5zyef5z73I/rfj3OuQ7HbQ+9OwR4eHgN+Hh4/xv/ +/zGrS5vGhmMRmTP72RNZDqC+o7+PwZnfZ+jRiawoPIh6KEuOc8E4xuJkRAZM +SplKiHFeHqtQ+yerCEdveW/8e4JFF9p6vuBFq4JQYRHjPs6GrJLmhKPqoC6R +R7OOczFR83XSyzeB7SLd1RmcJd0v3yaR0wVM2UlsP87dvDaEUbb6sGxpS/0V +Z3Wx+3lnow2BBnO9qRxn6aujNonlxmC3XZqZhfMY96Ex86gpyKSlF0bhfJtK ++fVrfAtwWqae9f7f+80uWQtevgXXGemvm+OMXVf4wSlnA9/fjWZw46zA7Ci0 +on0bfEXzo0lwFshTCCq3tYWxCeq3C2FY1Nb6k18t+g5s5S075eA8M0L6hjrL +HpSTbSgDcZ6C7xqT5Q6QbJY0a4BzrOqvGwGjTsD3WYsGH2d9prJWzQ1nsFud +cR8IxSKnkp3XLASuEH2ic5iP8yxqbWq57A7N2bMpyjgrO0TEJMp5gb/W6LFj +CBZ91w1mDW31gpN69W+COAdHs6ff1bkLLu6zzVuPscjcsd/TwM4bpLjqlb1w +ple2MuSO8YWVVicPi2AsYvi7S8hMfw+EWu6W0uB8t5dvkCb7Hhitk11oe4RF +FLF7+CQf70PEuXOhfDjL56Qq/B17ANw0GiFjD7FI7kp17987/sClaywVivOQ +7MOmk01/QAIuzJdxfjgT1E9MFAiX+5Y9PQKxSBHLGXlJIAgqHPj1F/yxKMpi +s85c4THcrmMhfngfi4KGSMOkIh+Dsn1548k9LPLhfWRON/AYnu1cMQ3EGWPW +rNXrFAIi3/0ve/ti0dlOhUaTpFBoqhZQuuaNmx9S15+z9gRGacAj0h2LCMX3 +muOkwkEP7V1ccsMi6tA47OOQcKgkTG5UwXmTWbTxDuNT8O1iSdx3waLoUZkL +SCUCqNK1upWdsKi8SLhRLiMK5N4UvL1ni0Ues23OyotRcL/lWXDFbSxaPMbW +aIpFA92TDtkNGyxiJCfUsWmPhoH0QwtLaywalYel7N0YGI1bvclpiUV/+yra +fbWeA/OTU8ZrRlhUZSmgoYmXAPK1uhknarj85+R0uHMlQMGn7FIynEdyppRf +qCUAFcvRBrUqrn5KauxTMQlAGBp+xKqMRW4+tfUhTC9gikBMiQtw9U7vE/8r +lgimrDoNA5JY1MdQbN5gnwytMxw949xYlCv8y5YoKhkIHBwIS7mwSMqhM0uz +JBkSEoRcH3Li8m+r82liJxm+EV0ap2fHIq3V5fdUj1Pgbj+9nAQzLk9Y0hsV +6anQy1IjzESNRRPvaL4f9KZBybFR0rO/GMSuT0hetZsGk1cJZgWOMOh9GFXJ +PYZ0EBYNCfx+gEGROiNcRxbp8FDiXzreHgbhNWeT0iylA2PUXrTJFgYZ/2xT +eXqaAXafGZyq5jHItWUmMlEgC0xua22LdWIQvcWYS29rDmBtyXZEkjHoVDUj +fWYkB8ZzQsYVEjGIY2R69vdaDjAqhY1rJGBQ+bWhOkbaXDhIauSwjMUgLEPV +Zy+rXBA8Se10Dsegu0v4zGYHuTCjyInPfw+DJKQF6zH8efACT2JO0QCDnBDb +f5D4BsjvKb+ZJcegpHl2+2auIrhIO5c34U6BhF9bDmEZP8DeYaKofxE5+ruT +kb6RWw7Ma6dYq/4zSGeGVzKQthIigzqdbPbIkOgPPKGt7iqoMKUsldolRTZv +1VQpfD4Bh7dflPEuCeq3UrEd5qmHZ8l2MsfrxOgRi8anIabPYETe58HTRoQy +Ejp6IlObIPzmI+fTYkKkE8pj0qfVDAZ6HXYy9wgQ6V/N3ivnWqAECNV7lfCR +HfZJ9sfhVtC/1VeqxY2HjAOaUxjm24G0nrqLfPoE/CLPHNNtf4eLVmwcVIV/ +gWHuW6ugSRc4l+m/XdI+BBdf6lf1Kz0Q1b2klEazDxfSfl6UU+0FI16q9izs +H7DYxEZYDPZB8HSMId/Ob6hO0txivTcAtn0i6uy027BM86poMHAAZoUvVe9Q +bMO6pIJKfOgA8BAJxrcTbYOGwstzlPEDoBZdGnJvbwvU0uGuYPEAKFS4us6N +bMEY7+9fe7MDEK5wkI2fswX3DULLO/R+gtGlwfe6Iltwwwwb+ld2EG4xr/3J +frMB4zQq+Gwqg1CIX9owkrIBQ35G0Wo3BmHhwkMS+sgNUFKX/5FjMQika+3n +XrpsQIAWq3/kw0GI4UtS+SayAQ71F5TYPw8CdY69a1/tOiiUt+GHXR8CDb6P +pDEDa3A7nWF/x34Y5OwHiGupVkEk9p9YqscwWIgvuLUQrkLMXlEr8hsGg3Db +f317K7BHZEaYFTkM2zPU2fvjK/CDnOpKXPEwuM1KztoXrsCYzs3M6zu4+Vr5 +VRNKK9CAlnz5w0bgy5fZIyG/ZahNeXUp+eMohN/ZbPZcW4SiWos1xcZRSPVs +uq48tQhyV98e7HwbhRjKjDSmvkVw3Vb75zw1CsFzSW96qxbhSumsUz75GHTL +5jh4hC5CGJ3Cns7tMVD7h9dpw7wIWhLbj0vpx4EiNnqZ6+YCPDOhZRDmHAd1 +kxsvPBUXICz5fP1/guPAMMxO0ySxAM13mYzHVMYBmzHy3I15AdRfPgr19x6H +MlLJ+N2lX0BY0D5F3zcOpvKDg5/CfkFxFV38UeIEOD9qzr/cOA+p+5bLIjkT +4F0obs1XMQ8Clk077iUT4HPBq1eoYB5YtCjlCVonQH66Z1jp+Txw6dy9H74/ +Ad+brYNSrOaBaZTUFGMxCZVilPI7ePOw7KFnrMY/BXk5mwK+anMQsZ5oECI9 +BR62Vr/Xrs7BuC2caVOdgoVKRy9H4Tm4Va9f52w9BZ2+gRnOjHPgQ/dV5ULy +FKRuHBSkr8yCv7LOVgr+NCgIkrz68HwWnEj2fwvenYZt+5jLb8ZnQNVdx3Te +bxp+mAYW6/fN4M4ZYqqsR9Pg2B/vRtQ+A8Ic0Y84nk3DvhfHO4+KGThQjp4y +ezsNHfecMW5RM6Cc+PXB66lpyHBl9iKUmQGTtxeOi3RnwODar5DM1GlI+KDE +/MdkBkimEusrYqfBzkiCVdl6Bq7b6V3pDJsGKY/IuXV3nINqx0i8cOu6jx0G +xczAv+LnBK/VpyHAJmv0Be47zvxo0lvfm4KXL6QoS1VmIZFXNu9c8yTE7vjU +qWvNwg/8BIxP6SS81+PeXzWcBXuHZczoy0lgmOIXV3GYhdPh2IE6z0nYc3yd +oRI1C4NI3G+CdRJWuwepY3pnIbCytzcqcAJcz6ZvuN+Zg4JUjjcv5Mfhj4vg +xKr7HDT1LgbMXx4Hhy5eW0+/OXAIT5uSw+XsjDqNWVz0HMSHXdMm2hwD086Z +fYHyOaAvZ21Zzx6DJpkG1Rncf7VuWy/nIxkD0sq8jYC8eXARDyxWHxyBhHeV +3pql89BlymHz/esInDX0eM9ZPQ9r5FezdCtG4HGMrsdSxzxYDMr85x03Ak1q +9LR9O7gccQWqkGiOgOA+kcBF1V/QjrGNsGsahpBPt1vpN37B6/LVJoKKIUh+ ++Xtq8+AX1AoRjurnDoF2a8xWL+EC3HSnci+KH4IaEzGuMqYF+FMgSebuOQT3 +u1zIJlQXYPl53T4SGoI4apLp3SycmeTNWIoGoYZdj+OB+SLwPK5pKS78CRYH +HTSaDovARkvjjNtLgS0ojOmS9yLwGry4mhD1EyQtll6eRC3Cx1b6W3EuP+Ee +Y1YvT+0iRPJK5wwK/gQ8aZ16d5YlaHrEXhBVMQAu6USyKitLIFouT/esuR8O +zEXUvfeX4FgoFTV97Iex0gXRUqJleEEfEPE3vx9yqTn7rrEtw0BmoWNIRD+E +77CexRgug/05MB/R6gfRUfr+hS/L4DmbH1M00gdmD3yyb71dAZbQlIsTf3ph +SG2nxLV6BZ5+yOXJXegFDBauR7evQNybc8h9qBeYKo+fHi2tgN6rS1+Za3qB +QkQOL49vFRza4nY6AntB08ZqUqZsFYJdw5WCiXuh+hf1tETnGqyaJ7CLX/gB +L2MplCIn18DhMSn5KPYHqNqzNW5vrcETAtVVyn89cIFPMebfuXXQuk+avd3S +AxHaZFgam3UYj57ctTDoAZ+aWDuRv+sgoDU33OvdDYJsL0q00SZgP/1r563v +BF+s/yyewSb0FYfX4ud1gnkP7cs2h034cXOhfCGqE87UjdElP98EAbnYdwMm +nUC5+o1RdnoT1A8Pk9CfDtBnDXOeVdoCjJ4Nm7FIB2jvtRR7bW8BpR7xrs/7 +b9DDVxjcerwF0ifMDR0p38B6RCecl2wbHj6mtRIK/gbaP0KD6di24T+pdjYG +3W8w0udYGqu1DSIjl7zv7bSDD0nnU/aSbRjV9GVwudoOufL+vM73f8Nu+7ct +jt5WiPzxKP7Dk9+goz7xkbamFULwe5TJE38DtUYpH21OK5RrVjMffPgNWV7D +XLJerWBXutjbtPobuNPv0AvTtMIfkwIXkTs7QEa8r5lv1AIbfC179T47EJ51 +T8ULWsD7cMHIJmwHbuB/69HgbYHarv1rK693wJyNPeXi0Vfwc781d2Z+B0il +WcuDM7/C/JGdUqHjLkglVNjVLzdDcdP5jcIHu6B/Pjvbpr8ZDNm23JqjdiFx ++rIObX0z+OVN1CqW7ELXWUSQFdcMd8ZT3bx2dmHp3ssAY+lm+G326KQr7A+E +dr+g0Iz6AtVzUmTc9XsQMuY7JSTdBLSkpjynOL+esBTUl2oCmbjwNOemPTi9 +t2AxLd4ExMqGHPo/9sC9jI53nLsJmHRT8zLn9mDPPnU3kRrndNHxaPJ9wLgt +0Fxe/Qzr0keDLab7oIZtkxrL/AxZ7NO+Wyf7sB98oe4O2WdQNysnI6I9AIeK +FeKk1UZYF4pnl+Y9ACp1CUff1kbYmJfCI9Q/AHeqb6/8AxthMI8pgf/dATRd +feWdvNwAPI88blNYHeL6PQwedXs9PIywHtO4dwgZ/7JM1PLqwbOL6vP7Z4dg +OTiolxCMs2ntxdW6Q6BeeMjmLlMPJvk+jGIsR8DccPhZorgOMi90h+n+OgLD +r1HWf5NqYW6oyiY9+RjUNh9SmvjXQFoLfcPH8mMQuUwygGdWA+13K1NOu4+B +07r/oEGmBgbKq3N4yE7AITjZOOCwGg5jWYK6A09Ajeo24+6Daiib4tr863EK +xPx4bHNBVZCn3hRo8vwUUq14YqatquBX8su69dJT8By14N9BVRBU0Z7xdeMU +Gp6k7BoTVkEJj5a2hNc/kEGRt9ki/4MnkX97+hAe+u7oLvY6tRK3T9JhXfTw +EKGKp+tv/0pQPPEs4bbDQ6++mxYZWVYCi/D9xydP8ZCzebPALc5KYC0bydTu +xUOOA0ZbjiUfIeexs1yHMz76fipK49JWAa/IKGreBOGjcdIP2meKKkD2pHG4 +MAEfSStK2NfFVkCnA9tX3lp8pPQuitbGqAKyRb4fnDtLgNKInLjzFsrBE6g2 +GesIEMZKrPMsRTmwfgoQSBggQP1pTJj362VA5pGsq7xOgD4XmOc4/CgDHtuM +yzpshCiqtqmBI7kM2COup/KGE6LjBnunGs4yqGzt4gu1IkKRHF8LvdEHMPFO +SxoMIEJDm1k1KdwfwEr8v1r3VCL0ntR2tZ/sAzy7aL3u2UeEEn2MdC6/fg9a +5YFVQ+rEyOr1K2v39lKgpo3Dp7tGghTwc/P+MpfAoIixDL8jCYoLO+BSXSyG +u10NxKmRJOjwWWJ4Q3kxHL8fVr7fRYKYcvwmkUYxuMs1bHmYkqKQwQLp0IAi +sF4zeBYQSoY0ps++P1wohEtL1KfR78iQQx1vvUJlIax92g8n6yNDMoolhhWh +hUBXSP3oBucZVHG4RcXPUQgmeYWiIu1n0Hv3m2wGt96CWAJ+LzE/BRo3nhSL +mHkDNByNdc+NKFBQbWHUdOUbcF90tU8IoUBrZQkkt6PegLFrqvGZcQr032ql ++bT4GwhYNArcwd3bfoRu0n6PyIeuhNe//L5iEJ8EM4/LrXyY7Yv9Eb6LQTFy +0vJXJPIhUkStVwV3b6bvNvNRmc6DbG+ypxHsZ1FJ3FTmzat5kJl0rS7O4Cwq +pNh9KkWdB9W3HLbEI88iXfPzlupLryEt0izEcPcs0uBYbFhMfg23PPxfaPdR +InmnjjOUe7nA0ev4sneICuUfkvER1+WA5H88RYb7VOgJ/7hrQFIOxBSQ0wED +NZob/OZ23iMHFDnNGdRNqFGmL0l2H2cOBHwvdnSfokbicldC+WOyoSzX10eX +gAZd1KjxXrTPBgm8AM1CHhrUu/+ZslMxG0bmBncb3WjQt2jyMNatLEhpEtNs +J6RFial4H446M4FrfuduHB8t4h9pHzkOy4SfHyiOp3Rp0b4LRk5HPhN4faKS +2HJp0dreWMZK6SvwaUoGN3U6RLhG5L+elAHm7z31ZyrPoYneFfPL3mkQ3T5W +nbRyDnX/qGF5y5cGzwM8FbjZ6RHPjae04bMv4RM17+O5Z/QoIm040Ur/Jdg3 +viUL8mFAEpkRXREyqaBwpqAg6QMD0j7lx+LvpuDqbUZXsc6AmE2DHwyXpoAV +dbMdowsjOhl6PpzHkwLHZ+MVrnkzIXM68sYKhmRoLNv2VKtmQoYdfl48P5Mg ++GzrdMgpEyqY4DTeS0gCVnGRR/2x59GrnqXmSsokMNzgrfrSyIx0MJEORdhE +sNgSk3hJeQGxCHrv0Xe/gOQjWtFd6wtI/lt990zsC/hYV3TJhowFuRinuiRR +v4A36qFdWi6s6JWt3pAPcwJsv1sbDGxnRWc7NUTGJuNhK9VA7dklNmRt6XeU +nRsPXiJCixGrbOgjDeexBn884HU8bFdqZUdJ3uX+TIpxULzLEMN/wo6I5YU4 +Aknj4OneabjSFQ50VNmwHJjxHN76/stkK+RAdx4cx32tiYU/F0JJ32Vzoma7 +CRftkxjYu6JNTj/LiUwZqsqo42IgP5tJjJCHC31p0D14wRUDr2PsixLec6GV +NNmV4RvR0B3dzam9z4UONJfb02ejwFhWgbEJcSMnLxZKtgdR0N1MSIA3wo04 +1/OVHN5GQv4j+LZ6iQeJ5yc4CyhGAobhTMt3Px6UfR55lI9GgLbk54wC9ovI +fKQoFp8qAjazuak3oi6hFE2vifeh4bhz6nF11fIl9IW0zEiZOxxkYxZHjjV4 +UdMZiZb4lidQz2t1aHTuMoozfMxsTf4ErL4kuL0KuowEX3XpTZeEgViNheOX +lcvIKdKN9YJeGMD1THPGTj5EIWvB2pYRCr9ybA7DFPnRzf2IIknlUBDOdUu4 +9okftev1B91eCYEkLO2R0X8CqJTAomrzaggYuzgl1I8LoZgrEQe/5oPBx+VD +14anMJLQkZGUjw+GmwVj0eNEIihxlsZSTyEYRs5bUu7kiaD2q64F7lceAcPB +sv7YgQhyLvKXo0wMAtGsA5YgbVEkVXIUK7j7EJhVt/C9icUQ5XmrwF/VgTCU +Mlpw5o4Y4hEX5g1mCYT+9i7h+TYxFH33QUVaaABUpTcmEKeKo2cbzyt0Dfzh +nJDM71xiCbQ20WW82fAA16/+Sxe9L4G6N3KvUvI/AIHzu/Kb9lfQhC6p+jCp +H9C5llTF/LqCyHj5WkP87kOhZCrxoaMkcqXS5ilfuQcSknLxqo+k0AZNpHVu +vy8oiXL3f6SRRpeUkj7aafjCROtUBXWxNJrxnx0t/eIDiscyhWvbMkiavbJ9 +osobsM6P4i5mXUUXZd+If5XwBjz2jyOt+rLIrJ+q+krFXRg2Uugl/CmHeul6 +kus/ekHhfrtCeq48Uuc93/pTyguoq/Fl4x4ooNkQ5ZrAOk9wyL714JQTIZ40 +ueY/iR5QkU45ZJeJ0E1yH/W3Be6wcSfk+g82RTRgJR4XXO8GhDOqjIUFimjo +pkNX8KArvEygzreWVEIf1tmuF/12gfiDVLO7nUpI7DkyJaBxgURSvu92zsrI +bV/GNULCGY4py7xUP6sg3qLlN/yhjiBIUfM07IEqItS+e+bmeweglCQLVJdX +QzT3lH8VTtrDjlDAvCPmGkpj46RUorYHx+CYg87Fa+gzXoc307U78JYUXff7 +cR0Z8lAziQfbQZOH91hEmzri06BiS6izBVq3B57bvzTRs7lRE0G4DYadzzJj +/t5AuckuDj3xNnBs7ehVzHkTpRQmtxkuWsP8YrP5qIU2kjafDGgGa4jrYhVf +MNRBY9cPlaQkrUD43dZ/lWS66JVlzNyX35awJFQitd6mi2QOdJ6KVFrAYOZy +ZGOiHlKmiTn/9KE5rm81nH7iqY+aeBw6ujTNoNT4Sn2LhQEiv/ARi2E3hWdf +bP5JmRsiy08EWepHxuASQqze62aEQjqoomNHjaCPX/hsZ7Ixqn+ZJTL32RCa +3zaWfBw2QRbDn9R0Sgzg+NM4tZ+kGerbDZqdzNIHK8vV+74V5kjmr/vD1FQ9 +yPFhFkrUt0QJP12Pw1N0QYewS/cWsxWS/u5U9TFDB5YpL+5RRVgj76+9hKY6 +2qA0bsmCzbBB44uzjjveWuBOw9+s23UbOcjyu+vkacK2nMFtBXY7RJ3mfj5y +Rh1IStpLsWl3UMWnhy1V/NeBm9MyikLRAQlW40sehKiB8tND8bELTsjNSLbZ +YVEFyj7bRPVLuqC2NtcAHlNl+IRHWfMgzQ0xa/Vo6w0rwtHjXWFafk/kSCh4 +jfoOAtGFYP+dei9UVXfiSflPHqZcBA/N4nGdV38aa622LLjNi4swffRFDkuc +0gF10jCmpUEQLeOHav8dLRSpSgK/X1u+g2wAUh4lb/qwKg5Tgj/v3B0PQkQh +0eN/SkUB/Fk/3HzzGOm+YFaeZROG+q0DkW8OYWjFQn7kGis/uOgRlb2fe4qa +8C/JXTW7BKdyfyM0bGOQ9n+igfsDXPD2Zc8tFoF4dBptPjf/nB3aMxN/6son +oWWB3fsiTMzwKhSj8pUgHV2ljVT99vIchJltH/h256BblMI9I/lUoCW5Uxz+ +5i1qmjB6fhxGBthLaPKxRjnaDGn6SbCGB3ciRw3KpBoQeyOWsJ/jjwLdLtMU +z4VuNPl6c6zn4oJCJIlih1HjAsJkHK0fBPYomBtMXhSL3USy7TzmciJtCv8H +wEf1Nw== + "]], + LineBox[CompressedData[" +1:eJwVlmc8FXwfh41DmYm4rcKRzCIjIn7/Dkpk3giVlU10IllH5qFkl5mdTeVk +RRGqg0LcOmVESEf2lv30vPh+rjfXq+vVV8Tey8SRjoaG5uvf/Z/d0hqJAy4L +6CX71Js2abJGbb3lmx3JdyjJnp+n+vOCBp/46f2pqFr0j5JqNd5kWyPwPr5z +eKICCbhxOCTkY8DUTSAmTeIpYrDeK6HrYoXRI5FWmh+z0BE6VdI8Kxc8mk9x +0F5JQV05qwrFGrxQumXVdkQjCT0QYdhuXj8KGgbDmUdexSLv1vGGcF4ssOM3 +WapJ0UjRMd941kcMKvRZqheGItC2Tb/6Hrsk5A9NDVYNhaIAxMSlOykDPXcl ++Efng9FsyA81XKAc7L9sQG/ZA5Gb0zDz21x5EHFnV3MYvYum7nLfeTSuCLFD +wRKzKneQrBtWFyFlUB5dKzjbdxvNikkETC2cBdrAEd7O7lvoRUNJ5Jnmc0Dv +9/44XtETUR9K15ZUAkx+KFBHuu6oiD1gxf76echJXJt3Jrsg/yIsjn0FBziB +AOnEdCeUlso3mJuqBeT8o5/0SQ5Ik2hoNKV7AYK7V22wjDcQU9HOXDWrDuCt +3m/8F2OHfrDO3RwYvgR7ZT64STVb9PtFZ6tUox6Qjh087yZsjYynRn7eK9aH +YYYGP7cD11D0FFdRVZ4h9HhbKDsct0KOj7K0u/qNQJbp4zGjWxYoy/CXacyo +MZRf3vPRnDRHTl2N72iXTGBkRz9fLdgMDacQMMJMptCqG12+esYUqbb+xlLE +zWDkBCN/O8u/KIT3VNsRfXMITU90S9o0RlbXWbi6/K7AWoPpo6xdI/Qnbapl +scwCbGwuJ8ZzGyEO81d/8BOWMK+6KlYfbIDW2bJNNLFX4dTjEAJ++TIieEtS +rjhfg/1h6sSJcD3UpaaykE+6DgwayyZHTumim9F6rrwYGyDdWQlsX9RB7mwy +SpSTtqB47ZwHX8dFhET3a0uHbeGmcPUmf80FVMCSIBwaZwe7KLiY56U20pf7 +tWeuaQ/ms5ytES1a6KluI/2JbXso0MtZsmXWRFopw6sZ3g4wzrb3xg+HQ+68 +1Nkzio4QlslkaUA8j2i9doXqNxzBcT62b6sfISRgNMrX5ASVzeeZKk8iFO80 +mnolyhlan53yNxACBI9Mej3+dYHx40rD/qvqSDN+TMYM6wpGXQleJV1qSDd7 +TSeu3Q08JGt4onpUUeOhoVZKjjvIR3npGIycRffZh3vG/D3g/kkqwm6qoC3M +cFi5+U04V7aidlZIBXW8oqeXO+MJGF9y7YChMnJkYY5x5/WC/tfGExYPzqCY +NKKL1a4XGIaphtznV0JcOm6DedRb8M78k7SolyLaO90TI2CNhy5S/2/Xjwro +F/XKEPULHvxctNfPpssjQnZKPr7jNviGxnKsMckjMUPDfmltbzBJCfRvDjmN +krob/5Fv9QZH0RJXuXtyqOrwoVTBtz7A/rtQ/RyjHDr2Pe/9LroDtOtWorjj +ssgld3T6eNsd+OfG+Nq0599gL7214aMvXLBTMh7JlUHYCJZcWeO74C5j3ls2 +KI1iw0PUbL/dhZlyDFnLQQoxbgg0B037wVxhsz+1SRL5Zlt9wnr4w0bXsp+4 +kCTqIig5DM37g3FWx6XwBXE0+IHIELIRAAssmGxJG3E0MWxP60YIBBua/b7Q +/06gYzYED3tMECz4Ks4QOsTQjaarWQHcBIgkijm06YohtTiz22k5BEhTUUjZ +7TmOBM5T+t9KBcMXtqSeiklRNEMeijypdQ+C5mlt5s5i0WJ7auKzlhBgZ1LX +bqaIoBKRvZlB5lAQsiSye/mKILtzppvRpqEwJ4ir3nojjHCDF+65/A6F1wkt +C/mOwgiblXc8XTEMTKQ6SloOCaPLmOuUSyFhkBUrk3yIcgwFS7uSJfnCYe6Q +ZPFBlWOoZVxDw8IpHLjJ8gc1s4+idYY7cgzV4aApvK/601cQqTEKYQaMIqBb +1iSb1YwfBclJ8FknREKmDkuu8hc+VKz1gdN3LBIiLl0hZ1rwoQy58DwmBSLg +S7EST114EfkXXiT/KxGgc9WZppwHtUzPWMefiIbmdmZ3ZRwP4iegyoDAaCig +qyJND3Ej6WXLlZHP0RDS8EfDj4cbHSq0kjlMuA+d+nykM0VcCLc8tcg19ACi +H/QlGxtyIatM18dNCjGQECT/0XqLE2XdaKeMPowBM3qnBh5zTqRy9wJ3JHoI +Yd//5SFiDyPnZvEtk8pYELRMP/1qgANtKL/aKGOKg1usmxi/JA4kb/re565T +HHg/6E6/eZADDdphFj1E4sFn0bxCjZkdmT3ZSrUzSIDYELqhqEQ2xEAmyboR +EoDZ4mGPsgAbspX7MFhakQCVpfmdEUqsyImxj6abJRGCWLK5VSOYkaavXmPR +p0S4IR7YfuAoM8KiMT7H3USYLi+vbK9jQoS1whbLU0kwWZ9ctLJ8EE0Z0cZP +JiSB+pKg2fPgA6iZU6sowiIZkqJ7RvrFDiCfmYnPyw+SYR1PKHzczYiUfokk +p7xJBpY7qr2txxlROOPow2DRR5BG84jaM45BTHqnZbuXHoHkyaXAbXcMqrfP +eWap8xi2Gzl3X5vRo02LS4n7nCnApTTnnZtNh4okxFWupaXAc9v8uMirdIjo +qMIl0J0CZU8GhqP56JCt1KIbOyYVagdiG3rTaNH1zefmSbdSoQ93sLezgAbl +KXDlsV1Og7MaPOV7LjToM+O1H57habAz931VVJYG3SJR5DGNaTBmVapoHbQP +ZymjE51S6UA9Y1YZ3bULMxc19MmsGWCxeK5/z3EXpqdctsjaGbDolHbwEM0u +1B/95LoTnAEG1Xym31V2IE9M0pNmOQNeWLaaWL3eAnPbNTWfwUxY8RwVf4H5 +AxLO9dUMNVlQ7UVuCK/YgMfy2Ac261mgs+zF/cpsA3Z3VqhrytlgqpLNcbJi +HRKEchW/NWaD0kIgxz2XNWh2HNm6/SEHaKmSD5/yr0FlB2fQN0wuqFNOTm10 +rcJv8bqmxydyoWN8XfKwyiqEzY1xu7vlgtRkSpk33wr0tUhcDF3JBW4uiR2P +/mXoptDncPLkwZ5Pz1XXhGXg6Txj2KqSB4RioqgFyzIsC2h1BAXnwWWjwrFY +1iVgfKZeYc2SD0sPBzIs8fMwKqNVOCRVAOmDdOgJ/TywmB9QNjMsAP9hKRv7 +1DnYTX4bN+ddACfxmzjrtlkw+2T/KuBNAVzt+PzHVmYG8E3digdNnsJiHecr +5s5p8JpulfG/+xSK0aVpBtdpoAw16TBlPQWjoRDMYNlvYMqIOR419RQqqdzn +7dSnoDRxhnU7pBDYVu0ouz+p4PnTqM2puBAUti0ftMRSwemyIP9yVyFMULKF +ysd/gbrdr0VngSKwlji9G5k+CSetla366ooAwneaMpUnoLPH83X1ejGwHrMI +uLE6Dvp5TwY8BUugsJRBZ7lqHOp7tGq0cSXQeE/zhaXsOKi4R9HpxpWAcPSb +RDqFMZiN1ox9Ll4Ksm9vvlitHQH/2DwOBtsyoCIt15kLI9Bd+HUsJaoMxOWs +EoW+fYfZAk7hi8/LYM5F7cepvWEoP7HvSL9fBnzSt/R8LIYAMnp653PKAcdQ +ziKJ+wYIFxxbRa2AABPmW1w/v4JiqOVhtcOVkHWlhrRL/ArPTpxxmVSthOSj +iRHveigwqeB3MSuuEt5+LxVu8fgCId3POHKUn8ET7ebCrt4+YLsQFcmb8Bys +Bb6Lnw/rA35szmFy43M4mO69FKHQB/vViv+lU59DXk/G/u20XiCuEgkUoReQ +a/CblO/+GW7/2Sps93sBNwjqHP5un0CljE7z0qkq8FcjtAf+9xHWr/vq0elU +QXImp7KExkdwCHaa7Lergr2fWenOvJ1QnbDVQ37819cSkKOOkoGQrzQ3s1cF +Hli7iiwzMtgZiP/04yMB+ZXxfN+nD2BUT5stokgCjmnR8cLm98B0qzyF7EqC +0+X9tU61bWD7ubDOk0KC6A7/7RjlNsjMutw/vkSC/uUkNeaGVqBfVXa8w/YS +HmQbi9O0tcDYfoPrhtZLaNvxwte0N8PpL9waATUv4d164Gx8az0QPoRvjjyp +hpVDr5dFZuvgyO3DWM+GasjlMpCZ+qcOTqgvnhP9Vg2GRGLT2p0akLrBUk57 +pAZkA588sdIjgWOoHF9ebA1ELxk29UVWAf5LszO+ogb2NejLdFtf/P1t89Me +H2tgZyl7Ahf2DJytM1OnmGqhdaP6wv3yEhAV2ZFiul8LGYIyBRJQDKEbl9Mu +ldZCpddVfTdKIQjWEDcbO2rh38U1mtJDBbDjJ0hUZamDpwnXNb9eyQTTPjHN +1wl1UFxF5J6qTQOhq+cel5LqQDiyQSBVMAWKc+496+2vA8F9ne3Q7QS4J13l +8ZWvHlTeiajI/n4IVllRn+rO1UN+FM32LjUKxP2r3L7Z1ENspoep3koYTOYm +kFXD6yF4JL52kjsI4nFjt38U1cP/APE0WKs= + "]]}, Annotation[#, "Charting`Private`Tag$4175642#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], + LineBox[CompressedData[" +1:eJw113c4F973AHAjK96S7J2VpBChwrnZO1tGoowiPvbOLpRkVfaMjBRl75Gs +7L333kRWbz/fP373n/u8nnue+8e9557z3MuP/9M0x8PBwWnDxcH53/z/I6Qy +bgrzCoO+WtoMXcFeAc/GERayM6fziA7xYEWhLyF+mPDMNIXz08nYe8DmNkmB +fYlBu4SPBvmw8rBFkPNz+8wz8ja/K/6pwpANzt70mX+aeqZkYjXAUn05tePM +9yXtR+yw2nCl6XlbyZkFeMj6xLF68M4s2j7xzJ5vUft5rAHgCVtH+/xvfxt8 +wtF/D6Gy7J+Q8ZmTRbgmB7xNoGtHX/32md/tEMTXYU2BWufdMsWZezyTB/K8 +nwBD59fTuUAMKu1aL4jHmgF9c2tk0Zlz+eObvLCW0H1DUUDlzPk5f+7ZeT+D +r42DdyjP7Dv/d9QcawVZ1yvq+wIwqH12f0MPawN/N5aU7p95bWP7s7b3f1Ai +ZK1MdOYveUo4vD52IML2vaXCH4N2Nm2Cr5/aw9AGBjGcmZxZKlCwxgFCPS3E +fvphEMmvzQuiPo4weY70m9WZ8yOnaeRPnYDkZSdtni8G6dz0Tfc6dYWoiMpR +Ih8MSjHyngircYP7VNOt770xaJXO9Wq6jzt8jMm8zXbm6nuO/D2nHnBtb+QD +7wsMEqVxqVTG8Ybg3Uwdak8MuvqeU8yu1hvy7gTJB3lgUKU+lcxHXx9wp64o +33M/i2dwynTx9YVRX0ruZjcMKujetB/H8YdQj0BaaRcMyp4J7j4y8Yd912OG +WGcMeqb1ooy+zh8UmvpTV50waCktUcrILwCk2gbvvHLEIPvEEYY93Jeg5mGQ +FmGHQd2p3ete+MHAY/MoDNcKg8YxnFUd1sGQlnO1lewZBvEVN2+z9wVDbc+5 +3UtPMWi/mqew51MIqGUPYmgsMGhFT7NKXe4N2KnUOy+bnt1vS/JcZ0gYuBkW +BbQ/wCDe8JQxlZ0wyMAQdnzUw6AQppGJ3wbvwCh2B2Osi0GvNbKpV6nDgUuN +0H5CC4PIjogDiBbDYeyibv9XNQwSd6a0igiJhPrx4cwwaQxqqVHLWKmKBEfa +4w90Uhi0+TGxVHYnEoIXhIKSEAb9uSjrhWsYBSSXO6ySJDAoLieRJJwvGhjI +xbVsRTFo7qSgHdP1HvBx57Tu82LQAwWWnHy6WKC/9V87IwaDpkcnVHsUY+G5 +kVSUAikGnXTIs+57xAI7bfCuPQkGbedrGsmMx0LLu4BX5QQYRHdJoPQ4NQ7e +hAqQcWDJ0KiAQe3wtQTov+OjpLlBhuZyB/3s7yVDHEmBO/9vMvRg+p3UtEMy +nPswz73dQob4fspWan1KBr+YoZBvTWSI/4TDJQU/BQrCy53YG8gQ7h+Kh0kW +KVC8e3AwVUaGCvXm9yb4UmFTrCuqLpMMXd8amPMvT4N6YkpaOm8y9NKaL3S9 +Jw06BZtLfDzJ0KLo9i/91TSY8SRVm3MjQ+FZyqciTOngXKj96JMjGVLZ2C4+ +550OKaxrgjjPyJCG9z+2zXufAOvj6n9FiwxNCchvk7dlwEmDn6k4Fxmqu6FU +/WcmCzr210eqa0lR8LsD4e1/WZDD7G7BWUWKtFhCr23RZYMaXWLhqzJSRADb +6Xtq2eBTxJ187zspurPeQslacbZu0TASnk6K/CK0nDaicmCAYtfww0tSJKs9 +3Rsl/wXS0p9IKsqTInOJiKSUkm8gWz+R9q3uPMIOGprRcvwAIxWb3cMcEmTO +G2tp0lUMGe/l1QkfEKO5m9WKNVHl8GdR+U3HOiHKoVon+YCqgWb9CWdZMAFa +UyWQn7pdB/TBBrpkB/iIkYf1s6JaA/g/T6/s8cRDz8tsl4k8GiGuHV+sixAX +hVjNFhfiNoMfjU2l7wYW9HA3ShPftYJLulGNOu0JjN7npR+PbocoHyqCZ6yH +kKecE0tg0wVXRV8sfHuwD1vnDEkcHLsgynyiJFFtH8qn5PCn3btA7DVj2VuZ +fWjfYkn89aoLpJjj1JwE9oEtRDMhP6ULvP57MW5IvA8dhletcPu74EHOiuz7 +0j1Qe4qfmQ7dMOdXPVXMsAf+7b+cDZl7IDqFvmJifhd08LwkqLh6QDzbaCd8 +dBd6bdfiu/h6gJJOaFe2exeq2HJ4tMV7QP9FpnZp5S780FvtfWXYA0uPC3Kr +o3Yh0HwMkxjXA/IcImqaUrugzqAYlcbYCxfWWyXiUnegPxCnrPlqH5yfTFTs +fLoNrbNPdVYF+8Awe8dr7NE2ONnmt1680wcJJwGwprsNB02XVayU+sCCssPx +kuw2eHEz4CpZ94Hfr5U038vboCx7sP0rrw/MCQstB0a2QPTkTmj7rX4g/0pT +Z39/C8xXOgrbNQeAkH3pxrrvBqALHC2NRgMQro+7vGW7AfjZ+ZYNFgMQy+D4 ++8hoA9QupOl1egzAp+FNisu3N+Buh1wEb/oA0MGvuJLtdbDyu72z82cAcon6 +sWRm69C2Kjq1lTAIG9e7zhmqrgHtvq39p8+DwDSbE8gpvgZaDztuG38fBNJa +F5E/vGtAMaUTNNc0CD2+dgKZxGvAuiJWLr47CCY6ln7aP1fhihW2gk15CBJ5 +SPNGxFdhTmIweuZ0CBYalV3f3lwBDfJzNEKkw6C/d2/xGfsKHB+d6rymGQb1 +i33qKpQrsC9IyKd6fRhqG1woOHaWYbTabJ7TcBg0vImA7vsytLuQq7OXDgNJ +Zr7kZaFlONf8vCnQdQTub7xL/XJ7Cfoq9TjLA0aAmooNK8+7BJEX85j+vjvz +hy9qywxL0H5s9y8oawTuPk1rlThZhMWgR5qEIyOQvEDIfaNmERbIWHG9JEeh +iUiUm09uEUKUmYQCMGNAyKgzGfdgAaTq0NAg/Riwk0dEbSotwCrn32Mh7jEo +Obj7XFFiAV4Ju43iwRhs99uEkLEvAB7tvYZjuzFwF9572rU6D4bXZD6YDIzB +I28iSzXfeVCKFee59nkc0lX8/djy5oCgIpHAu3Ac8vCxWLqUOeD3aNQZrhsH +FZMPUTRRc/B3zOm/7LFx6McVwbnsPgdk4Sv2+ZQTUEX1bdhBdg4GW/3YTX0n +4EFCNsv5yVkIJdNcff14EnbJm1XxaWbhzdXRn8IOk1BD+vlbJPEslLgejy37 +TULhhYDDK8czEGX26Mg5dRIed0pKmU3NgKHURXna6Ulg5J6J5MidAaKopEwZ +wSmYnr//qvLeDKiEFOHIlEwBufHuNU3HabjpTOE6XDMFDVOkZIkW0/CZtfOJ +c/MUvN+LKl/Xn4YN0r2q2uEpWO3w8UlB0+D5X55s5skURBvYhCuTT8P2kZHq +D+lp+ME6RlySMwUxC42bZIPTwMuws1HWOQlvs9o+Tk5OQ58JQYZu2SQk/lCp +L12ahtC/+fL/0iYhwTWpwvtoGi44+qo8dZmEE+JuUgOWGVgMDr5SxDwJnNvW +n7UtZ+D97egKHtsJyGMpuBmOnYHc9Ohpa5pxwLZHbN3737ngehBI446DekQV +3/HFWTBQk5jmWBuDOOpXUoFcsyCe5FWGVz8GzV8+DG2rzIK7jVelsO0YZKiH ++0glzgJmjP7V0+ZRkEoqIj+WngPl7NRavMAR+M61bOemNgc6mpLF9nZneanx +/Cr2wRyMzij/XjYaAR2Pzz/ZbecgULdVc+/WCPyWYCzvjpmDccP4GPelYRDi +uhPYuTkHL+24fW7dHwYz8ie70Z/moVOAR8WWYwhE5w+VBfPn4VCfZf4fxRA4 +JZhrDVbMA9ujCPMP2EFoYlFNQr3zIFiZRD0zPAgLxI7OIXgL4EZIeDobPgiZ +Dkdb2McLMJiiaRCOMwjUXYE+vdcWAb8j45r3Qj+QuE8oD95eBO6Ck+Gvvf3A +lMj2fEl+EfrkEiuXa/thvS9p56bZIjQV4VB7x/fDENU7buvERcA9Ielg0+gH +96wFSnfKJeAXfyGuUt0HvxgZc2KJlsHg9fXaqym9UDfPHmhLuwzxiY5CCWG9 +UN40paB1ZRku73e+oXvRCynfCjdV5JdhE7ds+oZBL8Sc71XAD16Gp4w5o91U +vcDlj7WJIFuBnWKK7o03PbClUea1yL4Kff6R6w5+3RByE/9zkdAq0Eb48gg7 +dEPyleHAaJlVcM50Kv/3uBuS/FUqAi1WwTWFZDRbphsG/QiqBXNXIdriQp85 +cTcYfC4i7BM9q3ty9e1WEV1gZp2zs2O8DlFFCRzCWp3wqp4vnsRhHfBeClz/ +KdIJCcQftIVfrsOnXd2HZgydUP+k1PFX7jowzyuw9U93gB7WoWHqcB0K2TnL +XO07oFpwy4EkbgPyxZ+4VUW1w31Mby7N6iYImwVxXZ9rA4rUxaePcbdAjyV3 +wr+pDV64FLXKY7ZA1qRqYyWnDUywBBMSXFsgr1b0b9u+DXyjAwlHdLZAUp9a +YhSnDaoqo4WWy7agYCzCnpq9FQKNYpULfm2Bh0IfQRhhK6gKFOmH9G5Brzk2 +hm61BTLWTVufrW+ByyVsxpPCFsi/jK5tnvUtKRbV2i75FvCiYRXjDtuGmdVw +djyHZsiapUg+jt+Gv4SBF2L0miEld3t2Jnsb1rLp00GiGaKrn71ZbNwGtQ3q +rAbiZgiRqPn3G7sN1n1fw5JSmoBSmW+S22kHWkVIDuN6f53Vr/p9RttduJ9l +/iFIrhHyLlnkcnvvQs9qXnfpjUao55YVlA/bBf7IUfMjmkYIf5io3/p1FxRz +8AK/Lv6ENQrmnvGtXfAQUyQYCfkJ6ylPnEzc/4DW56DXt7sbAMgdl8Ze/wEZ +nqJpm/IG8BXRwXdI+APRyYqS39Mb4CIf0e5CzR/Q6O/YsXJpgNdeQuK4xHvw +36B1STxTA8jYNolxJe5BYtMo2751PcgSe6vK5O9B2UrKQx7derj+0sTQp2EP ++P+EqFih+rM6XaOktLIHtJm4fMzU9RAhbbFz+/Y+qL8TMJGsqYN6aQnl4rF9 +uNdISmVFUwd2C/cE9+8eAFbYdiEwpQbk0+X5/TUOILTGo9zGswZ4d85tXbc8 +gNWpT9V2ujUQScBZPx95ALoX/95qJKuB6SEe0onVA4g4L/c306Ma6l9GJ9/4 +dAhJhkdecoZVoM70WGqw4hDe4eA+7xCtglQ+cZZPvYcQk85CaEdVBes9q2W5 ++EdgofyCAaejEiQHUiU9zY9gLPnSmKZUJVwl/KpuJnAMy8fKwRX8FSAmLIN1 +UToGfpNZhRFMxVm+rPP/MDuGpiBfAcq1clj773dUduxZfM+aVntWOfS2jf6K +ITiBpI58AjuOclCoYa4cnD+B6OGfy4+YyyBjrqmkvRULKcxX4vI5SmDCTdQ1 +ch0LKueGs5TxSuAB4xenGIpTmGEpoMOfLgbqV2HDVnqnUBJSuPMrqRikSq3j +xJdOISw61i6VsRi4JwR449/gICOjnaQYhiKoVaSWvJmMgxS+O+38OSoEEK4d +3/yOg/4dBuHbjBbCcOXBs6kRHHTy++et/IRCsB7IyU3jw0VCZi3VfmyF4JFh +mUIxhIusm4feKFz/AbFslr6yG7go1CXjyPDCD7Cnj1TMOoeH2JqiXr7e/g5X +SWVzDwXxkKpFa5NY8Xe4o1+QPhKGh3K9RuaH0Hcg8+6duqSJjx6mOPawGBaA +vtbE0DNrfFSiekVvUrIAYpxeHu0H4iMv6q0H5ewF0FBVY1BWio/Yn+t9qVnJ +B7/SWZ9t9nPIk1LAh9ArHyKN5ic68QiQlRF70IHcNxD46H56xEyA9lBikgL1 +N6jipjUzuU2Ajn5ndDXOfgXTu+4/xuwI0JClqay831fgbPKg+jZDgAJog8vM +qvMgiFhOy7SHEF0OLWQ8QV8g83G4cPA2IeLmTAqgofwCZbU9IXsURMjd5QbZ +w9lc0M3XJfmsToSIumzv2b7KBS+jEnvvXiLEcfl7aHJHDkzuZc/1LhIjy4hO +MQHLbFif7p3qJiVBT33CXQjuZsPY/eUNLgESlKG/PklwIRvYNxkq+9xJUHP9 ++kFQSRZEpZEH2Vw8j14VGCW+O58F2wYXWVI0SRHN/U+hyaWZ0OiqzB3udfbP +yjhwYXuXCaXnxF6vZJKi2WaRxDbzM5PySs+dkKIdYZXHKZcyITo8FpfmKxmq +FOO7KWWfAdKZyGaCmxy5zMvSGgh/gjtV3V1ieuRoUAvP/y75J7ASXKO7FEyO +DMM+pskspUMeg1a+2io5+v2RrLM9IR1Okb4ebekFJM1VZlBOlA7H9WW4mWsX +0CRrzuHgTBo0Z0rSzFBQoJ8F0TNM1WngTt1dPypHgX48mjBick4DZsaoC0bF +FEiX3cx7ay4VlmLrBXB6KZBCG/WBXF0qaPdVsu5tUqDsHXeNn4mp0HBKZDDA +exEVqhTaCumlQua2qXTcp4tobmR5drotBdpO6G8aZ1Oi96ns+UtuyaB7h8W6 +oI0S0bJOPDIXSQaTm12Gzzcoke2SoMCNP0mQYPlZgO3WJdRNv/k73S4JiqSO +pAqaLqEBEL3JZJMIIbXVMY7rl9Axb8Plv3yJUHCt7taXS1SouJXqKfN6Aji1 +6KgFm1Kh0seq75VtE8DT/tc3bnxqtK4UXHHNKR7MlDq+9PNRIxx+uRxjkXiI +mrEQJNOjRm7jOLxjB3GQOjlkTJ9HjWqXWjyKveMgzQNH5OgRDWrvxZTPv42F +vbAGZtFZWuQllZRHX/4RJqXukpxjpEO5LE82L3h9BGK+6zyZWnTofd64mJHk +R8Co8OV6NtEhbJjo8/2GD5C0I0uzUUaPKp19GG/0vofgD9o3Fg7o0byksGn3 +x/cQkJ6KPyLGgJzNz/9sMXoPKZ2hpa0VDMif659N2WI0sMscZtp3MKKj8Emh +CNxoCNN5iFmiZkJCIj+kRpqjgPYv678QYyYUpRr1xjU8CkZ0rxdY7zKh4ThV +o69sUXD63FvUjo8Fuap37ZPIRkJt92tHUm8WRPJXqWebPBIymX4xknezIMaC +DbLrwxGAb6+A99yTFUn/GxZOtI0ANyftzzL2bOitlI21aWI4UOCsFN1IYUNB +XuaG08/CQUJBz2qnkw2tT3wa+iESDrjVXllMNy+jnujOqylp76Ctwq46GZcd +mRssZzRShcG3PX2uQ1F2NOhH1b/0/S1U1FWPGP3HjpD9ftg3jbfQsK7q+Wia +HTnb6k5zR4SCw1sxHa5eDhQ+WN1SQvsGMiZwHNIpOZF6lzP1TvlrmFD6d9la +ixPtp0k4dBi/BnFnWu2TIU70fVo7+3lWCHixhDSK73EhXyIzvjvSwTBS587P +hLjRl+ESJt/VIPibwPojJpQb7QSZVllEB4HLPrjG8V5Bnq62ltRLr2DDeoJJ +xIsHjTmuje9+eAkXXUZkLDp50DnjBP1axZfwVLq4zJjzKlJePkmi/RcIo9f7 +miZ6r6InBxrnLcwDz/rb3Wb/G7xIcBxn14ghECRj5zavvOFFv9yHeCc6A0Dn +aCSvUOkacuSYu+gjHgAXesiVqvKuoS+bl4KSdv3hkbAcD8klPlSXbjkon+sP +rCU0bIVzfOhXI3+cKJM/JNV82w3IvIHC/F8UB5/zgyqnX5hOZn5kmXSe4k+N +L+yvZDwkiOFHS57sDkuevmAj/j7qt5IAqhEonBxc8YHb7VMXP4QKIIX39mV7 +5j7QP9ddeb5LAGUnKC1zznjD6+P6VkEjQXT5K0tC8fgLuKq2t4+fIXjWn1Rb +6R6+gD/ctHu1m4KIpvh8xptxL5Cg2Lkt/eYmCqa3bEib9oTv085XwseEEK3X +YVLkvjssdxByj4oIo2TpWU4Xb3fQ7evML40SRmn8byWfEbmDBkVne5TOLURf +zlT+gskNnHtnxprLbyFZGqaFpCxXoLvnGn/KLoISr7Ld6bzlCviGTA7bJyIo +co/o1EjLBdS/cJlu2YoiUnklufJZZ3DSGpxzmxNFphyPH3M7OwNF50fRhhEx +NPWVaog33gkICKQK8Q7voKCgAZ3ZXQc4vwgviULvIu3BjL6iUAcYNp1UJucU +Rxxpbf0fuB3ArXnRgtpMAokVURoGPrQHIsfLHTFkkmfvI3wm/MgOdu6Vj3FW +SCLK8ru7uTF2QCZwuttIjVDs17Rkxvz/wMjRaoTQFSGuDaEn2Tu2EL57U353 +FKHxvtlwbVFb8Ln+9DS64B5ao+Ivx296DlUlDG1F7FJIbpyZlJjyOXiLVuTo +x0gh420ee95H1lBMJ5fNFymNMP7RFq2nz2A3zW5SnV0GnWe3pJuWeQajY+ld +1GUyaJyAntol9CmUELOTLOrKotiGnl8hA5YQoVrUI3Yii1DZg1QmDku4hNt9 +KSRbDqk9fcrO72ABim7CiiaP5NE8IWNPXYM5qNglcOIuKiAHpwtUVrZmQF5C +cpexXBEp36TZ8G16AsGsOzQmMUqI+9/tIAaOJyA+nhKS4q+MbPQOUkX9HkPL +X3psrbsKOrU6xQxPm4Kap3NlhbcqwlDWZ53KmEKJMNuL9Eg1JPmY2vhLjgkI +dvlEEruooz+T96+IHRuD3pPyzKsMGqhzScyxvv8hTDqlpfo1ayDm2wJhpkVG +UKmp8HvbTxPF20vt0cYZgvXEhpOTvBZi34tTXgowgJspzA/ZGLRR7V8vo34H +fRh6clrCd6yNeBYfM89YPIDHL2b79lZ1UDyeQv5FEz1QEF/7iLehi2T82Cws +jXUhJrtq5Tz+A5Qo8rJuwVQH3pR0PTjl00cFUjHuUVba8IjXn5bS1gCx8l59 +Ye+mBeVRAy11zYbI6z3rfuAbTRAwUjdbgIdo6lBYtSddA7J2Q7/VDhijvXzC +G8Z16kB2TfPlKwUTpPeHhtaw+T6QMMQwv71tighZdxTf0KnBu27anB30GLWz +atA8cFSBF8SHBEmmT9DmJrVq+5AStGcnpu4mmaHQjADPvwqK0GFSS7R1Yo56 +xxcPZxvkIcvkIb+iryUijvxznKIoB7NPwvJibjxDi06YdIkRGUipDI6JILdG +hA+HKVudpcHGruFQlscGNY27BesxScECQfANv5f/Ia/TQaeDdgSv7m88ZqW3 +R4X4erf8qAHiP5xofEpyQAkFH01fZ4gD3Z0L514ZOaEo2Y+X7qjcAYGfVaLG +xi5oP702oI5EDKr7ok13v7shqpV/SzoTt4BDjK9Y28YTrWks7gu0CoGIPn+p +faY3ctp46RjRLgiEUuUeJeCHHBsD+l27+WHVvHshIjIA7ekrXfgrygfqGx7z +FVav0JNbXBJynTwwN2gRubkbgtzYOjaZYriAhYEJk2QThjbuY6flo9ihufja +BWPGSGQSXKxmEMAKn1LcLUy236MMe3aNdAUGINc4+PJaIB5pNYydq3Ojho9u +pmEYrVRU1cfqYkVzESYXu0L95jORETHKz1Y8D1V63XE8rd8Q74u/GjX38YEr +47V8S14JmvlHw2UTcSTpoWceTp/bgA6YKsrI/bckCRT481paelGvq7TumyvT +kuqRbNc7EjdQluLNp5WjTZIbvx9RQPJflCKtmcbVVSP5f5rnpPU= + "]], + LineBox[CompressedData[" +1:eJwVkGc4FX4Dhm1SUqGMVCKhhDKSeH5ISMMIGclBMhJCUnYph1BGJDkiMju2 +kz0qCSVSomgpMgop2/t/P93Xc93X8+UWs3M3Ps3CxMS0lpmJ6f/8IBVynXbr +H1k1zeHHWl+nEfl3IfT1xnay1FRw1u3edw3b8VmLPWb15GxB+7YciymNLO/h +sp8sZcSk+5ZYg9Sihs2InaCjQwF5890iSMGQDfpL3ZKPmzLJA3OXXfe7ueGS +d18jozWN+H506+RcvRYWvHsf59YmkzaFvk9iqwUQF3q426MzgfS8d9RidxJC +ZNO187+lYoklC7/AguAmdLY+j1qqiCar6Dd1jsWIISa1cpzfLIKIPBJtpqhJ +gNlETlfh3TWiKlBXXsm7HU83xK+PYr5KGPtYsrxXyiD0JHd5ZX4ICX97HdWy +suh8Mply0TeIdCamvfm+Tx6+ESIZObv9SepihpLfhAJaRbdmmLj6EU/GuY+o +3ANhPn53xxW+RC5vD/VnvBJkqL/5Lea8CeXQ01DZEBWkyvt3lsh5keWEc1sb +AlVR3fmonCvVk6yO7LenRKnhoGDZvPJ+D8ITHR7Rnq+OOrGzt5rYz5Gr4vmd +zR+AQR23XoEeV2J/0ul2xGpNLO8dPxk96Eyu2MwH1yprwSLTfA23pBNRm4oM ++uaoDdPridUNsY6Es8rF60vqAfT5sdtwSJ4mp8UUFWn9Ouh9qWO7qs+e5J0J +D2CR1MVUG79YY4EdMT9f0v/HWw+V/W+56MkUshTOnH+qVR/HY8fwPtWWvGKi +TuyUNoDk07urKO6nyI8E1TO60Yex2XHr5rmnJ4mu8wrH5LkjEOuo4stQtyZn +QkX71547hu2PRIyWOy1JrdGQ5BFvQ2wyjbUTvWJBnB/WWa9RMoIoso+cMThB +BjKYjfVnjbBajyksQdqcNH8eZP1Vb4y4cdp8hogZuTJFsmciTXA31m76+WZT +MpiWkHvS8jgyRPR03BSPk5x+mxyBnaZIUfz8eNsJE8I3d8NLkNkMcRSLqwVU +Y1IlqsBh894MiaXGL6rWGpGr7KPGsXEn8MlK/r2hoyEpE+Ls8/SxwERRZmYi +9RjJeLHY5GNpCW3+Fq+eE0fJZqs3Xbe1rEAMbkpxqh4hvyroU+2y1jBZiO39 +LnWYbGV22MW/8SRcqjkVzLcbEKk4Ibodjw2oBZvNBw30SXHX/pbFmVO4uGqg +WMVDj9hINj1M9bPFn29Kp4JouqSUPc9PacYWFLpFl8jGg0Qw+VVb1SwFK96N +7NrhpEPCqepymf526N937FB69QFioPubMstkj21ymhF1/tpkvOmB/1seBxyS +iKWa/dQijavV5XPiHOC7pFOx30aLCHfo3mkXPo3nRisjosw1idhadxFmWUfY +9T/QMflAiHFw77qVDEe8jA4wFXUkRHnDy8vWB85A+OgS7SQviI7ymupWWyd4 +LozwT6lrkN36u0u//XbCzBH/1fe81cn6ibWn1EKdEdVg6Bkzo0boYk8oSdku +8Oy56CGoo0aO+b0USFZ3RZG43Q7lpH1kr0KWYkeXK1zU4mTGDVWJ/67msg5W +NwQarg2dKttLymdzc27fcwNFaYjXfsteMpSHHeF7z6EoMdTxKpsKqVovqDHo +6Q6a4ubB+gBlspqeqifJ5YESr+UI/3klsvvU80sj5h4Q6HH5l82qRDZwUSwk +Zz3AtuaPWXWUIvlyv2ThziFP0BvSyuNEFMnr4wfX303xxAqrq+1jmnuI99hQ +mabWeRx/oz5qWaZA6OEVnuzxXqBdUzpBtVAgPUeag1qGvdD7zXK1K5MCCX8W +fJyPeONLTfHmflN5cohf74HiuDdeT3lR1dnkyYWanCPcB30gqi7h2uMsR1xD +9YTtUn1Aiat8Uqe6i2zMqo2JN7yAI8L+Fv8eyhL2N/cuuOVewN1oJ4qUsCwp +6KhYeMLmi6WfdbWDK3aSjbJTF0YrfWG6TuqaLJ8McQs8dZFd1g8HHvjOXLkn +TQYT59OqIvyglv/+xzsZabJx0ah8eMgPR51X+qw7KkXYpxXdcrMuIc7Ta16r +VJJEDC23PtzujzUvzPvGTCTJwOgJXk6qP/JWLDV9nd5G5hvzJ9/99IcFi3nk +GbKNuC9YRLfSA8CmcSJiekyc/M7QFBrUCEKsQv4F10Rxcr7epN0gPwjFEYHJ +c1ri5DX9QowgTzCY5da6bUnbSnSpp/49vhyMdXZfWDs9xIjm8C6fT1YhuCpa +QY5LixH9u0zxIfEhOO82FOv7dQvRNBx2sWkPgY6Fc5O79RYSp5t2tQWheNf4 +nL25bhMpmUp0sdh+BYy4GWFDvU3ktUaBbhvlCtyb+8pdukTJ2VXCvr4pV6C0 +3JbAPbGR0PYEbvdZdxV7xfOq1+mJkAq+M24szGGwOvfjE/kqTAzOm/nuVP9v +h3kY+QcLk0yhmjuRfmF4vkJC/mu9ECnewp/4YzIMyW1yvSwnBAkNFbSVQ9eQ +x7myQ5pFkDSkvYzv2nYdHdpuAbMFG8iAg/jNdvvr2BBcI+DEvYE4aFNEzD5d +h4pu7TGnboH/+q6Qp/eF47RRfhgjUoBs9xhdWhCmYu/Skbf22gJkD/vQoJ8l +FUbhAo655fwkYNOWmOX3VKhGCWqK5PORAnqiu3xfBH5JXHdxPMtHLM3SNo6J +RMLysgxbhywfqSHZ/G+tI2Gja4RvJevIo8924TsGIiFOVdxi37aWZDkbr+wb +vIH4so+W76TXEGz9bssyH42Dq8Iuc8/ykh93NB9+UI0Bt6eRXRONlwhahU31 +XIzBlgaJrQoTqwn1qW2S8r8YJG37G6WTwUP4OWyC6i7dBIdSlEanMQ8pR92u +ouSbYJF/Y0xl5SG1XKkDxZU3UXXUgN/WaRXhfjbUPDh3EyKfs/WFsJL80dfV +5/C/haxeF2fKP24S1rc12TvlFnazWa/NLeQmSY2mfyaqb8Hl5JCOjCQ3WTtq +bCC0dAt1Xp47nTeuIJ2l8qobQmJxxfBGst5uTrJEOypXTo1D9w3vhbszHKT0 +3cctnHlx8OrP4iqs4yCHRTR1TrfFwdRAkIPHkIOcZhwt0+ONR+4HtSItP3bC +trJzS05CPMTdZP3XjbCSgl1jcxUPEuDK8yt0RTUr2ZNykv/VswT0Z5kxxUex +ktNU95yJoQTE9ITNWuxmJdYRDz6ckL2NtE+GdJdQFrIqPj08v/w2DrZW7GzZ +x0zClZitjFsT4aY9qla5hpm0dBlNL/5OxE7mpgGFH0yESSdfsmx9Eix39Ern +JzCRp3NnOnTsktDoe0NKYmIZ0YJLb0Znk2Bn1fG4P3sR2wd5qpR3JENgMOJj +sf0iKibDDkYZJSMyuCfYfPMi1t0TCx7zTcabyC9R7HcWkL+4OvzFk2QUm1zm +piXMQyCw6fGUzV00JHPt0yuaRYTWiivD8SlQGamPeeI7i2OHPR3bq1JQWzPd +801jFgO3teQef0kBf7t8N+erGYjw8rNmy99DSP6V0sS//yC69WLFQNs99HA8 +e8RM+QvtPwGvaRw0dDi+WyiX/4s5qRuUaVkaZo43/x5n+guN+cYdRqY0LBmn +5g6kT2P98ENOkQc0jHjl7Y4f/YP7zrzUuS1pGP4aShlImMImjVgVs7o0BITK +apa7TeHVeOORjs402FbPFk/qTKFe/kHG4e9puEsJ2pr4bxLch19+MuC5j9cp +e6VcT03CTz/D3t7qPowE35xTIROQNhtsHv13HzuWzj98KzoBm47x22Er0+F3 +iG/6+fxv7BiW+bN5czqOyCg9T2f8xnYKZZfFwXSoFpFJXuXfEFXdffFDfDqk +5FIzWQLHUZbXqCK6OwMBEol7G7TGkZWbMdeik4H0zII5Lq5xPD0nkelrkYHe +92eKZOPHEGLQHt4dnIFXmTaFacWjoMid9Up+lYE+uUNCgxwjCBhQ3k/cHsD5 +catDHusQXIZmXzGyM5HIb2X48f0PpLVytW+sykQ+zf+RXeEP3Llx9kZweyYu +xjM8HWz+8ww3Jd3JTJQKO7vL1n6HarKnU4daFjx4rFWkbgyiNspLuu1lFgYb +HnW/tP6K+eFKadU/D0G7dOwK0/6v6DJiYgrnyMae+W3n3UW+wvYWT123YDZ8 +G/g6WPq+oIh57qObejbYbi6s+W39BZovWsdirmVDnk971M31M+p3dfcnCOZA +lFmYTfjUAAxNlW4EquUihRhf9JQcQHxtR8a2Y7ngCs3uVBzvxzTLr5gXdrkY +Df0kNx/YDzI7/pwnIhdFewzGXDI/4tKI3t+LPblwPvulgYX9AxzL+4Q+eOdB +qHXb5yWu99C8PD6cmZePk3mbU9d+6MGb1Q4Kc7X5WKXlNuFN78HPjlAfg858 +yGrpUmXMe3At52Hvt5l89EsUyGrkvoPlfarLpE4Beg/L9Jy3eYu8pKO6XgMF +iBwTW2qe68LZ6yMxX3jp0HhsLyzwvgv6JyMDqGJ03FY6SE+s6ELVtYfbZffQ +IUlqUtV8urD0J5PmYkZH11blo1OTnTB3YX1Qk0IHxn16X/x7DaIns9GWvxAX +L5dRb0p0oCs9cicPrRC8j8bCOrk6oLIweSz7YSFuFjALBvS+QsZ3+xjNwkLU +hfyalXR7hfXF5ZbnGgrBz2mywej2S4hcGBkr/FoI1q+3S/3/tQFBKg4924vA +mcajbj/Rgm5n798Zj4rAv8fWYt+TFqiomiy/KS+C3qUnrUaJLejfJMHBVlcE +yfdLf6DRgp3GjtNWr4rg6nbImifmOUwDbeSmfhVhW+O3EN79zTAYHK6tkS+G +T3PrdXHfZ9ie/Mvr7IlipIUYe1+seQpLZtfUtwHFEMobI9P1T6D7jkP0cWEx +Ko/VhPLefYLlplyDLEYxck9xNJ/0eQLGXfEDt+r/+5c6L8fLPEF61aEo245i +aDlO/XJIbELlYIfVt1/FMPM0m9W61IiasIQXQbtKMNZGdXhvV4+25WHDxZwS +HEu8dk+c1ONbg4m5bnEJ3tz9+JwmWo/Z1iMJ0ZUl0I4U17QorsN6tsPF/K0l +sBFw1NyUWQuFzxT95ZESyIzxLpxKqYZi94/Kw7KluJPunRDdzsCS6MqkuoJS +FBryMxduLMY5uhejKbMMu/fzGrD81+XrxOXMjvwybOuUJtENRdjdrf+9t6QM +Ttfaeo3OFGE53sz2R0MZCnY1VQWWFeKCyZmtnz6WIVD5RaEh4xEiAjsOGAqU +Y8ufNYaa93PQmL8YIhlajq7SwZreqDQ8W+z1ijSpgNgVgT0c2mkQrE3uybSs +wNvlx0KyEzRcDdlQU02pQJbSUaHmllSMyiiyfnKvgPukeOr+qynoN/rosxBZ +AW6V1y9kRZMQoH8h4kZTBT69e0uXoMdAv1Q8lEOeAa2fDdTpomgY88QwFyoz +ME9V9hAoj8JO/qdTpuoMJAmWPt/XGImv5z3kEg8xEBvxc8eP4evgWjqwMO7A +wEEL68uyPsFoO9xRNpXEQLo8931xwSAY8bRpO9AYWJPAHWyoFwCNTwPkdSYD +iwJiai10P/hy3b+eVsxA2LMN13qSz8OlRlybv42BcH3vGw59HnCWPqfj1MnA +3+uKe733n8MG3bQyRg8DXo/8e51Nz2Av34GBo4MMrF/HFPNwyB7RmoFJ8SMM +BDvPMGyCbTG7SaHu7QQDnrHpgutULbFZSsdEYIaBybvmMeSSCXyoD44bLjHw +P7qJ+yc= + "]]}, Annotation[#, "Charting`Private`Tag$4175642#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.560181, 0.691569, 0.194885]], + LineBox[CompressedData[" +1:eJw11mc4F+7XAHB7f1NkZa+sZFSUdW6rkpFVRCEjVPYmOyuZUfYWIT/Ze+9S +RvYmW3bI6vn+XzznzX19rvPqPudc5zrsxjaaZng4ODjRuDg4/3v/P1RqE2Yw +gRi0JhVTFVhCB5XHs/b/c1ESCUdQCQ8QNFTwUWB9uEc3kd0uAoo0TIRkWEvc +G2sJLhGHRDpKQmKs7QsCXr1Mk4ZbK5F8+Fh7qPAn57bLgl5Fuv1ZAAYtjjbG +MdYpwL0q2ZlDrKuXOJUjSu6AsbCd/Q7Wake23/Hz7gGJhTDfGtZ/S9uk3NJU +4UuZN8E81jsbrCMuyuow7WpIMIb1UZFXekm7BnAw9vL2Yq15JZx4S1YLaM73 +27Vhvev/hE6wThvMBs2mq7CuH3C1+FSiA2RHCrxpWNt+mG9ZvvoI/gZG4Udj +bdCvfMqbpweuYI/vj3VwupZMQdoT2D7ZsTXGOoOE2miT0RC2vWOm1LFW7iTu +jlc2gkj+HlsZrBU/+5RMtz8FlafE+HRYG42RR/q/NoaJGjJ8PKwpiocoeeVM +YHcsl2f9NQb9eKVK7VBnClftq6bqsHY6Kpm5UGoOksH3CHSwHtQSDq+xs4Aj +eTk+SayvaV+jfiZkCfEzk/YsWNf+26mry3sO6aREjnP+2P+aWai6plsB+XPZ +q0ZY8/nxWvMZWkPMDW9XaazHoD5hnMkGSn1fLjFgTe3YHceuYgux/I+v9fph +0DxeJFFkhx3Ujzb4i2L9J3GK3eqyPYR4fdolwbrQXWHyXoA9HLWrB0/5YhDl +rpUsibwD6FDPsAZhfT/l16XQekdw8pEg+e6DQa6JzFslZS7wdLy9QdQbg25S +mGrFMblCFn3Et30vDCKLbCry9HeF0uc/hquwVq52e66s4QYWnm0rUljfGdtU +2113h5SKxWMxTwwSuMgQ4MrlBa4z3BNH7hh0XajB2zrUC1a/0fUXYn23xq7C +bMcLmEdr259izRfbuKHT6A1P/goXtLph583k5l/uQh9IOrtp4eWKredHplOJ +e36w1Fec2+SEQXNO0VONnn7AfXMp1AzrrDkunztf/MAzj86aBOvCQFIKHXp/ +UPvpI6TsiEEfuBp8vRf94YkAQU6rPXY+G6tqD/wCIHrRwyrIBoM4TtPEY2qD +Qf2vjY+KBQZFcHdLdq8Hw7nuvsgRcwwaDUQcuMwhsM7V3GSCtXnCWZKdZwig +V6YBLs8wiF1RwP2JzBugpFWJiTHFoIY9Wh3jxlCIKCkYzDLCoH+kLk1X2sKB +eZzsAosuBllFC77w+xMOoUmFMuE6GFT3sP3qKHcEPGTIDjt9iEGdfYlkbwIj +QDgsO2L0AbbfdosZJ5yRwJtdxhWkhUFlXrc/BS1EAhhBfKUaBtk8TSahtowG +csXgaUcFbD8Fo2yGfaJBb9gg+5s8Brnl4bolxUXDx0jq95xYG+P/58zbGQ1X +OMQOv8tiEGti0vW7PO/gQdDNRkbAoGJWNuechXeg50j/LOwWBl3l39xcNY6F +OySOcn2CGLQ9DQxlhnFgJ7V/eZIag3y/T3oXucXBxLEt028q7D6Kj1woeBcH +74JrGU4uYJB3cmJxbkccRCX+FaA7j0GXbrHbFwjFA0WMS5EsBQaJuGt4LfyL +h38K5xQtCDBI54lUJHd6Ijx82XJ8vEuBBJ5GPWNaSoGHN2VaUS8FoqRq/pD6 +LwWsZi4q8vygQAn/VSxw0qfCc+/VLYrvFOj29n/jQkqpwGTb0TX4lQIJXqW6 +9yA/FZIPanyfdFCgSYJI3zXxNCDsvU+rWE+BKMhx5aZO0kDD+ZaoUz4FmvEt ++5gRnAGFcpd0HvtToKIi43Li9Wzgy+LEl2enQGE/oxZs1T4Bd1dBuVYxObra +UUsoElgAIqvCSswy5EjeNHAsirwIDNMWBZKLyVBhB9+KVuMXICRYPcfJRYY4 +1LQDBl1KYMOJe8YyjBQVskhPMZmUwbrCOivxFAmiePGHoV+qAhp8q1GXEAnC +M7dsvqlRBdnHp2x4FsRI80FWS7RdDWTFeF4KjSdC7L6MfAL+dbAk8THyRS8h +cil7FF400QBnLfWzRb8JkILlwnVPmia49eWbRz0VAYrqYtC7ad4M+e8Pic1Y +8NHQtbKYkI4WyKn0lZHixUMKs2ZRLtxtQGiuxzMljYtmdIuGomva4Xq2+as4 +SRz0wnsmvVKrE/6l3nt7EH4GS5kii+b43cB56U1SbMEJvLpG/5sQ9xsENxhm +CacegYl3wC8Zsu/w8lXO7HHpIZR/U+K4J90LwWlSkbxZ++DhzHmNMKYP9Lb6 +pHfS9wDnqeEC/3E/RL0rEsPv2gGNxuefh8p+wj0tD4udvi3ILJDvba39CYXW +1/4r7t6CvTyvqvKWn8BsfSfPoWULyIPb1rP7foIlZ3fDQekWYDA84sW/f4LW +i6uuJHFbwFlpaxVweRCsrSRTVAy2oN9Ka1AocRC4bjv4dAxtgvPL3Lc2UUOQ +8ZyVZpxyA+QDH+YrxA+BZD3vASHeBnw38DVkScfm22LcRfd+Q1/WUPx00RAY +6O1bRo78hk191/743iGwVAwnNUr/DbekjxW3zw9Dr2+P7P1rv8FLKOhMJXYY +visN3XXSXQdDaq7F/s8jQLnBHsKcuwoMtqFz1RUjcNg//DU2fhXw1Tq6PjWN +wNQVc9Xzoaswd3PYJWlwBO5ttFFRWK9C6FTi1aHTEVAMd/jOcn0VCpy7KDPu +jwLNoaVSceMK2L/kcho6HIWXwQqaiePLkDpR1ZyPPwZMJDI3DHqWIY4snTzk +3Bg0886/5mxYBlr9g1J9rjGQK9m2KctYhqitYxtj9TFwemeTvG+5DDxPrcnO +Po0BNWVL3ObhEoRnnecqMxkH0/nBK+30S+DKsFvTaz0OpSzUXJ3kS5BPWWK2 +5zYOhd5dht/OFqFHcJ9aO3IcTE50P43/WgTP1Z45p7pxUGUi+0jzZRFKL4aW +KDNMgFe3oNqh0iKIm5aEBQ5PgL0GT7qP5wLcvHHRo2J+Apgyq+x6bBcgWCq1 +cXtzArg/ZhYwmS7AOxUVXz+SSXjmDM+a7y2A21kyPa3EJERIT5MK0C/Av9OY +EcrUSXguLM9sX/ILPjBcM8m0nQIVZptv02vzUL+j633TewpGNZ/X2k3Nw4GH +7YuxsClYwyMsIuqbh5Lomb8K+VPwRlM091b5PLymqZkvX5yCVjsu4lafecDZ +ETlgNpoGkssOgy9o56HihqZ649UZ6D53YEGlMAdjmGdXVsVmwNXppJlYfA5I +cDXzGWEGTl4kaODwz4GX7oX62PszsCPTRnVMOQeJRvb2S7YzILI7fZ9uYhYC +x85ukpfNwJXwBsy64yyI69jS5snPAtVV26cXPs2AbITVeXmVWaCVZlO9nTwD +hn4a535pz8LnNmkhr6gZkFNYkJd5Ngs/Bb+O77vNwHRGwaR2yCwcGLj+JVee +gYkTOQ2avllwnbze8nZ8GoTdLZSlzOdgBfedK+mLKYjv0en5bTsHN911f9zQ +noI5a8ftXPc5IN0dNLGQnoKOkEU9qfA52CZkVp+hnAIRhyOt0bI5GE6YfsVY +Ngk1I+Kqf4nmgftxg2ETziRo2BbZy3+Zh5zLHTSTSePwXLfx3fnaeRjc/S9E +IWgc8rJ8/yy3zwPVWwflYrtx4P0Q0FwzMQ/FhbzNabfHYU283muN5Bc0SaY1 +dG2NwYICzYy/yS8g/9ZPo3Z7DPDMSKs4ORaA/NwKRmR/BArHCl95XV0AjrGy +pWezIyDEvES2JLEAciH+jzO/jYCGtOavWa0FoNT/ziacOQIu2nKcvoELYHR9 +TidefQS4ZeLlPTYWIGbEKqWgYBg4NNKtaLoXwZeNNGjJcggukr4ljhpdhKx7 +akqK2kMQmmffw7ayCCWSTVfyZYYgfCfCw5NkCcbtU0wiqIeARPr0q9DdJQjp +lVuuqhsEMj3p3aSvS7ASf4sogXoQAu5QlQzNLwN88DFPahuAdFXmqiv7y+Bq +7aZL8GUAemUuVSeRrIADrd13x6QBMLUzD/kquAICfAsPbBwGAP65BD53W4Fg +wxz+r+wD0C/QpzVLswr8rFF5bD79MMrLs29rtgbDNV9JHsn3QWn95EUC9zVo +lbey5hLpg5uR1Hul4WvgPWb24YClDxhu0ezZVq6B+9Uc6bKjXjC1aud4hFkH +ojV/zvDiXlD4R7TGXbcOD95df1/J2QurtB1xpQPrIBD35hkuVS9sOpEamK2u +w2yBF6cmTi+M+O8ZXaX/DUmlYuO01T9g0Xxq6JnTbxAy0KetEfwB2sRpp5Vi +G2CzkfKUgP47OP8Jmg6/vwHO3VoE7//0gB+hJ8Vbiw2YEns4ID7QA/Z8qRWn +CRuQSsVEXhDeAy+LxNM7cTdBULzSQYeoB05qlQi0hjehyuRjTf3hV4g76X79 +oX8L9DG3J3dXuqDEI5OYa34LxBVfZc60d4G2GmX/j90tWDqfKTib2QWyd//F +B9Jsw/K9+lxmgy7Ip05vdtfbBroV9YPXA52AK6oo2Lu6DeUYlnmq5g7IGESF +r063wUfV8iKkdcDFlyz+aud3QKGFy9nbqwN8rdamTMR2oDhNYlFKsgMKUx5X +Pn29A0KkOjfzy9phFK/Dh4p3F6h8FrP0C9sAX+GcmLL0Lsy+d6b+HtYGe27M +S0Wau/C32ZDtgVUbEJzefUHotQuyylvC6VfaoNspvGFuaBdakzU2RQpagUOi +0XMvag/E+h7/lfyvBX6YiCD5vD1YtpaOPI5ogSc80r2dzXsg6n/pRq9tCySW +swh47O3B0JfD1krRFngIU9ej9P7AYQZhS1BFMxibc74TFt0Hid0JK862JlD3 +/97ZoroPrNf8M5pzmqAFl4o1znIfCFP/RTi/aQKfqPjPxBn7cLW2vIhJvQkC +nnz7wkh7AOmbKp3GE43QkhZ2a4v8EP7RPsyq3G6AXws3uIivHMIta77YmKoG +YJI+47RROYQiid8DCb4NYKHvSCoefgiGPiwOl6ka4E9wybVOmr9w5GzTKHmj +HsS/JVFRiR1BfazjxnP/WlixqGfp1z+CY1JSnR3VWuix18s49D0Co+a1zSz6 +WuAW3dH3/nEEuTRX1kMLayBzctoh3eYYdm7JZBpPVIPVnUdzzXHHoOxczqGY +Ww322WO3dJuPoS7uxW0tx2rg4U4jWqQ9gbrPbGU7FNVAVXdpr6XtBO5qfv4K +qAq85drvVO+cYO+ILhJfTBV84RzSvM52CkcsokYbY5WQsZurWPvqFDwS0+NV +nSvh8HaOnL7UGRglXh5n/a8Cin09yM6G/8HuIPUEG185CKdFa2kS4qDiHG1q +45MyUIl/mr/FgoPC/KW8un+UASP/C1dqLRxk97qA/YJLGWz7faGjbcBBuydf +8V06SiHgVOLi4hgOarnTKrWbWApvyq+PkB/gIH6FEsoPtqXQmLyfayCMi3q8 +9CoeXCoF9yO9PZUcXCTlZexRZFMCYWyuHvttuKiS2mD7uWIJLISkfMBbwEVW +pqLPVRmx+ZOpAiUuPOTwIy/+TUcx2Aa3unbk4CGnQn3zJfZiGAijnFJqxUeP +fxVliE0VQVNcqBTZKj7K51tNdikvgnGPSs775wnQnGen82x4EXgz2RzaGhAg +oTjCIyFUBAcbnc5PcQmRoGVMvoPSfxB7RGIZLUCIcCVZEwJPCuFrpWmYwUNC +tDShx7f+XyE8uxgiOviZEJ0uH6X8R1cIukVUwgmmREgz8ISdca0ArJflLPFi +iNB2zh319rQC6EuHcvZWIkRle0rR9rAAvtxhfhR7mRhRpUnm17XkQ6/lYW7b +HjGq9IgYSknPgy+CpCV6/CTIXKiqf+VRHgSfX3HsMiJBM6me2iFUecDIHj9z +p5cExRsEmLe//gTKDNcn9apJUbE7nYqUVS7Yx4pHe52QIt5l+SwjjlzoZ/LG +HQIyRCYZFr4ynAMFi9dJUDcZqigNb+ZTyIEmifL5zQ1y5BjuqWPB/hEWkitX +UyQpkPzn37/LRrNBr83+UlcIBZJyJrO1jM6GkOzbHZX8GCT7pn4FjzAbTM4a +XMDnHNrzNvxIsJkJspobsf9Gz6FzW8ahgXmZkBgzsBN3gxIl5sV12TzLhM3Y +KuKIHUqULoZH6TadAehnLPv75vPofPgKzsuhdPBfjTHIPziPJMWYtwRj0+Hc +v5Q764IX0G08+zpd7XRIKLT9SptyAfkTfq1dGUiDDCF3nSvhVGhOGHf69L9U +UDLkM6juoUK0rtwTl66ngvPbHOztRI2Y3GuHKKpSIFzPvjwzlhoV/3FxsWtL +BoEgjs7gcWpEdWvy7y+VZHh1OF57mfMiOtOQFxUaTAIia3vhrxUXkclsa4jS +ciL8svplsENAg3yU2MMvOSTC32CNeWptGtQRdo669SwB0hUfjUYc0iD9Wz7O +GfQJUMGnKZH5mA6ZCb0fiH8YBw8CcAp/1NAhsYpVfKnlD/DY/EQ9k5keGbve +Dap2/wACrp9+56/Qo6Ilx1C1jPewxsEkdUmbAamqaFGZib8HfhzriIwmBpQP +NoePemLh7nn2s9cfL6EU42Cc2eMYELZY1+NmYUSdXes3HGNiQOShovvLeEaE +C07bS4Ix8Joq3SoqkQm5ivTecDB5Bzq+RYkCAyxo3Cb0lHc0Cu4DqctbY1bk +9r2ZUcg7Ctyk2vqt9lnRR5Wt3RPuKLA9JZ2E92yojvDS6LZTJHA0BMhELLEh +LS2ODQbWSPhVVqoSJsmO0lxyEuiiI8CNiEGcdp0drY9Js6bIhANT0meNxbsc +KHmWm0b+Qxg46ItMb+ZyoMwfxP+8t9/C9d0mC00HTrTNdkGmPS8UVLZsLPGn +OFG/jetiH2kobKgWqKaocKENz0w+9+dv4EIa4bixGDe6Mrn0OFs4BLpHGIZP +v3CjAjzbTv73wWBFWLJlJnoZXQrabtM4DYKvcn6qn+V4UNVDyA/pDYQbPJkR +bAM8SExbUCpZKhCsBK3aQix5EV1m0xedvABYWXAazfrEh4z9nObb37yGGgd6 +OkZtfoQbROLpdeoPfz69vHeBSAB1teaWz9n5AzXZ3EtDvytoV+yUpsLQD4QJ +GdMaVQXR2U+vB/yjvtB0LgeVc1xFPFGKluravuBRbpS6syaEmpn1U2vu+wBD +uPfrAVthJP5RX54kzRsOJNk5lraFEVcMuz1FlhdEkdmey3YTQZ94px4H5XtC +nfMH/2ASUZTjPZX3qvwVZL3Vl6BPFUWhfwYZtlo9gIk0qXZJ+hqa0JnwWhhy +BzkSlDz5/jp6Mtl/ZEboBv0PqNvdNG8g3aNmib/sriBPzRqgyCCGGi2l2ljk +XMCKsm5AaF0M3byV8GfMzBk0ZBI8ZL+Jo35LhtuiYU5QXW0eklZ9E4XEPdfg +q3QEbtd/KjGVt1A479OfrYsOYHPHW+bSiiQy6pJYPVGzB/o73TqUrNKI7r5j +cWawHbyKOJ1++UIGGQUbPcVvtwVHXddA115Ao5EFr9iJbYHnW6WacS5C55ZH +7YnjrGFGTUkzxUUWLT0gPTPks4LlnsDLCTpyyJ81+adu8wtYjTNok7onj4Jf +c2ScGT+HbxcXxMo0FFCiblioAbklpLPqjAXZKqLdd/7igTXm8CmoMzvl0230 +iNtr2N/hGWxpkHI/wbmLTEfGRZ5dMwOFPi6ZKlclpMtJ8lnq2ARMccpp9OiU +UW7FpD7dV2MYrL84Uz+rgvgJHcmJM5+CzEUectspNaSyGaHJ7G8EA1wGhKlv +1BGF1L7i6JABsClXDws3aSBJ/hLRd82P4fod45loZi30RNFp61m9HoRv//C8 +/1EbiRumHrzq1gWO3ZM+G5OHiGP1AB9n6SH0TdN+WDXQRS/2vNWZLz6AjYud +nhLZeujNk9gJAk0tWPaJYhe8/QTpvtCvXUnTADp3ClE8ASPU7rftjIerDoKB +BBQhB0+Rx6D7GtWCCrzdtQsjumSKeB5xUXmsKUGE3x/Olk/PkErIN8o2mjtQ +wWXAEtNuicyO47lemyqAOm2czl6SFdKjScZ7NCILKmcM8WpidmgsiE9leV4G +Fh6L57cpOaKYn28zREwlYDTPqiJO3RXdSLw5LHtNDEg3Joj6az3R0RVaZQIt +UWijqZL0/+iH2uXctrVCBUHRO36IjD8Yla2T+rkz8kBQ46vZeJ1I9OAojtHr +MTsc8Q1NXHD9gF4j5tvq+fSALLhVi15moIT8d9KybOdBtYT3wv3mIuRDUuhI +a4QHq9RnvDdMWhFOT5lRwvqmzCFRbpKR/0+07vZ+QPj9jMz/AVUvtp4= + "]], + LineBox[CompressedData[" +1:eJwVxXc8FXoDB2CblF3kRKE0qHtFCPH9GSHK7IasrChl1ItIRoODIisJOXFC +lHUcrpDqFN1KGZVxE8dKREYIpfd9/3g+j7y7v40XFwcHR+7//P9Pa6S1e171 +kMncrKZVd7r1hO4GCTjuqSJerF3L3ftW9Fp/e9XIPKETYxavv5/gGrhJ2Z/a +6ZxJni6b6brJSKJzyJrtvDWZlOiv5X5cuwkl2hS72BdU4iktX0rzVMT0STfP +o88uktjZCf+YHGVU8BtF3fC7QHw+C+hTyW5Qy+slu5ghRLIpYbifRx0OfF8f +bbx8loRpt970l9ZCbuyJsjUOAUR6WP6FfLguCvXKIre99CW+ejx7rq/Th5hF +zN2zX7zJ6NC4k3uKIZ7s3+s49dKTTMRHzTSrGeO2Fl9Un547qWEdNhRfNEVt +hvZ7183HSLCE7Dsa2xy+fH0cVY1ORJcV4dL31QKcvkUdqs8cSL3ITmkFIWuM +9HivtOy1I8suEoGFVTYIyOrIoQr8RVxufEhjnToMFltqN2WzLXkhqsGpp34E +Dr1HP9ectyanGq382EL2+Bo4UK0pYEUeLHwMOz/vgIVjxcHsqEPkvO0xj4+T +jtg5E3fwqo45kcvez/ow74y4wpMXaOoHSIGuWNkm/mMoyWC9Vz9uQmQGx0KC +KW7g6VFp/Px8P7myWp3TSd0dnjnP86kWRqRlu59ng50HhB5JnhlZMiCZu/kj +qdGeEDWV5c5u0ieTroWDJZVemOm2OPD1ASHPfZZfS44fR0OeFKeZI4hi9r9i +tUo+CJa3tBOO0SXv67MplwJPgKmcoeLTqUMuqh3v9Go8iVfGX9g65trEpvd0 +jc3aUzjva6g337uXjNqv0HQCTkNkNvlDyFVNwohXGRPv8IP5Pq0/rmprkLme +UsnxXQHISFfXXcOtTqKVMwSs5wPgwjFSYT6oRmaL048wngZil07Ng5kuVfJs +gu+AYOoZsC7JXptm7yZywUfdLLzPwlKpjhH8U4WcLP5w5Bz+A0e36F/DW1VI +lMttiegNQailfxDLb/yDLFhOV7gtB4HVzKPz2XwXaX98J1SiLxiCfjbLNlPK +pFvoYW9SUwgSU+YWeouVSEndobDWinPIbvjXmxm6g9TNBYq/pYXici3thrrj +dmI64ZB4JTUMnUWvDw0d2kbcJ1MXJ+LOg2Gikp3hpkimWnTONkRfQJDg2JBF +1BZy8KGxjvSlCDxpWz6QWrKZ1IZLeIhSI3HD0FbuwoAC2c257YWFaRR+P5za +o7VFgQR6ND9xfhOFvj0TxXwB8sT8a06C6pFo7D3SRFF/Lkdc9XRzX/ZF4+iO +9Hsh4pvIT/FVz7V/XIQzvRzfJmQJ8+9+buHYS+CUdhuu6JQhsnJLQ7ekLkMz +0tcusZ1C6iWZDl26V3Be7JCq8IA0CXht7Hu54wrUTJPk8n6uJ2wZUwr7ZAxE +eZ4rBlhJkX1BK6X5t2ORfMOEHU6VJF8eVNnz6lDhpFo2R/5ZR2ZWm28T6aZi +o6WtI5fHWnLUtVBUghIPBc4C5Y11EuTJgv3OVQ3xmLL1XN5JkSDdbgf8ct0S +YPLYsK50XIy4q2ZU0MuuIvBdqW6wsxgZddD+IuJwDVPRg4td70TJOyFDhgRP +ItQu+zDyC0SIV/fP+70uSTDRXKQ1M4RJyY4VOSv+6yiNkl0l+lKIXEx8J73k +eh2ar6eHrETXENsy/ky6RDLwbGIsDKuJ59zw8Xy/ZPwbGHNPOViQdL5dDPR+ +mYw/gxWqnv4QICqyL0Z1Lqeg7Obbb7xGAiQx8lap2UAKAs3iZOPS+UmHHcNr +g34q5IPGrfea8ZHBuD/P/uZIQ8Tph38M3OclPbpWe8Tc07DheqNK81peMuck +Vc9mpUEx7NdZ91luEv/m96r6uHS0Za2VtB/hJJWCV33JxgwUXSvU1AriJOvD +FqbNIjJwOap1wIWfkwTH2PjMf8qAR32r58oeDtIVONqyK+8mOJfMXlyg/caw +WXja3zyZYHQJqeV9XIET791Ftncm+L5zlgl6/UKCvsFRYZVbWP2bMjRZ/hPm +49fVRdNvISJePa2a8yeGL8j6ly7dQtlYko1xxRIMWBebG5qzUHzsBre80Q+o +pLx5tf5EDu6lLAu0VC4g1OKU1WR7Dg4uCxWpKi5gcWJLv6Pubcwuc78rXzsP +akMd/y+JXNgbDvsmJc9hnsGb/mdULlLXKGUwxOYwt6S1/sfXXPQXO5d7bvgO +akJP6BZPGrYp81Me02eh/q1xs08WDbbWbQu/VGZxikV5NtdOQ6Pzt5lm6xnc +rKN9njC4gwU+m2nryinQi368MNuaB1HjVVUhVlPoXxRX63TNg8j1Kg4W+xsc +ohWySjLzEJ1d/fRCwCQWVPv8lIXzIcSlr9T/aBwHUuxDo5bysTahbQ2XzDhy +uCIVjTXosFRRqn4UPoYfGlfGrM/Qcbj+w2q66Rek9rW3aY/TcXTkyO9r/J9B +3SpQYN5/F9/01FcmI0bw6vBwoc7GAjB3+lhrLA5DXNdu0t+pAL+qm7mV54dg +8sXag95dgJ0DwfsYIoMQGnKr1OgsROA2nhHT7AGMiPBlG0gVIel2zyst5QFs +mb3Kk2xXhLBrbbHTlmyMBf119ntXETrMhNe5HO9Doy/l4dtP9xC/I00pOeET +nBUuvc7ZXoxzMseZycxeGG21TKw/Uww7zQ6TUKmPWF/vMDPGX4Ioi1cyiSLd +MNnYIcitcR92Am/LW+26sCzC42Vx8T5yyT7T+fxOVHG1So++uY/UY7u4Ykw+ +wN8v5DTviQcI8TKBQm0H4vtOPemjlSJuorqWLduBBVu12fRvpZgz3rTccqUd +I0PdWjf1yvDLxGbrJ5c2CAvOjkT2lsHm1r2hEu83aK1tWTyRVI46U0/9ftcW +NB6nRE7XlEPu0lO6pfNrTLdTZ3L6yyGdysPh4f0SbgbeUl6qFdhh7Ba4hdmE +xC9msUWdFbjZZNUz0/Eco0abS2w5K7E14gFz/cIz0GSvFigoV0IjPv0gvxkL +svU2t5QjK1Ec2x31cdNj/BPwljm8nQGnWpEfWQ2PUJX/9/sSWwakF6VGHxs0 +oG2xuC4tgoG+GVUnFfeHsBA3snnzjoH2aT3d8Okq1DO1lj5erELEs/AB3bsM +VE31ZTJLq9BwrvsExbUS96LPzZT1VMFCeHOe4T9loBvuOLBKjYlD1oN6Qt4F +aE0KHTMbZkJz4USj7w46nBPUynaJV0NgcXB54/wdvPzO3Lwb1TBaMUlxcswC +t9L1m5mZ1Th2h/Zkv0oGvNaZ2q00VYP7/F5X7fWpeGhKNbj0vRq3e2SlKxUT +cZg3T2u7Qg1EnMJCryAGyuGzGyYsa/BfpZar9Q== + "]]}, + Annotation[#, "Charting`Private`Tag$4175642#3"]& ], {}}}, {}}, { + DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\ +StyleBox[\\\" \ +\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\ +Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\ +\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\ +StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \ +\\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm], + TraditionalForm], + FormBox[ + TagBox[ + "\"\[Chi] | \\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\ +\\!\\(\\*SuperscriptBox[\\(|\\), \\(\[Gamma]\\)]\\)\"", HoldForm], + TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> { + GrayLevel[0], FontSize -> 14}, + Method -> { + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "ScalingFunctions" -> None}, + PlotRange -> {{0, 3.3}, {0., 3.690456156465704}}, PlotRangeClipping -> + True, PlotRangePadding -> {Automatic, + Scaled[0.02]}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{ + "2", "6", + "\"Caselle \ +\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\ +\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\ +\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\ +"}, "LineLegend", DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["\"n\"", { + GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, + Background -> Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.368417, 0.506779, 0.709798]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #}, { + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.880722, 0.611041, 0.142051]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.560181, 0.691569, 0.194885]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + PointSize[0.5], + EdgeForm[None], + Opacity[1.], + AbsoluteThickness[1.6], + FaceForm[ + Opacity[0.3]], + RGBColor[0.560181, 0.691569, 0.194885]], {}}}, + AspectRatio -> Full, ImageSize -> {20, 10}, + PlotRangePadding -> None, ImagePadding -> Automatic, + BaselinePosition -> (Scaled[-0.023999999999999994`] -> + Baseline)], #3}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"]}], "]"}], ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"EdgeForm", "[", "None", "]"}], ",", + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", + RowBox[{"FaceForm", "[", + RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{ + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"], ",", + RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{ + 3.875957140679967*^9, {3.875957171901413*^9, 3.875957177389202*^9}, { + 3.875957286074856*^9, 3.8759572915772743`*^9}, {3.875957370668831*^9, + 3.875957390170678*^9}, 3.8762092922172947`*^9, {3.8871754958604937`*^9, + 3.887175500271595*^9}, {3.8871861172995453`*^9, 3.8871861368256903`*^9}, { + 3.8871861982272577`*^9, 3.887186209328771*^9}, {3.887186531197132*^9, + 3.887186543092368*^9}, {3.887186624995718*^9, 3.887186645867601*^9}, + 3.893237610747847*^9, {3.8932377310303297`*^9, 3.893237737874032*^9}}, + CellLabel->"Out[48]=",ExpressionUUID->"5632f44e-d2ee-4570-afa0-630f5721d24c"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell[TextData[{ + "Applications: plotting as functions of control variables (", + StyleBox["t", + FontSlant->"Italic"], + " and ", + StyleBox["h", + FontSlant->"Italic"], + ")" +}], "Section", + CellChangeTimes->{{3.887175666126995*^9, 3.887175672719225*^9}, + 3.8871757098402243`*^9, {3.893240714208487*^9, + 3.8932407443131866`*^9}},ExpressionUUID->"7bcdac80-37e1-4f66-bc64-\ +b0d2db5bf4c3"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"invCoords6", "=", + RowBox[{"InverseCoordinates", "[", + RowBox[{ + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",", + RowBox[{ + RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"DufDut6", "=", + RowBox[{"DufDut", "@@", + RowBox[{"PrepareArgument", "[", + RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}]}], "Input", + CellChangeTimes->{{3.8932377899231243`*^9, 3.893237808714438*^9}, { + 3.8932412276866207`*^9, + 3.893241228978397*^9}},ExpressionUUID->"18ba5487-e161-432a-b28e-\ +40a5d59488df"], + +Cell[CellGroupData[{ + +Cell["Entropy", "Subsection", + CellChangeTimes->{{3.893240903148159*^9, + 3.893240903699958*^9}},ExpressionUUID->"732869ab-e280-4316-b799-\ +ffab64c308f3"], + +Cell[TextData[{ + "In this plot, we show ", + Cell[BoxData[ + FormBox[ + FractionBox[ + RowBox[{"\[PartialD]", + SubscriptBox["u", "f"]}], + RowBox[{"\[PartialD]", + SubscriptBox["u", "t"]}]], TraditionalForm]], + FormatType->TraditionalForm,ExpressionUUID-> + "20c22e44-ae22-4cf1-ba9e-ec412d2155ac"], + ", which is the singular part of the entropy (modulo a constant analytic \ +factor) near the transition." +}], "Text", + CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, { + 3.893240875195952*^9, + 3.893240882915715*^9}},ExpressionUUID->"22825260-2ae9-4101-a1f7-\ +3f6b1bfde9fc"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", + "}"}], ",", + RowBox[{"{", + RowBox[{"t", ",", + RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", + RowBox[{"PlotRange", "->", "All"}], ",", + RowBox[{"Exclusions", "->", "None"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "t", ",", "\"\<\!\(\*StyleBox[\"S\",FontSlant->\"Italic\"]\)\>\""}], + "}"}]}], ",", + RowBox[{"LabelStyle", "->", "Black"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", + RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.88718849775531*^9, 3.8871885088435698`*^9}, { + 3.893237820068544*^9, 3.893237866436099*^9}}, + CellLabel->"In[52]:=",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt2Hk01P/3B3ClQpZkSRuhQpKQD1Fca6lsaUOyVCiiKEpJokWUSpQkKSqE +Ybb3WOradyk0iLLMWEKWREjm9/6e8/trzuO85px5zes+732/ZhSOn7VzX8jH +xxe8gI/vf6/qsGKQx+PhAaWNVbaJrXB2Zn3EzCwP9Zj5yr5xrZBD01SamOSh +bZrkmrvRraClYnW8b4iH1Ogn76tDW0F3+Y2vdS083Ob0anKfeysYccZrnlJ4 +OFzVYnNGvRXsbte/2+bCQx0t7ZeyxS1wseGGj+eHeXxVO52wd4ANzc3Cg8Vu +/1C3yOJL9uovIFt0Vkp37Ry60+8W1Ac2AcO7bPGyb7OoLnjr9Mm+z+B6V3Os +LWwGy/vbJNONP8F0zJUIhGmUnH2pM3ivHlLEvq+K757Cvg3bidzLNZC4V9O/ +6c4kAm/jbPmzSgg743Zp057f2LTxj8tlqXK4wp9x0f/nL+RtLzDdcqsE3EIb +NrDTxnHJtxKVusNFEPe+Nz7Rawxv62ccL20uBOdLCSG67mM415Slta68EFS2 +2ZxsdBnDRmmNKzcYhZCfxtoqeGgM8+10o70fF8L3R1EV52EM7WqqTmXaF4Ky +l+bvvVJjOOOxy2X+ewH4b5lN+nVlFKVXh1xdNpEP+Z0qIpmKI0iTiSzbr58H +wTsXZCWsHMFOiagsWfU8MHjaZnVHbAS3nT8IEwp5UGQXed9j9ic63rA+XyCU +B5XlQxIKjT+xaqU/UdTGguZ32aseX/+JWUIHbqdcYcHIRW3l0K5hXDm8fPl4 +BQE5zSJVvuxhZP+TqpsrIMBPs/fUsbphVHaQ6JbIJeD3YFyGPmsYi3au2Or8 +jIC/x/5smbw/jFMOVZN+5wgQNMvX9oJhjNSyn49ZS8B6cSOTg0lDKLHOS707 +mAnRGt2XvR4N4fgVyfAL/kyYtg2jhUYMocmc9kepU0yoe1i2Ict/CPefLD4e +fIAJFyT3CCzZPYQO69YZDagyoWKFXR0xOohhmvyx2zsY4CV78vAa40H8LRuW +MmDBgGaDxfc1dQbxTPxXN2UjBhg6v6ncvXkQNwlo9pzXZYDki4HtF6QHcdE5 +cyMdJQYUyvusqf/xA1WShiXdFjFAbENgV0jMD9xqErTkYCkdqKoRXj2cATSf +dFRt3keHdZ9d8za3DeBXUwPbKTM63L2oJxjwcQArraTtlQzp4F42+FogbwBH +O37I5mjQYaWzVbda9ABaX/8w5rWCDlcfSthf3D6AlAUwGcqlwaDu0JuiLQPY +9Sp/Yfh3Ghz+XjoptH4A2W5qao9aaaCxOeBRougA3u5Q6/xWR4OespaPxT39 +GOxmJSPLpIHFdKK5yL1+tLprIW8eRQNGUkDsobB+NMot/0/1Fg0Uza05SRf7 +cVVwyn3Z6zT4+5AXqnm8Hw+1cWW2XqRB9ubjhYd1+zHk2KP0fydoIOWivO1l +dx/WTrss3GtEg+uL+cIG2X2YduahmNROGoy8a/20ra4PHVyY/sO6NKicvuNb +wezDqfY4s6qtNLgcM5w+FNWH1pPe0mryNOgsz5XX0enDiwvHrFP5aRB8YMZs +u1of9k1NxN7lo8HKbqPT+op9WGr50fb6PyrYzjXkGor14ZHV+koP/lChSGvE +ZHdfL1qbV6uYDlPBqeg/zz0dvRifMTgf/YMK01ZXo/Y19qJfvbJxfx8VNE6L +NNt86EXWj+v877upkPxC1d3+cS9KXCi1+tdChZ1b/O843u3FlX6eBzK/UKE1 +Py/LKawXTx/mZ3o2UUGcbTHl6tuL3F/9EfwNVLgu4nn79K5eTJyrXNdQQQW5 +hOx33jt70fWkWlVXGRXylacafLR6UW39e9Z8CRV+mdxc6S/Xi7/sTD1ckArH +g1LSL09x8SrrYzyNRYX5JUP1wcNcNF2jtEmZoEJCrNavkB4u7myd63vDoEIj +pVg//CMXuT4CHTVUKvgaCLncLOOiUJKP8NlcKiyttQ2/nc9F3TTCfl0OFUz7 +Omuj3nDRrM5yZ2oWFbrOK4/dS+TizZhFNZcyqRC84KzUgxguCrsGnXR4RwX6 +2nmn2BAuavm7Zhmmk+edYX798QUuzvIC7UzTqDCse+91vBcXE3kx4wfeUmHD +gbUjiYe52HRRdOnT12Q9uk5IvLDk4oCjeVB9KlkP33c6L024qOD230dR0tN/ +fzmmbOfiyj2R/I4pVIi9o3/ttToX9WRbJKmvyPrIhKW83cDF4vVxM9Kk61Kr +K9NXc9G8YT3l5ksqnNJaPvxOnFynVKkvIL2oyF48ewkXjU5S/COSyXpaJWvn +zHFw6b0fF9aQ3tneb0/9xUHPD75b81+Q9Ty19Sp9gIMT59cmniR9YSrwJfM7 +B+8tYtJXkxa/8aGc1czBxsdc/44kKmQuXzKYX8PB7St0P6WTtnhhJfa+iIMF +KooVYaR71eK0kMlB9Y181p6kVUNejwy842CKc9j9w6R9GxgZEi856FiY4XSA +NE2+wmPnYw5mdcRmHiM97cdW9IjiYGmFbmAA6Z2lfd/vh3Kws8s9J4H0dak/ +CXkBHKT31+2vJ13hLnCE48XBmr5JW1Fyv0sJGUlRVw4Oa5qnOpK2EVRp0DnE +wRyXWWMG6ViH7VGuezkoaK4hL0ueR2uGxe5I4OCv8Q7tGNKyc/b8dG3y+1E+ +B0iR53nc6jR+28TBA//yW1NIv0kKuiKwjoPOsfIHjP5XH+OECUchDiY/qzyR +TNYvICaDcmO+BwteunJPkPXN5+R7Z0/0oPuGjfu1yTyY3mrnLPjeg0Wl+0r+ +vqFCRMvQi81NPXizqJPyi8xPncrc0UNVPSgizO80RebrcO3a5jRqD76Nrypa +T+YxYe2WB41ve/DriktuVmReO30MLOcSezD4/OcH4WSeT4k7l9nc7kExqrCX +NJn3K4de0KeO9uCKhYGp9WS/FL2hnJPf34M5QfscHMl+WjSNant39eBogpbO +BNlv0Qldqc81erBJFLT2FJL56VSIM1vcgz3etbk3Ssn6amjt953txvm5FCW/ +crK+YSai8aPdyN0tePB0JVnPDSduDrV1YxGxIim4lqzP6dSAmOxupEpp2mxp +poJwAV2zMKUbS/ea/Ahgk/0kUv6zN74bDbvella3UqEtu9ddL7wb+3Z9mo35 +RvbXhNLhriPdGHzwNz29nwrLQ9J11Bd0Y1b2S76v5Py7xVSpEv/ThbNOXmaJ +5HycHXnrMDHchWzp62c9yfnZ4/ImmNXahdX2xiYrhWhANU4pMcnpQu2sAtMe +KRrYLX5ufcSlC6PaRQqXqtNAeZVCPd+VTmwIjDxr7EED8ch1Y+UenRjD+GPG +70WD6VlZySi7TnS9cHNZnQ8NqjpWO0irdqKO7aiRfwANTiVL9W5q+44lnit2 +LrtJgwxlwX92ut/ReTIxMfg1DdR0RtVeT3RgMu/I24xBGnioX7uW960DFyeX +CEaO0uCF0rLG+soO3CHwnO/sbxpIkE+dqWcdGF3Ff2TPPA3+/PEt3m3WgefL +HaUMJOhQkjdyaDC2HXfN5HuI7KCDvcFIyFadr+jksUL2zX06hJv9/JR3qQUD +jKWtXwMDSiyGbbRPtOBi70i/leYM4LMa+pht1YLXRFXdovYyIPjQj7oUxRZk +r1m3/9whBgR69Fbdq2MjVaZETdubAacivhW5ybPxSkF7w8PHDLCsq88RqmpG +yecU15XDDIj8VLf1BrUZC9Je5x0bZ0BVc232fGIzjrm/PZ48xQDzb9WZE37N +uKwn1VF2ARMMR8rTvq1pxtUhPl0T0kzQEP+QnHu2CcfEva7xAxOkD2Y/cJBp +RFal8/C2aCZQlaLyzfkb8cTPD7XZMUywnfHkao5+Rm6/ftDGJ0yITFLYvrTy +M5775C6yJJkJ8wOxnfmBn/FjlHBeTC4T+q5eUV/L/oT7ejUSGpqY4GvzMP79 +pgZ8kvBc/rYUAWm/9w7HLWjAcwuYf0+uJKDn6SIj37aPGMH3Qd+AvJ8d5l7s +l7vzEZvf0gs71hMAQc46oQP1KGjh9J6tRYB4yuZmk7d1uEr65LFsGwKoU+XL +qjbU4JDpx6dZNwiIznhVYjhTjV3ZK6MEIwjwdr4WwKivxpvC3k+PRhGwoWJ7 ++6vAaow/I9L/4yEBj+PevblaVYUJ+buN3yQRcFn7ocG2M5WYLWCz7jGT3M+A +z1i6USVmxPIl++YRsC1xb4q8dCVaKkrlGhYSMMy/SEjsQwWm+FJPlhcT4NwU +2DywrAIzJM/onakjwMTfyTuJVoYXhPM2ruoiQE5JT046ogwVf6SoePaQ99U2 +6c9RTmWYwta2yOQSQDdu0AlaXIb5q+JK1/wgQGm5ycKDR0pRw9NtLnqcgIXl +coyazaV4iDKsHTdBQOelv57GfKVo5sbvEDNJQHwXvV49vQR5ET8t/WYIWJqj +/FTobzEy2ZoWxXws6DuxyDK0oRitdGeNQhayoFSme34qpRgX6TNmNBexIPha +wkmuZTEKcGoeXxUg7+PWohqYVIT2zuenUkVZULNwsOe/80XY8GiHu8wyFrxl +VsRl7i7CdkqiT6g4C4p28v3Z1o2YWByspyPJgtftvfd+3PiAhat379JYyYKv +wStePN/2AY8yKZWmq1ggJrc7Z3/Pe/RsvDZrvZoFga5pjXnwHpPFOJ6Wa1mQ +saCN4zNSiHNjLomGsiz4/kpoUuF5Id57KxOoIseCXb1eMpGzBZgHr0U561hw ++dYzFcP0Anx6q7mcJs+CbOU6vV9HCrBmx7hMsAILZLy2ODky8tGvYMe1CUUW +WAo7+4idzEe921vvv1rPgtDM6JASiXwsfJSovmcDCwZGRpNVz+WhyT4+iasb +WbD2gTz1u1wesu8r7V+qxAJbzf2lMfUstFq5ccV90jcarzfvCmbh3zGas7Ay +C1jnqb2zqiw80f1E5RrpYSnOVHYbgW4HX/kNkpZnSgqeiCBtlKtrpcKCg0fM +VsnoEvhiGeXSW9J3pi+o1vYyMSgiRmuG9Ienr3dci2ViJcP5hMkmFvzSZ1tu +M2WiRYOiUDhppY4lzv3jDFytOKtQQNrxqu7ZZ8kMNJoRzhwkHS13KtTGhoE7 +bkW9Xq7KghKMf8g/T8esakJEg/SUa/UrIpOOy4LbO81Jqy6cpXkfpWPQlKXs +AdLOKarl65bS8coa39IjpGPMjrKbWDTkQean/61X9Eb13/akoYVUqOlu0rO3 +Cqd3rCDX7/qs1iKtrvJTaKyMipZ1/AelSB+vll2Tep6KS4W/jfwk9/fYy1rN +XpGKImFJPz6QrhW+ZiDyORf9Dkyb3CbNl0WxLrqWi5IXXs/sIq1t3eVyQT0X +F8R5i8yT53NqVNxP5VsOSouuuZxJOvGBcVhHVA4+L4k2tiP9SdP/0QN9cl06 +022UPH/BN+Z77jRScKbieFs46VZVwWiHe9kY/j66Noasp5HP6ZziwSwkKCvM +REmnUWoaN1lkYY7GMfFrZB6CtO/JzC7MxPJjeckWZF56Akf0jru+Q4ETmieS +yTztzbNxqnmfgXtC1AJHybytNpR4mXApHTfLtEeeJ/MYFnq+dCE7DYkBg6g0 +Mq9DJc29XtvSsN4qrK2ZzHPh7ieqO0beIL9pwDFJMu/H9q+lt59IRQPF05PK +ZL8MT0zqBZSl4K7q3xVryX4KftyAYhtTkF/gvp4Q2W+J7WG1xn0vUUqpm69a +mgX02sZym89JuDvGVoJL9muz+K3PYTHPUXqDT18c2c8Th/S+MQ4kIoVn7ghi +LNDqevF7Dfsp8vwlFYKEWUD5fWb9wNdYjGhfrBaxmAUf9eS3rkl8hHJNrPkp +fnJehDTpWx+LQY/zuX7HyPliL3Eh9RTex1FxQ73lPAIO7BBbuKD6Js5oVh2S +miYgtFmleU2pFYb6GEncGSBAbdk3r8VbtCH8KU3Mv48A9njYC/Fpe+gyjcy1 +I+fjlUe7ary1z4GJWMnwbCcBpfJ3bj8XD4OZR4b7+tkEeHqqejDnYwAorXs0 +SgmwULzoGG4QC9I0b96jIgJUvpVa2wbHwSpZD8/R9wQM2h3THZx5AoXf9tjd +YxFwxvCBoNxkIvQaDmW7ZxGQt/TKl5KAFNBsnPW+E0dA8hbpJopiKrx/Z3pu +QwwBt2wpnxIbUqG0YFkpI5qAg485tYGb3sCrHZ6OBbcJGFOwLFH9lgYFkxXB +dkHkPNeTpcSYZYND13MBqiMBIk5E5rXxbOhIoOZRDxMwEbI/40wSBcjr/Jd0 +OwJce0rs1gfngJqWot2VvQTZP3+s/n3JhSOLtsS+0yOgmuZilnuHDrPSO6dM +VhCws1ytVLmLDlb0BVvfLScghz1jnKTDgKu2t8eFRMnn3cwjiOIwQEX62Np3 +/ASchCp9dwPyuWFdZR48xgRejYbmqvE8uHXsbcvRKib817NA7ro9wuFMC1l5 +Pyao5x8Z10hH+HuaSyvyZoJSTFZZ1wzClpNUKwcPJgi/zPwv2aoIbF7xP/I/ +yoQ5W/sO3kgRaN3IfG5uzoRvOZRNqFkCgkaU62dlmPDinHOZAVEGm8IuGHcz +GJDoJJQd11kGlwzTLW5RGBBvQX/yU6Acll9Pf7w+nQEP5Jd6P7cvh3Ch2mW7 +ExkQ+omx/N9MOfzMm6JphjHATUPUpXBnJTgseJv7xJIB68cKZvRLquHh40kJ +ZjsdgutNb/z+WQ1mL+vUa5vowM6oFcteVQMpUXx3W2rpEOnevl7BrwaeycxL +swvoMPZ11kpAvhayVTtZXs/o8KFc71XT1Tp4X52Hv+3p4PiM2HtGrwGMPCgC +yfU02JPSVm9t3wgKxaISk8+pMHYz26PcpxFqgygr5WOpEH8qnLcjvBFkB/hP +mEZSYWDLFs1N2Y3Q5xJa7x9I/l5hhcbyL2qC7/+qzAKsqVBVr3yURWmCdcl5 +EsL/cmH3dMCAgsAXWMUcKbh7MBfMrST4Jxkt0CYn8en3Vwrcd2kJ1SA6QI+v +xdlPKAMqrWVFbSW6wV1ROoA+/Ap+KkiHNCZwgN/pU3Sn+hMIuLDZ7f6KPpi4 +kVK+3DsEWjrE7TyqBuCj44ltX2VuomvQzn4ByyGIXu47/u9hIpZu1o0sXTwC +Ed4fbbyepaGSUOFAqsUYBJSe3f3oWC7KFnqbL44YBwPf9a/eRzKRb3Zhun/P +L2iLbTnS4FaIf/a/dy7f+BtUs+enNi4qxnZtlzUbb0yCLuPcbkP1Mjx3RHy5 +YscUxLI/3GUfr8RVsVz7RbLTYG6ao1cSUIPZR5PfTlyaAXHrM+F7u+vxiME1 +i6r3s2CkVNx/8NEnzHX2UdSf+wucF55WqNOI00tN+fMO/QPJOD2R0wLNaPd5 +h45s/DyEsQvxXfEXXLpDuLjw+TwcWDoqFFD9BYtTv+5zSpkHZ2bAb8PPX1Dj +UpDbs+x5EO2Rymju+oJi64i7q8rJ9zu8ixXgY2P1GS2O9K95UHrcbhNlyEYj +wU0PxCx54Nop91qokI3TftOrs/fz4Olr94q+UjZS2itfWx0hHUS/UVbLRjmK +R8Hd4zzI+Lmw9Xo7G+cOpfYtDeKBmOlDNv9fNhIp6wwE3vCgYDuf7Eb9FvQV +Ha18844HnlUFC0VMWlDp4ge7Xbk86E7qDZ/Y04Kxe4+dulnIA6kqOfsyhxb0 +H094xN/EAyeXE+Y+QS2oetRLLqWVB77G9fwO11uwu0wv3eQ7D1Qj2p3M77Sg +bXzrh+s/ePByIPT7uqctKLgwbY/CKPl5A71LxF62IHpfbC76zYPplVHVc2kt +GPhll4vrLA+GQo8oDee04P//Xw/J6lqyHawW/D9T3HEf + "]]}, Annotation[#, "Charting`Private`Tag$4186241#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmHk0FN77x5XskaTUp2wpClkKberJ0kJpkUJESlS2Em1CH6WsJevMkG1m +FB/ZGlnz2Pd9hhn7FklItpDMb77n/P6653Xuc8997vO83/eec2WvuxjfXM3F +xeW+iovrf6MKbBpjs9mYyZpQPXGOBS6Lcn6LS2z0qO7M1z3FgoxP6vIzc2xU +E/lQCTos2LvL6PrIDza+UtC0ObyPBfvXv+isZ7LRj36JckCCBceGftUS09nY +G/vB7XQfE4xfNfy3z5qNK29SG1tdmPCw6YWTfdEKykYf4nMKbQcGQ2isxOYv +uhw1kaPkMUCy2EV8/7ZlFLIKFfEUoEO2QznPup4l/KXMLzp1pwWuBalPdfgs +4p7v0VoT9k2wEOrhh7CA2YyPIdkG9UAW6d1CGJjHSee1/itcNRBjqO5K959D +TZuO6PSBCvBxtHm022AWU75ZMFiiZeDBnfLQdWIab/Hx5q+SKQabZ0072j/8 +Qne4o2S8nA8RX4YJMXemcJe5d06M8GfI79u1NnX7JFZqe4b7L2WAnOgxXZPY +H9jyOXStuUgyZCn63RkcGsXOI/cPy22Oh76KTBktrRFsnDN15d4VAsPKEXvx +8xD+p/HEIcXNDhS9qJOj/w1huPbWqbgyW3Buyk4RSxhCWpnNUtKGG7Bwr327 +XeAQJkiJ9HY4WYNgjsQG4WtDeMB7PK1P3BjUdEgzVwSGMLtzlCfb/hh6XIqj +zVsM4sRxhmKrvxMWJ6XflbkwiKeCZvumN7ngmgVUNjwxiP/sclJ3vXAXX5P6 +Ke/UBjF7oKCR1HUP4/tkI/R5BtFfx9Urb9QNK29T3EPTBpCQpXglc/gJrvdK +1lJZNYA64n4qB/Y9x5efd1WL/u5HPiuNFP+Xz3Fp8r35zHg/CrQ8rAvpeI6D +1klPc1n9aJl8qL/I6wVm6ZBLdTP6UWZj65XQCl805nl31tS6H6W0kkoY+n6o +sEW2gcujD32pCcPhfMEoGiA9VWHXhx6Lka3cF4JxYUlyQ6BxH46s95KTIgVj +dfc/5hsV+/BCKrpdVHqNt+LFh3d39OK9rL7Dnw3eYIoC/1/j/b2YrjxydHVB +CCpr/VSmznTjhj2hn76Vh6Kdird3Xk83tvO75PqOhGKc/LrWhqpuFPcYGv/O +F4ZiEqoP56O70TKogcBtGIa/fzuXnNTvxvG0wGzXujAszZu8NBbehQP+r15P +l4bjcqbXhxWvLpQa2/6+tj8cNVNE/ojd7kLT6cEzN1bC8QNJJf7wkS70w+RM +xoEIDPZwHgsa7sSGP1oFqSkRaHZk0ktVqxPbhRSIjH8jMVTTq0VPphNZWldN +XkRHYt0ekR1mgp04y59An6BF4lEplZpnvR0oKih+ZHwkEuXYThtaX3aghcKL +Y/4no9Dy99+bI3c7UChmOGXRKgojfwbnLl3pwHvVsz+lH0Qhf//Hq3KqHbhH +fPp3IDkKJ4sn3rsxWch7ynkHfSkKFfI8l/xKWNj742T40DoCXssUNnr3Hwud +jdTeUHcQkJ6wZ7rCm4WW/xF6DhsRMNfHSVtiFwt/83Q9SSAR8Ln+RHPeIyZS +O4/cq9pJxNJT4+c0bjAxuPD4vJUmEbmMfjSmGTHRlth+KEGfiE8vfa8nb2di +ILbZyF0n4gO74erg+nY8uth/TohIRNqdryf5c9rxoX0M3wiViNPOQ5U+Ce3I +55PHZ5dFRJeHA+UPH7RjncOBv8a1RLzl11NsI9OOHjQCb/0cEZOCuqFbsB2H +P+aZF7KJ+DWkq+jyXBu+5vefOS1AQhtiR+Hp2jYcuSzQdHwrCePfsQ5X0trw +fk+NW5ocCXsTmPnH4tpQM+jc7k9KJLyS0par6daG75+kOAYfIiEhjbE/w6oN +v8c/PWOjQ8L2LPpnRYM27Kjn7Wk4SULxnFZN6r42PCKafazViIQXC1po0lJt +mKn7LMrpIglDsXkfib8NT5n+WIk1I2FzWVOW+AwDm+a4Qm9eJaFIdaP6mx4G +llpcuF1sQ8Iz9Q0ZAtUMtPCfIqXdJGFAc73qiywGHkK3Q6q3SVjNqEtbiWHg +uQtzZjqOJOTtqN3z+BUDv9MFeL46k/B4T03qzD0GTr2vMdx0j4QvBqqVnC0Z +GPqjbh/TlYSlw1UpoycYWMBQqNrpRkKuscrdN9QZyO/hLrDKnYRHJys+9Gxl +IHtT07I9h59OlyuY8TLwbWFrvDmH8+fLklqn6CgZRZlmcNYvLJXuNOqio+3H +X+Os+yTczy6hVFXQcYvGzCtbzn4PuEvkdDPo2OXumvfgLglpfMWJhSQ60kwb +3EQ4+U4Loex+X876f/+kKDqQUE20KD7ThY5LauGGtfYkdBb/Iq18hY6PSxgw +foOEqZsLY5P06Xh3/L3bG2sSjm0rkJRVpWNe48fmrCsk3C2bHxO9hY5lufoH +L10i4a2deVs3raHjSmvoW/dzJEzanUsKmWxF1biQfDEDEm7f+5ngW9aKNOfe +30Wcfl/TypbgSmtF6aCksrq9JIw7RIt8QmjFN2qKTecVSbhNLyvcxakVv7bQ +V4okOHo5mblhzLQVEyVl66jCHL2czgi11W3FvIEYBS5uEm40SQsxl2hFY9fJ +RsFxImbJB+Yf525FII/1hPQT8fyi/Vf1ny1YkCQdTWAQMSBW9oBgVQvKtrxS +311ARIV7KzbzWS14NfPw+oyPRCzX6wocjG1BM1XjVFocEVdGw/vyH7SgauPw +ln0+RIwuuCfw/noLbjiUOZHiSsQDr8/uCzvbgl8DUr1jOP5z3cf/ykG+Bemh +Uj2jx4g44umhsq29GfeHON4X/M3x93kzM/7SZtzMEFLXGCKgjJymz+zHZmxi +jKU2NRLwSvVkW71vMzpI+34zpRCwUey6p6dmMz55FNDx9hQBHYaPvr8t24xv +/9bN71EjIH/u1pZLws14aixxlYYEAX3zUwwsa5swyHGTxJOhKHQ+95bwZXcT +PtkYbcBwi8IPs4bjEauaULrKqYlqGoWDxDXHnDsasd3w51zHwSi8/PXhNyn/ +RnR//LvAbjkS4bGV1rPRBkzcFL3/z+NIfCK1OcCsuAGT5M98rjWN5Ly7LT1q +hAbcLbnj0bxGJO4SOe47cLIB5fVGF6wnIlCUrMTQfV+P00/T825djkDDU8MK +W73r8VSj7TyfagS+mIj1mLlcj7N/rAJWeCNwYb+YHIW3HrMfxzT9pIXjQP3C +PR67OiQa6Vkw+cMxa75iXfWOWjxt/p3mFRKKr1MSS48u1qC8+pN4lSuh6GDl +7Z7dUIOnX7ZFi8uF4o7KA12JD2rwm1xQ0/OstxgZ8V+SZ3U1vtpql7pUFYJP +NN4e2edYhQKBKlHN0cF4edRpKvlYFeKYUvTzTcG4L8aQLLOxCotWfQ788iYI +x7nXCIgUVaJX4kx/q2cgWtEfMEbXVWKocNjxkVP+qOtq6RD7qRxNu10crGNf +oJT8QamNfuXoW+jgdZX7Bf7p2NgSaFmOtN/V4or2z5Gm06T1mKccqx+HlZ1Q +8kH59bqrTUzLMEb5g53nGW8UzFAgCvwpQRsntX2GnW5I7RoO/v6iCNk24aK5 +rurQ+XRT3Lt9Rbj7LlGSpaIHIlInMy4MfsHD3T82Zbw3ggfXPrTmwRe8m17D +O3DeHE4M35EIWCrA06/26/9QtIfRyZ/xinfzsInLPNpC4gEorl765GBBw0tS +BIffNr5gRVaskBakoVP5YNUY90sI1bdop+d+wqrJLTfNqS9h6WXhwuFNn5A1 +9VsoauQV1Al5H1nbkonpctFBMtcDgKXI/9o8OA1XSPc37zr0Bq5e2EbrukHB +aj3fGoJyOIzPzB10LyejFsNeJu1uODyNbEKRnWT0KPC/bUYLh5gunzqdkQQ8 +B3D+9qEIoNW1VpxricWRpWP5jjqRkD7rKDfaGY69Kx46kYcI0HhQRnVrTBhu +f5q0tfghASa96IfOXg1FkRgtu0c0ApiJuVFu4Ru0SLOKDlMmwsXDIqtX1fii +5wr8uCtBgmeMXYytZUZ49m2/TgEzGpTX9dzh2aMBonf4TEqFY6D9l0+c6IIZ +HCDesTbViwGPsBO1Dhp3QacZO5U+xkCZjP+rd6I+QPOvdfHxeAf29op2n1dC +4WV22w1R7jjIE/RoK3Ung+GOP9PYFw/xezbS07dTYN2GDI2guXh4eT69OaaJ +AoNUCat/hBLAJHKo7sHuJBCTVTDz1EyAKdkzpYo9H4BX2yzK9lUCyB+UTA/V +T4N4liT/T+lEWGuZk+r9Kw0ow0LN8+qJMON1IcUxNh0+GSQ6leslwrXBUmO5 +pxlAK3Tbk2WXCCq7fhv9bcuEUnHZnt7kRKj5ZK2f6U8D/bqEieydZNCuUC5T +6KeBcFqf/0ENMmS0L+rEamVDmLGB4CtdMkQuhkHgUDaIXj+d+8yKDLZQfejm +kRzIElIrnwsjA+t8RF5XWA4sr/np2RRPhtPXrx8wHsuBub7Hm90/kmGv77Im +ROXCz7dXx3ZUkoFdq6a+5VceNB9bqZecI4Nr99/0NyfzgctI/8pVLgqMTNSq +8Mbmw8rv5s93hChQL3pTecawAM7XCTX/lKEA6TJRoYFSCO/eum9IMaCA5uAq +qX/NEOStbB3FQimgkm/6Sy0ZwcqoiIRECsiHfizvX0RgKH8/qp9AAaGEVM14 +o2LQWrs5lpFOgeXzZt3syWKYXyUbv6mOAgva3JWmEiXwPWHe7kULBWZ3paWn +Qwk8vCnFX8ekwDjXmufWISWQHMzzamiIAj0Z6btRvRSe/5rYdWKJAp0xVzZI +XCkFfaFKd282Bdr9eP46+5TC16KOX6FrqNB4zaJZil4KPVtfSRqIUKH2DG/+ +gz+l4LriLD0uRoXKA5nkRrky2KmgOndbggpFonwPvdzK4G+xUtG8NBXylzOv +tceUgXNv1SreHVT4PGppqFJRBhvH/+RNKVAhrThLsndjORQPnZI3V6VCSupV +Pq2j5WDCxdrF3EuFJAL/r2C7cvBm/tBW16JC3F2r8iM55TCiPbvviTYVYiwF +0iL6ykGH7nHjNlCBcIoWNcFXAT3JaUc0dakQIiPo8M6sAg4qpvrdOEmFoLXZ +JnPPKmBpjYp+pQEV/BasjxolV0DcmlrgPUOFZ83Z6/8uVoDx0MEAqfNUeFp4 +7Y/J9krYpvdL9vcFKjz6IDScalgJ9y8HBH68SAW38M+Na+5XQsnwyJjOJSrc +fWaTaxldCXPU9Bu0y1RwdFybSCurBIaPyRYeMyrcMssJXDteCfJja1U1zKlg +q3/d3Va8CkolWFU6V6hgoyZsXahdBdeve/KqWFDBalvuKfGbVaDlHyS8yOEr +/Df2OgZXgdRqK3aiJRUuzwpvK8+ugtenNqwoXaWCcX8uz7beKlhRjlIK5/DZ ++hs/7/NWw+iO2OQuDhvminTUqVSDTnQScbUVFU5Q8krlTKvBSmdxmwCHdUNs +Uz28q+HEtWSTn5z4o0/XRdLfV4OFYoRNNocP3cr3VmquhsvCdrYWHNYyuXn7 ++UI1BK556znAyWfvMdGLXTI14PDjcsNJDqsoF2jvM6gB7eby+685+StutpMP +vFcDf07QQrI555Vfs150iFgDdwrr9L5w6iE3VbB4qLQG1Gu8Uqmcej1t0Hsx +O1EDNlwtbhdNqdCeUieStqUWTAlTVd2ceqv5XSTaH68FX1+ZBh0TKgTc7JKT +vVcLYo+t//MxpsJX3RtpnTG1cOvqLf84Tj+PyPw4EF5dCx9as4IJZ6kw1blk +xCdTBwy7dwnShv+rjw+r+HQd5GT0L3/k6IUSIXjjycM6kOlI3bjlOBVMz//z +aKKxDm7uNhd/ydFbxp7E1e+X6sDEt03Pj6NHQSHF4Gvy9XBQUrzc/iDHDxUH +E+me9XAk3OwkcvS8mVyiHJxcDxpruEP3c/Tu+swg50RbPXSW5RUGK1Fh52Hz ++jzlBlAxnT7KkOPoNePRfFxXAxj7zZQ0cPw2Esz1rzlfI1CaxToPcPx4zMFP +aMO+RkhS8hz2EaDCzE6CzMuARlj31tOCxvHzlegcQ8eDTbBNv8syZIwCtEfQ +tvNmE0hzRSbPf6WAyOUq676QJtjr8u+kdh8FSkSZbsajTVAqd6bvNp0C4noe +52JON0OXREXFqXzOvDqKP7ZphshHEUezPlHAWYa789LDZgh/v+b9cioFqv8G +2K4jN4PF6qQijTgKeOSSHvssNUNnzY3jmj4U2PW+96i1aAs0zv99lPyEAoyI +7Wu05VuAOc/9iu3KuQ/vp7yeu9ACAWHylAs3OO/OnnzyreQWGFttOReiSwED +ckfDWbNWEOc1nAn7Q4Yp3zS7CqdWOLPI22M1TQbCrefsw89bQVVYyELkOxlG +9+xR353WCif/qrtvbSeDX+6zcO41dLigm1o6lUaG6gYFi9x0OoQ26p2NsSDD +3YzlGZUKOvxL64goOE+GzWEtQdROOnxl7BwpPk7m+NejKJSHAW5yCoueqmTg +H2qUdbJggF6J/enyVWQ4ueA+KsvXBoZWrw3DExJhstPwX8K2Nnh+q1xdKiIR +Ir9I/7NubxvMeoq6vfFLhBGfmtPLlm1wZxau7HJJhJfCkuntWW1AvNDJ0jyc +CJXby90Drdqh8PeNuObGBDhuJMY9l82EAWHDrFdf4+G1jcCvxRomhNek5im1 +xwPLnatvpYcJlr3D5wur4uFO7GQ+Py8LmBTzm+QUTvzPWtdtl1lQZfMtLsCF +E//2+aDePAuWr8b0v/0RB3faZ0tCtTqh+MM6/8LRd/DGmvlMLacb3p0dfM7/ +mAgvx7VhpL4bItbbTymeJ4LX48S/0YPdUAuur+UViOAc5vSET6QHGpQdK5IZ +BDhbxe3Wa9sD5roaXwf3EEBEVc0+SKwXrJRTkzU7IuH1ip/RqFMfXGtoteER +D4eqs5LC58UGQEZy07FbR4NgQnajVytpCHxOCo53yV0BdzclmzebRuBMVEhf +iYkfMrtFje2qR6F7OeSqS2YMXnus/Y3vzA/oDf872PQ5CcuU9geU8UyCnErO +r7z9GSgvUDhKOTUFQWLlLoYC2ShZ6HCcx+8XPLqptfyBKx+5llYnuw5Owzmv +Agc5CuLvC1+sKnbOQvG8OmX4TSl2aVhv3fliDgSktzodpFbgXVPR9du75yFx ++cDYy6pq3BL+1WyN5ALYMLu4/tbWYZpF/PuZR4swfuJ0ub5CE5oe8T5V/WUJ +4uuCYltUWzDTymn7oeU/sF+j2cSqoRUXBPW48y79BUlD2wNKBAYatxzWkiSs +wNosqRPXjNpR8LBQSeG7FQhKE2NtuNSOJZTO05bkFUiP8VhfbdmOao8e20Sn +rcCByL1P9jq2o4h0TtCWihUwuDYkvS6wHWsc9w5tnF6BFrVvCd+q2/EY/+4Q +kTNsWHS1TRc/zsSFewv/pF1gQ6hP41z3GSamd1VRjUzZ0H1xto9qwkSpdLuC +oOtsmGauxB60ZeLyJcqI4GM2fBwfLL/1nIk5ZOkjfElssF+hRA6XMNFZ+GdV +0n9suJSiLZRbw0T5h0XGJzLZ8H5XmWxgCxPDDa/e8i1kQ1aJosa+ASa6/iKF +cdPZsBRp8COAi4WKFnekyCw2hJVoO17nZ+FA+cFk3V42rBLSfn1IlIXnCayi +f7+zQdFykjYuzUL+1R8MZH+yQXvP7bxKBRaiw0NG8SwbmOneVgmqLHzQdsL6 +2hIbxAY2Up7uZ+H//59DQdW6ADNg4f8BrWdJZw== + "]]}, Annotation[#, "Charting`Private`Tag$4186241#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmXk01d/Xxw0pFGmQCKGMIUMpot2oKCoJUSEZIiXfylSRzCQzcXE/l2iQ +ociQbGPGa3bdzEOkgQiZ3ef+1nr+Ouu11jnrnP3e773POuuIX79jYM3GwsIS +wsrC8r9REbb9ZDAYGOZxf/ixPh3uLOwKWFhkoJyA5naPU3TI/qAsNT3LQHGN +bKrLETqoyOhdH/3FwEvcf4ucVehwYJNPV0MnAwtGthC3t9HhyPBU3YssBmpI +pb173NcJBv7Ut6rmDOR+tNaE5U4nuDT5ONqWrCKrUph/aDgN2tvX/yyzXMGx +3i+irwraQaT0ztYDwssYdt7HyYKzDfIcKjk29i7i3tKMlHc3W8AiRHnyq/cC +Mt5lL3BYN8F8hEcAwjwOOaznN9dugBTePsG4wX+4nj9FdetKDZB0lZ3bAmdx +9nsCO19vFXjfsnSV1ZlB8aX6G9brK8CD/Y2L8/hf1Jtdl3BTsBQsvZp2015N +odWh9JCrv4sg+vNIHMl+EveXhmWJLOZBUb/MhgyJCXz5X2d+32A27OI7csww +6Rfih93bs5pewXu5APuh4TEcqzAeSA1Mhv6qHDE1tVEs6+qOFAsMhRH5aBX8 +OIx/VI9Xfde8DHKPX06MvR3GM8LJyRc+X4LbTXlvNhPDOCJjEUsBA5i/S5Ow +CR7GRO/bKsuR2sCdL7CFx2IY1zlsYVUz2I1KR+OnTbmG8UsAuwi14yp6XErO +/Wc2hKUOtDHN4nu46fFrNUXWQeRenzwQ1OeHfh9lavjmBvDm2q8jFQf8cXEi +/fL07wGMGMDLGOaPQ+ZpDwvoA5ggtji/fDQA3x9NKT+WPYAhOr8XQ4lANOBI +1Dc2H8Da9HfEb8MQlBYUp7J49OPahtqg4qow5AvaOVll04/fuCb3m06E4fyi +yJZgg36k3jeKpW0Lx5oeocv8cv14Lpcq6WAbjnbkrSOyX/tQqdmei3VdBL6R +5lwxONCH7ou2Og0QifJqf+RfTvdgSKa7jFZsNNooenoW9vaguHRlSXBJNCZL +bWylVveg3CXnyqyRaNwssNflX0IP/uAXiHdRjcG5udtlp070oCL3x2o2agyW +F05c+hnVjTd3Fx//MReLJloTj/eqdWFL/D7K0p54jNj/uOW4WBe2BfwTztWL +x3oF3t0m3F3IPd/qpnUnHg+LKtZ69X1F7WOXD5TnxOMuhuOWVr+vaP5A6Mjz +fQk4UTqefq+TjjL3SD6blUn49MR4c6FrJ6ZveCPsuyYJy0//PrfPqhOFfgVR +fHcmIYver8ZMvU6sSPQ5cVEjCR9e+tGQItGJpeargpfuJOEDm5GaZw009GDI +UsZpSWgX0FtqKUbD5N26YSdJyZgW0gM93DQEepoKS24yfgvrLjGa7cClRfV8 +n/pktHzxtfhMXQdyit4M/LmQjKZvOgr23+vArCTRqE1yZDzbQM3mqmnHAdbm +HG5PMgY1N+z1ed+Oo2pisbKBZKxpr89cJbVjQsGt6D2RZDzZW5sxfbcd9+4O +vkpPI+PhiapXvTvaUeOg5vOWBjI+/FspbbK2HXfNVedw0MhY9K8irXWyDT3/ +Sxjd0U/GA4yy1OqqNiT/qFkZnySjEl8JOedOG+KGc7ySWwi8vfXzTnnTNhzw +uTFlvYPAjO3FSWkn2tDG+GS9/y4CZcWLSAmCbVhb+KPRUZVACZWPcb4Vrdj0 +YGGy5AKB/IaZYZcFWvEriMheDCDwvVRw0Un2VtyoZrpZOpTA8wu235T/tGDr +KRtqbySBQUniB7mrW1DV7ILcdBKBq2NR/UUPWvB+KotP4QcCEz7d5Uq/3oI3 +JKvZyAUEHgzVV43Ub0HhQ4Lydp8JdFbl9HeQakHaQ65h0hcCRx95KArTmtH2 +qHZQZCeBT8+bmHCWN2Mlpyvn024CxXbt955514w73McnDPoJNK2Z6GjwbUbL +51G6kaMEzsXXMwruNuNgzqOb7D8JjHJ8JfvyajNa39164uI4gY2brz96tL8Z +Z9+tuIVPE+gwcjj9pngzlp1vdPf8RyBnwY6WSzzNSDl03PvsAoG+RW90rtQ1 +4XXbgR/eqwTTVzcS91GasOvC9M9fLBRcXCM6tcG9CSWD3PapslPw9rnwuM+y +TSiwe67bbB0FX83o/o5mbcIbRQMdmlwUHHqx5sjtr40Y9lfo/BI3BYWhJFI7 +pxH7zWa3xW6goNE3l++igY1oH8L7byMvBcMClQ/NWTSimcr5AuuNFKxT/BXa +dLARlzh+ScfxUXBNe+pQOl8jWiUY8KZvoiC4XVPzGqNi/Gb1fRGbKeguuj3I +pJSK5alBlpe3UDC3oqVXKY6KCxtuXl1m8oRdsDKXExV96qUm3LdSUIb3pO/g +KSp+PnrsazuTr39YpRfupKLGS4thLn4KkkwK5CPmGvBxzelmQSbTVu562Tc1 +YEB+7/U1TOZL2dN+LL0B7aQEr9Yy1+ueHpHe4dmAa7I5vOyY7DOe5DFt1IBr +hwuCB5n7l0SYNNUrNuCUkB7sY/L8gc27Utc2oOSubhML5vlVeusfPOyrxwji +v2hrZny3vH3rDD/W4xft7TnHmfGnSYOoQmg9Fpbm2iwy9RpsmL/LYVOPfY4C +ToE8TH2d31f1atUjifrDd3I9U1+BW4If+evR+u0r871M/cOKJR1Dx+vQgJX0 +4SQnU1/L/lKbqjrc87xRTXUtU991L7ZCYh26S3AkzjHzezjDwE7gfh0qhuTF +RbBS8P2/qo01u+uwPj52y5llAkPfUMoPL9TiRVufMmmmfxyued7Po9Yi/fCY +Russgbu/HOymPKhF0xbj3tAJAlnc+UMFz9Si1ZNwaTLTr70Kf4+E7azFyQk3 +z0dMP8dEv017VFODYTLST+J7mfWiE3B5hlSD3IZi6l/pBJ5bubHB4W4NNvOv +3THUxvSvtaiziVANGqn1mJ2vJdB9X7iW6q1q7N+rKxeWQ6DRmOPk6yPV+Pym +MWnTWwJVSbopYvzV+PnN+TGTVAJ/s6/h4i35gssXutLUYgi81vagfWzjFySu +/dgi4kKghv9Ff/NvVejF1lL+6TaBAoeUNGgFVSita7h1hw2BzZQfyRWWVfhh +3ClzuyGBx5yvOCR9qMQ5D3P2RXkCRaXURfkDKrHh1Os9ARIELn3lbwm+Uoks +PFG+zQIE5h5tUnPjqET7jHCxEFYCpTYdYzM0rsB18pFxkS1kZKsSzavbU4Hz +p17upFeSsd91yfYoSwXeiZLMbcwnY9xALlXxdTlu+7tNn0oiI3e29AuupTK8 +We6w8Ps6GUet1pz1airDOk61vqSLZKwQGFz9l1KGwzydx+aPM/uvZ/yNb2fL +0PahoHHCLjJO6PMoYVIpYv4U7XtxMr7sHnn2w6cE7csl1R89ScKuh9uSE1VL +UBoD962aJCGv6KnsC0OfsZiXy+LtXub9Y/GqtRA+45fO3HCXrkTUHrEXCFr8 +hAvWig06kono7pcgc/j1J5RhlPUkz5IwU7pB/a/xJyyKv+A3V0lCAXuFK6Z5 +Raiux7Y7woKEYxN/yHJOhchCLkn9EJSAwmFi7/tEC5GozThobJCA55UvVERQ +C9BUu8ytfHsCFvz3fmRRrgAnaE+SqUQ8Bs7fk6sf+Yhfnx0Pz015gSUvXh7y +jPqIyQbP66ItXuBfDdpZ1eMfUWWle2Zqxws0fXTgTgI5D03d7Hb/eRaHcmyL +HxzMcpEaZkP9dDUWr6XIVe3kzsWMws6C/TyxGHHCjNZW8AHn+B7eohbF4KJf +8fyhbR/w7seKcUm+GKxf76m1oSUH7Z8kjapSopDlXZZ+qWcO/uDNuX3paBTu +0x8wv6eYg6y9v8U1+yKRFHbUuyc4G8/d3hJ4cFMk0uU4Qy8/y8RHh2qp+mbh +eMTxZnbZz3do6y8u+e97GL7KqmuVPf0Ob0xT+7Wdw9Bt3zOBRbYMZLX5T26W +EYpChzcT8a6v0Wtr6nAqazBevSCc222VisUDURH2ht74e3pW/X5lCnLgl0mn +g0/wYUwT8kqmILus/gOqkBeSur3rjzLrkj7o2W6d74G59a1V51qSMNxM0ycz +wxmzZm7tGuuKQvYkJQnpIjlsVBfbu4MUiTm745UUbfbDxOM2Df2rEdhn1LZ6 +bOoMmGy+l2qHz/G979SU1co1uHiIl4211hePJvzpvsfmBF7tMu07KvSQK0BM +WcvJE+Q39tpzKOyDpY/rT1wkvIA25Z3MN28CWjWidY/8n4BHpHadwz4nqPvc +oV+u+xQqxAL9E/m8wduY9UzCOz+wtZWz+bgaAVXf5pcXfobAaQkX06daUTC0 +Sy7XN+0ZyPRW6J9/GA3/iVyXe2weCj8Nrh74uRALuxP573fVPodbh8M4RWdJ +EKXmz0McCYdCbo+O8vspwJp55NbpskggK/C3ZUmkwpDYxiffNkeB3/msZlJT +Krx0F7LXt4oCw5jh+geyaaC0pWAkiSUaJsXPlsv1voLKbzyyHxRiQEpdJCvi +RCbs4Xu25uqlONhwJT/DcyoTflAjlIei42D68YU3t5KyoG23We+DjjiwGCo3 +2PUwG9buS9zUc+EFKMrM6a105IDOBeLGH4iH2g/mJ3ICcyE41r+1fjoBNKvk +K6QHckElJVgwT4oE2bSFo0lqeZBXsjew24QEMQuREDycB89kpeBHEQluQI2G +tVY+7Mpc+1X7QSLQz0cXdkfmg2wbW4xJSiKcuX79oMHPfKj2Iy8XNCWCiu/y +fogtAO+lnveOUknAqFNSFpwqhEWpEK6e+iRw7lnJen6qCHS2bn4ZN50Eo+N1 +imuTiuCmfvuX90LJ0MBnLT+t+wkIE2GLtbbJEG/0QpqaWgxLLec8TOaTYf8Q +q+gTE4TXZ/I0H3uSQbHIeErpNYL4avGJl8/IIBXxrnJgASGQx4z+PIEM64mM +/WS9UnCqnc7O+UiG5fMmPYyJUvj3wUNI7ScZ5jXZvxgLlIGe6/0n/v/IMCOT +mZUFZeCStOYqmY2A3yxrnpqHlcE1n1vH5IQI6M3OkkXlcgjJtxF8q01AF8l0 +i4BpOVAjfvicuEAALYBj5bZ3OayWa3a9MiOg0cKsWbStHBS+vulru0NACd86 +l8f3KqBN5+jxkmgCipZzLGikCggWKlguTCLg49gVXcWqCqjhj/7wNJ2AzNL3 +In38lVBSkBzoXUBAstO1Sq38Slj5o0I5QCeAdIUrM7q/Er616ex4109A3Onc +2PF1VaB64abB9CgBYWLcDokmVbBlQurk9AwBIRvyDGe9qiD+pHbKuyUCAubN +D+u9roK1M+5rNNgo4NWct2lloQqcVIu56ngp8LDYYslQ4gsEGfKfbtxKAddX +60cydL9AhI5UyUshCjh5WRZcSfgCIe53PJokKWCpxGNerFkNp5OUFLZpUOCa +cMHprdbVELE9WaL4MAVMOa1Ubj2rBkF/i5ADx5kv1IECDuG+auDl76vLOkMB +/QarP/+trYGwxdjd785RQLeA92u9Yg3kuaUve12kwLGwGxkenjUwsawq+86U +AocfboxpS68BR4rfMsc1CmjYFXnuaa6BNSkDZ9QsKaByhO9it1gt7BU1MRS1 +pYCi/CdNVZ1awM3BfrSbFJDbbiMVfLcWJnT+SdneosCuyU8LGuW18NNeOnHz +XWb81OM+M+O1cIXPw/jyfxSgvannzRSsgxb7QxnO9ymgFHDxhe3JOvjsMjF0 +zYUCQdbdu8Tv1kEq55Fjom4U+HbMKrOLVAdsQRx8Oe4U0BL7dTCqpg5ico+G +CzykQMyKc4XeTB28kpXhNnhEgcmuRb11YvXQtShWYvH4f/F700vP1MMG0YY/ +xz0pkBrNbeXuUs/sB2sGl5i86hwxrppSD886v7UGeFHA+LyQ63hjPTR3VHP8 +YnK2AoUtfbEeckz1CyWeUIB7vdwzC6kGMFxnKa/E5BtjOQJCBg3AHamauIXJ +JVXqlLZHDUArO6VDZa7fnlIm/+x1A3zVdXK8ymRnL5187Y4G2JDVdrKSuX/D +1ZajLKxUKGL5w8PGZMlDlxsK5amwiRTHIsA8/+Ptg0b/mVBBuYXNhJ0ZH33W +blDehwrCXiV61R7M/LRNOoxmUaEj7bOQFVOfkGzXf8ndVNgydGmO5kqB0Wcs +Ty6vawT6wLEdu5j6HnEIWL9FtRGO17/6fIqpf/xpvpiGa40wStrGf5KZn2nJ +ODG/oEZYcg4w3sHM31l2sbfwsRHyG28W1d2mQNpA+v6FwUbY2hDrfJGZb9OE +fN1b6k1weUfkhykbCuS6QoekdROQl6xT1t2gAK9RtXl/WBOc/BT1cc6CAmV8 +nfcMxpqgYa/xRlum/3hcshgc3M0w8LA5f9SIAkXW05VDO5uh8M09naNMv249 +7nGOdKYZnuxMHfNn+rtMGbe6WTZDqbjKpXunKHBbjL3rkkszfGSfsdNk1kPN +StCNjSnNkNjJBhbM+vEoiHfzXmwGTtbf8UtSFJBJ7ztsztcCO0lz6nXiFGiP +llijKdUCG89+GL0vzPT3f29CZy+0wKmgB1uZ7wUYUihKsXvdAhwBQZfTFwjQ +SflK1TdpBYkxWZ7+CgImfTNtqhxbIUyjVC23mNk/7J4yDj1thRLtWSH7PALG +FBSUZTNbge+WbrJrGrNfFHhFsa9pg8/CRma7/QmooUqbFWS1wWzuIrXtGAFO +2cvTilVtsGbTwN1KdQK2R7aEvOxqg9NW5P5YJQLsTDxKIjjaQV95b+R3EQI4 +hxvFHc3a4XG4VprCHBlOzd8fE1/XAdFvh7bcTiXDRJfukzjhDuCT5FF58YIM +MZ93Cm1U6YBOlv6xV6FkGPWuPbN8pQMmKa4hD1zJ4McjkkV73wFBcmJRVF0y +fJGovB98jQZ38qqC2DqS4aTeZvbZvE7Q8JASu6SQBKGWXFMLtZ2QcYWNT3BL +EtDvs/Sv9naChRYt/P18ItgnTRRxrqWD2pmXNJuKRAj9U+csbESHu3QjaboR +8z4Mfzp0/B8digQEtZfuk8CeNlMWodYFllG0mV0x8fDh56+sWN0usDGszPz6 +IB6WV4cSSde6QL9F4a+dcTyESre4pfl1QaS4SMDW7cz5ru+Ui2hdEH6wiysl +9gUsC9kQgw+6YXJm6nXe8zh4bt7ppZTfA79o5GcON2LA77cmjDb0wIGk6XuP +tGLgsRtlJWGoB3rpYmw222LgdqSj+zreXlAztgv4VB0N+tXs9/pu9AKj2i3S +QyYaePcq2YZs7oMS17fBN4ciIXQ1QG/MsR+MQrubKg6GQ7W+CM/5zYMQp9fM +avbTD7YqDm5zFh4EBS2zoZnnfmDB81IsSmoQXtXZLl3Y7weL9fL76BqD4FvC +Ym3k6QvyOppmFlaDEOsh8CeYzwfCjpu9dsodhKSZaxI10k/A9OCLk+FGQ7Bn +b55Ln+EDGBfnf9waPwxJLpw8GUGn8P69PZbPt41CBlfk4nNSCHb28BnY1IyB +qNwB9x4iCS3cNL+vO/sLbvolGmskpGPFngNBFRwTkCVi8X2CnI1SXMVjqacn +4ZDAKRFThzwUKXY4yREwBe56FJO0K0XIssj22nnoL9APWEdcX0Scu/D5WpXk +DLy+vofjTUE5du8z3yHpMwtkFRdSUX0VOhnzbZLo+QdeOoyrvL9rUDDqm8ka +kXkYOygl0DNej5lm5PRp1wW4u8Oh6unpJjTW8jxd83kRHGVqCkqhBXOuOUpo +LC+BTIw6W1ZPK85zH2cvvLQCwitHDvaltaNByyE1kbhVeH1kU3+wGQ25D60v +K05che8b18trWdGwLLXrzJWUVdArPiL+x56GSq5ulgmZq+Bo+I39kjsNeXfm +hwhWrYJ9WFaazAsa1t5SGeb/uwobbkae+kOj4RFO2TDeswzYf7VEYsGgE+fv +zgtlXmBAu/opTTTtxKzu6pd6xgygamsv+l7vRNEsm08h1xngz6dsxe/cicuX +Uke53Rgw7e89cii8E/NTdmqtS2OAhI9XRHpTJ97m+VOd9pYBbe9zRlw6O1HK +pcRAO4cBnDp+3af7OzFK96qdbzEDAq3SMn9PdKLzVHwkexsDtMIS/xzipaOc +mb1oCp0BKX8rDTdto+NgpfrrY30MGFV9Y/ZdhI7n4+glT34woFFfUz9agY6c +bK90xP8wwAqy1R330xEdXNpLZxhQoOn05aQWHR90aJtbLDLg5C/zGdGTdPz/ +/wpwXbheMX+Wjv8HeA3r7w== + "]]}, Annotation[#, "Charting`Private`Tag$4186241#3"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmXk0ld/3x6WUiFSkkFCZQmaValORFMmnkIyFRCSRlDIkZMo8D/e5VKQM +mYfaxszDNVw38xCJEqkMxf3d71q/v571Wmd4zvu999nnrHWEr93Wt2ZmYmJK +WMfE9L+vDOycptPpKKajMOGhS4Pby/sCllfoGHVhz273MzTIzZcTXfhNx+OG +Ba2uajSQF9e5NjlDx2nbo6VO8jRQ2ebb19JLx+GkocRbO2mgNj7fFJ9DR7ZQ +E8JjqBf0/VuzFMzpWOQufXzNsRfc2n0dbnxYw4bwCZ3gcCp0d7NPV1mu4gtP +3/gXJd2wp/I2t4rAP1Rxq4s1Ze2CQvtalq2DK/jhAZ/d65sUsAiWm/vks4yd +WwMC16zaYSniYQDCEq4aTQcYaLZAGufQ7rjRP0hbKZRiW22AJG05565nv7Hj +qLzUhsE68LlleV/i7C/8pWnjaMheAw/Xv3Zz/v4Tmf9KFRntrgRLr/b91Ix5 +LLCoz1T8VgbR7yfikuzm0Cmfq2hmuRDKhsW3vBGZxSz3Ha6po7mwj0vt5KWU +GbRpjzrD2Z4B7yQD7MbGpzDqZB0u+afCcF2ekLLyJEZ/MwwO8Q2FCaloeSwa +x7OKk3p8bFdA8vGL2amscXxVVLRNJfAyOLYXvt5OjCN1glXv6BZ9WLpDFbEJ +GsdYu8fzcwc1ga2YdweHxTjCuuVP9/4dQFn1hAXjzeOoaU7vL+Mww4eXUwv+ +XB3D7oGMUznNLrjtcaayzLpRFFMP+rxjyg/9isQbuBZHkB5rE2mi7o8rs6+u +LHwbwcJ03u4bCf44Zv7So4Q2gh1ffrrVnQvAd+pp1SdzR1BQ4cXR+KxnqM+S +rGtoPoKXg/6mepsHo9hu4Vamh8O400L8K9EchlyBe+fqbIZx79Un7Nq/wnBp +Zc+OIP1hNCX5rHYIhGPDAN8VHslh9O8PX3ngEI62JO4JiU9D+IDatnyMIwJf +i7Gu6qsMIVUtoNBaMxKllH9IvVgYQBeeAdXMlGi0kfH0LB0cwKx9Y8abPkZj +qujWztb6AXzOU8Wj+j0at/MecvuTOIB3pt4MiqjG4OKiY9WZ0wO4S7lNeK47 +BqtLZy9PR/Wj1d2QQ1ZMcWh0fPbxIeU+/LNGG6lQSsAIpceUU0J9WGo4MR1k +mIDN0pz7jdj60KLYWlDKPQFPCMo0eg19wvtXK68PlyfgPrrDjk6/T7ibh3sT +ByTibOX3Vy69NNy8ravO4lgSPjn9vaP0fi8euPE8pXxbClZrfbugeL0Xr8p1 +vBqUSkEmnZm2bJ1eTP9kr956JgU9Ln9tSRPpRVGjv3bcj1Lwns1EQ0gLFV0L +L948PpGCtgGDlZZCVOS/+uB+e1YqvgwegAE2KlYLD83k16Ti57D+Dwa/e7Bz +v1X/tf5UtIz/VHGuqQfzHDSyt7KQ0Ph1T4mSSw9e9xEL8JMn4fmW1tzNDd0o +N/E1TCOAhIEdLYd833Vjd0Tr18cRJGzobs5eS+rGwDnTmsQkEmoMNr5ZuNON +0eby3p65JDwxW5cxyN+NxbPh1BkqCWW5PpDybndhYsB5/2OCBDpyv98rZdyF +v+nKtqmiBL7ZVZHy8nQX/rx9s21chkAJ4bKkxN1dCNu5yVxAoIh8UdzTmk4M +UQmI/2NKIM+l7LArvJ14TNjGsDuawHeiQWUa6zuxe4ytiJJIoN7yjc9yPyhI +6/KNekcQGJgifJitnoIuXfN6gm8JXJuKGi67R8E8q1CVhGoCE8vvbH51jYIX +CtI35tYTeDhUVyFSl4Kq/Ks6GS0EOiuw+tuLMlhlsRyoBE4+eigjQO1Az60j +ahunCHyiZ2TEWt2B4xaL9IPfCBTap+Tz620H8vD94leYI9C4Yban5WkHmuZF +UD8vEriY0EwvudOBvR06ks//EhjlkCHxwrQDh08JavDRCWzbfu3RI6UOpD1U +Vu5kIaP9xIlXN4UZ7bZZH9ZYychawk+5zNGBj6RDnNm3kPFp2euzJk3tOBVe +WlG7jYyV5lbJiuR21HPbxXyHm4wrGwTntzxox7aSzZR/O8noeCE87r1EO87t +1rd+x0/GjF/a36LXtaOXhAu1fw8Zx+I3qDl+asMQ6XLxz3vJKAAfIjXz2lCq +dEm2WZiMBp/dvgg+a8Ou+eCasH1kDHsmp7po0YZeLVYFigfI2CQzE9p+uA1d +1JeoRaJk3NCdPvaKqw1P3NNa2ylORnA3U/aaakXq4OC/SxJkfCC4K9CoshWf +6X5Md5IkY0ENZVA2rhWvc0TW3zxIxlnbILnNTq040GagrCZFRnFOjaejZ1rR +5U1a1QKDr+Wv0Ur3tuIi57MjvtJkTDIqkYpYbMFtIeEO8wymrt7xsmtvwa/v +K6VUZcjIlXaw++SrFrSmh2lYMlhba0KM37MFaw7NP73OYN/vKQ8XDFpQ3Phk +uTqDP0QYtTfLtGDH5cvv/jLmW1LZvi99YwveNrRVCWew/GDzPY+hZrRx2b+T +mcG3fJ42XSpqRmvexN26jPW9FANB6dBm3GhzaosrQ89oy9IdFptm/BuzWHyP +oVfA+V3d4PFm1D38c0Kf4YcB763dRTzNqGndbLaZ4VdYxQGH0O9N6DDjOh3P +8LPJcrjSpq4Jj5gd09vA8HvDpnhuSG7C1l0fDLQY8TjxRt+W17UJ9aS/1Vgz +4vXuT93Whv1NKGEQO3mQEd/Q1+TqE8uN6KshT03lY+SXmadrYWsjflMY0pzg +JeP+j4f7yfcaUYcSfnuckU9MD3hCd59rxKGNm/wTOck4KP1TLWxvI5rKmA7t +YydjTHTWy0cNDXi/9ho9bT0Znc8GXPmV1ID8fcF7Exn5fGHVaov9nQZsbPSS +smTkO6u1oLMRXwNuLw18Y/STwAeK4ccVbtXjdzUfk5lBAg2mHOYy1eqxv4/E +rEcjUCFJO02Ipx7Fr6rle3US+G39hs2cHz5iFulFxumPBJp13eue2voRz1nX +47ksAo/6/+dv/rkOL7x4ksqSTiCvquxRakkdnsEk7YAkAjvIX1NrLOtQLW/o +1GQwgSedTexT8msxykxi35IdgYKiRwR5AmpxTUG0acaSwL+feChBJrXoqPU8 +JN2IwAL1dmV3llqc3/bH/roGgaLbTjJfMqxB3w8CfKwCBDLXCRY2HazBXNVR +jZ3bCBy+//eGOlMNHt/23mCChcC4kYJWmcxq9K2dH6iZJSFbrlj85r9VyGev +2H3nPQknr28479VehUeYLkXeY9TTGt7RtT9pVYiORw1V0kjo4Zlg9fl8FXr3 +7jw57U/CWV0OWUypxJoNfw8x65LwRf9EyFffD5i/bv+ftLhU7PPYmZqs8AFj +b2T86HVLRU7BM7kXx95j8dmPRZ4GqXjPIqOzFN7jmHxw4P7tqag5YccbuFKO +h0iXdWN8UvCBX6L4icxy7K0dWlA1TcFssZYjPw3Lce1olaiWSgry2kmbGBeW +Ycm2+Kbgr8k4NfuDJOlUihQnbfswzWQUCBN6NyRYimWjl8UVBZJRT+5iTURr +CSotx2jLzCdhyd13EyuSJbj+a2OkQHwSPltykWyeKELlcC355JFElGReybe/ +WoB2/iwRTecS0CxNsm4vWwE68nPtieNhnM+nr1K7SvLxpXRVSMhQPK74VSyp +7sxHR7VzfiMO8djM7nl8CyUPhVl3quR6xyHT2xzdSs88bJE9fezM6ThU1B0x +d5HJw9c3lOTGWOIwKUzdZyAoF3dZ3M7l8ItFmiRr6JWQbORNHz0U6h6Dag43 +c6um32LB+NyNeIUYzMhp6pTQeosbuDQO3v0Wje6KIbwrzG+wRSZP4bZxNPKd +2E4k3M9EH0/kdhSNQh+vuzXM1Aw89Y/doKcnEmequyfsFDLweF5CX+6TSKw4 +EyupOvsSvVVKFZ/0RaDpRYGC/uvpmM4tlmjjHI7fFn4fca1Nw9iEtw8O8oSj +R0w7ch5IQxW7p6xVhWGY1O/TrD5JYHGo8Y6E4eco9djkYr8mgR6LosTgtudY +LqTc6/KKhF2K5WW3ToRiQXNn3QVKCjL79t4N9g3Gbi4/ik9EMjr86RNlTg7C +hctHBgv/S8ILFYt3n70NRPmR1F/81HisuJIgXJAfgBcP/Md0ITYOtfP6f0a+ +8kcnu41bfIxikfumEsf6MD/M+XVr31RfFMblhb1xOeqLbUeEDvEnRSKzvvbT +oBUfnH3cdVTXNAL9H/NzP8/yRqPtLum2+Bzzdap+6OMj/E+Vk3ld41N8eTLR +es7sDkbUuey+ce4JWsQKGMlo3cKOC/2yra1eGHz1ruHrDmtMbNBD+RduKB7G +MW3Kq49e3eLd/DU6OJBxsOgEkxlIbR20Y5FWBPf8c5V5KVZAnfdJ5VoyglPS +mlMTO+zgYaRmk72iEwhva9fiOOUMNULP/JO5fEAh2vfn8qeH4Bsj4qQS6gvP +RBe+9ux8DJpbKowo7P7gYCl0103ECxoWZyVYNgWD80i0ep+qD9y4IWlTtBYB +H98RDmH7/UBLxM34yfEoGFPuEvnC5Q/igzW6eh7R0Czbbiy95A/T+qYq08ux +UFdbIHCl5BncOhHGKvg7CWahYbfEhhAoZXvYU+2aBn/VlzRCXcKBJM3TlSOS +DnV/L5R/7gwHP72cjqT2dCg13DvrfSgCLsWMN9+TeAkZ5QfSqscjYE74fLXk +YAa4Vl6rizsSBb2nJ5E3MBMGKi/PWQdFwYcbXu83qLyG12YmS239URD0tqBk +KCwLDirx74q5Hw2iR/bkRJzOhrsjR6fayDGwxaT4jed8Nvi16Kldmo6BhccX +X99KyYHc9vOVObKxYDFWrb/PIxfGLnQyrSuLBRnxRZ3VnjxY5FQrf4lx0Jhv +fjrvWQF8dE64o5SYAMfqpGrERgrgh2w9k1dnAuRSl9VTlAtBNc+2fZo1EWKW +IyFovBDc/zOiytxNBCtoOGp9vBjyzzQUNh1PAppedGl/ZDH8zj8g7+yYBOeu +XTusP10MP/m7uvRTkkD+6T8liC2BXTJO15r+JgG9SVZu93wpsAVcKut7mwzO +A6s5z8+UwVtOg7+RtGSY/N4kszGlDPJp0YYJzCnQwmUttaBdDkPJTYqxl1Ig +wSBerDW9AjwULpoGz6WA0tg6QW8jBFh8tp2NhQQyZYbzspkI0qJunQrcJBCN +eFs7soxQdPJqjsA+ErATb5RIOpWQ/uSBuowaCf7pGQ3QZyvB0etjpqUbCZaO +rf9oyFv1Px+1o31J8Es8OycHqoCrRLsyOJwE35g2PDEPqwKz6ayLja9JMJib +I4Fy1RBasT3dv48EfUnGO3iNq8GtdCR8aoIE1ACWVUefaqDNMN3cNk+CNour +HYJd1eC97mxBxUYCPnBtcnvsUgNiL2bu+x0ioOxfngU1qQa4yTPuCkcIKJoy +0ZapqwEd9plfWScJyK58t2eIpxbOtJvRmS4TkOpkVnu8uBZqmZbiNN0ISDLZ +nB09XAvxkqMZxp4ExGkVxH7fVAcPrXoMjvsTECbEZp9sVAcGIw3MTjEEeHUU +bltdroOiiI4AxgUePCos/l4S+Qii0lu9xUoJuJ/BPvFG+yNocjKNBiEBTl6W +JSaJH2H0+uEDTc0EWMpymFccq4eZdweSDowRYCZQosVtXQ8Tz/yLz38hwJj1 +uvytkHpQ+aJWcuYbAfojJSwCQ/VwVjY6quw3Abot13/c3dgApV0H1yusEKBd +wvmpWaYBKKL8j7zWCDgZZvXmoWcDeAQR2YkbyXDCY2tM16sGeBpfO3+TjQxH +bcs8D3Y0wDyPpSEnJxnk1bj+6xdqhGMjAbF93GSQkSo/pnC2EeLmKv4w7yKD +5C4b0aA7jcA/XuPNzE+GfXPly0erG4HvRzF/gBAZPFpP+f763ggZmv6bT+0j +A/V1M2f27iaY07KQbT9ABtmA/+JvaDSB0J29Q1LiZAi07t8nfKcJgm+SzE0k +yfD55PXsvqQm6P1TzWQmRYbjQjOHoxqa4ETN7S3yMmSIWXWu0fnVBJvYk1to +h8gw17eis0moGVgO/heoL0dm6PehVZ5rBqHteSGp8mRIj2a7/sCtGepj5vZU +KpBhzTniu0JaM0jk2XkXKJLBUI/v/ve2ZtiYmLjqoUSGXGky86uVZhjvEe3d +rUwGNnbJEAvRFnDa1X8xiMFWU3m8fPot0LyvKJfC4A91R8hdjxjt3lNK3xm8 +K61KKiSzBe5IfhIZYrCz19lizZ4WeLNLoiSdwS2mFHWmda2QUl2kpM7gA6pX +WkqlWuGRD9GXz/j/412jBneNWkHg6/mJf4z10X7bjkr5toL26vVIAQbLd83Z +T+a0gpDtgPAOhp7g3Pt/UvtbYTB0uWWEoX8yhMn7yqY2qE+40PFUlgxq9gHs +OxTaIP72Rxtmhl8JWlwxLWZtsBqW1GQgTYaFA3FCfoFt4LV4U+nJQTKcXy+U +BUVt8LRHZMRfggwvR14pLY+2QeR5vvXWYmQwTizWvnWkHQY5/j3PFCFDwX3o +OWDdDhPdj29sY8Sf06DefDisHV7I34vQ30OGKq5eF/2pdmi86FNsyUsGDrcc +OgtbB2jLB/PJMvKrzHqhdmxvB1C8l8k0LjJwn3p4IelcB9jTB3+UbGaMl0Nu +d0sGJ8/tmmchg6PQ+r7Lbh3AWUfIbmAmQ8NqoNXWtA6YVLX7Ub5MwMOSBHef +lQ5w5kj7co+xf8RfDZ0w56KAKWH0MYixv7qjRTYcE6XAzAgf56NBAmTuvg79 +fZEC3i/5Q353EjAmXZZmm0mBdad6BE9VEPBcYM1WAynAPT8jqFZEwDH2kzIi +PRToD/GZ4MslIGaqsaSfqRN4Blgc7NIIOJv2qVXXqBNKTpgMuwYQMPc026bO +oRPkevmG/bwZ9cT2CV31SSd8NkvYff8BAVPS0nIS2Z1QyWdB+WtPQECJV9T6 +DV2wcb+DarAOAQ2tYldLcrogU2XD7R9sjPqR+29Bpq4LJi1MU7mZCdgVSQl+ +0dcFJ3VfyAosk8DW6OGHCJZuaHx+93fnJAlYx9uEHa52g+MDM9exShKcWXKd +Et7UA29EaeNpt0kw26ftHSfQA5wcyYGrViSIeb+Xb6t8D9gP9jmrGpNg0qfx +3D+THjA6mupmdZoEfhx7cqjvekAj99BlR14SfBSpdQ0yowL/Opnn806poKGz +ff3vwl7gmeJjVmhLhlDLzfPLjb3QJ6bjcawgGWiuTMNrg73ANndKgD8hGexS +ZstYN9JgVfS9iZE1o/+PJmcBAxp4qye9py4zzsfwJ2On/tBgzD1Kdh1/EthR +f1VFKPfBu7Ny5xdOJED+9ExOrHYfZPyMrxnbmwD/1saSk8z6oHZ4090spgQI +FaO4v/TrAxWy4Y+GqnjIv/9WrozaB7Sm8WcqJ+PhH58NMXqvHwZUlPn/qcbB +c/NeL9niAaCn7183uiMG/L4dg8mWAZDlYq0R+x4Nj93Jq4ljAxB0jzZy+mM0 +OEY6PNjEOQjJHDveMjPuG7r1612GrAbBwivsy/NPUcB5SPZG8PYh4Fru1GGP +joTQtQCdKYdhcJXruK43Gwb1uns49LaPgoVHolCnuR9wy4zudBYYhYlVJb98 +Fj+w4HghFCU6CoFeT3sMs57CSrOUIu3oKFhVXqj6+tsXpM4eu2pxfRSeXcou +UA54AmGnrmY6FYyC8WvpikjCC4wPx2uEG4xBh8OMx3M9V/guzPO4M2EcQlMv +sGurXEBXl4OWz3dOglFnX5Yyewj2DnDp2zRMwTkxzycTXSlo4X7sy6bzM6Ab +fNrr8LtXWHNQJbCGZRYoTjziT7JyUXRzxVS61hxsPnzOXdG1EPdU2GuwBMwD ++WcW77h1GTKtMGc6j/2E6cF2eLquEhcvvjerO/ALzp9bW19VUY39iub8B3x/ +w55vdSKx7XXoZMi1TWTgD9jx/x0v/tGAu6M+G23YswRugqV9xvPNmH2V9Grh +/jK4vqan0c61o+FxT62G9ysg2MFqe0WdgnlmDiJH//0FZsO4apWhTlxiO7W+ +9PIqgMm4oGFGN+pTVJX3xK3BJ7a3kosmVGRTZa+qSF4DqRGt4xlWVKxK7ztn +krYGR14qLl25RUXZ++6WidlrwO3jZYMPqci5tzh4dx1jvEWQcEQCFRtvyY/z +/FyDAArxx4BGRTVWiTDO83TImSjWMr3Ui0t3lviyL9JB+OxFyX0mvZjTX/9C +x5AO697czf16vRcFc2zKg6/Rgct2MPP+3V78dzl9ks2dDiEdW3RTInqxOG3v +8U0v6fAz4MRJVkovOnL8qH+ZRYfI/AwzGq0XRd0+6Gvm0WHIo2FP5kgvRmmb +2j6toMOXR4VPzs/1ovN8QuT6Ljq03ds7k7CVhpJX7QTTaHT4HMTF58RLw9Ha +I5knh+jg5ECZ1thLQ7042gfvr3Swc9C7syBDQ1bmjLPCPxh6wnpEm5VpiPZu +3ZW/6LAnsORR2gka3uvRNLdYoYPc7wFXD00a/v97DFxzE91qoEvD/wPbCGD1 + + "]]}, Annotation[#, "Charting`Private`Tag$4186241#4"]& ]}}, {}}, { + DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, + AxesOrigin -> {0, 0}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox[ + TagBox["t", HoldForm], HoldForm], TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"S\\\",FontSlant->\\\"Italic\\\"]\\)\"", + HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> + Identity, Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> + True, PlotRangePadding -> {{Automatic, Automatic}, { + Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{ + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["h", { + GrayLevel[0], FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{3.8871885224783792`*^9, 3.8932376275906477`*^9, + 3.893237839180531*^9, 3.893237876356636*^9}, + CellLabel->"Out[52]=",ExpressionUUID->"f282764d-6683-431e-bd66-aff690b1329a"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Specific heat", "Subsection", + CellChangeTimes->{{3.893240903148159*^9, + 3.8932409167324743`*^9}},ExpressionUUID->"91682356-0150-4742-8ad7-\ +87c14223ec68"], + +Cell[TextData[{ + "In this plot, we show ", + Cell[BoxData[ + FormBox[ + FractionBox[ + RowBox[{ + SuperscriptBox["\[PartialD]", "2"], + SubscriptBox["u", "f"]}], + RowBox[{"\[PartialD]", + SuperscriptBox[ + SubscriptBox["u", "t"], "2"]}]], TraditionalForm]], + FormatType->TraditionalForm,ExpressionUUID-> + "a889c51d-cced-4075-b076-eae0732091de"], + ", which is the singular part of the specific heat (modulo a constant \ +analytic factor) near the transition." +}], "Text", + CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, { + 3.893240875195952*^9, 3.893240882915715*^9}, {3.893240920042145*^9, + 3.893240927292811*^9}},ExpressionUUID->"6d8da3cb-bbd1-4fe2-a26c-\ +2969b50861eb"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDut6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", + "}"}], ",", + RowBox[{"{", + RowBox[{"t", ",", + RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", + RowBox[{"PlotRange", "->", "All"}], ",", + RowBox[{"Exclusions", "->", "None"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "t", ",", "\"\<\!\(\*StyleBox[\"c\",FontSlant->\"Italic\"]\)\>\""}], + "}"}]}], ",", + RowBox[{"LabelStyle", "->", "Black"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", + RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, { + 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, + 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, { + 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, + 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, { + 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, + 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, + 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, { + 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, + 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, { + 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, + 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, { + 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, + 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, { + 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, + 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, { + 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, + 3.887187764733572*^9}, {3.887188007450289*^9, 3.887188008193816*^9}, { + 3.893237873044557*^9, 3.8932379005484257`*^9}}, + CellLabel->"In[53]:=",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtl3k01e/zwKW0KJJWyi5r2T6WNk3JUqTSghSiUhGljbJFlKwlt1AqXWS9 +901SFBOyRrZ73/de+xKJsia7+72/c35/zJnzOjPPmTlznmfmGRnHK0fP8/Px +8VXz5P+0Gqzr53K5GHB0jaflHyZemZILnprmoq+ZgPrdASYS7zQVxsa5KJ43 +czv1FxO1lMwdewe4uFNw9bfpHibqrQpsqmZxMVki5lhMGxP3dI9UxdK5OLKp +oqqwlolHH9Sk/2fPxYXbT9I+ZDHRozbQ9ULhPJrUNIeY3WAig7G8v8hhDuMT +lPcf6GOgxJcra/Q2zaKhvpPh2CkGvnf5KrCydRrPLdIJLS9vxDNhmsOcgCmM +Pj5zb3xDI05GeQUjTOJDP4eV/ecbkCrcJhbT+Q9P3XPvyY2oxxemmtcaH46j +bV7qDH9CHQZcdvBUPvAX2Yp8I3/MatFrYZrHtT+jmD0Xv+JLczU63K2VJ1NG +0O6egM3VbVVIKeiJeeE8jBcnxfRyt5VjfrvSigzZQRyz7LAPvFyCciJ7DI6/ +HMAjs0pyMomFmK0S7NzV3Ye+p7fHKjzLwfbSLGld3V6kfn/yXnuCij1bKFqY +242+S4yeXbWzQBXfpMG+9G5kXn70+LCrPrrVvk8TTehG17DHZWqCm2HSnZR1 +Cu3GnJViboH3LUHww/rVQme68ZgR6mziuoHG3rgxm2Xd6OXD2GTt7g9eJ17l +/DvVheHi3Y5pAlHwJZl+VdqiC1erBO2OpETBokncYmrchd+k1eaY8k8gIq4j +MV6D5+8WHxGwNxpet8tQDAW6MM60RFfl+lMou5R4M4rWieLtxitMc+NglW+q +rtqCTow7Yi95xToB7ucqVYhMdKDUD+r4yKMEmB58e3Lsdwc+W7Y1SLwyAbrs +k70/sjswZT8ZZrPtDWTvpRYbEB0YuNu44L4oFY4KxB+ysu/A+JGZ0PXvE6FM +f1PH9hMdeGl8iJXzMxF23HruvsmsAyknlC4OiSWB7M/Y6E7dDnTOE3Ha4ZME +YxVPm1yEO5DhkPBcHJJBUUymhs+rHSftP7Jf0t+CSIjUcKlTO3onhdtymt/C +5LTE6tCj7ch/h7k6bUkKVLSIn1yr0o58Eivur7BLgYuv1/Qoc9rQjs97vEog +FdIUl84d1WtDzXQrsfY9aRAVs1h6g1wbil0aumThlAZ3lgnsaxVuQ+qDtmvH +Q9PAdGDBwwu9rVj5NTd0OSMNBmgza7wprfjSx/+Q7pl02KI7tCVprAVNvGbf +mpzNACc1P7+8Vh67apOqgRnwSmFlQ015CyrrlUwHJ2aA6Hp1j3/PW9C/dN40 +szsDJibcikwMW7AU/Z7EnMoEjeH51afVWtBHSmtwt2cmOPdFOF3d0IJKv5mV +p6MzoYVNWx77uxnlxptvz1dlQnHe4In+6GbM638TRGrSYDbLN2Xetxnn19Nf +6pjSQCdNeEb0Es9fY+GF5Y40SIlTe71TvxkNjFVrxB/RINzLrT+spwlVViqN +lffQoOz6/K6E2iZUWGDg2TxFA77LEZHv85pwcWyRz3khOlw7TdNuC29C7xoT +2VYtOljrD/qq6zah9vJfi0970CFKx7d+n3QTPry39p38Azp82yosby3YhIej +ko6ce0qH3ZJqlXfbOBh5erRs/zs6eKwr3Eip4GDqC13Ony90IIQPuaVmc9Df +7edhwe90kOO6rm64z8FNYW0Tqb10OD0xd773KgcvUt7d3DpKh6dD4R+nbTio +9335iNIcHZZ2ZNrKqXNw8NeDA1+XEmDA1if0xDj4us897JYQAV51NfwHF3JQ +pX3v1p5VBAx++fP2BouNutHwd0KMAMU8n+ngIjay5FcdeyFBwJksIfP4dDYG +b17hPydNQFxq/KssChtFBozjN8oT0JiwdbTUj43n9g6V/1MgYEVcgWHTJTaC +xn7ZSGUCjKPMnw0eY2PI+7fff6gS4BfS+ot/Nxurb94YnthKwMcA113rldhI +OsplVKgTMHpnLkJVlI191jqKVpoEqF4P74RZFgZmawdTtQg45yKhfbyXhaqN +2f8y/yPg5dnM+xfrWLgz1ej5LW0CWKf0Od75LNyiGPRqjscix2tUHyey8GzO +UrV9OgSYHrT1TYpgIZty7poJj+8Z/qnL82Rh9SHFWEEeF+//fVj7LAv5T1yn +RfLO85kPfKeZszAtxM+K5MXbbdFvrryNhU7FikVtvHy8T/yqpsqysOKcglgq +L9/8k31mkkIsVBlYFaGjQcCU7c+qmAkS447bHA5UI2CbY++B1V0kKlKMwylb +CLjl1FMRXk1iJnfE85IKATnOP0yWfiDxXNoBQz4lXj3cussCEki0+75M1mYz +ARrXu4zmQknUkv1k5CFLwBWPzq8et0icUSe6raQIoHl17Bs9Q+JQMr/m7EYC +fvu1F182IzEv5dHZcxsIuBjc+sVBmsSOkvhj/iIEJIe1QIsgiT9an97VXUHA +j0fNhZbjTLy4KN+dWEKAQyzns1kVE41bUPjnDB1ex7N3luUwsVB4s8GdETq0 +JbDy97xiYmtAVEMM737apDE/6vDmoPxi1cHbtXSIoTH0CDsmnglyc9MvoQOZ +3ZircoCJTxvbdSJy6XDsU32OlCQTzSmXojjP6XCwuoZYVsFAMdugiM0OdAip +q1YPzGZgUNQHMwcLOlQwvtHmXzBQE5bbq+2lg1FrZcaYOwP7fdoTfaV472uw +NKV1I48tDxGLWTTwHv2qaL2YgVXjY2ItJTTI/1eS3DDciONBtltNCBrocYsS +y0sbsb9QN7zjAQ00RApfZ11pROmBXH4NLRq4rSmQ2mLTiHXK5UHFG2mQseHz +y2TDRiwUDYChRTRQlsl/8VysET9aT6aLkZkgq5UbE1TSgAt/fu4svp4Ja4/T +Hp1c34Ah648H/X6RAdkKoflGCxvwhs8xC8uADDgydeGH5lA92oZ7sa9cyICQ +lzLbBMvrccA5ckOORgbM90W359/i2e0eX43EdOj18VLbRNZh8s7NyF+bBm6H +H8cUKNdibMTwatePKZDy1/Q3ZUEtbpTVLKuMToGu2EV73Djf0TG73av3agpY +/vD4KfnwO9oFWM04KKUA3LbTvdtXgxtX2gRfiebNF6oqw+BtNXbpH9tn6ZAM +2f9KV1bIV+GA5XvNhnoqRKS9Kd49VYlYvzs5gkoFFzu/m+9rKjFE0TtB9CYV +5Mu2Nb+5VYm2EcVx19dT4SklPdmnogLV2zf6p518A3e0H+v/d7kcj8fuCnJn +vAaDa6ddXr77il8km7PbDj2HpOae8F+Bhegrl+M1ExgKthabcprPJuJel7UF +y5xCME/Qi1nMi3P9psmE6BwVdboWSPpbI9zON7fYwiVQbvjT1I7iStCpUzT+ +IP0BD1A5NYesG8DCrYaSZlSARuaiC8ffs0BHRYsT7lSEkfasuxofWuDm1COH +3q8lWH5IQuiIaCcovlrHZypThn9k1vo2xHXDON+sYp1SBd68oeoQua4XRhqS +HXr5qpDVInLUqaIPFkX/m9Ns+YZnbu/6ueTgAGzpTFRv9qzBElW9kBKBQVDM +UhW6Jl6LCss+9yXuHwbXXR+fFeyrQ4nPLkYCwSNgcNNYGX7XId80f+q1rlFo +fyhvGRJTjxMWBXalm/+CXd66YU+NBmzWtt+4OXAcOkfX+JyvbsCrViKrZFv+ +wQUzoTM+to0oFv3DepHEJLhQlLbbtDUi7dTrt2OeU3D5bejYq7MMtNL3219R +MA33ih/G+TQxMMvOVXbH7AwktUrE7TBl4qTgvoV5J+agtPLKkYBC3n+3fqeu +RMw8UFndebkKJAruXF70OX4elJ8vE/VTIrEoscnsNHUecpgUCRMVEjU8bzs8 +p82Dnr/hYXIricJSH8LESueh6Fe61Ig2iZWXtbrXjs7DKuclIRv2kbhnqfIj +4YNc+PusfKu6PYmT7pPiNAsu3D30VWaQ18fozeVJ5lZcEHqjVJ3hSKIk3elT +mCMXdlwIMlR2InH2RGKv4G0ulC0WL5N0JfEDVUp/STIXzBo7pWfvkOgmNFSe +nM6F5i8a93O9SVTwKDxqnMUF6VdW1Ku+JEab2l4M+syFUuYDgR/+JF4biXuy +sJEL2wL7XcqDSVQ55SxJZXPhZYx7lF8IiZ1ft6catHHBuTvQXS+MxCMx7EL/ +X1zI8Ek9mRxJ4lL+lAMyQ1xIOPfT0fYxiejiwfjylwuLswQ3r3lC4i2msf2Z +aS54UJRfV0WT+P/7CkTssGHcfUri/wCiH9o9 + "]]}, Annotation[#, "Charting`Private`Tag$4195771#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtWHkwFYr3JzxLZevJS5ElhEi2knSEkIg8SpGtUETxLCmFKCIVUcpadpUt ++3auy+Va77Vde3ZJsstSuV+/md9fZz4zZ5vPnDlnPkfE7paJ/TYGBgZ2RgaG +/7NysHuaTqfjG/HX36vNaHhrXSxkfYOO3tNXciVNaZj7+YjE0godxSX1lcJN +aKhw0NBu8jsdb5zW8LloRMOjPEF9zd10PB1xZWVKj4YaYwuNb3LoyMbBlUJX +o6FJcMsHRWs6KtjX6fwSoaE3JcjFsWoT7xNd+iR+dGFn5/bpats/OGwfIE3y +6kJBwq2/j+77jVw32mVFmLqw0LmWhWtwA6mPJxUCn3aizdMj870P17E48biI +DUsnrkXeC0FYw5NnLzKE+ndgMueXPTEjP3GRgzPdYaod4/SPuHc8WUGiWidj +2Zl2fHjT9o7UmWX0tgNH/Y9teI8py9v9xyJmK7ybaV2hoq0/5QAtYwELH7oI +fj5JxejKiZg4p3lU5DCsdNtoxbKhgzs+is5izGWRQYcjLSjGraFpmvAdK3jn +ml9ZNmG+dIjT6NgUOvco6dlKNOAQKU9YRWUSFeKz2Us+1aHvv+vaxw5N4tdQ +1WOU5Dr8Z0TjxnHRSUyk3ioaflOHxr8peSc5J9Hk2qHAxUd1SFCY1dSdnMC9 +4laB1Ct1mJQobW/+agKNb3vz3NpRh3Y+yZl3f44j920DqY1rJJw4FK2ARWPY ++GI5fT9jLUo/SJ2d+jCGL0zmOh4t16ArpTCL990YLp5+qTv6tQbX3GiiDmFb +mGyJ91trkKOYf9dOmzFM/N60diK2BuVPvV26zD6Gnn2MB5sVavCeWWLBT4tR +XI6LDEu4RERCWs5t4fOjGOOtE5J+lojMa3hIX2cUNRWkZFPUifjs7XBKvPwo +CrXbcNwRIWLSkEi0NssomuyeVg+eqsa6GymekdkjKC7h3CvjUY08DzJV5BhH +UMGxbH+VPwEfFx0kc68O46AvcyiPOwE3ZtMvLc0MI7PA9pELVwk4ap3mW9Iz +jPqybf1FpwmYfyqZqJk7jEPT+vFkdgKasMSfu2g9jDJ7Xn2QFUKU3CPSwnBv +CO07KWFkgUrkDt0/T3IYwr637in26xW4tiG4K8xkCFn5Ve0HuyuQPCBwiU96 +CE0D0r0toirwetLfE1K9X3D5cl1j8PYKzJJk+2Ny9AvK7fINM1gsw0Mqc4dS +lwbQPTjLLi6hBB3k/PxKBwfQbXHVNdijBBMluNpb6gew8D2/u4p+CfLyH/b+ +GTuAQRRC5uByMa6uulbrag9gzvYQV3XdYiSWzppNR/Vjko6zbsJQIZqrzz44 +rNKH8ax6qvK9+Rip/KBNS7gP3RwY1vjT8rFJlvOAOUcfmhab5Wa45+NJIbkG +/y+9KDWwo5PAkY9idJdd7Y970fgIQ8AnlTycJfxI9+juwd7WVOaFtWwM1P5B +Lb3TjbFCTVf+uKQjUW/GSOlqN5o5eD4vmktDBsPvrdmG3djiJD3jfTsNfc2+ +NSeLdqPc8HdZ1lup6OUwQQ5vpqFKQInaNptkvB4ySLAVpmEBj5iIrmACpj0d +gAEOGnYsB9tQNuNw/EV/1YWVLozZOc7C+CUWbd/0Vpxt7MLmeKda7eg3eDmr +q0TZowtvT1SLP5mMQoPmllx2cidO2Vmzee19jKHU5sNB+Z2oJSs/yRweiOTO +puzNuE7cpfjSib7mj6cHGz4uuXXiJ8XWrlU/bzw5S8oY3NuJYqt+flLBGijP +XZWUd6sDV4ufr4Y+eQR8ptkvLvG3Ixtxp7Xz5DvIlwgrO83UjnLvqk6tZb8H +43XH8SNzbZjN9FuczycZQhNEjnHUt+Fp0yESM28qbE5FDZV5tWGdrr7g4IUM +mLx/T24fjYos18onmWVzwNUoIqZSioJ/JUxd7t5WDBnL+jPRjBR0BH2vKb9i +GH3DrOHa24oCbTNNmX+K4cK491ehJ61o9plULf+rBMDHSsV/qgUlWY4qzP4p +A+5kmU7N9GZULjVidhZCyP9J4iIfaETdPatjVdQaeJb1nnhyvQHpBxXY6AK1 +4Gzl51nY0oBMi9puMva1cKDuWP97rwYcLvDgkluvhVfRH9Luk8k4uXTv+9/7 +6+CuUoS64s16FKmUUGmyIMOFKZf5TI16HCiK3bR4RwbFOP1kYb56JMrt3bwy +SYYZJmZ2zqo6PDOtVvjStQGsOrw6p7jqcHkyjrvbqxE03S2dEz7X4iWbx4+N +rJtBSEJViC+kFscOnXf59boZfvXytYVZ1uJ4arvkS0ozFJyiqPiw1OLxiect +jmotIMGjuc30Yg0yD/LE9zO3wjaSUGGjTA1OPGqbFlBqhaE7vxxPMdRgjccN +a067VogZLmiRyyRiZvraro3SVuDIlXzD/qsaVcuPNBheosDkVWYDf0o1Dtu5 +10Tfp0AN/8jmz+RqDO3i+XgjiQK+fm+vjRtUI+9Hpuq0EQqYK3rzW4hUb+3K +wVJmBioof/23sW2FgKzvhyM8Oakwe26nPCYQsCnIfjuPFBUat02PKv9HwKm4 +ugpVZSqkF9VFf9QlYMaBoR0JGlQIckrWE9tHQIUeXRf1s1QgnGBYVRxBXLHq +8OE3o4JPSqmlSChiOOu1NRkrKijs+I/IqYjI929Wz10HKsz8d+jg7/4q3EVu +VmR2pUJq/0T4t6Aq9IhdP0v2oEKf7+7EeMUqlK/jbnS8SwVOId3c86OVKLuS +LW7pRwVN9K5miajEYyPLi6mBVPCyyWgvhUo8Y2Y+djqYClmMvWMusxW4oshD +OhFKhS/v2VdE4iswb/ruw7CnVODVPv4X7WwFii05iSg+o4LOhBN/6EY5arDf +Jyo9p8Ldx7EHT2aWYzjRLCliC2dLNqsuXizHwKMDnGe38Cj5t37aX+U48Z/z +XbuteH4nWcvLhWWYaP/boXcrv8F2KxfOa2XYyXTmVt5Wff+Pzx4Qecuw5Po3 +rZmt/goM8blXdSkKv3HOCguiwtTsXJL07VJkL3DwjfCnwr4XwvlfhEpxQTM0 +jX6PCsZHztdEtpRggW2WZI/XFv/tAZ06viVY6NbAJehGhZL/8ic2pEswjE3Y +j+q0xe/fYz+ze4tRrk4sdfkqFYSLdrFdDSnG2dJwDLOkwpM1D+mmiSLs+bXA +vs+AClVvUtX8oopw7ubc0h4tKiwepxkoahVhSNdN7ShVKly+f/RWbFIh3tXy +/8UqToVnQtf9jYwKsXG03PEvASoQMSaCabMAjbp+aIVtzZP0to3PzhYFW/dy ++Lj9DAWskqVJ+zkKME0gJr6gnQKR2ha0jpLPaDex45N4CQU2Hlesqe3+jL2u +rGMB/hRo2u6nvqMtD33fjQcWsVKA4VPOOYJfHibE2mykfW0FpXPD1h5yebgf +QXOsrhXiXpx6OBCWi2NpWnymga3QI8327FJ4NgZ/zopMW24BDZcbudXTn/Cj +BM+jR5QWyMhpbJfS+4Q+eSHTPZkt4KMUzr+x7SN68VZ4z1u2gMBJ3ndv72Si +skSigGNlM1w5v6+g/2oK2ixLilo5N8HM0oqqZ20y7qDtvx2k0QS+ryjIKZ6M +JrTLyY58TRDX/7Dp1OQ7jM5fLHSvaoSCpnaSUVsCxl4RMF/f2Qg5yzfFpvqi +8HjX5yqfVDL4dx7s3FtjiDml6XXiZBIc4hp0YpFVgjb+JlHztySgLTxM5F4z +B/71n0+jb5Lg3kudRmel2xBirH7yKA8JaoSfBMdzP4Qb+Rc11CxqwdFR2qFo +MxJKpXSPnlkiQinHvS6iZzI8WL7u/kyVAEmyfB05oilQara+ELCdAI+Nc6hx +lBQQaA0X1SpHMH011uQllQa5nraFLcwI8yIGROnBDKiNDb0vGVcJEqqCOZHa +2ZD2JyvSYaAMGj5ba+c9KQD/8XFKfUohnCAdqpEcLgCu1w+/3jcthFza+qkE +lULYpVot9ZK5EF6tv4SwsUJYVpWHPvsCuAbk4/bqxfBrLu9cx6HPQG+UP7Jn +oRRIT1I0ZJpzQXmUUSjAHOH1SGfd09gMkCu7uCCfidD2IfV3ikAGSER+qh1e +Rzj64N90w7fpsP3dR+UkQwIkNpQYGsamwW9j8wH6LAHoI9ds5pNTYDA3RwqP +EEFtvivqH0oSJN62qlUvroV5xixBPq6XEGfJnh09VAv7f7OnOcpFQoxewesf +rCTQfrkok3UuAl4IczjHm5Mgvf9qwqLYc/CnFvL8WSfBPo/cs3K6IWArv9O6 +4kQ9KB+vPXqqzhPE5svXjxMbwCainj1b+z76tmgFLf9ogGCjaXaJc/5Iy2ri +zN7TCN+exBMk1wIw1L5fTMStESb3ctdRdB7hfN+GIatwEzRo3w5mo4RhFUn1 +fcf9ZuDiZXzwRScKL8cW699UpQDTy0xXJpUkPJPc23LOvB1SLN8l+Jz9gPOP +sh1ILu3QkeZaYxv/AWOuB9LVAtshrkV3B+PcB5ySlT0ild0OMfKbHQ4RHzGk +xD+KibkDlgS5n/W3f0Jyi6RFSU4HaJ8Iyrl2IBd11zynRFi7QPne+X21Afl4 +2pCXaaWwG4ZTGfaZjRfhM1v2hfWGbohdFtFwZyrGHk+Goc3BbghJlArxES1G +p4TZMra/emAlZMeKjk0xPptrdN93oQeGOHcbDfdt+UcEjmr97AENf+XmA80l +6ERbro5U6YOw+sPZmYll+Ny621++eABu7j1MQ64qrD8nuNOYdwTcDQIfh5oT +8YcI34P2t2NQoptKXGQjoaeHjO3z3ZMgG7Hnzj6beuwe4DZxIE/Brj1jboFp +DWjjc+Irq8F34Pymx7MZ0YQ1MkdDa1hmYZaiKcx0pwUl2CumUvTmQd76mHfv +PxQUrHA+zRKyAJFPCPMrZ6jIsLEt0310EZYqb46dZG/D1fOVViTxZaBMcl3l +ym3DfiXrveJBK8ArGFWVcqkdb1/k5hEd+AkVFeX7RX+2456ocXNmwTUgKcWb +Sm3pwWyLpPSlO+sQ6+ZszcnZiRfV/fTIlRvwwKNHZSGsE/OsXESP//4FLW0e +qQTGLlzj0GIqNfsDZbIM2n33utCkTU1FMGYTAkyXK4emupBDbXt1RfwmrKte +t6uY7sLqlL6zlsmbcPPV4dyYmS6Uv+NjG5u9Ca17VfSM57uQc3/x0z2kTei5 ++9SlfLULG24qjPEtboJM+p2MgL+29DKb1AtOAzowGmFBqxhtS4+tCWSfp0NV +ggQmidMwp78+1fAiHZhVP3m5S9JQKMeh/KkdHcZfh//4W4aGv81SJjl86FCZ +3vzHTIGGxcn71VnT6HCMPbGarEFD151z9Wkf6GCy/OZDtCYNJbyrTHTy6HDL +/qG2nTYNo/SvXH9UQYcc8/DADV0aui+8fcnUQQdufK8quaXvpS2chJJ76BD2 +QCRhwZiGI7WqmZpf6KCneSu/3ISGxjE9VQHftrDf1+lzF2jIti3jjMgcHVIy +znD9Y05DdPbuJCzT4YnK9NjwJRp6delY22zQYXpg/HqmBQ3///8AlqfMEtyu +0PB/NIzz6Q== + "]]}, Annotation[#, "Charting`Private`Tag$4195771#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmGk0FYrXh2UoTcKNrorIFJnr6pralUxlpigy5GowJGWMiygVKhkimWWs +Do553MbM4TiO6RwkXJnnUJy/d6330/6y9+/LXmuv59kCN50MbRkZGBiYdzAw +/F+VAu5JOp2O0qYhk11XKei0Lvh8fYOOR4Cmr3iFgjl5siJLK3Tcp9fqlmhE +QbkTOjfHp+hYQj21w0Gfgmc4nvS39tDRQGFuP8MlCp77vtD8LpuOpWEnV46o +UNDwWdvHU5Z0/Mve/O5xQQq6tz9xvF25hXONLsq2s91IJu+drLbexN4voj5n +PbqRt8rp4Jmjv5GP81H4IHM3FtjXsRygbWD34VyR8FdktAqRne/zX0f6nM3A +8C4yroV5PUdYQ4K+zmRoQBemsA3yRH9bxeixP0bFpkkYe0n2QdeLFQyyrJZ9 +oEtCfwdrDzGtZTz6HILliJ3oxZTl/mBmEe+5LLO6b3agtV+7ECVjAbOadq8l +aHZgZMVYdKzdPL5iv+seeLAdS4dO7Pt0fBa3bos9M77ShoLs5y4Yx08hbSKG +5+qrFiSKP7cb+T6Bs2ksbulOTThUn8svLz+OyYre7n68DTgmESmHhd/x6kcn +JBDqkMMnU15qxzd8Or+bZpZVjYGFJxrZfw7j3XMhXKfiq3FjNv3a0vQwBhPV +fzOGVeOIZZp3ce8wch6OygnxrEbi+ZSaCznDKGhgXqiuWY2GLHG6JpbD6C7K +tVdntApFeQTaGLyGMGI1I+cGdxVKyM9JpC5Rkf+RDJyrKsdbUr6+JTQqarz2 +KlBMKscEkQOktgYqZudUyPP6lyPnIWn31fdU/CGtVfNOtRx//rxXrXGRir/D ++6od6suwpmT2ymTEAD64kKZqUleKpiqzPtLy/Ugc/ePOAUIxhv3l06nK3495 +rMpcpcHF2CLJJmS6px8v+F28oHG3GM/ySTX5Dfah7tqWFqtQMQrSHf8gBfZh +WvsOuWPRRThbNZPu0tOLT2jMbk6PCjHg4kxHiUcPais5yM0J52ON5rTeaZse +/LzT7+NJhnxk0Jn6StDpQRdpO9GL/XnofeVHa8rxHpT5VLmL9VUeut0aa3zZ +SsEjxGSTriUi3nlOq7Lmp+AEHvM8XZyL2q1tObsbyWhxM+5bhCoBgzpapZ8Q +yWh4mOl7x8xnbCS3ELZiyThxVLaVEPUZ1WhNn5acybj5lDSsPfkJz87WZ9CO +kDEvIkloPegjyrBXJuY6deEdU5/RsyUZyGVMCL12iITXNJOc99ckI1EkuFSN +iYQ2M5sW522TUX/99qjsXCd+11YMYmZNxqB4gb/3NHSi78TToVPaSbg1ETFU +6taJr5rMfU/EJ+D4v15SRykdeEuLwc3R6x3e03sTXSHWjkFTFbe72p9jxvKl +6cgd7cgmmFL7N88zHHnHfO5e31ckz4zaHrB6ildH3f/je/EVT382dJgZe4zg +aSHvN9GGbIzTDT3JrsiecpJ8Ib0VxXTDnK/vsQTiav2BRqFmTB0f2+gbfgOv +spJrzq43YRPHwDRlZzjYW/i6FrQ1odCyQZSWdAQIffl7INmtCUuOFxjWPHsL +byM/pv3b2IhibzbNPUzfw6PTb1ROOTTg/v4ESf7aZLg64Tifea4Bex6Liik4 +psCp2Esp/FwNKNYhAWw8H2CaiXk3W+UXTIy32P2nWypYdLmRJw58wTm7+6Pz +6hlw4YG5fXxeHVZ36/WE6BGAT0SBj+t5Hd78y0LK40g2/Orj6gw2r0OlCItn +rJPZkH++Xd6TpQ7NVn4t5DfkgAjHBUZjk1q0vq6v3e5DBMZ6voLmk7XIPsS5 +8HKeCEMev26fZ6hFn9+XAjdt8iB6OL9NKrMG4z+teIrp58OeHNF3u39Vo27M +tL0zFMK4DbO2X3s1PjB/YHO/qhBqD33bWk2pRnLDudB01SLw9o35Z1S7Gu8Y +aThxGhTDrO5+GYyvwnrrhwlWQaWQOjD28seTSnTV4tESfo3Q782dEHeqEoND +PrayHa4CNj6NHIORCpzSdOo0vlcFblYZpBKowLWs0t7Ao9WgPmZ3KGijDAcV +Rq5nvamBR4HvT5zNLENl1sNFUcs1QBBtVVg0KcOTSY+YV67VwiE7SfPrBaU4 +E5aVf1OiDiZm5xLF75fg66shJfOL9XA0lJ84yFeCVtmSFioOX0Bf1qA2rK0Y +kx6detQ98QWKHxLHNsSLUfxtrv3N6QZ4seYi3jJWiLSZPCcj/maofJeq5BtR +iLKR58yuFzXDoiJF+5RqIarYCPgnGrbA9X/POL1PLMDfRs0MV9+2gjjjRp69 +WT6m1m6xfTVuB4sU8fpje/IxokytmJe1A8IumlG6ivPwGoTbyd/pgI3A8jUl +7jx0lnp/z0e6E1r2+qrs68zFSY2lUqY+EjB8ztat8s1FysTIlIdmF5zWHbZ0 +kcrF1oyPW59KuiA29Lw/NTgH967tiwlIJEOvOOuray8JqJ37zMXBgwLnHO/m +VE9+RlvizeU3sxTIyG4miWl+xuVjn4jrNj3gefrloQ3GTzi+c7GLeKkXRtxm +FW5afcRwZrF8lrJeuFSiZ95ckYVRDNJnE0/0weGznEkxHpn4dkZg7el6H/j7 +PaxlpGQg52iLToVZP0zVkMfsTmXgf+LG7/4s6QdjFnnWrtB0fPFP3F1ujgEo +14gSV5pNw/4Q80BlmwEQClrTTrmchs4X1JkOZw9ASOs1p72ZqfhFP0tWa3kA +ltnK3jzcmYqJi8aWznJUuGFwNH/A5gNu6nMYad6lwvTSioJrXQrmq9yJLY6i +gvfb7dshnILdp/eaVlVSYZ9CplrG02S09ftmpDFIhdgB/5bz40lYovKVQ22V +ChI+5gYD6kl4fSviSdVOGpTxy/e4pCdiw2MZ7/YDNLhUe+AGG2sixh13b4rk +oEF+C6lerzMeq5QuCV7cRwMye2Cnf1gc6r9W6+NmoMHSFQVagVEsKvuOWhnP +UIHz/fTExMH3GCVh0XyZTAW54YTlI5R3WFjMK25UQAUDYSMGvaho3HGrk/FL +KBXu2+3c528ahX/czi1luk2F0OySQwU8b/GHyJrQvb+pkL3sIDjRH4GOO/NF +7rBQ4asCv/SR2HCc91DxNv46ALM+XYq6N8KwafJrckT4AJhyuny4g68x7wBr +YtDBATBSYmPc0fQU+21BfnB7f37kE+QjtTp42Vw8JPN1D0gcoNmxSJ6GYFOl +OsfzPUBZ8E9gXzOFzxcjjdyXKOAVrt5sf/o+LDaXltaYUqCW/8WzOHZ/OKyq +7+Qs3g23b4vfKtwKAyWlru6kZRJoHne/HqASAWqxyRxbuSQ4QavV1feOhMkq +Jzat+ySYNLxxZnI9CpQ5K+Iy5zrB4WwoK99KLFzutHniuN4BJXu8umtcU6DM +YlnC2fErJEpydWUf/wBHWeR0FH61QaB+dkds+wfQ0psu/RrUBsZvv7e4iaWB +nsdQqFJ2K8wLaNeI0zLgiZqzMPe+FhBR4M0Ou0gANZvWrKX9jbDPvOiT7wIB +DmbE7dXLb4AlH4Msh/hsyKDpVk2bNYDVSI2hoHcO5Ckw7CURvoDUiZ86m925 +sDm/etP/Zj005VlezH2RDwr+I1Mbv2pAuV6iVnQ4H/5szHJyzKuBHMr6+Xj5 +Amjiy7lcbV8Db9fDIfh7AUx3dbFtDFbDP9CoaKtSBCOHNGmy7VVAb5aR5Vko +Ab+eLbJJWgX8NbKD77EpwnLSPtHylEKQKjVZkMlEGLDenWenWggiYZ/rhtcR +XJt9E6a3c/cmfforUacKvKSSxG+IFsBvfVMqfbYKmoT8/owqygNaTrYYytZA +pKCGVM9GDiTct6hTKaoDmklhadxKOsSa7yZEDtUBx1NBYTHLdIjWzI+a2VUP +MZ0UxYqmNAjl32MfZ1oPWdf2hy0kpYJfRwHH5no93Ms7kSlpkQLWMvsty5Ub +4JuDx063nfEgOF+2rljTBG3xz+tuE4PBu031yfJMEzh8F34mGfcCKFktbASe +Zmg+ttSrEvwMgmwHBAWcm4E7W5GT2zkA5vs3dHbxtwD3sfjgk/VuUFmvkNz1 +byvE9M2yBHyywuvviy45KLTD4VqmBXJiKOZ7QLewbTvkaC3e5/J9g2xXGyyH +QtvhnUT6v1LmYVjN3uNiONEOa3usJVc5I/Cgqpde7OUOcCKeZ5Z8GIVexTGe +/hsdIFeWwpTAEI9aKX1tuqYkeFdeNOook4rzTwm36h1JUG+wS/Xby1SMvhNA +VwogQfdlnuCpyVSckJSUFSOQgGsh0rUxJQ2fF/tFMDF3wTDtjxvl7BnY2CZq +VpzdBecafhRr9mahxprrhMCubpifzPTM5MhBNR1OppWCHnAOiSzLGc/HV9a7 +F9abeqDDkb6ZzlqAva4MQ1u0HpARLr0cIF6AdvGzpaw7e0Fk+HXluGMBvppr +fnD0ai9U3Wcbtl3a7n8TMKK62gtzaJNtt16IdpTl6jD5fpgWUItOXyzG15Y9 +fjJFVLjyISz2wzZPB04rw3grFUr/1uwS2+ZtH8/kzfcjVFCMMbONHizHe+GO +j3ax0cAg+F9+uSMVqNvA5DL4Dw38WXmfmoVXIJu0zO0QzkFIILgWJflW4qut +5zoTjkPw2fvamq1QFTbo8u7X5/wG8sIE5ezOapwR4PIhxXyHwUPdOYSEOnR1 +OWn9mnsc0kV3Bp3fu81VVHbDW40TYPXaby7XugmtPJX/26U9BeTjh9oNTVuw +9uSZoFqWWVDuDD4TpdGGIrvLJz5ozkNSTB7LybmvyFtur8byfAGsQ9VDvpzp +QIYNxswHI4vQUuLWbLvegT8NKizqhZeBqG86yZDciQOnLY8IP1kBr3Mk21M6 +JLxvws5xnLoKAZu+LUxTJOSJGDVl5l0D++XBhUNuXUgwS0xf8lgHmSkZ+ioz +GU1UfDUbKzaA+NlKNSWAjLkWjscVf/8C9aPuVsc2tv1vjypTyZVNiEtLlKS5 +dKNhp5I8b/QWyEvqv7w70o17lPZWl8dtgdoXkzuao91Y/aH/snnKFrguvZgS +Ge9GGQ9P6/eELRgvmJ0c+dGNbMeKQnjqt0CaqNh5daEbmxzkvnMtbkHNaqaJ +FMO237KKhbJp0yHhYatIHC8F15zXDhMM6PBoSO6i8zEKZg80pOqY0IH0OGO/ +mgAF+bJvlYXcpANbskLqlBAFf1/5ML7Hkw4DRgqTpyUoWJRyTGVX2va8StZY +kSIF7+2fa0j7SAfuoPXOQGUKirhXGqrn0oGnUNbhylkKRly6cedpOR0sFzqy +Fs5T8MFCTDhTFx0OP1oxEtGioLiZHV9KLx1q8gqJi9s+/q1OIfPCIB3GGjSq +KrUpqB/dW/n4Bx2KBi5PXNn2d1bGDC2BOTqUf//JKGBIQbR3J1ct04GhZ6x1 +atv33brVLa026HDioJx64RUK/v+/AH5Mrt3zM6Hg/wC/QLd2 + "]]}, Annotation[#, "Charting`Private`Tag$4195771#3"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmHk01I/7xYXSgrR9WolItkikVDyUKIoIiaRdkUgkWUIqISRlLWtlHdtY +Gx5r1rHM8h5hENJQDZJCMd9+5/z+uuf+f+8593WlLjqbXeHn4+MTW8TH93+q +DP+N8Xg8FFu/I52wJNB5Vjpodo6HNyvWiWlZEJhXqCo7Nc3DVTWpe1NPEbhb +7sTFka88BPbx+psnCdy7KrC7lcVDPcG4Ln5DAnWGJptjc3lonrWHKqFFoNlj +apaaHQ+/bN5iu12aQI/2QCf7ygU0ya5yvMZlIoOxYqz6wjxSwm/pHbrLRPEq +57V7t/xFQdaOpUOCTCxyrFu8kj2HjntGbsaEMfB8qOrEx4BZ3MSK1/sixMCZ +SK8ghBn8qe6VFfOAjqmifRtjPv3C60FSQWrfaJhgqOpKfzKN9ywkDH2NaRhw +48Jd+WM/cd4hI1e3oBO9BDI9XL//wDIWNSt4vgMv+LXLEOmTmPyjwLnsaAe+ +qPgck+AwgeZnvjo3rW3H8n454extXAyg7hjOs6CitJjOIfPXX9FaRGw3EdaC +BQpBDoNDHKyISk6/7NKE/fX5khoaIyjJ2XY9RaIBPyu92I3FQ7jMlKTtlleH +q3wzNJQXfUJDQ0fNWznV+KhYrlHs9wAKRHfamCRX4xz33ZmpbwOYZyuuI/ui +Ggft3nqXdg3gvSMZipXe1Vigm1pzKG8AP/H+RL8wqkazxa+MT9sNILcvqqf7 +SxXu2ChF5fPqR0uGoIb3pipU0hhXejPVi73dMrRHLRS8qnz/fhm7F5FI8EvO +pmCi7EoataEX09N+kdKeUnD1ehWPX/G9KJz2+M8lEwr+/n2z2kCvF73o10/V +dL7HmjKuxVhUDz7ZJN3b21mOVlpcXxWNbkzlDIk6VZZi5B7fzsOS3ajsP3DN +KKEUW3aKylgt78ZzO+ZWidwrRW0J5Sa/vo+44/DVcM09pSjNc1pDe/QR60qX +UVUzS5Bb9f2dG6sL76QSp13DivGB3veOsrssvGEqWknSJmPN0W8m6pdYeCsz +b1RnIxn5TnxtI51g4cbWNc/ypgrR22K0NXUbC9UKy8x2pBfinaufG5+2Ephm +td/DcWUhXgtiV12QJFCwWzVwNSsfj7dS85Y1MrBrO6fxzTMSBne0qgQWMHCp +jIfKGi0SNjJaSAsJDPzuoeoox8nBI+ym7Klb/3zUgreBVg5qc+vT2ZsZGGi+ +Qu/wUBbuEqtMynemo8EqFYUH4hm4zpwUcWY9DW/miJGkj6RigWxI+REBGnoO +bEj3HkvBk7P2w6rjndig3qXvEp6Cwa+l9i1v+JdT4ff90l3JuMCJ6i+/04kq +AnfaUy4n4YiPl/IWogP3JvpzjWlxeNPkWUyFfDuOG56NlbsUiuk/Db+9WNSO +uOt20NeKYByMFdS5+bENXfMwO/i/J2g57PFF4kkbOl8aX2VQ/RDB85yGH4eK +t+OXPFSc8UGxVEXGoXetyN1mkeCwSQcLftWvbJRpRu1NyxV0h0MhLDOlRnu2 +CauWbXHTWxwOjufuuxdRm9CtZ/DZeFQEyHzY15NypwnPmX2YXYyR8PJF1luf +xkZstPm8kykfDffUn2mp3WjA4lgHLaFdSWDJcZrI0GnA7KYOgwONSaCWYJgq +ua4B5w/35IVdSIZvAoLLRCs/YG6P92hadAqco99hcFZ+QKqUaZbI6jdwyPWs +4+vCOrxI552X0csECVlNiXVBdahWxNMJn8iEPx/XdYacrUNqS4bAjddZQNZt +1/BcXIdZPuTEqIVskF11iN/8dC3mfSC6bTtzYXnejthlf6oxcKxAKX2oAN70 +fH46GliJRtZqX0fiyqDb+7/EV2qVqMV1puUsLQdRCYM808EKbKNPt6V5lMOd +8+m0MqhAHx67VPvMe9D/7LA+eO49xtKsXv1QrAAOdzxJwaUMj5qM7nQOqYIt +EZIFfRJleIrzbGc1tQpOqprWRlJLsVdM8Mi0WDWU3i74PKdQispuKv3icdXw +ZMZNoeVzMfKWrWrXLK0BBf65QkcbMrJ2daXtV6yHc6kK9VuXk1EtQUby6f16 +iNSzIeilhRga2rfFllkPc48oMwf+K0SlM4urCx9+gJYV97WEO/NxbOW+cuU/ +DcCXk2tcdT8f3a53dlnbNoK68YCdm3I+HhqPPZ1S3QgJEboBvSF5eEbkYceP +iCboUlgaduYpCQ/clp/aZ9wCOk7X86rHcvDrqKI+o64F0nObafJHc1BOhx5V +pt0KnupP18/xZ6NZqcs7Iy0qDN7hal48n4WHRaaGfGqoYFhmcra5IhNHw8PX +Cx1vg03aq5Pj7mbgd85ykRCndgjwu13LT6Sjs+/wrJJAB3ytYXx2UEtHgzht +kZdmHUAxiFY4wH2Lgzd3x8T96QCZ4JnjqUZvkZnFV8Sx6ITQ1jPOKzLe4Ezm +SEUyuRNsTbeQey6l4Tt50X2X/WnwbWpa070uFdv0It0duTTwftmOottTcdpY +7fb6i3QQ1sw4kv4wBZNDl4zrsOmQ0BPQojuSjMrWu4OGzjNAyfesaY9+MurH +Kv3axmXAe0kNltu7JLzma25x8hETyC20epPO1+gsOpVdwiaAIfaoMyDyFaYn +m3JiklgwZaHJLjqVgMcjFQfy3Ltgdfw3DmdtPNaeNCNp2X2E3QOJPzcTsXjK +087Gx64bTLef4jOJjsGluVMs97s94OKwRDjAKhq1slv047N6IffnDWlOdxRu +F+jQ2ni+H9o0JVU2JzxHux216bNOA8D1pe83to3EAT3viOTdn0Ck7pG+v8Qz +rMvWFpWd+QRWq93SrmE47hN3k3pZPAjRCd3v23Sf4oaWb0Wul4eAkNWlq9cF +40SUyzz19xCszX83FqcfhEvdh8vY9sNw6oAo/6Kmhxj8VLIokjQMkfVuG+2N +HmB50qXpjKZh6DDp2UWl+qH5ffIIq3wYJMgPIq4meaPlTAn/ysfDEN94Ene/ +8cCzskIuB/cMwwa2OHchwxUTfysKTLUOgeIQU/OlrSNGydgQ5yyGwI8hx9hc +ewJV5I4dSDMZBKWVbIfFO9Xh8nye/3zTJyAmAxLFZqwgVKJN8qD+J/B6rt/s +qO4CtHOFXV6GA7Dg6xmfqOIOwt0dvrLp/eDnkH2DrnAPbuu6N2790Ae1kk8e +vxILAL/c54J629gQ+HKby96wQKAMqqVU2fWCvjDFqnPFY1Ckmud0v+2Bxt9c ++cVCoQBkr0MpJt0Q7BS0OjEwDI5F5/Uo5n2Et5MRPlv8I+BuKiVxzYaPYG+v +cLV4IRJeC9ASZ/+w4Og2D+sHWlFwZdETjxUeLJBj1xqf9H4BQRR+IuU3AWNm +tnvHZqMhOW7u+4gQAc0imYol+2KhkukvNfqSCVmNv7YGesTB85mcwk0KTLih +HbFUYjoBiqvmBxdsGHBitvfvmNpr8Nfqeblvjg7KZPnJEtdEuF1C6iPF02Em +6tM3uZkk+Gg/sP/ZFxqULfdi1rinwojimc8Frzshaec6eu62NFBtuaJGN+qE +RydzOxLa0+DMwM0o23/9M3851HJH/i2stQTezgsdMCF1vEaBnQ7ioz5SFk/a +gKU3guuDM+BYTpj8qEAbVNr7VQjuzQQ7zYW2fH8qhOSQS/sisqDs1mMv40et +IKspnhupR4L38JhQyWsG4bMl2fcnSXBxwV2vQ6cZpnxNM2+8zoVFfWenyfQm +OD9YYybtnQep7awVP3iNoCz3+8Q8Mx/0rScvibg0QFOhnV7+EzKEvE1Y655U +BwfrlWp3DJCh+MzjJbzjdZBHzOq+1iiCtdihxpirhZezzyFkqAguty+j7bOu +hcvQuP+KVgm4uujs58rWAK95l+rGyTJY0tYbEDKI4No7nxtuUA618qf7DG0R +Rr43Ky95XQ7Dmeyl5I+V0Cp2RWnK8D3cm/aNtGZVQJxl7A5qGgV+O97t/jr8 +HvYMLpLwt0JITzGnU3RLQbn89OSuDITzrFmuUXcJyEbm1A3MIsyzD8iwb5fA +iuTsPUknqqDmsoH6j4xi+HvSqpfHrYLN/Pwjl6WKgJ2XK4+qNdAgvMmuWrMA +El3O1WmV1EHbPrOh3RMZkHB2GelFfx3Y123J4JplQMxRcvR3oXqwDnc9RRSn +Q4TkcsdXVvWguku1bn3AO/DrKFo1P1sPIFZl/X37G7iwS8SOcrABogYmnX0S +k0B64v3s/pomOJxmWJD0MAK8qYcDf35vgg8E1bHkcxgQmS2ipI3NoGDTuLW2 +NhSCr/RIS91qhituppY3goNgonvuhJBkC3BF1UcbdPygsl4zhe7TCvFWB+SY +67eBdXyJ4Q3Ndmj2fMds9HmK5LvA3H6lHf4EXCf6DoejqGWDXX9EOzz1tbtf +9SACq8VYbmacdlCqNDheczgS1x72Mkkw6oDd609eTSx6gV6lcZ4Bcx1wnX2R +5HQpAY+lfqQaW9FAoSDNWtcnDScekq7WO9EgXy7zlnpvGsZce8A78IAGG3It +I8v2v0HOzp2q8iQaeBbOfvL59QaDSv2iBATpoC09GrPs+jtspO6wKc2lQ0jt +Jb65/ZloMOPOkRJiQqvSgyeiMbl45MRqgekiFgTHFotMksgYdmHZ5GwTCxgb +KarQScYud77+BTYL+qpaI12myOjwmlu+dEkXKFELWnz2FmHYeLPrFssuEDiu +cNCgsgi7nj0YPPyrC/4qb6iq+FCMDsTP6kiNbrCplhK+UFeK4XYsv10lvfDq +i735i3sUfPTtIIy09kKAx1Nd01gK+nqmzMcP9kInU37drxIK3nzudE9IlA1G +g/2zcz8paNwg4NZ3mQ3JfirO004VKKqyyz50dR+QBdI/NNlUYthC0AmOUz/w +xvf/GVpThQ3G4iInV3+C2Of1GU9qq/G71DpfWtwQKAXL/1cdVYfubooXwv8b +Ab9HW6MD+BuQ1StmdrWRA5w0dYc06yY873nwi9Dxr8B5JNXobNaCtYp7g2sX +c8HrqyNf5iEqyi6jcNKOTkD/iMzv8bE2FKc4HlkcNAlaa/zHuHs6kG+OP8N1 +8AdIX37v1vK7A3+bVpyr3/4TNj0xv/kiqRN71O02bw+chtK5cIEfRjR0OS22 +alvvL0i31xoaHqXhxqhhK0HxGcgS8jm91p2OJJukd1N3Z+GvgHaFsCADT2vd +P9pYMQcvFl+5Sg1gYP45p237//6BqrmaOevZf/y6/LBAmcU8lKrK2Mm7MdGs +84CGeMwCTCo8t639xMTlB1ZUU14twOLSplspQ0ysTus2Opu6AFZkYWX/z0zc +ddfzQjxpAab+7EvUGmWi6NaS0I31CxA1kWNfMMHEphu7h9b9WAAd9dHsEB4T +dZbKR4ge5wGlZ9Pw/BYCZ27NbCKZ8sCEtGYvTYL4t6sb3pw4zYPazXwab/9x +kUTu1fehF3kwZaS074QMgX8t0kaWe/KAt2GTabQigSWpW7WE3vIg5vnp8c37 +CbwpMt7wNosHOpeDVn49QKCsR6WZfj4PnqU+ZpdpERhlaHvtIYUHNX+uPLDU +JdB1Mu65AJ0HzPC22ZCjBCrYOEikdvHgVFViiJUhgZ/qNDMO9fFAaEy2VeY4 +gSdjuir9R3nQ2tJ0hmJC4FL+9GNS4zywypV499iUQHT0YFT95IHyUHyq2SkC +7zD17c7P8cCOZWsibkHg//8dsOi7X+YXSwL/B/POLlA= + "]]}, Annotation[#, "Charting`Private`Tag$4195771#4"]& ]}}, {}}, { + DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, + AxesOrigin -> {0, 0}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox[ + TagBox["t", HoldForm], HoldForm], TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"c\\\",FontSlant->\\\"Italic\\\"]\\)\"", + HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> + Identity, Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> + True, PlotRangePadding -> {{Automatic, Automatic}, { + Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{ + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["h", { + GrayLevel[0], FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, { + 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, + 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, { + 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, + 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, + 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, + 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, + 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, + 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, + 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, + 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, + 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, + 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, + 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, + 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, + 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, + 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, + 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, + 3.887187744969038*^9, 3.8871877776872168`*^9, 3.8871880220364237`*^9, + 3.893237910849724*^9}, + CellLabel->"Out[53]=",ExpressionUUID->"632547c6-cf8a-4755-9e26-5f9a8c901698"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Magnetization", "Subsection", + CellChangeTimes->{{3.893240903148159*^9, 3.8932409167324743`*^9}, { + 3.893240952846768*^9, + 3.893240954869104*^9}},ExpressionUUID->"b265c475-5c2a-4729-88fe-\ +bb9de99d3c77"], + +Cell[TextData[{ + "In this plot, we show ", + Cell[BoxData[ + FormBox[ + FractionBox[ + RowBox[{"\[PartialD]", + SubscriptBox["u", "f"]}], + RowBox[{"\[PartialD]", + SubscriptBox["u", "h"]}]], TraditionalForm]], + FormatType->TraditionalForm,ExpressionUUID-> + "9ccc58f9-7198-4f0c-b1fc-1a083a734169"], + ", which is the singular part of the magnetization (modulo a constant \ +analytic factor) near the transition. Notice here, as in all plots using this \ +library, that ", + Cell[BoxData[ + FormBox[ + RowBox[{"t", "\[Proportional]", + RowBox[{ + SubscriptBox["T", "c"], "-", "T"}]}], TraditionalForm]], + FormatType->TraditionalForm,ExpressionUUID-> + "6a836779-b628-479e-87a4-c2772a03c8a2"], + " (the negative of the usual sense) following conventions in high energy \ +physics." +}], "Text", + CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, { + 3.893240875195952*^9, 3.893240882915715*^9}, {3.893240920042145*^9, + 3.893240927292811*^9}, {3.893240957814611*^9, + 3.8932410410866423`*^9}},ExpressionUUID->"78afd124-f9bb-430d-875b-\ +072cdcafc777"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "1", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", + "}"}], ",", + RowBox[{"{", + RowBox[{"t", ",", + RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", + RowBox[{"PlotRange", "->", "All"}], ",", + RowBox[{"Exclusions", "->", "None"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "t", ",", "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\>\""}], + "}"}]}], ",", + RowBox[{"LabelStyle", "->", "Black"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", + RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, { + 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, + 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, { + 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, + 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, { + 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, + 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, + 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, { + 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, + 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, { + 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, + 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, { + 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, + 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, { + 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, + 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, { + 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, + 3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, { + 3.8871882148709106`*^9, 3.887188249270643*^9}, {3.8932379251256237`*^9, + 3.893237957397731*^9}}, + CellLabel->"In[54]:=",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt1Gs01HkcBnCxFCqyyUruaqVZG1s6q+zjKC2KomxKLsOuLSrl1LqVFK2p +rbRkV2i7zKhISoWY4edaQ6RQFCWmmUbWbczMf1jmv7Pn7Ivvec7n1XOeN1/L +sGi/n9TV1NS8Vfdf2mPRJ5qmyVIXB/tnIi6iJ61Zk1M0USqNRMEjXNx74LBs +QkaTpG7BU4mMC0db7zDREE2OpvnY2mjysGZB6puWLprkNxf/cMeaB1fBePOl +uzThKG+aBzJ58Etrvf1NCE2ae1P8Hfp4iG1L3f9ztZJI1m1zWSWsQmen7qda +5gxZ3dZuwbKtgWlN9MI1S6aJTVBVn9eBWpRGNWjqvZ0ibwtubUh7WYfQsw5j +r09OkkqDMPbN9AYoMhJZBApSfixfFhrxGOz574yz++XEfubY9xr3+Mjzcojp +OC0ji5+/Kg33eoqT+5hxyz2lJMVlcbPQ+BkSNQpjY4YlxJ3x/rpNx3Mwk9ts +Xt0aJz1GWuOTde3IqhJm50WOkVZB4Ok6RScq+2znFlmNEG3lwejKx12w1nd1 +2/7XENF+4ZaT3PEG9+1YkQMCMemNbfGVcd6hr7HEwslJRPivYz4ePtwPISPL +kZQJSHOS+EEbR4AFSQVO9rP6yddJfI9JWxEYTqOM/IlewrI4pe1zRoyUDcPP +K+K6iKjVQHlt9hAMtxdf2GnUToJEZ/YmewzjvrxRj2/TTKRdZe4RdqPI7xGe +G0ytJtHO4sKQhDEE+S552BPOIazwTXtdVo2jQifxZd0RNg6uc8hldoxj9cAs +sxMBBFfUv0pkREpgPcaddK5rgt0ky6ddKIEn+3WrT0A7FJqFeqd2T8Dd20BD +VtqF3PVzTTc2TCA9pCt5ZXkvvis8KcsykeKJj+m8rQb9aNGqz2AfkmLY0jCp +PUeAX9+7tJlwpThyeAUzfZEIkp1R1zgzUnT16vtF8MWI7/vD/zdXGULj132c +vXkI9Odba/ITZKhfseZMveYIUqZc/FmlMizT5ok5HmNgdYvPWwzKYMqLctdk +jSMj5VXfhy/kUJtSL4gZkIApSzYTespB+VYFNy6VwnS/zyW3I3L0rAoxWZoq +g1izX2/0mhwHd+gvsOqVg7crgFH0VA7jix8CPjNVYFq/fo9gTI7iwKs3J+Im +4ZZcJU0zorDD5bgHv2oKRcHu562cKZQE77dynv4HcqdtNU27KCh01mtU+M+A +lZNZIDpKwe/FWifTbCUi/Fv0/syloLNWt5Z3WYlGk+tlpnkUajlvNu1mKzGQ +tdCTo/LKuHhmbrESz34cXFlymcJ88/Kzxo1KlNCa85qvUGja5ygwlCgR2HN5 +mmJTcJ2z/ML8zTSua7kJNxSp+g8pFhf70riUOaLbpPLdnif53jtocL9UM/e+ +Q8HsbgT3bBgNy+JIHf9iCtP+HJFOPI3CDC0q/B6Fcra5y+wbNM6dz2UkPaRw +YN7okxu3acAzasmsUgrLYqv9NpbQ4H+iFSkqX/QK2nOKR8MsIT3udBmFmPGc +TI0OGscD/v498xEFu8BIM3Y3jTtDaWLDCgr9Dd8WuL2jobvFiJGt8tbs7uoT +gzSM+LYJeZUU5qjf8rQcpaEeV5ZqxqVAomI7a6SqPYwtR6+q/MvLjSGhUzR2 +FylCrXgU/v9fsOM+cuSo/C+985py + "]]}, Annotation[#, "Charting`Private`Tag$4205127#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwt2Hk4FIrXB3CRiEibuIpICNlpd6yJiJTSVdZLRSkVKkJyI5G4kjW7LNl3 +4UjGvu9rZCdmzDDGUjO/3ud5/zrP53m+33P+P8LW941tmZmYmAS3MDH935QB +3nkGg4FGIWdO0F1fwf31w37rGwxc+pCzIeXxCnLy5cWWqQz8co1++4bPK1CQ +MLCe/snAUU9nQ8K7V3B8l89gcx8DPyyffFCc9grUJsiNEdkMXFHVvC04/AqM +fVsyFC3+5J1KM5g1fcG1zeferUo6Tlledvfh94Pubs75r1a/0ZemT/Dl9YeD +Vff3Hj/wC/1Ijxt2ygVAoUMN686RDeTbQqoW9HkLlgHySwPe66gT85HjWf47 +WAtx80NYwzE+JktjtRBI5P7OH/5jFZmNAoy/KYZCtJ78w67XVGR2fDHb/jgM +RDn1Gtt9qGibuS119XkYZDRZi7R6UnGHB0lDxDcMyvRDO+udqZg2YSv0JiIM +Bi7SFCqtqFh6/xlLUmUY8F6uWE49SUXrE9930rZ/gCAzXWePuRVM3JyTPZ/8 +AbzvWj05qruCHbJ1ckOkcPj+1jy6THMFHX285AI3w+FUrlnVBdUV7M243KbD +FgEUqgm7o+IKFlM3d/QJRoCVp1543sEV9FbJfW5+MQLUQhRLTlOWsTMjeyt/ +dgTQi1nXDKKWUQzfBj93jQQ3lnTXh4sUZJO54acsFg2OEebbLGcpqDb5QdNe +MRqsZfe8N5ig4DGC4pdUtWjQM3PPkxig4G+Bsm2aZtHAl39x8XsNBbffZRIl +vouGAutl6wvRFOQM1NUVp0cD8euZi6IXKCi5d9HHcSwGrLzaRHtTyZjpZDDW +UBsLVwdiVUcSyfjz4deRh72xoKfwwHTyIxmjxA9vik/HgtIkTwAllIypJY// +GWKOA/bzxsvcL8g4muPAVSASB1k7e77qXCejbJV8SIhNHGx+HDQv3U7GpTkF +F6X5OHhfMRUebb+Eeqylrz/vSADzJ5Eex22XUPti8SzX/gSQUDT8p9NiCZ8R ++FOfCCdAWWqJLLvJEtL11FzsVRLg+39vah/BEhK9n32oskwAcXv5Fb29S/jJ +39dWvTgBHh7b+EhxI6HR1fqZBYdE2JpoYy/hREJP3b0CIa6JEMbXomxuR8KZ +SSNtjZeJ8IUlrrnBiISyb+eKvkX+yQ9qb8QdIWFvYVmMfuOf/KtgE8M2Io5k +b1F7KZUEZaMSOz6LEPHKNXVe0moSuJ/ZkhnJR0QrYsikDEsynI0YMHjNTUTS +uXri053JUGXsH2S3sYgCfqwkeYlkqCP83C3cuYhfvMqkpf5Ohu6MLP6wF4tY ++eXcNcOqZCC6Kol7jS2gTryIUMP7FMjp3lHv2LuAu3KZrgYmpoCT/NTtm80L +SP14v9g8NwVW5t+nnypZQO76cNWjLSmweZN2jBq0gDkBzloWrJ+AXatMyR4W +8JmlQ5X5k09wmEdN48rHn/jjrz3nZe6kwlu5H8/s//uJk3IiShzPUmHNyDvf +y+8nblIDbNb8U6E5uEY08+FPrGuWW+PMTIXHe3TZtun8xDcx7dTdlFSo5TVu +LibNo6cEf0+JZxrYH/znqoD6PKptNVxUTE+H7rOsQfIq86hV1Gf1riIdVM1T +6nSk5rFjMXOUuSMd9sTOnni8bx5Vh4o8JdfSofzQPYGWuTnM2sYs4KeTAdyi +LmMeIXOoR/qbGDWfAXmSfvbjE7OY2xHrIqOZCUIdlqVSA7OYdszhquT1TAhw +Pcnu3DqLb2KF96rdzwTbmvlkttJZPMmV01oalQl85gY/pN/O4o1gpf55aiY8 +D95t6npiFvldNvfdyc6C82vR2jsCZ/D80bBhzgM5UPjROdTEewavm3XTOyVy +QET74sRH1xkkWjr8SlPOgc1ghpe89Qyub7dd8TXMgSwp6/Krx2ew8qJs2zaf +HNhrIa4Y/2MaRbQ2Pkss5cAoIfeQiso0FhcfyWzpyQX3y+taJ6SncUgq5Tph +Ihf4fqjdOSUyjenZPgdayblg9KstV5V7Gt3WPK/u4c6DKgWihs70FOqz6VTd +18mDuFhJW9OwKXRRTTP1r8gD66eJac9WJ9G7WuHM4ZJ8oG/72eK+MIm9BpGH +ntbnQ2SoAsVjfBLH9h4WmuzPh87sr6detk6iX2XF7/X1fNCcHm16kzKJF7k+ +mR49WwCilw8Qo69O4pYs60sldQUwJf1eAYsmUH/3k+piYiFIeiQTZzMm8Dax +6UQ8SxE4thWm746fwMwGycI0viJYc+oVsXszgad+pxbzaRYBR/H+PVyWE9je +EN/oHFEEcuqRy39vn8DUHgEHW/1icDOJLVg1G8ch5dJytpYSqErJfnDo0jh6 ++QUcvDpdAlvXUFrv3DhKtxr7NjNK4G3kWFKM3DgaZUfVKyiWQtyo8Hst1nGc +6ChwIUaVQu2dJOeQrB9IuFzN6+RcBrs80lRktvzAMIMDxXoXyuFVkUQ9D20M +27uKz529XQ4bxE/XlxfGcPL7MZ+b/5bDuEWKe0n/GHJxCflKVJVDnnpitUbO +GPq/f31t+XgFGLPGXLxmMYYnCd65BXKVIM4v3MLkNor6Jn68ZNEq4PEXWiLY +jeLOLMN/M1SqYG3j4J43xqN4Y0Wv9uX5Kqgf/uv6PslR5NzKXvv2bhXcjts7 +dXTgO5J6P+7lLaqCdHH238bHv+Plw8c3xAy/grQKSTp5eRj/62GJtIqqBjsZ +T8/SkWEM2LNH6Ex+NcSK7exsqRtG5rWbrNpN1bB7v6zratQwHi+sqp3YrAYa +zfGrjtYwuokuHrS2+AbVpUST+dAhfNakFdMqWwO/cj1S6R5D2JIX86JerwaU +07k3d98ZQrFHtulrtjWQGikTd/rsEKo516/8jq6BQDfH+YCpQeS4/GElg4sA +pmeJHrIqg1hx75vw/g0ChCh7dGgeGsRjZwl5pXy10HSMW9SUYxDX1ALIUcdr +QVVQpsHr+wAmDx7hFnGphcOMe3s6Xw0gmTlITWe1FohVi58e9/Wj75Vp7yCW +eniptdhe+qQPdW+5R+hfa4Tq8wuGSjZ9GPY4hBTo0QhMBj9bswz60L+pml80 +pRHcTeaaE0X68JQ7h77xaiO42E3VBzb34uCsrFprZBPc9hupsjrUi6nBh9w5 +qc2QEjAMwxy9aJ4R9ZJFpAUm3w1VXqX24G43zxpzwxawihgov9DYg0Q79RaN +jBb4O72nRPlxD56UEjEdvtUK+s0tOdvru1EgOzFXmdoG/u3Nsj553SjGpapy +d2871Hc3ZdGju/FdpZOWq0w7aI80fF526kaD9F/vzti0gyqRkDoi0I2EpqL+ +kLZ2kOOpjMu934W9djvmpvM7YN+VrHfX93ci062E3rWsLsgTe1OmzdKJw/M8 +UdjaBUbrtyblSR1oFjdsX0fsAv+Pwic46jqQeeRebZRsN9BnQ0fLXDow7Gbw +deuCbph+7iZzoLcdL0lO/1Xa2AOOhsHhFUfbUDi5VT5duh9SV/QW3m9pw0Fh +M1clk34Yj9iq5jjQijxDSqbsHv1wddJ1RvB1Kx6RFN8X2N4P8NRcxWu2BTX5 +bntxPB0AnkSpbo1PzZip3s7+rW8Q8lYJO+tFGzGJMOys2zgCb9MTqlXXG3Dy +0RW9HsYIOJh7Ohe2NODOvxVG0pW/g2jtiaEElwZcLeijyiR8h7D3GSnP6+tR +IbHE5pnHKDxTCj6reLcO2WfIb57Gj4HGwxsOH/NrMPBlgs2U6zgIip0U3OdX +g4Wg39X5fhw2B/Z1vLlRg8UCdp8b8sehQL1N5SlrDRJfxPG2kcZBbJcG85Vr +31BnZ10j3+0J4MgRj9i++RV3c94rTDKdhOShqcA5n0oMXesPzZafhkF33tgY +xUpUpwcbZ+tPA7egTs6l8QrUIGavhN+aBhfL1M5SqMAc7OQSj5mGc1P2+/03 +vqA2p0OkANsMzBJJcZIPSrFI8pPUSM8MSDJv5DuYFWA3p96jR2ZzYJ4oSRDi +KMCewczy5IdzEKJl1ttVko+rx0lr+a/nYONV+dpp3nycsx//YlM8B02cnmd3 +dOSi/9p3G65d89Avyf72emAWbiceorlXzMPNSwcKhmyScNuY7iuuzZ+wsEw9 +6VyTiE577BTNuBbAPawNuY8k4raE82m+QgsQPeTdpD4dj1mG0inPNRegoKmT +YNjxEXd8yRaZeL0A2St3D88OhiLxUtiRrzyL4NUt0S3wzQBdG5ZvXmIngvTO +EXvWY0ogmBOpO8pLhF6ydyzPminwCN1dMj5CBLf/zjU6KD2Aven1ZgvqRPh2 +6LVvDI83pLoa8RKfEuHWLUm7InoI3Mkit1pMEaGUw62n2jkRnBWGtL0zSBB3 +bF9XtkgSJF7ke6pQQoJXRtnt0W1JcEeQs7uphgRXwiaaXI6mQLNrPK1shARL +wvrVkiOpQL9fV3+ebQnETh7MDtHKgjSNiidHVZagId9CK/d1AbSUjBBbA5bg +DEH6m/hYAVB4ZfxJwUuQ07uu/lGlEAq6tzCzf1iCsPX/4M1EISiNGYwcil+C +f6D+lO3ZYvA/U/92pWAJGI1y8vzkUvjwxN9ReWgJlMe3CL4wRSAHcznFiJBB +puwaWS4NoYkpSDZMjAxiIZk1Y+sIW51uNb2WJANn/GflOIMq2KFxvdFKgQy/ +jEyHGcQqeOFqJdGrToaRnOyjKF8Ngvezdw1akCH2gXnN2eIaaCZaFr8PJ0P0 +je1Z70droPeRSho9igzh5ws+LLIR4OWZiGKbWDK8O8ThEGNKgOfdY3oiKWTw +ai/c9XudAP/uviP9MJ8MVnJcFuVn6qC83yPSpoUMh5e+rJ+qbgDfA9sWKulk +cG/R9FlZbIA8ov379S0U6E1v4s7ibwTpH50FcqwU8LcdOizs1AipL1QfhXJS +YGlww4DtUBPo686VKPBRoJJwMqHreTOsEl2ftMtR4O+oYr27J9vA5XqCZ4UF +BXQTB1oumnZCHpiaBxX+6f+bZUe41wmcmjMzHCUUCL/9knH6ZSfMmLJd8Smj +wOyxY/JHszpBWUxn/AFSwK/EK5RlaxeEb/11Qr6BAvUt4mYl2V1w+MYA4dIw +BXTWnGeF2XogDJc9JLYsg7bBbhZqYR/4fGrxr9NehiCLPi+54mEwn67Yzlm8 +DHUXD3IZ7f4BWuc8fZWFV2BReJ9HZ+QE/Luza8PtyQo4P5ayCuKdhuNCC1nm +hBXoG+YxtqufhQsFgV2bPFSwfHpmhk3/J+za4Uf3vESFb1LH/b+xEuF2dxKd +GkwFse3ls0nnl8DMaPJkQwMVDpY7aLP6kSH4ReA5xi8qMG0wpz0cp8CtCaur +gvKrQLtUYU44sgKC9BLmJfNVGFKyEDjiQ4WJ0n650cBVeHCNZ5fI8Cr41Rzl +eVG6Cvyhk6ZbD66BZeLqZxhbhSyzuE/LT9ZBSTViwISdBtfOep6vr9gAbgvX +D4LSNMg1vydy6tcm7LP5zd9sQIM1Dk2WUpPfcLzl662pBzQw7jitcjCcDq1S +Rs9vvaMBx2nOr+UxdHAydY0g//HXpMELNxLpwKIQEusWTAO5J0+torLocJ1W +dScohAbcQsUB/AQ6rEL3amEoDRruKkzso9DhSJXRBj2cBmrsR99x6zNgxbVj +wCv+z32ntb+yLjHg/qV8DfYEGmQP1SUbXGNA95JTWNAfC2bbfQmwZkDC53h6 +TCINfpkkTXM8ZUCVR1BnaTINihOFzrKlMOCpQPnbxTQaOHKR6lIyGDDGnpP6 +KJ0GYq6VxudyGXCulZS5/sehejdv/1vOAAMpx2esn2nwkBz5H0sXA7hcRA8c +yKKBpJm9YGI/A0xeKgfH//GPmpNpGt8ZoJJUTxbLpoFReH/lizkG7KIHOcvn +0ICdOVVXmPRnf0xHeNEfo4Nrd9UKA0IO5Hw6nUsDl55zFpYbDCgQU0io+uP/ +/+fAfhtzP+08GvwPkw2GqA== + "]]}, Annotation[#, "Charting`Private`Tag$4205127#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmHc0FY77x6VBKpRKUjITISWkPjy0lEpSysoKhYzsIluEkJUQQkJlZYfH +3ntvQsbFde81Lir32++c31/PeZ3zes7zz/u8/3h4DCxVjejp6Ogst9DR/d8U +g4MEGo2Gr777OEyt3wHLdT7f9Q0acrkl8vVt3oHM76ePL63Q0EGCY6lxqyqc +OXHLYGqOhpdOHttStEcVpPd6DTT10vCcFf/fDB5VkJ8gN7zPoOET1aywbUqq +oOrT/EVCl4aLy3zWGjGq4NDqZf64dBMfEVerNhXvQlfXLkK5/l+k2/gkqTJ6 +D46WWe6XPvIHcxOpnM/f3Idcs6rtLMMbmEHo4HE1VQe9gNOkfo91bKvhcu8s +1IS1ECdfhDX0/trSxyX5EBKZRzgif66iL3/AJz1hPYhROm3d+XoFX3w+Vm+8 +pg/8u5Qa2rxWUMFtK6GQpg9fGg14W1xXkMTGVLKXwQCKboZ11NmtYJHr0uvW +AwbQr0w9U6q/giJvDCW8JAzg4N2SpRSZFcxgtbHrtjSAIK3rdi6zy+jNkXtO +at4APJ7qOwpdX0Yb666cleVHMBKoE1N0aRmF9Ie/3t18BOeztMpuyC1jc4RZ +UAGDIVBW1BgtJJYx4j29+LvDhqDvqhSZfXQZ4YxzUoq8IciHSBRcoCyhj3Ri +Im+gIWzmb1+7Fb2ExwTkJD+LGYHT1jQH6wUKKqbGcef5GIPFe50dejMUJO1L +q1IKMQaDU2zhtyYoODeTJTMdYwxKWs7ZJ/opuKJ4I0862xgOfVdeGKmi4OeU +nj7pYWPIMVgyuBFDwesnGkd+nH0MxPL/lPlvUPDTwa6/ewiPQd+tlb8nhYxT +7/U5+i1N4H5/nNxwIhnHwr18jJ1NQOmMlfpkLBkP8ynk/PU1gbOTrAGUMDJe +1Z2wvp5gAozXVJeY3cmoZa2f+qDbBNJZussVNcioUZalrC5rCr9jB3QKd5Ix +vm2a+9wBMwgv+RUZY0rC5T8qU2zTT0HHMcpF2oiEUdc4QoqoT+GExG3DDl0S +KjzrVrNiNIeilIJTjGokjHenWe4UNoeRUP8aGyBh+qbZlmVzcxA0Pb2stJ+E +xIsOgT/WzMFadCOW4rSIyh813BIOW8K2xEemJ54totuqRY6qqCVEHGqW1DFe +xLPtQaH75S3hx9b4pnqVRWx1uZfebPTPH7iyES+wiGn0dcPs2f/8V2/VbrcS +8fMLshWroBUUjZ7Y/ZWXiA9WuIc1GqzA+b8t36IOEVGP84T2qS4rkH3ff+s1 +MxHTuU/N7RmxgjJVvyDjjQVk+DRnPEW2gtrquX08HQvoqj17aMfhZ9D1JZ0j +wn0ByXnkCqanz4DocFbQbWwerx7W5nBjt4bMrt11Fj3z6HGQXyCI1xqenf71 +5GHTPEZYzXWmiFrDMiE87XzBPNrdslL9c8kafj+kiq4EzaOG6396As+sgfFy +0VlTmMdIkyN2Ac3WwMcqf/Fe7BzKDJ434giygUDxny9MQ+fQRl165+cYG1hT +8fju5juHduEsdpfSbKDpbRX/N+s5vLfb/09KtQ3Ysl1n2KE4h9MnDWSF/tpA +zUHVpvxFAkoRCKn7LG3B9KjhfU4FAtoPRKRI6NpBl+z2oNNSBJzRUrhZZ2EH +cjrJtYonCTiSFdVm4WIHbHEz52wPEJAtO2GO/MEOirnNOZtnZ3EpWfV157Ad +MPPbj7mEzOImz3c2Ln17yBb2NR2fmMF67yXvNHsHONauV3iyfwbZo14a6Ps6 +QICDDKNdywzGcSzcEI1yAKMqwieGwhmsaHvasq3UAQ7p3PopEjiDpvW79fJ2 +OMLLt/vUHc7NYLTJVfZLMY5wbS3myu430/hig310T/9zyI21C1PzmMaybeWX +0xeeA+8V5YlYh2m0nzALfUL/An6/pbmdNpjG9vo/H06KvID0kwbF96Wn0Vtw +Wpvk9gL26wpKfPw5haRrVrYfTjnBaHUWt5TUFNLJu5dNJDiD8931y+dEppBi +1CXnXOgMh37Km5znncLvAoXN4m3OoPKnNUuOeQpP87EOEf86Q9kZ4kXFqV9o +/vzVzirNlxAfJ2ykHvELV7PFnDY5XMDgeWLqi9VJfCtkXSKU6QqbO+aanecn +sbNv63xKgytEhZ2huIxPopi06W+lX67QkVF+3rNlEonZLNrOe9zg0tRoo3/y +JEoOaXXRXXYD/rtHiDH3JzH9gfhn9xw3+CUSfgbzJlDPqWRKM8kdhF0+EWe+ +TGBHmfGabq47WLTmpu37OIFGskOTLjXusPash9fYfwI5jusL7Jp1B6Z8drY9 +ehNYovbu6qNTHiCuELWkuXMCU1Xr6C6Xe4CTWlzOqtY4Rug28zr+9oSy5Awr +7jvjmCu+pijC6gXb1lBE6eo4bmFWkKQX8ILAqLGkD+Lj2OF3I2L/bS+IH+UJ +v7x9HN+UaE0OJnlBjUmSXUj6T9T7dE/gwgNv2OuSKiW25SeuhntcTeh/Ba/y +TtSxUsfww2p/9UvyK9ggftZYmh/D0iBmV7edPjCum+xc0DeGO6r86f7K+EC2 +QmLFxcwx3P+LwjMU4wOq2z8oP9Adw9Bj0urepr4gyMHTTOc0iqs8i72qJ/yA +1e8Yqdp4FAn5r/S6r/jB2sZRNn/VUeTcvlU94JEf1A0d1jggPIqMBRYh7+P8 +4En8/l9C/SO4tem1Jxz2hzRBxr+q0iP4fiaP7/ThABCRWhT5tDSEgsLf8mqv +BYKxmKtr4fAQrval8jM/C4S44ywdzbVDqExIWEl5Hwj72E85rEYPIb1Hod/o +XCBQqRblipeHMMrzXpNZWBBUFBLVCGGDmHDlR7CNUzD8yXJJ2XQZRM311y72 +IcEgmcb8e5/JIILwll1fU4MhJUos/oLsIDrZ7HyU1RcMb5wsCAG/BvC1fvtV +KZm3oC5LdDklNYD36xc/Fm0LgRBJl/ZL3ANYzZfFcfZYCDSKMvOrMw2gU0Xw +EEEmBOS4xOrdRvrxy6NkZTarEOCjmbN1vOpHVoGWEaPRECCWLXy27e3Do+dm +HzQ1hILn5YW2QsdeFJseGJAeDIeKa/O3zz7qxRLLxy0Wm+FAd2uuJf1WLyaL +OwrReCLAWW22KZG3F6MSnJfFTSPA3vhX3ZumHhyyjOb7sxkBT3yHy/S5e9Dq +d6WEzoVISA4YgiGmHix/rPe23jASJoMHS++vdKN+eqhLUmAk6L/vL77R0I1f +yhaeZ0xEgmZad4GkbTd6fM4ouxb6Hm42NWfurOvCGhktEgdTNPi1NZ3yyu5C +Hkd2c5UL0VDX1Zi+GdOFHfFmu/ebR8OV4fqvS8+6cEqJqH+jIxrkiNUpw5xd +mPPA/31hYgyIs5bGZ1l2YqZgXXaOYSxY7C85JqLZiZcJotsG4mLh66Hi2OTL +nbigc/JbzmAsCPEUxURzdKKrXP1SuFoc8J7Ji/Su7MBvN8PSTwnFw4F76cEa +7B3YrnE8z1XmI2Qf9y+6srUDi83VvrBpfQSV9ceTpxfbcb8vfw7zy4/gF8tz +jqm2HR0EperlKz7C5kzYaJF9O7YriLnW3EmAqZdOYkd62lDDJDVnm08ieKqo +qzNWtGF/bXTibEYicPNJeix/a8OVtGv6av2JoFlH7G7ybsPV3KaWBtEkaNln +8PKlZBvyqLTy2gwngcXtt5ElQq3os2VP1iHNZEhZVpoP39KKLLohE8kByTD+ +fpu8RX8LfmTtWp3BZLg/6TDN9boFfRWP2Eac+AzwXEfKbaYZaWqzpr/pU+AF +1yE/9bJmlPJ/8yPgQgrkVLYPi0c2o82nuYhF2xQ4wXzF+6diM8Y5e/qdJ6QA +a+LJroufm7DIouOd7mgqKF37Jcjp2oQLzduqV7nSwGsh1mnpfhOqERQCPXXT +YE16H1/Sjiasyj0rFzKRBj+b1p5tN27EpsCc9xxrXyB7tZqljr8BmYkK7OsP +0iEwLaFCbr0eYXT226vMdDDTcbXLba7HcyLsQ6lMGcBfc24wwb4eCctzaX2V +GRAR/iX5ZV0dOo6JhLl+ygTr674ayzF1qJB+905GXybc/mu42+xZHYa2XC3u +3p0FjEZc1uqH65Bl0ZZ8zDELXpx9KyvxtBa1J63bjbWy4f6MOSlVvhZjpuO/ +MrzLBokYpUTuA7UYpKbm3duZDfNbt+1kLq3BMwrnpvnvfAedTvuuGZYarKDW +CZlp5cBFa22z2O9V2CGl9Pt+fh5wHZfhOuBbhdlMkt76TPnwu/9Au792Faoq +ajJe1s2HHIVWqefbq/AVa4VFPXMBHN97kf7eg0pkUHKycnlVCPTVXLkNJyux +vuEoEGcLYdTx92MFukos8cE7ubeLIHIsp1kstQI1984nhPH+AKZMwfc7f5dj +1Lsrum3TxTD1aNtNt9ZydC+QvySmVwKV7D83VxPL0XNzJ1PgYAk4u0YZTt4s +Rwe2VSwYLAWi8h5xjC1Dz9OhOdoeZdBATxiXtClD+jpBU5amMvicVxP+VbEM +qzgWJfLYy6HsPzqqxE/E7ZVs8fy55fBp8NebWa9SLHO9OOLHVAkDzgfjPkiU +oiqXGLFYtxKYuRQz74yXoHlCKbdQfiXY66V0FEIJqlpmft14WgVXf5my+238 +QBEPhtKs1Wp48Sr6hFzqD0x4d2jLmG4NpAs2yVAe/MCn7O5Mi401wG4qqq2Z +W4QVnNDI8q0WZoiL8cJWhfiI80mGQEQ9HAnmzh7hKsReL9EiLo4GUDl9pzKk +uQADj2052hjXAAU22b82hAtQIiFJ8XtBI7xesxVu/JWHwfxHWPceaYHS958u +uIbl4c218NFFbAHK+Z6bEpfyUJTld5j9k1bQfCltGR2fixdGCQx/HrWBMP3G +9385QENOYgfTeDvoJApXH2PKwXf3w+3lrnVAyGWtns6C76hOnXl6LqsDNl4V +r104+B2riAJ2af6d0LjLVXZ3exYOacjcM3zUDXTfMpTLXLOwZe7m229j3XBW +eUzXViwLX87P+03r9UBMsILHkH8mfkz202c37YU+YcZAjTfpeJ5KSdsf2w/y +5iaZ5YRv2LO58jjp9ACkZDR0CF37hhMxZhBbOwDPz75h36D/isYxddmXNgbh +sNy+j1GOqZi8yecSZzcCD+8cyRl8lITrHeetzzX8hPmlFRm7qkTM5Obx3Ht4 +HJwjWpFZIBEb882tnpqMQ8ygR6PC1Ee0jFRVurBjAnIaO6pvt8fiSyO9mEjJ +SehifdXuEfIBpzYXx7tcJmFJTWY4924MfqrPHZismYQzY3HLnD3vkVvYj/HW +3V+QsfyUb2YgDJ9dDipW1J6CFhnuU5wxoWhqK/mFM3oKiC6d55UfhmD1i58D +b/qmQH2fbdITDMJsNQdTldvTcPcCM/2Wem/k1R3hSxSZgZBqW47HNzzxswtP +7Xe9GWi7PSje3OyGbldWRDxCZyC6TgXPfHJABp7m67YrM+DWdaKLs/IWPjlp +kuL2ZRZEWIZNt4ueBU9dZcbbPbPQQ/aIY11Th0jBfdyH6AjgFHq1weysFYRT +z5UVqhCgkvu1zwdWD7jB0+POMk0ArwheK+lAL5i2CSn2ZZqDq7uL1dt3+YC1 +s0aTtOgc1FGJQtsZAuAZJ+ePO1Zz8PixsHHeZgjMLXyY4iHOwTVeB01P2TBo +ZAuSXds1DyeGK5VVnMMhUvbRTwmheSCoPpQmrL+D5m2HORf15+GpXDAj10oM +fBCojqY2zUMhk1N3hV0inBLvPjcQsADxogc6M3iTgKdn88tE0gK8Usloi2lN +glHe+kXX4gW4FzHRaC+UDGWWD5NcCAtA4rlZITycAsIn6a4uKBDhuMzRjJDL +6SAsfXmSNEaE3dr5X13J6WCYFRDusUSEJZc7aU9jM6CGxedL2/ZF0BuvUOVz +zoS2m0cupQotgtgJ6q2/3Vnw20njlJPFItR/172c9ToHDI7OCc0tLMJ/1SKV +gmM5wMZfoPf3zyJk9qwrxErlgnuP0RXydhJErIeC/0QuMF3rnw3bTwJDqDtv +JJsP241LQibESUBrED/NQS4E4/2v+TaNSCA5voXLXR3hBaNjbGAVCcSKHpDF +UxFEKHtF0+pJcDzkW9XYOsKGvI/5jxYS7Pr4VTL+Vhm8IWV8xT4S/FFRH6IR +y+Al/RO/u/MkGM7MEMLTFXCom7Svfi8Z4qx0qmTzq8DroS1T7X0yxGjvTA8f +rQLS4QDxQU0yRF7LebfAUA1R8wVDMzpkCOZmMvugXg1vM8SPkI3J4NaWu/fv +ejWoVVvY5NuTQV98j27xf7UwwPufqEg4GfhIP9bPV9TDC/kLtsItZHBuvuS1 +vFAPdrQjvQPtZOhJa2RO/9dzu6mHt73qJoOf0SAfz7MGcOcuWG8aIgNpYOMW +A3cjZAtskrnmyFBaLZPQ+bIJ8jVDYHQHBTSj85WeyrTC0lqbveAFCuQ4QreA +USsQe/I8leQowHy/Vnc0uBW8rp8aMlGgQDlrr63qTCt0LfmGfVCkwP5LTrdj +brSByrjKkYG7FHAqiHrusdEGTBV6c+lmFLie2N+srN4BwJ7S+ieSAiTvdONq +8w4oLa0+/DWaApFPPGkXPDvA5Gt/oXosBWZERU8LpXfAm+c3mNISKeBb4Ba2 +dVsnCL5QeSOaToG6ZkGtgoxOEH9E/lpcQQHFNbsZHoZuEFBXKj9CoMCVW/u2 +ruT2wmv0c6s5swSB+jvJ6/W9cEfbgFB3dgn67OhGN4d7YVP5wGi91BKYxhKL +GHf0wRYJeuva8//8xQbrI/f7gFXf1ynr4j//ref4pdU+WCs3Wb+o+s/vWS4P +kRqAiE7eQBOrJQjS7XUTzx+Cx3d9bgumLkGt8tE9Kvt+gnyHeX/TwWVY4Dng +0hE1AfDR8Zus1TLY2Z7UDzo4BftGR40SS5ehd4hV1bhuBqYWD5603bUCes// +m2a4OQcGyWKhbTdXoPKktF/ldiK4fNtR8/vNChzfWTyTdI0EwkVq2vdqVuBo +sdmV7b5ksI+ef7K8vgJ0G/Sp1uMUkJNw9n8mtgrUOyU61QLLcPxI/4y/9ioM +ntXlFPD6t9ezyFrivwpWD1j38g6twiThtlN4/ipwhE2qbzu6Bmv++Nl1ZBXS +teI/Lzmug2x/cHjpDio8kHW9VleyAemTXA9ThKmQpWPOe/7PbyCtaWhZ36TC +GtOlrYVqf6HsqPdksiUVVNsvSB2N3AQ3uVFHCKIC04Vd5cUfNiGbWLZU/4/L +kwZuaCdugmG5sfq9YCqIOz7Xj07fBGuto6NP3lKB+Vh+AEf1Jnx5uGsiOJQK +9U/PTBygbALRxLtx6B0V5BmFgplv0mDH4IaqYfy/+8/WDqffocF/VeP75/9x +xmDtp1sPaNBe6VRu85EKXBnGPwIMaPD30/CARwIV/qglTTE9p0GxzwmW+CQq +5Ccek2VIpsGVB7u8elKoYLFnsTb5Cw2GOx8sa6dS4bhDqerVLBo8ka+5PfGP +w5QePvEu/ucn8NctplHBmhwVurWTBhc7UpDhGxWEtUy5Evto4C1e8/rNP/5Z +JZN6cYQGN8P/A7Z0KqhE9pW6z9LA5cftp1wZVGCkT7nOs0iDjkMbE4n/GM0c +usqWaeCZc0hRKJMK9t1XdfU2aLB4Nzs8/R///38bdhU2t0pkUeF/0p8S2A== + + "]]}, Annotation[#, "Charting`Private`Tag$4205127#3"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmXc0Fo73xyVJSz5KKGRmJluImyQSEZHMKBJlVZIdkqJCSMjICGVGtmuW +TciWlZHx8DzGY8Tz7XfO7697Xue8zr1/3fe551wuSwddK2oqKqrEHVRU/1dF +4cgMhULBXz9C3+2rYQOHdZ7A9Q0K5u3bnbXcyAY5X8RPLK1Q0OzuWdHRDjaQ +ENCynJyl4LbCYbfaMTaQ/c+/v7mHgs+4+Fzzqdnh7Dix8V02BePij/UrqLCD +7rOWT5LmFGxNYv6z+o0dHrX537tdsY1RYpfE3/VxQFfXvpkqiy0svVAd+jGP +E9grHQ7Lsv3FX5YZIfV7uaHArnbXwaENdCx3MrwdyAM3gsUX+3zXsWBvjKir +BR+shbkHIqxhwVE1gQJTfkii/8UaNbqKdQ/6reyGBCFWQ9y58/kKHhRb30yv +FAHefRqN7f4r6PcpR9ayWQQ+NVlyt3qvYGn20CpXrwiUaIZ31D9cwZ7FWdai +BRHou0yWqLBYQVqV8s9w/CQc0StfSpP710+oca7K+yS8Nr740OvPMr5y7f1Y +c0EUfO9auApeXEa1Luv3poRT8OuVWWyJyjKyDrTbGG2dAvlc48pLSstosh3K +LU4rBqQVfTp7yWUUfxKVdZFJDCy8NaLy2JfxWqoJT4WkGJwNkyxSIC1h25t9 +z4qdxGC7cNeaVswSbjPtpuIliYH7zoxHzvMkVLurPy9GKwH278xob0yTUIms +PvyRXgIsTx2K0BonoVgLEyMfswRoGHvkCfSRsHPZQ09CQAJYvlye/1VLwruV +jGtRGhKQb7lkeSmWhAzSB1xjQySAUHXmMu8lEp56N/LmE5ckWPi08XanEfH3 +TuNC3+tSYNAXrzSURMTygAzflzelQEPC0fB3HBE5EpE14Z4USP1mCCaFE1Gd +R7d58IkU0KnrLtE/IWJmm+jJggwpyDr4s0rtOhFbHk3q/dmSgs24frPiPUQM +cXDTf58hDRHlE1Gxtov4V4p4V/u4LJi5RnvJWi3ikRSt1EQRWRCQ1L7VYb6I +mkE7lyhyslCSVnSKTn8Riewm1KNXZeHXm6Bv9+Gf30qfKBMkC/y24ssahxcx +0s/UUXFDFpxPbsSR3BdQgC+OVXjsNNAk3bQVcFpAJt3ONxzE0xDJ0iJtZr2A +r3uLxTip5KB0Z0Jzg84Cyj0vPHaZQw5o+lU3EvgW8Ol2Z5mBsRxEBoTqa7cR +sNO8s0a4Vw5KhgX2f+YmIPejfVqOQ/LgcWZHZjQLAQU1RxxE5uVB8V2f1nN6 +Aspb0Bwi/5WHSt0Xr6035vGHtD5PEZsCfK+bZeTqmMcj55WdZ00UoOtTFmvk +k3ksdhUw5R9RAMIjKX6fkTmUPdvp6U06Azld++vtu+fQ/oCmkTiNIjiJT9iY +Ns+hFOu2wjKTIizPRGTIF83hun68TaacImyakk+uvJ7DNU/asYUnikB3vkTK +FuawSxgyG5iUgIfh7LmrcbNI6xid434J4JXYqJvtm1mUf7ZqKWwBsKbj+8Un +cBb/TEmUkVwAmkNreTOdZ/EDwW2x/gPAg0MXd9OqzWLZe6VLbzcBvh3RbS5c +mMHuXAZqguFZsGW/ZXBMeQb3vZQX2ceqDF2Ku16Ly8xgkDhB1ZdPGZTMUr+r +Cc/gzyNembsllOFQ/PTpB0wz6ELZX6l4SRnKOO8da/nzB02OFDld91IGel6X +Ea+wP2g3RRV5c0oZ8oQCbcfGp/GqlLKTU905OP7jRrFw3zRG3Pgv6n3nOQh+ +JEf3sHUasxvLIvtHz4FV7UzK7uJpXBM98/zZ9jlgMdMaFXk1jZat9y7nnFYB +z1BGw0enp7FiOcvFIEcF1NdiVfe/nEId1VvLjZnnoSDuYbi+7xROsm+nXKo4 +D9yql8fjHk3hxxSOQ6Ot52EzlOIjbjmFZZHhWRqL5yFL2LLMQHYKP/P0j7JJ +qcJhc37JxNFJzKN9RRlCVRiuy+WUkZlE0p+BrZnpC+Cht37+tMgkqoi6slI2 +LgDL6Nk78tyTaLsfMgQPqIHO37ZcJfpJLH9HX1strgaVEoRzapMT+PwFH8se +DzVIiBeyMoycQNG+NoM9TOpg+Tgp3W31NwZzd4fsNLoI27SzLR5zv/Fl8viA +jMNFiA6XIHmN/cYxw2sMAf4XoSO7St6v9TdePVqw7Zp9EVQmh5uCUn/jvkD3 +oK+0GsCrx0aINfiNMzf1KitKNGBCJEICv47jhllSfYi8Jgh5pRCmP43jK6oe +rRZ9TbBvK8hgTBxHMYqbtKSTJqw5dXNbB43jKfs8f480TdhbyHzowI1xfFpu +XkXPqgViytFLRnvGsaBUtvAJ9WVw14/PXzUeQ4rC4leDdW2oTM125Lwyhu/r +dRzOHNABmjUU0bgwhtxmFi+n2XXgVfRI8nuxMTR3Od4fBjqQMMwVcX7XGCoN +Jz+W8deBb3eSH4ZljaJfUJcSifEK/OeVLiO6YxR/P4cifnVdCPgqUM9AHsFy +3m/iYKwLG4SP15fmRtDp2StGF3tdGDNP9SjqHcFNYWY+lQhdyFNOqj6XM4JP +9FkfW/7WBd1d7y9fMx/B+t4oIjlQD/hZuVqo3IfR7Feid8X8VWB4cXyxznoY +N72PhZrs0oe1DfZDQbrD6N0qGc/Lrg/1g0evMwkNI+VamoaUlj7YJByeEOz7 +hSn/WRiYZutDBj/dlq7sLzxpZK4h42EAIjILIilLgyikZ2KprWAI1qLe3sVD +g2iyvPNSsLEhxJ842NHyfRDTvrY07/cwBEbmU49WYwbxnMFWykC5IZDJ9lVq +5wfxuZnbm2/nr0N1MUF/JnwA3au6FV/cMIK/uV5p214DWBT/8K/FUyOQzqDf +ZLwzgAqGWX0vMowgLVo0QUFxAPWc+mo7V4zgpbv9TPBEP4bSdlKZhRiDoSLB +65RMP5odlT+i1G0CYdJeP1Q4+5HRnVL5gcoUmk7S8xru7Ue3A1GZd4RNQYlD +tMHnVx9WcDw4xeNrCjyUe4c6AvowokKQ10bKDAiV8x8f9PSiioFboVWmOfid +n28vdu3BmYlivQlPC6hWn9OWutmDxnPjDEejLYBKa7Y1S6sH34SceB751QI8 +9P80J3H3oED6aITtogW4WE/Uv2zuxrX91n4xty3BJnCo0oKzG8VL+c4dsroJ +qcGDMLi3G7csArvPBdyE3yEDFQYrPzH4je5W08ebYPGur+xS40/89XhJcnH2 +Jhhl/CySfvAT6ZrotlNcb4Fmc0vOnvouZK5nydubYgUv2ptP+ed14UXt8iGP +Ziuo72rK2o7twrNyji43lq1Adajh85JTF5rN0JB8Va1BiVCXNnSsC+WtyMds +5q1BjKEiIdehE7MH+sBO3wbsD5cfFzHqxKLd+sr9/jbwmaUsLvV8Jyo2LokN +5NuAIFdJbAxrJ46b7vKLPXIHuCW+Rj2t6UBiHpXTzdE7wHQ1K+Q6cweaeW65 +WUXaQd6JoBLVnR1IJ5Ljd6nZDnTWb/8WX/iByjvWKnqo78KLOK7Te7//wO7S +p53zTndhezp8uMTlB35+FkG4YXgPJj3dRdm621GCxSua7aID+OkYGtJVt+MF +moapHy8cgJNH2nc5sx1THqkfsWhxAKN6ws/mp+0oT5HUfSXkCK2Mlp6e0u3o +zSwjXV7oCPbaoVHlgm3IWZdytO+PE6Qta8xF7GjDSSrVyKeMzjD2juasfV8r +OtF/na9RcAaD34+mOJ634lXdAw93hDgDPDaT8ZluQY9nDqUdcB/cOFheGFa2 +YGJqmuuNe/chv+bHkFhUC955hk+iYu6DAL3q01G1FiytiBRj2rgPDEnCXec+ +NuNnT0emVHwAGuoT/Me8m/FmTEP+DOkB+M/HuS8ZNOPJo2se5BMPYU2WkSeZ +thmLqNUs3UIfwmjzmtMu6yaU4IuaS3R0gbzVuoP1vI04Yi038s3YFV5lfKhW +Wm/AWGJOu1WSK9iZeT8saGnAv28f/7wy5wq8304PfHBpwG+j828lfB9DZMSn +VM/6epSka61mQDdwvhh4fTm2Ho8+PXubgdEdtLdu7bdzqkcLilfIR2t3oLPi +cDY8Wo/0Nekl3w97gJtUqKLk3e+444m5y6EATzCYvreYfvY75luJbTNMeYJk +rEYSJ9N33CMrOUSr4QVzO2n20Fd8+5e3gXcOH/EGs06XrumD3zCKX6Va7JYP +yD/Te2b+uw6rgntzb733AWYFMfnuojpc1h+v6OrxgfYPf+JrLOqQLoSJ/rXO +EzjnbGIX96UWuez2mb7Q9QWOE3IcTIG1KJz/ta8k0hc2+5h+BJnUooe10C3P +QV/IV26TebyrFv3Hyf/N3fWDE/+do756rQZZLpXzr37wB+o6joJG4RpUyD8g +Lb/iD8Oum7eVqWow4g6wBlx8ClEj+S2i6dWotKpa47H2FPbm8L/bs1mFRxTj +zWmdn8HkTRpNn7YqjLtzVTSl+xnUMI9uryZVoWz0n5lFxUDw8I6+9VuzCm3j +fWKXDz8HwuUDYhhXiR6MAfeLpl5AI/XMmPT9SnThLOGsuRUEH79+i/isVonO +vd4iNhNBUHmGiiw5isiRypfERAqGlIGJl3/8K/Dpse73boqvod/jSPx7yQpM +cBiz5v7xGug51HKujJUjC4058ZVUCLjcSOsohnIcubYVYNkZAhk7+sbvEcrQ +IEoy2uZEKPz6sGeF630Z3h5z4113D4ULE7bMLzZK0XZneL3AqTBwC4gRUEov +RRPHgXM7X4ZBFn+zHOlaKebKLgkMz4cBs+1JE6OCEkxn4SHxFr+BacJCgpBj +Me5zkIk+7hYBbCGceb84irF5LslAfDkCdMSv1IS1FKG0vOKOMOdIKLqfN7Eh +VISSfvaCRz3fwtzh8dWsvkLs0lxRK9wTBZxfD9HdDCxEqM/heB0TBc/XHgg1 +TXzFWMZkTtr2d1DxLkXBO/wrjt5p9TtzPxpI8t2akipf8Yr24R+DbDFg5Cnr +EJNQgC7D+ZZ1/rEgRL3xxc44H6XllvMi8+LBLEmo7vjefLz7jk3qpEYChJ03 +7u4s+oLRm1WnD1YmwEZA2ZrCkS/47bzNKGNZIogKzO9ZrM3DAeqLa+PnPoBl +A/ux5Pt5qPAm1Yip/QM07fNW3P8jF0++qpy5REkCqszsy5XeuUg/tZ6u/CEZ +pC6PmD8QzUW9I3pVblopEBui7DsYlIOB7/UbD2EqtIs7vwmRz0EatrDw2oCP +QJeqevF5Rza2Bp65b3o9DXqF6F5df5mFgY81qpK4M+DsvTs5VTOZKNw8vyV5 +7BOkZTd2CKpn4phdx5gL92dgIAmvhKZ8xlIVW5U4uUx4LPWSeYP6MwY9oHXd +tMiCMReCnOWNTyhdzaOy8302aBRrmzSWZyDn7S4uQZccOKrEmBjtmo5iOZr3 +X0/lgq/P/Rrq7jQMFEjQuP0lD2aruyZsJdOQcpdlPublF7i6S4auM+Qjcri9 +THj5KB/K1N4KKRBSEZY3X39zLgDeF2uaSZdSsYRZK4DqyVcIbr7usC89BZu2 +/z4WTi4E0yts+QM3kzFqwPe7jkQJzC2tyD2sTUIMHDf8G10KHpFtSM+XhGwN +Yf4/uMphv1y6atrTD5io+zyRrbECYgd8m5QnE1GGPBLfcKkSRLxMrgxcSER+ +ntmtU2pVUMop0/PgYwKq126zvb1eDRo1B03p6RLwNfWWdfTTGshv6qjT/hGH +gwaO2xyttdDFEPDDN+w9rtIOS+nLfIMlfbmhAr1YXO5mTy2o+g6MMXPT04dj +MC/gtin5fgNIjMQvH+t+hw7Xi+03dZrgCp8elfbbKBzcv22abtICjra0+30N +32Jk5f6mr9FtEJJdzFzAGokNfD+NhHb/gOzluzzT/eG4474457BJB7TKcZ46 +FvsGV034q7paO4Hg1Sl/2TQMSxbj9+qa/ARDxgfJNvga621u6bdiL7yN7S9t +VX6JHjQhr9OC+6H7hHKnVO0L7P7SVjNnOQh6CvTUOxqe4h2vSd6TtCMQVveA +9fYlP7Q+NvibeXoE2rUHxFpafFD6tr8NT+UocOT7hVgneGAOJWCSL3gMYup1 +UCLlEW6whOgMaIwDyxA7YTvdGXfwX41s2RwH4fGfcpGmdjgXSeYRjP8NPl0C +XcdqtPB9/6plL06AyMEh210npYDRy3aZESahm+gbz7BmCMRZg//U8ydhUZuf +5OBsDTuuXLnlwTkF7m8uNNpJOUL1YQm7JP8p2PZ6HBN/6iEUcY+tRo9OgY/t +57udQm5AM8LYJHh6Gmo4nz97z+ALi4mO7MVd0+Afye0o+8ofRM7Izw0e+wMX +9pcZ/tj3DJ6oPKseM/sD9WSC4K7dwbAv5CaLYP8feHEvkDHe/xXQ69NoMB2a +gVRiiCfbkxAwZ6PmU7o4A7dvC1l/3Q4D0vIfa9msGVDnfmTkpxgO9rQbXg5D +MyAwVHNZxyMCqCXnnAv2zsKMrqnszPpbmE9uUt9xYxYaD2QIF55+B3cjy1LU +A2fhU/3qcf9H0XBufKiZK3sW7iqF0HGsxMKNThvv2bVZ0Fof/DsjGQfXRRf0 +drPNgWi+ILHQOR4+uTvt3680B2vho3MCawkgTfpvmNF7Dor3uv+sfpgEQb2y +X+NW5yDhJFNnNncyBPBrZc4fnocAnez22LZk0JbyX7gnMQ9XI8ebXARToVyp +//tJu3lY5NKsFhpKA//WT9rZXfPQc34SmV+kA/M7C9bw+XmouO1TTiObAQdr +a4YJuwgQlJlf9CvkE7iHF9hxSBPghBx7dtj5LOhNiddZf0mA/SaFn72JWeA3 +VUvmTSLAkteVjLtx2RA9cYqGUEiAG2PVujweORCacHXaeoTwL1/JWls/c6Fr +RPWm9skFaPhifj73eT4kLLAbGxQvwJk6kRr+kXy4L8peW9iwADnd68pxMgXw +9k//6+G+BYhcfwNB4wXwBc37A9cX4BbUy1spFoKHVTC3zLFFoDSKibMSi2Gl +4Fxuk94iOA9uZb9WK4HTm4/mnxgtwuR8oyhtXAkY7xM4w2exCM0MViJLGqXA +YjncImW/CNEG7/hbkstAUav5mN+zRZAe28HxxBChINk4SKRwEURLrhHF0hHo +o/KXvMsW4URYZu3IOgJt1tH071WLsC/xs3SCViXkKqd1SDUvwl8dw0EKoRJS +s/MKgkYWYSgnWxDFq+FOQempq7uJEO9oVqtYWAvpFlWzJpeJEGuyJytiuBZ2 +RdGaBusSIUo9/+387jqwetfQlG9AhBDOvXbvDeuAON5PQzQjgk97wX9b63Ug +THPUi9WBCBZiB8zLznyHpUGjZsVXROBZLF2Xr26AJwGJm4b1RPBoUfFfnm8A +T6X5fUebidCd0USfxdoInraqsT/biPDCaoCHy6kRyOnnn5zpIcJi/4bWbs4m +IBw2EGiaIEJFndyHTs9miGFyvb6+gwRGMYUad+XaID3GFskyJMh3hZ98Vm3A +2qvVyCtPAnqD7+bDIW0QyZK3qaVIgiqGnge6022AhiHr4SokOKzirh17qR36 +Uy/ar2qTwL0o+rHvRjtQbaoLH7QhwcWkvpbLhv8u86698+0RJFh8mmVdd68D +7O4uhQdEkSDKxo+i4NcB3icWPeRiSDB98qS4YFYHBD4c4H2bQILAIp/wnTSd +gBdOu0h8IkF9C79xUXYn+JSzE+eRBGprD6e5dv8EWROxRzFTJFDVYty5UtAD +n+KpM8vFluCVxR7iekMP6DuJ0ddILEHvQ6rh7aEeuHrBdemb1BLYxhFK6Gh7 +IeVQnF7j6X/+QqMzm0EvROzYnYFn//mhfmMqq70Q08kea63zz+9ergqT6Ycy +n7CNL/ZL8Nq8x0escBCaDL8M5X5cgu+X2Q/oMI7CRT7d0CKmZZjnYvLqiB6H +zJLyd7ccluHhA2GL10cmwUh6D+tS+TL0DDLoWtdPg+bU7tXxvStw4/GZqd2a +s5CQ6V9toLkCNcKyL2r+7fGHKua48JcrcGJP2XSy+iJQtfuPbNStAHuZnequ +QCLottBUp6yvANUGdbrzGAlWq0rdRERXgXyl3KyObxn807nPXDZZhQEp82N8 +/ivgknn2SEDQKjheY/iPe3AVPtXp7b5VuAqs4b8NadjX4NACV6zur1XIMk74 +uOS6DrnyjmkRtGS4puitXl++AUtmm3W+QmTINbvHLf93E85mDidpa5Jhba/K +zmL9LbjWPjwb4EAG3R8KMuxR25DpbF/L9ZoMexX2VZW93wa5zH71z/+4Krn/ +kknSNrjI0xbKhJBBzPWxRUzWNtyaKta5FEoG+uOFwax123BvzMbt/hsyNNyV +GGcibYMEtV8mviXDWTrBEHpNCmQqff+mlvBvvtPa0awrFFCaSQlt+8fZA99T +tK5RoPOsuNq1RDJwZFuXBltSoDna1tn6Axn+6idP7n1MgZ6JU41+yWQoTDqu +uDuVAgkbsk9L0shgf2Dhe+onCnwek94+m06GE48qdC/kUuCj5xXL7/84XMPU +5mkZBd6GbM12ZpDBmRj9ZmcnBeqqZnbNfSaDkLEtR1IvBTKIb3udMskwWiuX +fu4XBXR3REeS/7FOVG/Fkz8U2DpU1EWdTQY66rSLXAsUMC0avRr4j9HuUVfl +MgVUvd0rD+SQweXnBfMbGxSoFwtmfvOP////Ay9Djxqx5JLhfyEsbYw= + "]]}, Annotation[#, "Charting`Private`Tag$4205127#4"]& ]}}, {}}, { + DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, + AxesOrigin -> {0, 0}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox[ + TagBox["t", HoldForm], HoldForm], TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\"", + HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> + Identity, Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping -> + True, PlotRangePadding -> {{Automatic, Automatic}, { + Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{ + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["h", { + GrayLevel[0], FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, { + 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, + 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, { + 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, + 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, + 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, + 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, + 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, + 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, + 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, + 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, + 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, + 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, + 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, + 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, + 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, + 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, + 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, + 3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9, + 3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9}, + 3.8871882575514183`*^9, 3.893237964294105*^9}, + CellLabel->"Out[54]=",ExpressionUUID->"18837f4b-03ee-4fc9-b362-36801a1721f3"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Susceptibility", "Subsection", + CellChangeTimes->{{3.893240903148159*^9, 3.8932409167324743`*^9}, { + 3.893240952846768*^9, 3.893240954869104*^9}, {3.893241078991336*^9, + 3.893241080223504*^9}},ExpressionUUID->"5bc01cd0-6cca-49bc-b33d-\ +929852f4376f"], + +Cell[TextData[{ + "In this plot, we show ", + Cell[BoxData[ + FormBox[ + FractionBox[ + RowBox[{ + SuperscriptBox["\[PartialD]", "2"], + SubscriptBox["u", "f"]}], + RowBox[{"\[PartialD]", + SuperscriptBox[ + SubscriptBox["u", "h"], "2"]}]], TraditionalForm]], + FormatType->TraditionalForm,ExpressionUUID-> + "ea33cbf9-2d9e-4e17-9266-a9dd99678c85"], + ", which is the singular part of the susceptibility (modulo a constant \ +analytic factor) near the transition." +}], "Text", + CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, { + 3.893240875195952*^9, 3.893240882915715*^9}, {3.893240920042145*^9, + 3.893240927292811*^9}, {3.893240957814611*^9, 3.8932410410866423`*^9}, { + 3.893241085040443*^9, + 3.893241094559909*^9}},ExpressionUUID->"f88209d4-5087-4518-af4c-\ +b36509976c37"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"LogPlot", "[", + RowBox[{ + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"-", + RowBox[{"Re", "[", + RowBox[{ + RowBox[{"DufDuh6", "[", "2", "]"}], "@@", + RowBox[{"invCoords6", "[", + RowBox[{"t", ",", + SuperscriptBox["10", + RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]", + "}"}], ",", + RowBox[{"{", + RowBox[{"t", ",", + RowBox[{"-", "2"}], ",", "2"}], "}"}], ",", + RowBox[{"Exclusions", "->", "None"}], ",", + RowBox[{"PlotRange", "->", "All"}], ",", + RowBox[{"AxesLabel", "->", + RowBox[{"{", + RowBox[{ + "t", ",", "\"\<\!\(\*StyleBox[\"\[Chi]\",FontSlant->\"Italic\"]\)\>\""}], + "}"}]}], ",", + RowBox[{"LabelStyle", "->", "Black"}], ",", + RowBox[{"PlotLegends", "->", + RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",", + "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",", + RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, { + 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9, + 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, { + 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9, + 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, { + 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9, + 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9}, + 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, { + 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9, + 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, { + 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9, + 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, { + 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9, + 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, { + 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9, + 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, { + 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9, + 3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, { + 3.8871880651171618`*^9, 3.8871880740271997`*^9}, {3.887188109820418*^9, + 3.887188166220853*^9}, {3.887188266607832*^9, 3.887188319744246*^9}, { + 3.893237970542515*^9, 3.893237996990089*^9}}, + CellLabel->"In[55]:=",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"], + +Cell[BoxData[ + TemplateBox[{ + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtl3k0lfv3x5Uh6oiUJEOSKFRIlGhTKcrUKUMiQ0WX0qVMkYRuJLdouKVJ +19DgRmkktR9KVJQkMmQ4zuzgnPMYDsX5Pr+1fn8861mvtdfzWfuz3++993oW +Bx+hH5guIyPDo57/e6+E+XypVIp8OfdPGQVlcGR8Sfr4hBQnlGu3DXHK4NET +c0NyRIpeZgkP/E2egMUy12B2vxQd0+pVPcuegPWctPb6VilGtkUWlBBPwb5P +9PFaqRTd4rIdZnc/B/qZhuLVAVKM32KhfFb/FcR+STsc+mYKT0vUdPczqqC5 +eRa/KmgSbdv1XU4lfQId4sg8a+3fuHyX3ljc/iZ4Fv5OXuXnBGrJn9OO0WyF +wHPmwraUcTxo0hdTEdgJkpyEdAQJMlqVC5xf9UD+7C7Nq72jaGA5GP9Pdh/c +2GYe9S1jBMvsXN7wD7Eh5VBQ3HLnYfRPFOz9pM+DBNkHsVEDYhR//2AdrSGA +oOQvBi33RPivh4q91ddBuPyadfVGmBB/S5yCox4LYW9cbpL1ASGeDqtSb30u +hGWr3fc3BQhR+XFD97pKIVTce7lK0VOID6efyR9/L4Sui5nvj4IQNxvI7Anq +FIJRmPnwtnlCnLgb+ateQQRRKyZuiROGMDbwSsvgbhFUdC+j/ac/iOuerXg3 +WyKCRNtpD3MXDCKvfUo94bcI7K61uWbMHkT13d/CmDJiIOhnz4dMDKCtQ5t8 +iZIYamv61RY3DaCjM7lbW0sMzcUlmldODeCUzkLDQDsxDMZaGiX3CFB+jKHu +c1IMj5ppdREtArynRb7xSRVDpDnroH+9AK2X9t3yPCOGYf7lBzYvBbi0q5Gz +6bwYfvmPrRg5L0Cdlcs6RLfEoLi5wjIMBJg7+VMj67UYlqjab9x1qx8PqMz4 +kDUmhr/Neo+HXexHs2+S1h2/xCDxSHmSnN6PltNS9qpKxVCf/c7gYVQ/OjWu +eJCoQMKxuc4zFLb2Iz1nt94cdRLez6fXvxji49/snHQ9cxLMrEm5z0w+LvAt +dTxjSUKu9yU7Zhsfj+X2NnOsSThytaVE9R0fL4+Wb7iygYQFC/dk/3GVjyO0 +YLW720kI09nvpeXAxzuaY8vP7yeh2U7+vLkVFTf/eygrlIQNe4tqt5rwMWJt +cuvpMBLm3uauPabOx2/Vq3sD/yShUu+wVgOPh+9WzrxZnUDCbIOYnqQcHhq1 +HfvXOJuEuM0ampfP8PBf7Z0rnl8kgbH/5Y7iRB6mropfbHOFhBeFE9WtITys +37xyvsl1EgKNThaaredhwfYTfaUFJJQZp4cx+rjY/k30l81zEhZ9DSw3aeMi +bXpIqt1LEs7FrlOM/sxFe+V/o9dWkHDgHb9wRjkXT/r30ua/oe6717XX9G8u +dhh7YEQNCWlyhmYxqVx86iezxKyWBNGDqSSM4+LvUx90eXUkfBwr1abv46J5 +2eFSh3oSTmSr+cSu5aK/UgQvs4kEvnV/EbGCi2AdX63YTIJX19sRpSVcfOz8 +sjnxO6WHSfTFG8pcVMtTi972g4QbX10ZrOlcTPJw7M9vI0EpztB8lYSDNbM6 +wobbqXq8a/1cxeDgXraN1/GfJLiHP9KZ9YODpXtkH5R2UfWdk3FoVwMHrdtM +Wju6Sbi812Ym5wUHbcjErAUMEpwkNxxpWRz0Xvd+gT6bhGe3oi95pnCwebMT +m8YhQd/Rre9WLAftFV+YDlL8K1uabB7MweV0ueGLPBIOrv3x5bg3B9l/PvPz +4VP6dz3SfefCwezvEuW5/SSUmARXellzsKvnu2a4gAStJptZeaZUfswNfooD +JKTHzfXlLeag67a259cpHtYV3LPQ4GChQ5bO0kESgmrejSXQqO/PbEoroPhz ++M0tNdM42HSN1aU5RIKNWszl2WNsVOT4Lz5N8d2XbkxvARtXyl8FNsXzAoxW +3+ml4szkFXZCEk7Jy6TwW9jImDajO4PiweIfjavr2Xgib6FTPcW+9MeLTlSx +MXrioZ+ciIRaSUbE++dsNIh/pmpBseXt4Ncq/7FxjG/k40lxnuN62u47bNxW +MWUYQbGyYO6ef6+wscTAKjKR4uM5gvv9mWx8FNVgnEwxe22NxPIUG1XMarfG +U7yz++bWpBg2Ru1fXhlKMXE65kptOBvT6icTtlNsaurOUg1iY85ceoIBxdea +jCx9vdh4UXltiZjKVyFeJjV/OxuLRDWKzymOWtT2VWDPxslL809GUNxd81jP +yoqNNkXO8toUJ+4c37zWlI1fmlIsa6j6LOi1/8NGn41DWw/U76f4aUR6lu0C +Ns7x2/N2gqq3x+8vjzfMZmNA1TeVMxQLMjRa7OWo+GOHe0oUp2sETGycYOH4 +fJ3UFEo/wmJw41Y2C83j57V7UXr7EWtCnTsp9lq3qYzyg8T1ROb2Jha+f/uz +TpZisz9oze5vWJiuTMpmUH6qH90p2fGUhcHu14oquZS/0q5r73rAQj0nY3s2 +5b+828YHfK6w0GeowkKL8qvtiqgM33MsLLXWjzdkkfCjovyhXwoLo2o3ZRsx +SVBtcRoNjGDhwP3GObMov/+378LCffup8//pCB3oofwvat1wwJeFtoE9YTVU +f5yihZ75YwsLP2aG7fSi+kk3t6Q43JaF8lENhiqdJFQYjX45bMFCIpeV8prq +P/HG0wuidFnYUufyeKKVhOD4/PvHR5mY8yF9YOQrCVMK/Q2JAiZeYA7QfBup ++XrJQpzEYKL2K/2IJ59JaCqtskn9zERlT/jm+ImETezuT5lFTDS3O2DNfUtC +z1EjYdYNJtpGGhwbqaL0m3Zk3oUcJm7c5V4yhpRe2lN+l5KY6LXq7Hj7KxIM +dmoP3vCiznO8I6f9hNKjZ5/abRcmznJOcGx8ROkRUWx1ZyOV35GNG+NLSLiU +YXOycCUTK/o/ut+/T4Ic4aNaosBE/pNF3cm3SWCZXrbA533IW+asNyODBOOk +wkFucR/m+Y4+qjpNQsSXZw/U7vShy5LVUREplL6RLfohmX14LvNy8C1qns98 +oTFXObAPx5bdk/c+TOntkEv6KvVh9MCF8SVuJETnPChNm2JgtknmxUlnqr59 +FeElJAOvpk9vr3Ok6vFXR9+0LgaeLRG4WdpR8/KTdvO9Mgbqhvqr7jUhIcHz +9tPRPQz0tp+lPCZH3beo9E+9HQwcF+it4VL7UE6Cptu2MHDJy4a8jxPU/szt +KbhpxsDGp02m+4RiyOtefHmzPAOve9anMtrF8P6Pguickl48UH5yQv2hGOYk +3bdaOa0XNf7sDV2zRQx/PV9WpzrWg6+Pno59DWKYGLy7mxT0UPu/y23tOjEw +AooSX/7oQQd6m4eCqRjKHPKrNz7qQc9/NmTJzhEDXf6mm3dADza2W9xJ+SEC +I83FDTIJ3fhilYnsP/4iUD27SFgT0o35nuU74jxFIJnQmZtJ78Y5SYJkF1cR +1HUu3K1u3I0KskvPNdiK4GDePNbyti78qnHrnoWWCB4YKU7SrbvQd8cJUeZ3 +IZhaDZkWkp149VBGzlV7IYSsPHmy/GcnvrdRv0+zEsJtQ5WmhtpO7HvtKhNl +IgQ1jVWxo9c7MVd7a7bqfCGMjUVUbd3ciZEq1+i234egunzQk3+pA+3GJZoK ++kPgYzeYtMqqHeUSFg4dLRqA1M0DjeVxrdhvmMCVBPCh2kngbrmvFUM8kteX +buaDjGv/5xLXVow6/UbOfTkfEj159fn6rbgqWyFyu5gHMSGsuqz6FjwV8WTC +JpUHB9N/EkF6LZiH2RdV7nDBpb7hkVJdMy5/s21JeAMb1HeVXNit0YRwy+TV +fCEDykZrVOoMPmLxL2X7Wu8WKOxgZfHS3uDgYgetBfll4L9D+2nHvgL8ZB1q +7NZSi+UzE75XR+dDY32A9ZnqDlzDmKZ7ygdhVeTwk1B1Ni4Rvhq3qf4AP3Ri +6cddBtA5v63BzacJfB66LtJ1E6Ojq5rsyLNWYGXnyY/nj+D5gNZksxedsLqx +iemXIcFaNx1lD7Ve+JuuXFwe/QsHFqsnNeX2gZz5T26kzBRGHzMJOj+fDX2R +qpM1xjJEa6cqPaSOC5k6c90VfKcRgfG2nBku/aDk0T8/cN904q2J9dm38oOw +6duy/opIWcJQqZJb4CQEu7W+J48HyBE6leGO8ukiEObWVKjZyhMyE9PvRzHE +sMjgMlmgq0CM7Xi9t2bpMPTU0u/achSIDssAraVpI2AUdWek6dkM4k9v1Tn6 +naPwbIct/78YRULzEtNHTkcCjeD3KkxfiSjZk3eXjBuHsZ2phTHNSoS33Umn +utcTkKxqEXf96Ezi8d7D+ja/f0FQoJ5botIsQjJzk2y55ySs+SfXubxwFkH/ +ut5K5+oUfOy1zRo2pxEz18+qqrw5BQVbWrX2WNKIqoL27X75U2CqKLO1yopG +mMXFB10vmYLJoJij59bTiNmLXpzTrJmC9m9bl+k60ogPhyz61MVTUNz2U2uV +D42wV1x+YbaLFNqumf+akUQjJJGShSU7pHAg+LpncDKNKO2oLXT1lkII38mj +MoVG6JaGvDoXLIW4KwzDI2doxG/PAvbMeCl8t13j13iBRrzIX2Q3o0gKF7K8 +ZE7l04gI5aHaomIpKPFCD30vpBGGsW/oWx5LwV2Udnz5PRpxaZv/wdOVUnjm +Rz/R+B+NiBLlXpT9JoVO+ja9hc9phPGeMN38H1Io0v5wO/wljeh9t+7+xi4p +GMxYXV1ZQSM8rv54c4onhTINa6E/0gjF6fecFw9JwTBL8ffDKhqB4bHNxDDF +1auLJ9/SiJjvWwICJ6SwwqF50uU9jfj//09Qy5Afvl5HI/4HZdvh0Q== + "]]}, Annotation[#, "Charting`Private`Tag$4212189#1"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtV3k01P33t2bmM5OlqCR72dosNSXp/eZJISqV6FGikCdLUbYQRQ9tksqj +slRKtNhSlnA/mAljZ6JIGkuRLGViEPOd3zm/P+6553XO65z7uve+/rhX/dip +fe5iIiIijcL4v7wOLfkuEAjgv1HbmOrcQnRqWjN2ekYAh4xlH6pMFaLcVwZa +E78FELQhhBlpWoQMdWyPfR0WgNS2JQwPdhHaJBfdWd8hAK/nRave9Bcj3PeT +fTdHAHpxny18lErRvpiG50ZHBbAEgl5mWpIoqCna50T5PLR5DkZ+bmIiDof2 +vcJ1DmRMf/ybzWtEyuQp+U0r/kCf3Vmd5b4c9NqLKSnTPQMDAQlU9oWPyOWa +wfjHi9Nwe6bH1t+qB/ETQmMB8cFIhhuwJ7QXpUt/VkziTsJQXtGhqJIBlGxt +4N92+TdojEa8k18xhC56uwbrWvFANVHFbkPADxQq/izIf+QXrGW47JPQG0eu +kU0r2zN/gqfOTvYexV/oTtlAUvLJcbBxCdu8XIOHSnp06C80RkEvRk6qIXoS +acpi8wOpw+Dnky2fOs5H+XqxJ3v7BmE64x6N2jKLelh5agzGVxhKZtxS/DWP +BtbcMYQ3fVBXEO19fpkoljufxVgnyoXmn11WL+XE8RrG2JonE59AJI1/K1FT +EkdtH2kuDu6AmIu1fcxkKVxp+WPPhuMdEPfGjsXMkMIitsON2bYd4DqaIcfK +lcJh9kP16RodUGJo6fuOKYUDPQZqrte3A4Uj/6jmhxT2jO0mXdXa4ZNVhcvz +rRRsU9+QS63hwM7j1buLOin4SnP9+uh8DgSsv2cY1E/BNZy67PlkDkQ1/f1S +f5SCLbprX0z4cSDIaaVjgigVbxtlZXYrceB0FL+UokPF+rLlD/JOtUGM+ecF +589QscKB7PhDS1tB+s3+R1QxAudrXS2xEG+FDQ6FnAEqgfdOn+g3GGuB5Cjz +D/lyBL6Sqr6ZqG6B4sS6h8rqBJ4fvN1TEtgCmksnZnQRgb+Gh65b0d4MRnrJ +6q+DCBy119GRUtkM4Qa8+BPnCaymufEi72UzRM2t1BK/ROC/a0bf119qhq4r +fjcmbhK4cdGx8PCNzcCVu/tv1jMCew1se/qPejNcS9t++E4ugSlFSi32C5uh +YWFAqfsbAl8qeWZ1mN0E3ANxT/MqCOy752ZSmW4TUCN2/NvfTuBMnvWPO6JN +MPDf1hV9XQTuvSuBfT82gk5RoGrFFwIf7A/6pnK5EXB7bsmy7wSOv2xgMuXS +CH9kX/DiRwnMXjcc17S5EW5enuwZ+EVgFOLMiBxsgEUV0bMaswQ+p7LsiiPZ +AKHfEUkVELigqqVbP6kB/jw7cJQtRsM60haXuDsbQNqGs72dSsPHXs1/KFZt +AOqH4cVqC2k42bFoTcJUPVSYf2zEsjQsm76aY/60HjjLmmkSS2jY2nJAWymi +Ht7oDNOfLKPh6JHU0ImD9TBnocdXVKLh8gTHprp19XBoQRlxTJmG+ZsWaT5e +UA+WxfQLYao0bNhdFxj2uQ4sw98neqrTsPfFS+wDb+pA4TiOWaVJwxnaSGVt +XB30pc1fy19Jw9x6vp+kRx3MNrr3SmvR8Ar/fFa3aR3cML9eYaxNwweXeiu+ +UaiDBce93Qx1aDi+dJVP3AgbHJRmJPhCzHbtIT1YbPDda9t9WZeGJaTuyqMU +NnxwKdf+JsTbXuzzXBrAhv1ZVFUZPRoOtqOXjtmwQZY4My8ixPmTLJmalWzI +PfFdtFTIj3v2qHLbdC1cHGp0MBRiL+eIgNcNtWA1NrTfQ1jPctFhnTWPaoHN +NRNxEOpb+W5z16PAWnhBee4pLtQvck4hTnFXLdibSd4/Keyve+0vHK9aC7Hz +555e1aDhEm7jxAJeDViHVzxwV6PhxDvPM8JraoCn+HfylHCe/laxh3jJNZCa +zcnHwnnvmXOje/nVgH3vIhEs3MeaPDPgWtSAYPe1dJ48DVPcVfwdl9cAcewW +eUSOhvuXza5sGq2GwM57588J911R39FhUVUNeqxQqrXQD+c23DQ18q6G92Ic +m3mhfw4O+oxn4WqY1QoK4M4Q2CjZOl1NoRr25XzYdfY3gX+IS1Cly99BZmqD +asYQgWsKv7yNTngHKLXy7V99BH7iVeY76/FOyK8yj/tEYOe2QM6gzDsY5Zkm +aTcSeEvM/pij/SzQahszCXhH4KUm+lvai1iQf+dhgE85gZsfDaVVubLAhO70 +zOklgc39D3ulvmLCLtPGbxoxBFbRMlZRiGWCspYzpyiMwLMfFVquHmZC0R+Z +jZN+Qv+bNTFCJJlgzEw75eFEYC05c7EDDlVwzjPk7TI9AouxVF6zV1eB5J1O +/sAKAvcEz54wE6kCkSm7wUMyBE76UtCwLqsSWqKcMWOCiolc7bvU2QooCD7R +yXpDxV+PS9hENlUAo0zVrSGDiquWcucn0yvAXj8qJDyRisMi7rn121SAIk9n +7sNZKh7dvVAfUkmYdV/85OpaKn7SNXB9KLocLNI40v43KLgzbElailE5LFA0 +JQpCKVhaZWeuXW8Z8DMCb746QcGBLpmtxagMVvc/iRndRsE7Bk4uvTLzFpzc +d6z0/i6FB0fHHuidLob+58EBBxlSWE9s5pWXUwEw/BaeUsmSxEfsVhR0HX8M +qb2ldl8YYvjHxG/jAGY6OC5dfoiqJIbDEptAelU62F/2i10vEMXJXRfrzL4+ +hCHVtxsCq0VxQV0ra09LKlSuYXwWOIjiHJ635mDnbRihnTFJCBHBkRwdjlKV +LXg/l1g0HD2HionQ95UB6WjjKrfCeMEkerBWoS1H4zGy3uJXeLl2Ev27N6c5 +uekxOnQ2xDvv1iQ6kNhXF6ibgYLfTzGv60yicXWbSr3uTBTde0M+4sBvpGWs +nJOwPRtReK0pLq8nUO2ro9vzLhegrtHBAv/742gra02V9pcCtIlfKePrNY5y +26fNUhmv0Y/ZHsu7JuMocfoWutr3GonK1H+bKxpDbqhmi7tpIeIqVvtQzEaR +gK1voPizGLk+0uG/PjaMNvaKqlxwBGT/+Sg68n0ArStx+KmfBehaRO2nf+4P +IK2El8wv04B+8rIDK2wGEO3hi40PbEmkyff22Jvbj/7sdfwkGCVRYds/1/rP +9aHu3BxdMKhEjf6bk9KUuSjttDPTtJCJmPnJ2y3XfUSa42+nt1TWosURHrct +NCpQWMNf0byRWgSrUFrMIhK1P6uTzlZkoyuzSnuSpMrRFfcuTXU/NhosXVn4 +UuiM8c4ZWym1OrQ1JYJ9OzIPlbOMH7WF16PDg+qVSdfPoL/vF1p7Gzeh0m2C +8PqpMrBK/9iw27EV9UlFah/ufA/jl7I9WD6tiEhvPiFv0Q5JnlECk6hW9E76 +SE9ATjsMrl1roJvdik7ZluxnRHVAbFHkbXGJNkTfwzEv0foINQ3aTkU5bYg/ +WWRm5PwJdvIDBtWl3iPzFSfv/7bkgoXtIvHfrzuQj2L8KjW5b3DjaEekfuEn +tOOJtv9lm3Go3q28cO8iLqpevCm+sYwHI+oK51vv9aE2U7HdQUf4EHB2teuN +JV9ReWaS24+YWej4JLvPo2YQ3fSidvBT5sElZOs3KZth5JCi0CGXIkJWrd50 +pUpyFOVYnywSfBMltailg48tx5G+s1qwkYQ4qVzqZSEZ+xON6V9XH14gQYrM +iGX59/5CUyVpRoguSU7ZlTmzVvEQez8zYPe4JNm14ajSqujfqLL3qrj1hwXk +aQdZOY1Pk2hpmIRDcLYUqXi731FCmY8uRMrbBnpRyGynB08ngqdRtd4e15a1 +VNLBNMKypmwGFe5tarfppJJ5zj4aW/7Moln+xiOVoQTJJ/4SL7afQ4a6kiKa +mjRyX4sJQzlpHtVuetafUkQjCRNaRWnKPNKZeBy6+i2NrHjcuetw+jxqN7FO +LiqjkfrBIa73s+fRkXvbQlsqaaS0auE1RdY8UvnvdMFcPY2s9TbsUxDeleQI +bMZcGokpuvHSNgJk7vvqmS+VTvL9+Muz7QQopLCqeoRGJ3O6qp/YOghQ4Kkn +Z7yl6aRKjsfba8cEqNgtLNhzMZ38Y//4KxEiQFfcGrc4KdPJwnRVU6kMAdKd +8mWuNqCTvgvHqjOeC5CxqDw33YhOagWV79uRJ0CWC+bjlBh08rb1Ec9LpQK0 +XtkkjWpCJ/1/3rsl3iZA5/uu3vmynU7qOZ1USf8gQM8Lr2L7nXSSyzTOMv8s +QAeLxc7XWtHJvUkfyi8MCdDWbyO5ubvpJEUs00p9TIBSXr3M0LSjk+AVxCF5 +AtQ3Ero+cT+dDHy/46jLjACd23h+F+Ugnfz/fwZ5LemcCXGkk/8DRFly1w== + + "]]}, Annotation[#, "Charting`Private`Tag$4212189#2"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtV3k01P3/zc6YpqGZ6SlLtpQ1lQjxflsqCiFFUSpPKUskS1KSSrRKiKLI +mmrsWw9eH1v2bJNdNCIpW5YsMd9+5/z+uOeee879595zXue8rvRpd6sz3KtW +rVr4i/9jVcQY5XA4sDfF/EJnSQFyX5ANWVjkAOnVv7s1eQtRZs42+elZDqRr +D65P2F+Itm8xOz38gwMhMvwiUR2FSFPkVndDBwcapbMt+X4VITw4VReTwYHj ++x+p/dlSjKzuNL7Z4cCB0/liqtkHCeTbdMvNqXQFJKyXxr07KhGLJTxadmoZ +AtZmt75b/ogkCHeapvgfKFTLiz1/iYXyXCr51vQtwm1Nh1B6SBc6eX/bZFfQ +AvgQopsYlv1oPtw/BNA8eAZIG41fZ6NEyuf10V/m4AB1DvSJIRS7f5tnW+gs +VHjmWJnIfkdBrqcuK5jMwLFNM0ZaAT+RP0+6r+fYL3BMbpbv2zqJTgU2ybWn +TYFZOOXdV6lfKLJkKDrWeRIirYOPiCjPoPf9W8hvZcbhbirtVWj4HJKlYgPr +Fz/AK+FwWirPAspWDHFmD44A00fvoeTYEuqvypLS0BiGxONCR1ZLcNCQcuR2 +yB8EZp1szoIWFxYJeK2hyvUF9MXvbww/wIOD87fUUH8PwIT/Y8Vvh3jw4njq +0emfA1Cc3KGkb8+D2Q4pVws7ByA1/eMWXjcenK2fWG6QOQCejw7lfnjIg634 +4sxtHAaALTrlZdjGgzevl25c5d8Px1zMGCYnebGyxoRy8nQvqPa7Pha7z4fP +ql6/XtTXC185r+n5UXz4pfya1sbqXpjxckuwTeDDouu2+s4974V5bqlV+fl8 ++PfvC2X7jHrBKOucetsXPlxeNH54NKIHgpc3pr3S4se2uuMBWzW6oUhM8t7s +BD8O3xnQYijVDXL5aiXpS/y4XoUiZ0vqhh/m1vnnBQSwnqRqbeDnLjBp/qHH +t1EAy3Lc1rYGd8HFx3xXcs0F8DgxlurV0Ql3jJ+mcmcK4JtGY81FlzsgrCy6 +pP+KIC43/nlQ3bEDXg9aPMu5I4hXmf34yDTrANaVeypPIgTx1cPfGxJl/mqW +V4M3UxD7nB2qedDQDux9lAP1bEF8LqSPOCXVDg0lz/jrzYSwaUNjplANC179 +GY+vUSHhu80NW29ls2CXVCJZfzcJ17DqmSuxLNAJp1rV7CfhPX21b6cvsuDg +ATU2zzkS1huvSusTY0GhxrNL2xNJWI1aGp/l3gb6UYmuoeLCmG7NDDu6rhXS +ahUkaeJknC1/7/0enlbg+x6dc0+JjC0WnL5um2iBO5wNUjQdMr77QnoXqboF +dvCHkG2PkfHKSET/e58WKFcIVsmMIePha/6q4u3NIBlLaSoXW40vHHwcXaLQ +BB8OfpOJUKXgtJn9PyO5mmBU1YHLC1MwO4YXX+j6CAUW1WRnKwo+8tX3m2To +R2gOGrgc40PByO+ERuBIIww1R7gJExRMTVRiGaQ2gKKdlqirzRqcPVe1pkau +DoJ8rS+xTan4Yfqrcr2FWuChxSlZ2lKxy4nr3nmNtRC45aJXiyMVy33Y1fPK +pxae+1Z7CPhTcVTkm5RrNTXgSj2obZ5OxVfUH+vucK2GQJnUCxfJItjA097l +RU4lLNmV1jgPiGBJeS1JekglSGhuZZ0fF8FLXfSWe/aVMGS0wzvwjwjO1W/S +8OOrBEWpA7TZf0SxvIgBt7VNBVTyqcdwrEQxKXNzjNBSGaQ+9ypg1ovi5J6h +B99vlYLQxwdTvz+uxd1XGS/jdpRCWbdJJHxeiymS+zIt2SXwZLt8fuT4Wuxz +Mq21CJWAm9yNW+cpNLx3yHnd3cX/oI0+vvOhOQ2PjE/EK3oUweecE82Hm2hY +PEwq+7NkEZi4igma99OwxTbLivDGQrj8bui3+gQNF17KHlpULIQOvYVpoNBx +6LyXYv1QPqRqP2YeNKXj0phknesR+ZBoH11gZEfHv7TbTXcY5kORuEg+lzMd +H7um6f48Pg94ZJ7VFwbTsSL3Yo6LXS74cf3csKeYjk8kKlZtJOWCtTBfYEoN +HYcb2bW3FebA5bP9xg9YdPxh6N63O045MBi/IXu8n44Xg4vndRg5cOlNlyOM +0rHqljGhycps0NBiXpyeoePTtRJiSZeygf1E0D5ghY6jnM2VbWWyQXzOee0h +AQauF76uS27JghMnXy07rmHgVe8yzInrWaDiarz8isHA6uYDDl6qWYA8Wvy5 +JBj43AT14pa+TLgy6OTjIcPAsWH6Qb33MsG9r/nBgDwDN2/zfBKmnQl1jg/W +GygysGDKHpPQ1gwY8D+pd1uZgT1GUlymtmYA6bSV4DMVBu5UFHx49AETxJJ2 +hnj81djtfGbZ6DsgbX4+M6/EwGkZda0Kxu+AFsn/UVaBgam/lGYfJ78Fw090 +frYcA/upP1i3yP0WbDuUFTZtZGC2z7jW6ZNvoNqedrd/HQPvLzpoX1eSDm1L +HRd4/+bLXsoM2C6WDhS1NXohvAy8QU804dnl12AxGP/m5DwdBwVequBuT4P+ +0MXBW3/7/FHOGnLekQavCpNzx7rp2JpPQ7AtLBXsGmSyImvpuHjfU0Wd8RTg +Vpiz8sunY7m786aJB1Jg3/2RtU8T6Ph+w1F34dfJYD8Vc2PiLh0ftxTP7XFM +gpSXsnrHben45/SslndlIrhtz4qh6NLx1agmoGxKhPge5XgZKTqO7Qmq1x9O +gJCA8Oq4LzSsHGBv2bM3ATZEQaEkQcP/SWl0eKXGA0P9TPbOOBrOrW+tOtjy +AtykXTecP0TDLGpwS1B4HGR+TJp4rUzD04e1+vIOxYKh0+LuWl4a3j7wckas +PQa6otNJM1lrccaMq+xIdwSM1Wq26nKvxR+1pLaKxT6BcxP2zzNZong8oE3b +/Hg4uB+JX5ecIoptRb2SzsEjGGiZrjhhIooP6VC4uWpvg7yq1sKfeyI4kLWF +JVZhBisCirp2olSsvKbPmU9FHemXH81Uq1mD26eCXlLnbdGZ2ZZdpq5rsP+T +vXUu6h6oHH7mROVTcIVU6J04ahDy+KolccN6NXZyUjybvxKOlscELNLfk7Cx +jO+xm7oRqOG2EzPOhYS39FWYW1yNRJF6Hdo3JEh41Oq45ujCUyRy5qYH45YQ +dtULE5ScjUWmTr1NR+wFcRHJ/1O5dyJy3BEXeVqTH8er0NsyZJJQbuL0o3VT +fDjYIqM5tikJ1bOO3C19w4etowbrfRRSUOTOp19bZfnwpLRpuWJfGvIsVOZN +leTF8loSGeFGTNR4+7ZxlA43JtsXvL0+xUTL13YHxXBz4+kAy3TXFxmIqrt5 +wrKOC59kl1vJXs1EmnkJTJYd19/7/W22/CkLFfrE7a4KXoVrcxyMskJzkXGY +zDqj6WW0u0q5YvNALuJcsLuzFLGMMtsX9F9o5KGp+LIvJZrLKGrhCbo3mIfK +1NxjDgb+Qf+iGu0zugXIMyrmj4zEEuLUqW1bP1WEfFSe/Si5MY92srkkb9gC +MmjSKaP0TSPV9zZTaq8BZdqsq5yMnUby4e8qBxYADcSbfbM5Po2EE97ujDcj +0Ev+wffv+n+hPxa2vZxxAilbNv0yGJ1CfZkZCrCtHPmC34379En00uNEpW5B +JUpWOnKA3+s7irUXYkb2V6KCizMZQPmOoo1zn44JVCE2fbFaLn0EhUmRXOJs +q9CFitz739nfUGBznsjyQhU64+zYIms/jE6prXYo3l2N3P5sOPHGZRDJTv63 +oF1ei0b22VvsGu5BVxsNb82M1SKXTqUdCdt6UHt6PYW5vg6NPflBkwroRnfP +9MhKX6xDTRY76Yc2dKHJ7kUzAal6pJfTlKHp0I5Kq7RetV1rQKRaA3TxnxZ0 +7HnBfletJtSQf9TMqrsY5V5GnzadaULVc7qZudfeI8qRaof+sCbE/q8mT0mu +EJVRO7ysRpqQ8eunibuu5CCaof/B2APNSHfuvMjckyTkX/jML2ixGbEPFKxc +3fUCTBK7Gs1tW9GB9TzvV5IqYfI282yVWyt6RGJQ+xOrIPrcTY7OzVZEuy7G +Tkr4ACMqKtsUmK3IPzMrYDSmBkIKAyN4eNtQyeMjz15ca4Caxs12hRlt6Hje +y8hGoVbYN+89Ii3wCUmc23xztVEX7DET5ZnN60BB1wbNWbsH4eEpoamF2g4k +YB+239hlEDq9V/Wv9HUgjeFWx6iYQXB+Mf5ekL8T/RT58KVs9q9/os5T/Egn +opxbeGj/9it0Pr7JNpzrRJu74oXaRIfBuX2mLFyjG42a0LR1P4zAI4eOQLWC +XjSznUftVMsYBP/cjYYbelHFelVv1aUxCPB7tfyc3YtcxK+M9sqNw4UnblcE +KH3ooljcP599x8G8msfr8799yP+DkrWP+ARQtqo53Rf9jBr9Wc0iapPwcCXE +bMStH918ii32nJ+CanOJ1RaiX1BYbaPX27xpGJOmB7Q+G0SUzhBk+vA3eHsp +nXrEGEac0M61dgOL0NFLtTpbM4JuWSZ/yKGvwEm/3d8ETH+g8nJu0T7HVUSF +kubdCr5xpHtFwmOwgIuQFyoeSTKeREfO7lwo7uYmJIpd9vCFTKFGbl73XDYP +sWqR+7Un+xeSLNu94/VPXuK3ZcmJqk0z6Ntow/c9LD6iR91BbNOtWdTIDGN6 +Az/hYUMVkemdQy9qUur3RAsQ6yO+2vJKzKORXdbvj9kIEky7+NTpywtIc/+V +K6liQoSN7nXjmpJFlM5xl8+tFSKyTrjJaP9ZQo+OCbbccCUR8yRDnqLDy2js +fFKTAl2YsGrR0ZCIXkGXOtxrs94IEyQd4bLiuBVkGN5QZ8gUJsqSug/YJ66g +Ftvbhz5lChNql/1OPWeuoMOp/y3N5f39IDcW3F9ftYIaD5HeqhPCRK3r9kH6 +rxXUlHw0O4YlTGBBhTCKKQcN52gHCS8LE/MX5zcwLTmoRXOo/CFHmMjoqU42 +s+Ggf1mGYSLcZEIy4+x/909zkPyJ8ha6AJn4czhpmOTHQRsphjP/iJCJgsSN +ugIpHGQzuNwttIlMXFg9UZ3yhoM0rNYu3t5MJuR9S632ZnGQCcUpjUuRTETs +P37udjEHDQidz/mtSiY8p5494WnjIJmcrXc+7yITinbOkomdHDRTGSZno0Mm +vlRqvTb4zEHWu9ysmnTJhEV0Z+mN7xw0gXeeLDUgE4LcaSbSExzEJe2Od+4h +E+DiyyJmOMhrnsh6s49M+Hza63BykYN0iixzpfeTif/f36gRGxs/NSUT/wO6 +LMC+ + "]]}, Annotation[#, "Charting`Private`Tag$4212189#3"]& ], + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], + LineBox[CompressedData[" +1:eJwtmGc81W/cgOmYx+l0yJaTESFJEhn1vZUkWSlRKlRUMvorowiZESUiISlK +sssO988K2SN7RSSZIaM4z/N8Ps+r69317npziV9yMrHZxMTExMrMxPR/VAD+ +SQaDgYPUVEZWSwvAaVXyweoaA2/cY6syZymE7I97pReWGJiHbphXoVcISjIG +l8Z/MfCjwD0dBV2FoMrt39vQxcAHarhsdv4uAjQ6/+V5FgNzOUj8oMuWgElQ +Y9o+SwYWl/VVqjIiwK3Z3+Fq2QZuj2q6GNxVBR0dXJPl1us4YISzv2q9CUQJ +J17Vbf8wyTdkv9utDsi7UcW6ZWANkw99SJF60ANWoXvnenxXcXXO6TzZk0Ow +EuHxAMMKbrnPLbTmPQJJ1EGhmG9/cGLvOxdjYgzi9fY6twcv4fJ+Wo2F5E/w +tbd2lz2+iDNE/SyNvabAg/TezXn6N/a+ViE+tWcOrH2ad3S+m8dNXYPCK2K/ +Iap0LCbebg7bsx4bkZNfhOIhGUq6xAx2vuE1kB7xByRp6PDphF+48Lh8QDdp +FT7IPbAbGZ3A167tKLad/gtD1TliKirjuN99es5DlAFj8lFKOH8Ub1303Wes +zoy4vVJVFJi/YV6rgI8y+iQUmC9TS1sexv5NGjTv0yS0NpNydmFqGMfeWrTt +PU9CI5ZvPQu7h3FJg65wogMJfdBKqjicPYz3qI5oXXtMQiasLwzNLIfx9uOP +WObbSWinkHgjk8cQXvieeZjHmgXJq8zKv1nox/dkVWcVwliRrYK3d9FAPxaY +iApseMaKXkpvaWus6cda68mKzq9ZEY/AHrc/cf04LElp5msBK1pediw/pt2P +pT+PODKNsqKKohnTyad9eCG/Z3xKnQ2ZH5zx2qPSi882pOoGzLOhiP1erUfE +erHvn5jrsM6G6ndTd5iTezGJ09aGxMmODtEV6nwGe7DNRQ3FVDF2JMlw2NoW +2IO1fKNmHIzZ0QwxnXK7qxuf53Py+pXDjvy0p1uK3LtwxBa/y5r3OFCF7pSR +8uUuDHc/OgmGcCAmg19NmQZduDDD+QzTMw7kafqzIUmiC3fwRHAtZnMgV9ux +2rCGTjz8OyLYYYwDXXswQFiLdWKCM+VUqTEn0m9ozOas7cD3EtaKfPeSUUhL +wx7/Dx14/cjvMk5ERrUd9Zkb8R04MsBk/KUhGR0dqEtf+K8Dq9OMRdZukNGh +mep3AyId+IrJ/YzrKWSkSCtLzHFqxyaTkSdOiXMhvtOZ4WcF2vCftM1xZhIU +9EH6YfFRUhs2ylTx+LmXgoxXr37fO9uKi/7lloVqUVBIgvgBck0rNvVVoHBY +U9DGxNOhYtdWbGTXKtWZSEHj9zwUtnW2YBUfqxNLkpuRo9GTmFLZZrwU3F8R +pEZF7xb1pqKYm7GOzhLrixNUNPKcBTn2NGHbF/VE3QUqOvPd7Qc9uAlbdlyI +tPOlIrhzUcVnohE7prs9b2mgIlrSro7DKQ3YybR07prtFvThT/WW2h1fsMMY +yzEnMxp69P51xaHVOrz7/hU/scs0dOOit0teYx3WzRS1GXOkoR2fD/S9dq3D +zfmOkmmBNBQdlfb2Xm0tXg5WkVQooKG7yk8O7rOvwb2XSDWntnGjMxMOc6mo +Bm96VZBgLcuN9sXrJYnx1WDFLtU/QSrcaIrEwkkt+4y1CgJjtp/kRhfbXTsm +tnzGehk6+gFB3Oiw8/kbCR+rsJmtvXTQKjeiS6vR+R5UYZfCbD0DDh70t4ev +9eH5KlzNcbNdSYAH5Wo1q9xhrcLkZ6BwcT8PkuY+vOm0WSW2Pmr3+OgtHkTO +3vmc8285/nR6dmloiQe96RsL++lfhtXAg3gowot6PflfvthXhq3qe5gPK/Ai +Kv1Y9smRUpw6KxEup8WLXK3etRVBKWaUp3VGX+VFOmN2AiFrn/Cwplnr33xe +NDEzmyh3swivakyO8FvzoW3hYh8G6UWYNtunHOjGh4z3nqyMaCzE1uSxxIOP ++FDhrQ9ja3KFWFzzHUdoCR8KXrktVz+Wj++JF30a2MaP5DatfbxhkYvtyGY8 +BjP86GKSXPV2ci7Wzm1rRmQBFKFt0dle+BG/4Fk3SZIWQGuBJSsa/B/xb1Cl +VVgJoHou74OU1hzcpy26u6FXADFlZBkS3jnYf2cRI3ZNACkbDlveVsjBdc5z +x5aFBVF8uJZv/8NsbN5Skmd3QRB1y3E8OhuWiSdy7Btqfwoi5HA9u3wyA7sM +hjWEUYXQu6wvbbK6GfhnliaVrCyE7iiHCaxtSscb5wKi0H0hJHyI51Wseyrm +evH8lqmUMLpwcltu3+VknK/prKj4XARNLSypuVQlYesH0SKkehHkGd2MqVJJ +WLOSSeTTugiK7/Ot1xp/he+tykQm2WxDufVt1UatCVhWU/soVVMUddACW30j +XuCHzJin8j9RtGCqNpB3Kh7XML2bqngrinjipiYmeOOw6No+6t1eUaQ0/HJR +pPM57lqROrGLQkcnpU4xGT2LwYF/75z9oU5HN+3YKL7mz3Bjr8aonw0dhWcV +CeQJRWPPhxxpkSF0lLVoLznR+xQbXPdbtH5HR01qYntE4iMxOYVwXSyhoxmv +dnXDCxF4H3cct+BnOtpcFahzn/4Ez3Kyp3qW05E5z+3ka/gx3t54ZGkknY6e +xfd+atIKw9H2c5PnAumoU1qrXbkqBL+cja0O0acj3pyUyVidB1jG8drQ7IYo +OqVB3cRcF4A//iUM2BNEUUT1baGrJ/ywvgBSM94lilqM+hQbG33w/kH7sR2p +2xA91y/cNtET3yLN294W3obiao2x0hs3bLUh5OPkK4IEB0RnNlKdsbBxsq/G +d2G0a/SrWvSFG7hHWGax4LAw8umQ6RCpNMDz+UkpUgxBJL9lwI51tzLQnoeK +v7ISRJ3zvi9pK+Ygb/IvaKZaAHlE6ny5oXwT3jpEHW9N4EcbXnfiXu5xgfmA +GT/ZrfzIxy7dvl3uLrjJa5guh/KhSrHgoBc0X7BY+zZdE86L/KMlbqo+8oeP +rwqu+wv/b1+UEvNWriAojXdxUUndimqXZ2RZ2UNBTzIrNbyDB129KmebvxEB +ocbCfd7nuZGuhNs5v4NP4Qf/qJM9OzeSGag0NPaMgpn1Zgm/PBqaNLmgOrn6 +DCx2JXbdEqahL5vf7yo48BwaHgh4zr7agtJq/2z3d4sF8Yq59N9btyD7Q+Ec +9KV4aGFeX2pipSKD1f5/k/sSQFApiSodsBkp5MrOFzi/hPOK6RO3ODajlaff +pmRWEmG676YLXZiCisgeXytckqA37Idy3BUyStzN154lkQxDp/1jfy1xokDj +rJb45mRoHs/caRjCiU5Hj9a7yr4F/3/5KpmfONCcuH6F3MA7EC+r1Zc6yI66 +tMexQEgqdFJCQjVH2VDZVZ9SFtX3QA6xULR7yIYeZuQWDoanQeNP2rOMb6xI +Wk00K0I7E/haBjUSk1gQ5XxBuvd8JkSa0ufkzFnQgtfJ9/YJWTAbaEvaT2VB +ViMVJpKe2WCxR97ukRcJKcgsG6x/zYH3Fy4FzTluQnUfLbVzgnNh90OezD0B +TEizWr5y53AusLU0PjbSZ0LZnataCSp50D8YUmnAy4SiVyPh4WgeiFHH7aMN +GHAFatVtDhZATkHA5WPv14HxRXGv0HwReDXWuia9WQPn/vWsx8eKwVTPITFC +bw3Gp78osCUUg4V2T++ruVVooNnIL+h9grRkBRIrWoXYM893NiaXwM470cVy +v5Zh/wgz/b45hn/3w/w2OS6BQrHZvGIqhgz5TgXlnUsgHZFRNbyKwfPuvUN8 +3xaB61X6/kQDArbfCjbpPrMI/4zN+xkzBJzWIdWS9RZgIDtLFu+tgC3t7eMp ++vPw8ubFqoMFVSBLOtFbc+UXxJ/nzIwaqoIj1cVDSyuTEKOb+2yavRrW+Btj +5sImIVyMfOOFeTW8SRlQR8U/waclj3t9tRoKxOHcisgEWCtutizRrIHHXD5m +95jHQHLu06p6RR0wJosjp4IHwbPxiP/idB1wee4PsWkcgM739dRMoS/wNLLJ +RpBnAEJs+iTF//sCYuKT+SIv+2Cud82AXawe/pNjuSRf0w1l1Wqv2+81gMak +7UkD/XY4F1egZ6/WDNfTiLhhmQrIdYevUjbNwNf4K1tungDqmRrLofBm8Dyx +r+yoK4ZyWtdtk4lmCMrffJ3/XTHwHvEwij/RAjGC2dzeSjngURh7x3etBfTm +C1nPGDrj40k9jYbmbSB/N7/Jub8czwVk2lY7tIFju6HSwW8VOOaaH0PDrw0a +JIzYer9X4ondu/fKZrbBHLtHXdRENX5Q6POUxNIOudKW2pYjdbi2cadFYVY7 +sBd6s+W1tOBjKy4T4uxfoSdCjpys0I2PGvCQlvK6wGWY9jK5cQQ/suacX63r +AqWn7SzV/0ZwtwvT0MZAFywbOM+X7hrFdgkzxRxs3fAndNJGPXgUP5r94rzt +TDd0W8x9vnL4O+5+4jdy5E83eFNZqvMyxrBd52J5hEovuHVe5x28PoEfW3b5 +KBb0w/erZufO+03jwClNGG/oh3+zbwOiM6ax153X63Ej/bD1mPtqdtc0dox0 +uMtOHQCZDqp70K4ZbFhDuj14ZQCqy0UncOsMpu5RvBrKMwgNCzpMRyhz+NHG +A4MJhyFQPqD25JjuPK4xFN1szPMNzjIbBF1+voCnxfm82mJHIV+/+LaT+zJ2 +ub3L+jH/OHjsfSTa27SGu/ppJra1E+DX1ikRxb6Bre5o/mDX/wXs/ndVVy4w +EZW7VEMqWWeAL8LYffEDMyHNWTKRrDsHx/fHHfXp3ESIltw4yvpgHqjGJsmk +IRLBtLYp1XnkNwTwfRG79ZOFWD5ZerFaahHcpMRSHFpZiT5lSxEp/yVAK8mf +5kvYiJtmNG6J/j/AldgyxhbNTgg9/W7OIroCvwQvBpiYchCZFokpC+6roFy9 +Rm4T4iTMDnrr1pauwQuSZAR7LSeRc9FBQv3fXwiLe6K+YkcmVshHSEWm6zBF +PHQt38pFmLRqqIjGbIBGtm3xlfdcBFmDq7zkxQYkvD+jsJzORZQn9544n7QB +RUa2ssFZXISi+x3ruMwN8ByNykvL5SKo2wtChao3wPIb565fZVxEnb3SKN/v +DVBMjcw+1c5FIA7ZcKo+A7hlak41/OUiVv5bEc48yYCPjFqG0QYXkdVX88bA +jAHrr48daGeiEPQs20+hlxjgNWVl1M1KIf6ZJo+T7zDg4JZA4YEtFKIgaftB +9rcMMPew1W2VpBCOm2dr3qYxwFn8ZrOBNIWQdisz0clhgBLdb6xOhkI81btw +LaCEAXm6NpjYTSGc52MjSe0M6F52VUhVpRByFnb0pG4GCHjLKEmoU4hvVWqp +hwcZkBwu/jlWk0IYx3SX3f/5v76BoJchWhSCY9O74+KzDHBMPTLGrE0h8A23 +DmKRAeES3z+561AI1686llZrDLh1IVxyVpdC/P8/gNPnnLbZnKAQ/wM8aBta + + "]]}, Annotation[#, "Charting`Private`Tag$4212189#4"]& ]}}, {}}, { + DisplayFunction -> Identity, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None}, DisplayFunction -> Identity, DisplayFunction -> Identity, + Ticks -> {Automatic, + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + MachinePrecision, RotateLabel -> 0]}, + AxesOrigin -> {0, -4.225253979208682}, FrameTicks -> {{ + Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> + MachinePrecision, RotateLabel -> 0], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, + DisplayFunction -> Identity, + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, + "ClippingRange" -> {{{-1.999999918367347, + 1.999999918367347}, {-3.597953707140854, + 7.693451190080213}}, {{-1.999999918367347, + 1.999999918367347}, {-3.597953707140854, 7.693451190080213}}}}, + DisplayFunction -> Identity, AspectRatio -> + NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, + AxesLabel -> { + FormBox[ + TagBox["t", HoldForm], TraditionalForm], + FormBox[ + TagBox[ + "\"\\!\\(\\*StyleBox[\\\"\[Chi]\\\",FontSlant->\\\"Italic\\\"]\\)\"", + HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, + CoordinatesToolOptions -> {"DisplayFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& )}, DisplayFunction :> Identity, + Frame -> {{False, False}, {False, False}}, + FrameLabel -> {{None, None}, {None, None}}, + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0], + Method -> { + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None}, PlotRange -> {All, All}, PlotRangeClipping -> True, + PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}}, + Ticks -> {Automatic, Automatic}}], + FormBox[ + FormBox[ + TemplateBox[{ + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"", + "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend", + DisplayFunction -> (FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + StyleBox["h", { + GrayLevel[0], FontFamily -> "Arial"}, Background -> + Automatic, StripOnInput -> False]}, { + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.880722, 0.611041, 0.142051], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.560181, 0.691569, 0.194885], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + Opacity[1.], + RGBColor[0.922526, 0.385626, 0.209179], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> { + "Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"], + Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic, + StripOnInput -> False], TraditionalForm]& ), + InterpretationFunction :> (RowBox[{"LineLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"Opacity", "[", "1.`", "]"}], ",", + + TemplateBox[<| + "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>, + "RGBColorSwatchTemplate"], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", + RowBox[{"LabelStyle", "\[Rule]", + + TemplateBox[<|"color" -> GrayLevel[0]|>, + "GrayLevelColorSwatchTemplate"]}], ",", + RowBox[{"LegendLabel", "\[Rule]", "h"}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), + Editable -> True], TraditionalForm], TraditionalForm]}, + "Legended", + DisplayFunction->(GridBox[{{ + TagBox[ + ItemBox[ + PaneBox[ + TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, + BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], + "SkipImageSizeLevel"], + ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, + GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, + AutoDelete -> False, GridBoxItemSize -> Automatic, + BaselinePosition -> {1, 1}]& ), + Editable->True, + InterpretationFunction->(RowBox[{"Legended", "[", + RowBox[{#, ",", + RowBox[{"Placed", "[", + RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output", + CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, { + 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9, + 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, { + 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9, + 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9}, + 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9, + 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9, + 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9}, + 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9, + 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9, + 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9}, + 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9, + 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9}, + 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9, + 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9}, + 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9, + 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9}, + 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9}, + 3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9, + 3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9}, + 3.887188089249675*^9, {3.887188126546927*^9, 3.887188177721342*^9}, { + 3.8871883124067802`*^9, 3.8871883283898573`*^9}, 3.8932380037534246`*^9}, + CellLabel->"Out[55]=",ExpressionUUID->"42596919-1903-49e5-8e75-1a532b575569"] +}, Open ]] +}, Open ]] +}, Open ]] +}, +WindowSize->{628.5, 1010.25}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"13.2 for Linux x86 (64-bit) (January 31, 2023)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 318, 6, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], +Cell[879, 28, 209, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], +Cell[CellGroupData[{ +Cell[1113, 35, 166, 3, 50, "Section",ExpressionUUID->"c6615333-57fa-470a-9d07-45b7998853ef"], +Cell[1282, 40, 1292, 34, 91, "Input",ExpressionUUID->"80831edd-bcaa-4fc0-b1cf-e561a87ed645"], +Cell[CellGroupData[{ +Cell[2599, 78, 3285, 61, 111, "Input",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"], +Cell[5887, 141, 29139, 618, 234, "Output",ExpressionUUID->"7e2943f8-381c-42b0-8f9b-5bee0ef91468"] +}, Open ]], +Cell[CellGroupData[{ +Cell[35063, 764, 1662, 39, 144, "Input",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"], +Cell[36728, 805, 22174, 481, 186, "Output",ExpressionUUID->"22fc8cc4-070f-4958-a56e-3747a3946f91"] +}, Open ]], +Cell[CellGroupData[{ +Cell[58939, 1291, 3554, 72, 186, "Input",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"], +Cell[62496, 1365, 4296, 64, 220, "Message",ExpressionUUID->"0a6c061e-9d22-469f-9a77-bdafbf23ad0b"], +Cell[66795, 1431, 4298, 64, 220, "Message",ExpressionUUID->"373d98dd-b1a2-4d6f-95ae-eed0eb8466ed"], +Cell[71096, 1497, 4310, 66, 306, "Message",ExpressionUUID->"dd61bf6b-294b-4bed-aba1-2e9c5e3c51b1"], +Cell[75409, 1565, 494, 11, 22, "Message",ExpressionUUID->"e21c2683-2071-4eaf-8b43-f1a927c53e45"], +Cell[75906, 1578, 21815, 477, 191, "Output",ExpressionUUID->"ff6a7053-cfa6-438c-814c-b29d04a9cf5a"] +}, Open ]], +Cell[97736, 2058, 2498, 66, 75, "Input",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"], +Cell[100237, 2126, 483, 8, 22, "Input",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"], +Cell[CellGroupData[{ +Cell[100745, 2138, 2207, 48, 119, "Input",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"], +Cell[102955, 2188, 38371, 715, 223, "Output",ExpressionUUID->"fd2b4eb1-d3d0-47e3-9856-c74924a73143"] +}, Open ]], +Cell[141341, 2906, 2524, 67, 75, "Input",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"], +Cell[143868, 2975, 490, 8, 22, "Input",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"], +Cell[CellGroupData[{ +Cell[144383, 2987, 1962, 44, 83, "Input",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"], +Cell[146348, 3033, 51438, 932, 181, "Output",ExpressionUUID->"e027c86a-5f73-49af-9682-15a84fa4ac67"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[197835, 3971, 283, 4, 40, "Section",ExpressionUUID->"af69f70f-b3b9-4794-8398-01134650a149"], +Cell[198121, 3977, 2232, 60, 135, "Input",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"], +Cell[CellGroupData[{ +Cell[200378, 4041, 2213, 56, 126, "Input",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"], +Cell[202594, 4099, 22045, 413, 288, "Output",ExpressionUUID->"9917cd53-ba22-4159-9239-28c8a5b2c68a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[224676, 4517, 2283, 58, 126, "Input",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"], +Cell[226962, 4577, 13931, 278, 288, "Output",ExpressionUUID->"9950232b-1eb6-4bf2-a1cb-424ab941d88b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[240930, 4860, 2405, 61, 142, "Input",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"], +Cell[243338, 4923, 24259, 450, 288, "Output",ExpressionUUID->"4fd8761c-1544-4b9d-b5b4-9faa986a6608"] +}, Open ]], +Cell[CellGroupData[{ +Cell[267634, 5378, 5365, 129, 175, "Input",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"], +Cell[273002, 5509, 35446, 648, 254, "Output",ExpressionUUID->"f0d6a512-a16b-45e4-a62c-27480dbdbe2d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[308485, 6162, 4865, 118, 174, "Input",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"], +Cell[313353, 6282, 5389, 80, 160, "Message",ExpressionUUID->"50c6b3be-692b-4bb3-b631-dd6ed0112f44"], +Cell[318745, 6364, 4526, 66, 151, "Message",ExpressionUUID->"1390bb82-7e0c-4a82-8be7-3aa0578e2c3d"], +Cell[323274, 6432, 52833, 934, 247, "Output",ExpressionUUID->"5632f44e-d2ee-4570-afa0-630f5721d24c"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[376156, 7372, 389, 12, 40, "Section",ExpressionUUID->"7bcdac80-37e1-4f66-bc64-b0d2db5bf4c3"], +Cell[376548, 7386, 670, 18, 39, "Input",ExpressionUUID->"18ba5487-e161-432a-b28e-40a5d59488df"], +Cell[CellGroupData[{ +Cell[377243, 7408, 155, 3, 41, "Subsection",ExpressionUUID->"732869ab-e280-4316-b799-ffab64c308f3"], +Cell[377401, 7413, 605, 17, 50, "Text",ExpressionUUID->"22825260-2ae9-4101-a1f7-3f6b1bfde9fc"], +Cell[CellGroupData[{ +Cell[378031, 7434, 2322, 64, 144, "Input",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"], +Cell[380356, 7500, 44903, 816, 190, "Output",ExpressionUUID->"f282764d-6683-431e-bd66-aff690b1329a"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[425308, 8322, 163, 3, 41, "Subsection",ExpressionUUID->"91682356-0150-4742-8ad7-87c14223ec68"], +Cell[425474, 8327, 712, 19, 54, "Text",ExpressionUUID->"6d8da3cb-bbd1-4fe2-a26c-2969b50861eb"], +Cell[CellGroupData[{ +Cell[426211, 8350, 3588, 81, 144, "Input",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"], +Cell[429802, 8433, 34814, 647, 193, "Output",ExpressionUUID->"632547c6-cf8a-4755-9e26-5f9a8c901698"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[464665, 9086, 212, 4, 41, "Subsection",ExpressionUUID->"b265c475-5c2a-4729-88fe-bb9de99d3c77"], +Cell[464880, 9092, 1079, 28, 68, "Text",ExpressionUUID->"78afd124-f9bb-430d-875b-072cdcafc777"], +Cell[CellGroupData[{ +Cell[465984, 9124, 3642, 82, 144, "Input",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"], +Cell[469629, 9208, 37930, 698, 194, "Output",ExpressionUUID->"18837f4b-03ee-4fc9-b362-36801a1721f3"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[507608, 9912, 259, 4, 41, "Subsection",ExpressionUUID->"5bc01cd0-6cca-49bc-b33d-929852f4376f"], +Cell[507870, 9918, 813, 21, 54, "Text",ExpressionUUID->"f88209d4-5087-4518-af4c-b36509976c37"], +Cell[CellGroupData[{ +Cell[508708, 9943, 3746, 83, 144, "Input",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"], +Cell[512457, 10028, 35544, 664, 194, "Output",ExpressionUUID->"42596919-1903-49e5-8e75-1a532b575569"] +}, Open ]] +}, Open ]] +}, Open ]] +} +] +*) + diff --git a/figs/F_higher_singularities.eps b/figs/F_higher_singularities.eps new file mode 100644 index 0000000..e3d6a7e --- /dev/null +++ b/figs/F_higher_singularities.eps @@ -0,0 +1,343 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Creator: cairo 1.15.4 (http://cairographics.org) +%%CreationDate: Wed Jan 19 13:55:17 2022 +%%Pages: 1 +%%DocumentData: Clean7Bit +%%LanguageLevel: 2 +%%Creator: Wolfram Mathematica 13.0.0.0 for Linux x86 (64-bit) (December 2, 2021) +%%BoundingBox: 0 0 360 221 +%%EndComments +%%BeginProlog +save +50 dict begin +/q { gsave } bind def +/Q { grestore } bind def +/cm { 6 array astore concat } bind def +/w { setlinewidth } bind def +/J { setlinecap } bind def +/j { setlinejoin } bind def +/M { setmiterlimit } bind def +/d { setdash } bind def +/m { moveto } bind def +/l { lineto } bind def +/c { curveto } bind def +/h { closepath } bind def +/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto + 0 exch rlineto 0 rlineto closepath } bind def +/S { stroke } bind def +/f { fill } bind def +/f* { eofill } bind def +/n { newpath } bind def +/W { clip } bind def +/W* { eoclip } bind def +/BT { } bind def +/ET { } bind def +/pdfmark where { pop globaldict /?pdfmark /exec load put } + { globaldict begin /?pdfmark /pop load def /pdfmark + /cleartomark load def end } ifelse +/BDC { mark 3 1 roll /BDC pdfmark } bind def +/EMC { mark /EMC pdfmark } bind def +/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def +/Tj { show currentpoint cairo_store_point } bind def +/TJ { + { + dup + type /stringtype eq + { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse + } forall + currentpoint cairo_store_point +} bind def +/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore + cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def +/Tf { pop /cairo_font exch def /cairo_font_matrix where + { pop cairo_selectfont } if } bind def +/Td { matrix translate cairo_font_matrix matrix concatmatrix dup + /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point + /cairo_font where { pop cairo_selectfont } if } bind def +/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def + cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def +/g { setgray } bind def +/rg { setrgbcolor } bind def +/d1 { setcachedevice } bind def +/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def +/cairo_image { image cairo_flush_ascii85_file } def +/cairo_imagemask { imagemask cairo_flush_ascii85_file } def +%%EndProlog +%%BeginSetup +%%BeginResource: font f-0-0 +%!FontType1-1.1 f-0-0 1.0 +11 dict begin +/FontName /f-0-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {-12 -14 908 692 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 73 /I put +dup 76 /L put +dup 82 /R put +dup 89 /Y put +dup 101 /e put +dup 109 /m put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca5d188dea508ed +e1b2455317d2f89946db9171817b252ef4aed3b4d1e2d956531eb1466794df0a360608df9ddca3 +31d2d2e2835dae9cd39f88612df7540cb9134838f4d1d7d0f988815e63e88d14438a2ae43b6c64 +be2dc4f7b2e0c6a08fddad8746441fd5ac6854ff0c5ab7f7aca25cf081d4002f9811a93d3cdd0e +00461c900c9e0c4f58969c6373636df5e12ca751b7e06a02b752e460d25a56e1b33dc0411ddd9e +7b458fb4ff92195044e45a4c4f7904a7044d8d7f650b213d98f76e83b77a688cc939916088b4f9 +316351e48f38913000572d64d4afabc0ac17fd4b7223a755f8b481993158b33f9a2524016d7477 +18ddb89457c416c0db81b77356fff18507f286362ac9e87ca0429ff2f1acf7da2c47c6bdeb8d3c +dc85780c28d652b255ed19df2c7f1c293e2b4bdf5edf4f16ac3e63826fc81a6bcebd904dbea152 +fd3b2185df087937c972d9c4a501a4c7f0991d1033d353df360f862b6d64d19957837efab9f754 +4b76f75fd04448d93f7ab3efdcd67a3b9b75470a0a773a7ddfec9008c973d8c459fcfc82947e61 +7c5140a933df404ce0206a24d9b6b6eed01d8b7eeee44aa93da77f3fbb1c99652e49426f7553c1 +13eb226edbfa600fb6ce98480d508f341eb46fe90bdc9e935d369104cf68e1435eef393cbe5a6a +efd5a9d8c610237e51e66ed3de56b37a7c59f9e3642aa04a2c3feb1b5abb201b93dea4435b152a +462dc36f44e1bfcf3ba187d9a9f70fa6beaf5d86c022ba6ebae51edaa5c2342996c0ddae2272de +8bac4e6ccd4c78fbec53c96b34f4331c65a2f71190129f4416757fb1c470e976533e1f06441616 +b5ff7a78767d4b03f77127ef23a399515d6872fbe8977e3964bec1cb24c25fec9b6cba05a3bf46 +be9af306047fabbb331681b6c868e4a4ee1deab5eb4b85a8eb6e1bfdf21879963c943083af8e41 +e8c6ff780f855a21a161365d196069e0ae48e5d0b919fc7739a8486c2c7a3d7e5e577d94444a88 +f74814b026e2daa92fff0388fb5daaa8ef72bd44483204465071e60635f799dd2db005d99abd51 +13861f361f8d668fe4096a495b88e511086498864a23f931cd6043a33d3d09682f051d001b3f95 +dbcfb6ad9568d4ccf870fe2b242b09cd5e0365dec74bc5b4ac844ca0f5d994762e9918c422741d +e6babf3da5b45853b89197b1b305b8842ba7a257615aa19d73450044339f90a351f4ee83288330 +7286c63001122838f16c75a11d404ea26e4ae1f27bc81979767804594b2bc71814cc25658dd8a0 +0709c062e5fb4f4478cb108f13bb74d8db95907f94a16b2953129862c3cae5b4643a42e99893a6 +d95b8d4f8ae8f8f287e7b822a9bd0f9c7a59b283baa4c396d52e6d4144261d6f79d9ba824c235d +60f9b23849684b89f610e3eb3d642f9113269e3639e1c69e19572609e94ad0bcc0e60000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-1-0 +%!FontType1-1.1 f-1-0 1.0 +11 dict begin +/FontName /f-1-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {29 -169 437 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 40 /parenleft put +dup 41 /parenright put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7 +41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7 +1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8 +412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b +ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490 +41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5 +d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b +3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827 +5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4 +b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070 +43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c +3d20720000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-1-1 +%!FontType1-1.1 f-1-1 1.0 +11 dict begin +/FontName /f-1-1 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {-6 -207 465 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 1 /uni03BE put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192 +3c6b565d778d9618b31789d664bb543a0e576f202df308890d53425311c0df16d70e7088bc233c +2aeafd23aed96e18251b90593258f09f68b68c844c8e5bf170e06e331e14147fa538f8473eeb1e +c84dbfec93c34173c11f0744da9bfa7cf6a3d8c4eb2a75eb71b49d69da4ade018689e722cfab11 +be4351efa968308dff1933cdf6da74c1d45ce31ed30cfd322f1554cf02839075c2488a6e43b89a +f24d9bd7595d4fc4c07d5aa69574f2b45a692e0305a31ca8496286dde55759bacec2cf519a550c +fc581758620e692c3d1f29b52b360ab757e8a4ed621b3b2c5ce883b037b9fd1b119dba66319bb2 +4706b3eb74ba54dfb209979bff3f44781327e8d4e7b20328f58cdea3284522496934f1cd89a9ab +8f825cc46c51daa2ea8f85719a90e312bb07457ba2739fe15e7f59e27a646521ff053df21c2edf +9d96735ee9d39d251bcf0113dc96ad03208d1ae62db8141146cfd99f59fcb8a10bdbf341def129 +fd5b55b7fe37f31eae75b5caf35814db82b954eeb9ce040e42be770590adeaa9a03b85f5c8e344 +bef5c97285dc20e725e2b0ecaea95a78cc672f11240e0fed510f9027f695fe53aecf49f9bdd51c +949743af735f932804173c4d9584652fc9184b875b8cf21b4af33bdcf8580ca4ce84b48a0a40b1 +9771faa53eb86add0076d818c9d10927b64117ce25af360fa0ef5061787ff063349478ead89981 +4641ebef5cebc2b444f7497c0f9638073d57ef29982e7efcd5421544ba5a737b3527d24db03842 +aa24c1f0c002b36b8656951b8f835f2dfd1d419cdcd2e490cc73162e9163805e9cf101f7d336ea +d0caa5b458789b0f625cc937389ec0a67f90c3c2640000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-2-0 +%!FontType1-1.1 f-2-0 1.0 +11 dict begin +/FontName /f-2-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {0 -12 363 715 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 105 /i put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192 +3c6b565d778d9618b31789d664bb543a0e576f252e8520c2d0698c337b75c663f61d3deead2935 +71dc9621dfa39dc5f30363291678a7d9dfdeaa2de43d090fdf9945858d9b5b3a5df2a5865b3028 +dc4b7ac7fe8270eda10a09d5669f164eb5fa6e4ca848129c7f59349ba575bbdf02dfbd8f5ed330 +d9554dd1eb8b856cdef62fe801b421cc107aa678dbf1124aab4cbde909fd8611cafc587bb34560 +f3428a01d0fd050e1c1ae785787bd5c142500e345326b240d6d37c6801da6061e4be60b75cc4a0 +06ffe4ca26e456a9313b7f02bd60218dde34c309130b9ee274c413f042863100acb2ad54244397 +b1ccf64df275ba901ee414216a2d7c659e80f9eb06bcb6f8d4b9e005690000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%EndSetup +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 0 0 360 221 +%%EndPageSetup +q 0 0 360 221 rectclip +1 0 0 -1 0 222 cm q +0 g +0.36 w +0 J +0 j +[ 2.88 2.88] 0 d +3.25 M 0.18 119.551 m 330.613 119.551 l S +BT +10.08 0 0 -10.08 336.375 122.110031 Tm +/f-0-0 1 Tf +(Re)Tj +10.8 0 0 -10.8 348.045 122.110031 Tm +/f-1-0 1 Tf +(\()Tj +/f-1-1 1 Tf +<01>Tj +/f-1-0 1 Tf +[()-29(\))]TJ +ET +Q q +165 17 1 204.762 re W n +0 g +0.36 w +0 J +0 j +[ 2.88 2.88] 0 d +3.25 M 165.398 221.66 m 165.398 17.441 l S +Q q +0 g +BT +10.08 0 0 -10.08 153.009375 9.12 Tm +/f-0-0 1 Tf +(Im)Tj +10.8 0 0 -10.8 165.830625 9.12 Tm +/f-1-0 1 Tf +(\()Tj +/f-1-1 1 Tf +<01>Tj +/f-1-0 1 Tf +[()-29(\))]TJ +ET +Q q +164 17 3 53 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 165.398 68.496 m 165.398 -45.668 l S +Q q +164 169 3 52.762 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 165.398 170.605 m 165.398 284.766 l S +Q q +0 g +162.477 65.574 5.84 5.84 re f +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 162.477 65.574 5.84 5.84 re S +162.477 167.684 5.84 5.844 re f +162.477 167.684 5.84 5.844 re S +0.36 w +165.398 68.496 m 173.66 68.496 l S +BT +10.08 0 0 -10.08 177.659063 71.055015 Tm +/f-2-0 1 Tf +(i)Tj +10.8 0 0 -10.8 181.319063 71.055015 Tm +/f-1-1 1 Tf +<01>Tj +7.2 0 0 -7.2 186.036563 72.761265 Tm +/f-0-0 1 Tf +(YL)Tj +ET +Q Q +showpage +%%Trailer +end restore +%%EOF diff --git a/figs/F_higher_singularities.pdf b/figs/F_higher_singularities.pdf Binary files differdeleted file mode 100644 index 12aa35b..0000000 --- a/figs/F_higher_singularities.pdf +++ /dev/null diff --git a/figs/F_lower_singularities.eps b/figs/F_lower_singularities.eps new file mode 100644 index 0000000..ae7d570 --- /dev/null +++ b/figs/F_lower_singularities.eps @@ -0,0 +1,270 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Creator: cairo 1.15.4 (http://cairographics.org) +%%CreationDate: Wed Jan 19 13:55:11 2022 +%%Pages: 1 +%%DocumentData: Clean7Bit +%%LanguageLevel: 2 +%%Creator: Wolfram Mathematica 13.0.0.0 for Linux x86 (64-bit) (December 2, 2021) +%%BoundingBox: 0 0 360 221 +%%EndComments +%%BeginProlog +save +50 dict begin +/q { gsave } bind def +/Q { grestore } bind def +/cm { 6 array astore concat } bind def +/w { setlinewidth } bind def +/J { setlinecap } bind def +/j { setlinejoin } bind def +/M { setmiterlimit } bind def +/d { setdash } bind def +/m { moveto } bind def +/l { lineto } bind def +/c { curveto } bind def +/h { closepath } bind def +/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto + 0 exch rlineto 0 rlineto closepath } bind def +/S { stroke } bind def +/f { fill } bind def +/f* { eofill } bind def +/n { newpath } bind def +/W { clip } bind def +/W* { eoclip } bind def +/BT { } bind def +/ET { } bind def +/pdfmark where { pop globaldict /?pdfmark /exec load put } + { globaldict begin /?pdfmark /pop load def /pdfmark + /cleartomark load def end } ifelse +/BDC { mark 3 1 roll /BDC pdfmark } bind def +/EMC { mark /EMC pdfmark } bind def +/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def +/Tj { show currentpoint cairo_store_point } bind def +/TJ { + { + dup + type /stringtype eq + { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse + } forall + currentpoint cairo_store_point +} bind def +/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore + cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def +/Tf { pop /cairo_font exch def /cairo_font_matrix where + { pop cairo_selectfont } if } bind def +/Td { matrix translate cairo_font_matrix matrix concatmatrix dup + /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point + /cairo_font where { pop cairo_selectfont } if } bind def +/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def + cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def +/g { setgray } bind def +/rg { setrgbcolor } bind def +/d1 { setcachedevice } bind def +/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def +/cairo_image { image cairo_flush_ascii85_file } def +/cairo_imagemask { imagemask cairo_flush_ascii85_file } def +%%EndProlog +%%BeginSetup +%%BeginResource: font f-0-0 +%!FontType1-1.1 f-0-0 1.0 +11 dict begin +/FontName /f-0-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {0 -14 908 692 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 73 /I put +dup 82 /R put +dup 101 /e put +dup 109 /m put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cabe8722c0ba224 +7e4445af50cf2457d0f320e3c97746456087766b4bf11115560ce328711eca3bd110d9edf8f723 +7690411035c2d2a4529eceb3758e9dfdf69937c82634682ddec349213e6cdca1236ff1e59fd7ad +c509a9f3c257841b8053a86b38d617d963b24dfb3767bfc9b4af0288c9b0b8e2572d16601fc539 +50419b779278a6ee6aa2c6f6e88f16020db6e348845fd5b2cd9ac2bb9cc9caa74bac30ab845da5 +f651fffe8b245f374569b60b2520d5b091c2895daa06f7cacffa423bc29ca3a939660aef03f4ba +db6c051bab9e97aa6f8b3423aee96ff61f682293fdb336288dbb885c46c5c6d7ca5c5a0cf84a99 +4b1ef4f098cdceee4559f76b71375ac1e48de97bc26d04e944bd8f7723aaca9bdeb0a55b4d8e30 +b9169a69c8b151f7e913240de4e7614c0ce99885f8de5ae8d0c7602bdba359c79247126be04fa0 +4837a74d4b1829aba24a81ace9429198af5c03ce00c992b95216dab9619da47da7550eca0ff6cd +0ebc575021f16decb7f0d945e2c73764f06e1781806305825422f0f7ad20cee7de432128300693 +599dbdafc575e2f472140a927b4552e1cd714bd09871feab74613bf38b4117e1b2c870998d1584 +50ae3c9c1b184d5529d7092e102d713e1e4a8d02eb0fb3edc7ef054b7fbe323e488fbcf700dac6 +058c3eeb18d59888e42247d792f3cff694e14a0b69965054b8e811dc8ae391c9be575648546fef +0365caa0b5334da60343169e20c6b1b8d51c5fbe17cfca3ec7f3bd1c61d09838b717c08ccfcbda +2a43ce0a730162c3285d5185e5fa3f8c6aaa204a403cdae550e565dcaf3816e4f19a66fee5bb4d +e532d49827c5c811b8c6effa17be7f7f897390f48ca0d11588bc17af153bec904639fcce603e9a +fb7417deeba06beb6901c0fba586004121e1aa2dcab890d83326fd7ffca74c35e64a22c9434ef6 +7d7496180137f9c8705089856e54a802d541062de40941e37319ed189b6dd27b69783befae9725 +88dacdb39bfe000a0789e90bfdcc7a2187dbff723ba8a74bb2ececfee0a9ea34b01434890000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-1-0 +%!FontType1-1.1 f-1-0 1.0 +11 dict begin +/FontName /f-1-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {29 -169 437 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 40 /parenleft put +dup 41 /parenright put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7 +41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7 +1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8 +412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b +ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490 +41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5 +d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b +3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827 +5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4 +b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070 +43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c +3d20720000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-1-1 +%!FontType1-1.1 f-1-1 1.0 +11 dict begin +/FontName /f-1-1 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {-6 -207 465 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 1 /uni03BE put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192 +3c6b565d778d9618b31789d664bb543a0e576f202df308890d53425311c0df16d70e7088bc233c +2aeafd23aed96e18251b90593258f09f68b68c844c8e5bf170e06e331e14147fa538f8473eeb1e +c84dbfec93c34173c11f0744da9bfa7cf6a3d8c4eb2a75eb71b49d69da4ade018689e722cfab11 +be4351efa968308dff1933cdf6da74c1d45ce31ed30cfd322f1554cf02839075c2488a6e43b89a +f24d9bd7595d4fc4c07d5aa69574f2b45a692e0305a31ca8496286dde55759bacec2cf519a550c +fc581758620e692c3d1f29b52b360ab757e8a4ed621b3b2c5ce883b037b9fd1b119dba66319bb2 +4706b3eb74ba54dfb209979bff3f44781327e8d4e7b20328f58cdea3284522496934f1cd89a9ab +8f825cc46c51daa2ea8f85719a90e312bb07457ba2739fe15e7f59e27a646521ff053df21c2edf +9d96735ee9d39d251bcf0113dc96ad03208d1ae62db8141146cfd99f59fcb8a10bdbf341def129 +fd5b55b7fe37f31eae75b5caf35814db82b954eeb9ce040e42be770590adeaa9a03b85f5c8e344 +bef5c97285dc20e725e2b0ecaea95a78cc672f11240e0fed510f9027f695fe53aecf49f9bdd51c +949743af735f932804173c4d9584652fc9184b875b8cf21b4af33bdcf8580ca4ce84b48a0a40b1 +9771faa53eb86add0076d818c9d10927b64117ce25af360fa0ef5061787ff063349478ead89981 +4641ebef5cebc2b444f7497c0f9638073d57ef29982e7efcd5421544ba5a737b3527d24db03842 +aa24c1f0c002b36b8656951b8f835f2dfd1d419cdcd2e490cc73162e9163805e9cf101f7d336ea +d0caa5b458789b0f625cc937389ec0a67f90c3c2640000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%EndSetup +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 0 0 360 221 +%%EndPageSetup +q 0 0 360 221 rectclip +1 0 0 -1 0 222 cm q +0 g +0.36 w +0 J +0 j +[ 2.88 2.88] 0 d +3.25 M 0.18 119.551 m 330.613 119.551 l S +BT +10.08 0 0 -10.08 336.375 122.110031 Tm +/f-0-0 1 Tf +(Re)Tj +10.8 0 0 -10.8 348.045 122.110031 Tm +/f-1-0 1 Tf +(\()Tj +/f-1-1 1 Tf +<01>Tj +/f-1-0 1 Tf +[()-29(\))]TJ +ET +Q q +165 17 1 204.762 re W n +0 g +0.36 w +0 J +0 j +[ 2.88 2.88] 0 d +3.25 M 165.398 221.66 m 165.398 17.441 l S +Q q +0 g +BT +10.08 0 0 -10.08 153.009375 9.12 Tm +/f-0-0 1 Tf +(Im)Tj +10.8 0 0 -10.8 165.830625 9.12 Tm +/f-1-0 1 Tf +(\()Tj +/f-1-1 1 Tf +<01>Tj +/f-1-0 1 Tf +[()-29(\))]TJ +ET +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 0.18 119.551 m 165.398 119.551 l S +169.527 119.551 m 169.527 118.453 169.094 117.402 168.316 116.629 c 167.543 + 115.855 166.492 115.418 165.398 115.418 c 164.301 115.418 163.25 115.855 + 162.477 116.629 c 161.703 117.402 161.266 118.453 161.266 119.551 c 161.266 + 120.645 161.703 121.695 162.477 122.469 c 163.25 123.246 164.301 123.68 + 165.398 123.68 c 166.492 123.68 167.543 123.246 168.316 122.469 c 169.094 + 121.695 169.527 120.645 169.527 119.551 c h +169.527 119.551 m f* +Q Q +showpage +%%Trailer +end restore +%%EOF diff --git a/figs/F_lower_singularities.pdf b/figs/F_lower_singularities.pdf Binary files differdeleted file mode 100644 index bfd76b5..0000000 --- a/figs/F_lower_singularities.pdf +++ /dev/null diff --git a/figs/F_theta_singularities.eps b/figs/F_theta_singularities.eps new file mode 100644 index 0000000..cba0e16 --- /dev/null +++ b/figs/F_theta_singularities.eps @@ -0,0 +1,374 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Creator: cairo 1.15.4 (http://cairographics.org) +%%CreationDate: Tue May 16 17:20:36 2023 +%%Pages: 1 +%%DocumentData: Clean7Bit +%%LanguageLevel: 2 +%%Creator: Wolfram Mathematica 13.2.1.0 for Linux x86 (64-bit) (January 31, 2023) +%%BoundingBox: 0 0 360 220 +%%EndComments +%%BeginProlog +save +50 dict begin +/q { gsave } bind def +/Q { grestore } bind def +/cm { 6 array astore concat } bind def +/w { setlinewidth } bind def +/J { setlinecap } bind def +/j { setlinejoin } bind def +/M { setmiterlimit } bind def +/d { setdash } bind def +/m { moveto } bind def +/l { lineto } bind def +/c { curveto } bind def +/h { closepath } bind def +/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto + 0 exch rlineto 0 rlineto closepath } bind def +/S { stroke } bind def +/f { fill } bind def +/f* { eofill } bind def +/n { newpath } bind def +/W { clip } bind def +/W* { eoclip } bind def +/BT { } bind def +/ET { } bind def +/pdfmark where { pop globaldict /?pdfmark /exec load put } + { globaldict begin /?pdfmark /pop load def /pdfmark + /cleartomark load def end } ifelse +/BDC { mark 3 1 roll /BDC pdfmark } bind def +/EMC { mark /EMC pdfmark } bind def +/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def +/Tj { show currentpoint cairo_store_point } bind def +/TJ { + { + dup + type /stringtype eq + { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse + } forall + currentpoint cairo_store_point +} bind def +/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore + cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def +/Tf { pop /cairo_font exch def /cairo_font_matrix where + { pop cairo_selectfont } if } bind def +/Td { matrix translate cairo_font_matrix matrix concatmatrix dup + /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point + /cairo_font where { pop cairo_selectfont } if } bind def +/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def + cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def +/g { setgray } bind def +/rg { setrgbcolor } bind def +/d1 { setcachedevice } bind def +/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def +/cairo_image { image cairo_flush_ascii85_file } def +/cairo_imagemask { imagemask cairo_flush_ascii85_file } def +%%EndProlog +%%BeginSetup +%%BeginResource: font f-0-0 +%!FontType1-1.1 f-0-0 1.0 +11 dict begin +/FontName /f-0-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {-12 -14 908 692 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 48 /zero put +dup 73 /I put +dup 76 /L put +dup 82 /R put +dup 89 /Y put +dup 101 /e put +dup 109 /m put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca40352c6e2284e +344947523a70f7b109147467f7576cb1df156dca2f25ccb577c1669626620a113ccdc0d69bb530 +dcedcb09d669e42789d3d1f1eb2fba73343f65132cb03065d412c4d987b79778555f98cbc72ab7 +18a72c35e371bf684a718b599d9f12c1a856afb05fa3bd876d6a55dcc6279feec01485b499c3da +d50b200814e31ce340178663202f0a0324b15a23d545a665ada375c999b9af688f6f64738c2b03 +3fad0ff51c135ab5fc976cac8f6ee6fd117af76aede659c3d7c3ef848e783a3d7fc2ffd6dfb65d +6fec08c4a48386ae22093696e4a4149206687406201494f7c92d83695ede02da0ec2efc745388b +d4e96b9bf02196c1313f7b64670b3012e1b26b62b4c4398f62988c452011a3012866807ac3e958 +f6a33e22de6dad25663512af2f744cb4b2bccf96491c7dabfa4a6f3809714ce5e12c0ec56411de +8d2d1ce34f9869137188615c0f4fbdfbea4b6aa825293167df8a44ecd5367cc0d134374c602f68 +cb24646d0a40cd42b9eaaa594b27274ae56eca9966b295b52c551e9431db92a8490105b9fca3cf +abf2e646e6178f99068ffc46e80d0e6b91f6f7753ef194c42e47f2e32cfdbeff85b184ae87b96c +ba03c00d2bb80c124412d6eac22d919a886efaafd1e1f0539f0b2277d7a3a570c352d18e8b9098 +262a6012482668a2836e6c631e98f1ffdfbd7e6a8327c434da366e42b10b3a04e6020dbad97dbf +44a4eeb858298517e1b653d5719207f977d26cb9faf9285db28ec7bb55ecdf88173ed6a7542538 +75b780cffa546283ca777009c8bde4c70cd590dd3eca81b89e295c43771d95b90337e38f8f9d62 +501c3f0250ee10607517107eb9b8686aa2b2e73618e6ec508658efdfd4a9fbeff0a5f794ecb851 +81b07fb69e57d0ba45b34b1ddf3985403bf1ddbe9e24e73214cb9e3417f1569784c7585e54ce17 +993a0b1834c6e8641e48f9d2ed82931b358ce1638f893f198549802d03b5f77c30cdb701565094 +9cbc86327e59767775ffe0232e8fb09d9a865d66031371a7c4f279e83b7bbd2a9d3d5c04b876de +303044b11569247c0a341892b60d49bf5a3d90cff8ecb498d5221203b27e9f7a0e2a0f5c83b803 +141289b187e0e40330f366ffe1889280fe6e24c8fe248cdd7b505c38a12f9aea4e0604d3a39b85 +dfa73f752e4deea83932b5b06717fe4ff53bc029968c48bf2eb97e7a4e0e462e6524fa833c2544 +99918cfc9b5c58f63e8bafb50d95ca777708fb85e9fd4babeb223ba13b0d5325efaf7813ead314 +ba40c2317c875af7430deaab519f75944b416da03bc21b407842090e3499d799ed64c606ae45cc +de54f08502d814e5cd8cb51c31d0c7c591ea9e77342183be87d82d0bdbccf16c8edef1c1499d14 +4bff2d5ba6173f20939c2f5662bdb688061117662e55fa0d8aa7080bdc88b7a24b462ccffc833e +1e75fd5537be5f7e7079349eacdec1709dd1889595a5092327dbbce7a3a8fca00d74fce608e932 +9721f45d89f7ccc9ee55a8f4082b95ef9fe1787ce123cdddbb83af12376b602e43b5a8cfcf4550 +0e418a92789eea9e01719ad69ffd7ed668660165e0d959ec6695fac6f428d6d777d8610000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-1-0 +%!FontType1-1.1 f-1-0 1.0 +11 dict begin +/FontName /f-1-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {29 -169 437 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 40 /parenleft put +dup 41 /parenright put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7 +41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7 +1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8 +412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b +ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490 +41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5 +d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b +3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827 +5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4 +b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070 +43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c +3d20720000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-1-1 +%!FontType1-1.1 f-1-1 1.0 +11 dict begin +/FontName /f-1-1 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {28 -13 453 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 1 /uni03B8 put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192 +3c6b565d778d9618b31789d664bb543a0e576f202df308890d53425311c0df16d70e7088bc233c +2aeafd23aed96e18251b90593258f09f68b68c844c8e5bf170e06e331e14147fa538f8473eeb1e +c84dbfec93c3410e50135635b99de6891224a561e7c815e270995932d4ca76c8cc14b02767bb66 +7e6acad1ab52cbc965dc9fc5d35b7f55bd68178f09c7128011331eb172346c01b77767a131365b +3cb1e76bf2ef8772818a52fde15db663b8b91d9d22148c044c1f17c084466eee12d35401b0d206 +447bd9cb8b6e927f74a828d01e7ce0e8504701d21d52e83a0f908b3eaf18af033d7fdc4519160d +a1f3998dc14198ecb66970ab1422655946606979ebc3920ec6406caae936b284318ce59d7fd021 +6da6916dccf7cddaa08c95fe84fe0a36eff860ec858faee6eae9b234fd7f6b7922b6407fe66548 +4ee8a12cf4b24800049489170c1c089065cfd05e7611f514854ffb249e79b19db4e86d95818819 +599eccc923f9ec10ebcf73f55e7828ba032aff285278971bd99c0a3ddf0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-2-0 +%!FontType1-1.1 f-2-0 1.0 +11 dict begin +/FontName /f-2-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {0 -12 363 715 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 105 /i put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192 +3c6b565d778d9618b31789d664bb543a0e576f252e8520c2d0698c337b75c663f61d3deead2935 +71dc9621dfa39dc5f30363291678a7d9dfdeaa2de43d090fdf9945858d9b5b3a5df2a5865b3028 +dc4b7ac7fe8270eda10a09d5669f164eb5fa6e4ca848129c7f59349ba575bbdf02dfbd8f5ed330 +d9554dd1eb8b856cdef62fe801b421cc107aa678dbf1124aab4cbde909fd8611cafc587bb34560 +f3428a01d0fd050e1c1ae785787bd5c142500e345326b240d6d37c6801da6061e4be60b75cc4a0 +06ffe4ca26e456a9313b7f02bd60218dde34c309130b9ee274c413f042863100acb2ad54244397 +b1ccf64df275ba901ee414216a2d7c659e80f9eb06bcb6f8d4b9e005690000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%EndSetup +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 0 0 360 220 +%%EndPageSetup +q 0 0 360 220 rectclip +1 0 0 -1 0 221 cm q +0 g +0.36 w +0 J +0 j +[ 2.88 2.88] 0 d +3.25 M 0.18 118.234 m 330.754 118.234 l S +BT +10.08 0 0 -10.08 336.51375 121.472907 Tm +/f-0-0 1 Tf +(Re)Tj +10.8 0 0 -10.8 348.18375 121.472907 Tm +/f-1-0 1 Tf +(\()Tj +/f-1-1 1 Tf +<01>Tj +/f-1-0 1 Tf +[()-14(\))]TJ +ET +Q q +165 16 1 204.801 re W n +0 g +0.36 w +0 J +0 j +[ 2.88 2.88] 0 d +3.25 M 165.469 220.387 m 165.469 16.078 l S +Q q +0 g +BT +10.08 0 0 -10.08 153.148125 9.12 Tm +/f-0-0 1 Tf +(Im)Tj +10.8 0 0 -10.8 165.969375 9.12 Tm +/f-1-0 1 Tf +(\()Tj +/f-1-1 1 Tf +<01>Tj +/f-1-0 1 Tf +[()-14(\))]TJ +ET +Q q +164 16 3 52 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 165.469 67.156 m 165.469 -47.055 l S +Q q +164 168 3 52.801 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 165.469 169.309 m 165.469 283.52 l S +Q q +0 g +162.547 64.234 5.844 5.844 re f +162.547 166.387 5.844 5.844 re f +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 0.18 118.234 m 41.5 118.234 l S +45.633 118.234 m 45.633 117.137 45.199 116.086 44.422 115.312 c 43.648 +114.535 42.598 114.102 41.5 114.102 c 40.406 114.102 39.355 114.535 38.578 + 115.312 c 37.805 116.086 37.371 117.137 37.371 118.234 c 37.371 119.328 + 37.805 120.379 38.578 121.156 c 39.355 121.93 40.406 122.363 41.5 122.363 + c 42.598 122.363 43.648 121.93 44.422 121.156 c 45.199 120.379 45.633 119.328 + 45.633 118.234 c h +45.633 118.234 m f* +Q q +288 117 43 2 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 330.754 118.234 m 289.434 118.234 l S +Q q +0 g +293.562 118.234 m 293.562 117.137 293.129 116.086 292.355 115.312 c 291.578 + 114.535 290.527 114.102 289.434 114.102 c 288.336 114.102 287.285 114.535 + 286.512 115.312 c 285.734 116.086 285.301 117.137 285.301 118.234 c 285.301 + 119.328 285.734 120.379 286.512 121.156 c 287.285 121.93 288.336 122.363 + 289.434 122.363 c 290.527 122.363 291.578 121.93 292.355 121.156 c 293.129 + 120.379 293.562 119.328 293.562 118.234 c h +293.562 118.234 m f* +0.36 w +2 J +0 j +[] 0.0 d +3.25 M 289.434 118.234 m 289.434 109.969 l S +165.469 67.156 m 173.73 67.156 l S +BT +10.08 0 0 -10.08 177.725859 70.396453 Tm +/f-2-0 1 Tf +(i)Tj +10.8 0 0 -10.8 181.385859 70.396453 Tm +/f-1-1 1 Tf +<01>Tj +7.2 0 0 -7.2 186.125859 72.102703 Tm +/f-0-0 1 Tf +(YL)Tj +10.8 0 0 -10.8 285.038906 104.944219 Tm +/f-1-1 1 Tf +<01>Tj +7.2 0 0 -7.2 289.778906 106.650469 Tm +/f-0-0 1 Tf +(0)Tj +ET +Q Q +showpage +%%Trailer +end restore +%%EOF diff --git a/figs/F_theta_singularities.pdf b/figs/F_theta_singularities.pdf Binary files differdeleted file mode 100644 index 105fa55..0000000 --- a/figs/F_theta_singularities.pdf +++ /dev/null diff --git a/figs/contour_path.eps b/figs/contour_path.eps new file mode 100644 index 0000000..cb65b3c --- /dev/null +++ b/figs/contour_path.eps @@ -0,0 +1,440 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%Creator: cairo 1.15.4 (http://cairographics.org) +%%CreationDate: Wed Jan 19 13:55:29 2022 +%%Pages: 1 +%%DocumentData: Clean7Bit +%%LanguageLevel: 2 +%%Creator: Wolfram Mathematica 13.0.0.0 for Linux x86 (64-bit) (December 2, 2021) +%%BoundingBox: 0 0 360 218 +%%EndComments +%%BeginProlog +save +50 dict begin +/q { gsave } bind def +/Q { grestore } bind def +/cm { 6 array astore concat } bind def +/w { setlinewidth } bind def +/J { setlinecap } bind def +/j { setlinejoin } bind def +/M { setmiterlimit } bind def +/d { setdash } bind def +/m { moveto } bind def +/l { lineto } bind def +/c { curveto } bind def +/h { closepath } bind def +/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto + 0 exch rlineto 0 rlineto closepath } bind def +/S { stroke } bind def +/f { fill } bind def +/f* { eofill } bind def +/n { newpath } bind def +/W { clip } bind def +/W* { eoclip } bind def +/BT { } bind def +/ET { } bind def +/pdfmark where { pop globaldict /?pdfmark /exec load put } + { globaldict begin /?pdfmark /pop load def /pdfmark + /cleartomark load def end } ifelse +/BDC { mark 3 1 roll /BDC pdfmark } bind def +/EMC { mark /EMC pdfmark } bind def +/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def +/Tj { show currentpoint cairo_store_point } bind def +/TJ { + { + dup + type /stringtype eq + { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse + } forall + currentpoint cairo_store_point +} bind def +/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore + cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def +/Tf { pop /cairo_font exch def /cairo_font_matrix where + { pop cairo_selectfont } if } bind def +/Td { matrix translate cairo_font_matrix matrix concatmatrix dup + /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point + /cairo_font where { pop cairo_selectfont } if } bind def +/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def + cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def +/g { setgray } bind def +/rg { setrgbcolor } bind def +/d1 { setcachedevice } bind def +/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def +/cairo_image { image cairo_flush_ascii85_file } def +/cairo_imagemask { imagemask cairo_flush_ascii85_file } def +%%EndProlog +%%BeginSetup +%%BeginResource: font f-0-0 +%!FontType1-1.1 f-0-0 1.0 +11 dict begin +/FontName /f-0-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {29 -169 437 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 40 /parenleft put +dup 41 /parenright put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7 +41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7 +1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8 +412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b +ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490 +41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5 +d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b +3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827 +5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4 +b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070 +43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c +3d20720000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-0-1 +%!FontType1-1.1 f-0-1 1.0 +11 dict begin +/FontName /f-0-1 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {28 -13 453 799 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 1 /uni03B8 put +dup 2 /uni2032 put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7 +41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7 +1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8 +41298a056fbf05326bc567de0a0b26ab9bb8bf1c727fffe1a769e825cf16eef0e80b165c6bf01f +c921bca94f4af777d97a2f19e0a6ba590a7e6bb59956c28a9e498787adbe3de7e6d3fc47ff7726 +4b0c3148d711961ef450730e7d9c2a0f9a8a8f7848739b2b8d2d56196d23d6b0a070f7ac34e28f +1949b3d9933bd71bf994c695728647fe1cf6384f74801dd45d812cb26587dcf820b46a68885bcd +be76f7a022b91b2856413f8b472c291f6323e69460888d3cf8b748160f2e465f470393d943268b +e792e635a8fd6619217c82809f6c96a1c9f9d29ad32faaaebfee0f7caa41b8bd0cb26e12ae0006 +88ed16f82ca7c86fa6dfcd1624fb95587b3f4af99d73d037e596049ed240cfc364725448a51776 +ac6f8704995692b4cfb620640c12fafe8bda7ad95960cba96348a26386586f689b88045f9d5c17 +e43924d6e512c17db975287c04f45268e5a9a97237ed2fbf40344d73de6125e201a21057af59b0 +2ebd555ff2f2a4fec3352b5f2224db9c832d06cce2408ec8547633e84867b3a73065ab9671a46f +925533c889164deafa20f00ef1f3f3a6639bc9333208014faba60b13c7b07b41e98c88d797eeaf +1109a75b204ee60000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%BeginResource: font f-1-0 +%!FontType1-1.1 f-1-0 1.0 +11 dict begin +/FontName /f-1-0 def +/PaintType 0 def +/FontType 1 def +/FontMatrix [0.001 0 0 0.001 0 0] readonly def +/FontBBox {0 -14 908 692 } readonly def +/Encoding 256 array +0 1 255 {1 index exch /.notdef put} for +dup 73 /I put +dup 82 /R put +dup 101 /e put +dup 109 /m put +readonly def +currentdict end +currentfile eexec +f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467 +b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de +800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f +2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b +9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799 +69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5 +8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cabe8722c0ba224 +7e4445af50cf2457d0f320e3c97746456087766b4bf11115560ce328711eca3bd110d9edf8f723 +7690411035c2d2a4529eceb3758e9dfdf69937c82634682ddec349213e6cdca1236ff1e59fd7ad +c509a9f3c257841b8053a86b38d617d963b24dfb3767bfc9b4af0288c9b0b8e2572d16601fc539 +50419b779278a6ee6aa2c6f6e88f16020db6e348845fd5b2cd9ac2bb9cc9caa74bac30ab845da5 +f651fffe8b245f374569b60b2520d5b091c2895daa06f7cacffa423bc29ca3a939660aef03f4ba +db6c051bab9e97aa6f8b3423aee96ff61f682293fdb336288dbb885c46c5c6d7ca5c5a0cf84a99 +4b1ef4f098cdceee4559f76b71375ac1e48de97bc26d04e944bd8f7723aaca9bdeb0a55b4d8e30 +b9169a69c8b151f7e913240de4e7614c0ce99885f8de5ae8d0c7602bdba359c79247126be04fa0 +4837a74d4b1829aba24a81ace9429198af5c03ce00c992b95216dab9619da47da7550eca0ff6cd +0ebc575021f16decb7f0d945e2c73764f06e1781806305825422f0f7ad20cee7de432128300693 +599dbdafc575e2f472140a927b4552e1cd714bd09871feab74613bf38b4117e1b2c870998d1584 +50ae3c9c1b184d5529d7092e102d713e1e4a8d02eb0fb3edc7ef054b7fbe323e488fbcf700dac6 +058c3eeb18d59888e42247d792f3cff694e14a0b69965054b8e811dc8ae391c9be575648546fef +0365caa0b5334da60343169e20c6b1b8d51c5fbe17cfca3ec7f3bd1c61d09838b717c08ccfcbda +2a43ce0a730162c3285d5185e5fa3f8c6aaa204a403cdae550e565dcaf3816e4f19a66fee5bb4d +e532d49827c5c811b8c6effa17be7f7f897390f48ca0d11588bc17af153bec904639fcce603e9a +fb7417deeba06beb6901c0fba586004121e1aa2dcab890d83326fd7ffca74c35e64a22c9434ef6 +7d7496180137f9c8705089856e54a802d541062de40941e37319ed189b6dd27b69783befae9725 +88dacdb39bfe000a0789e90bfdcc7a2187dbff723ba8a74bb2ececfee0a9ea34b01434890000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +0000000000000000000000000000000000000000000000000000000000000000 +cleartomark +%%EndResource +%%EndSetup +%%Page: 1 1 +%%BeginPageSetup +%%PageBoundingBox: 0 0 360 218 +%%EndPageSetup +q 0 0 360 218 rectclip +1 0 0 -1 0 219 cm q +0.999985 0 0 rg +1.310865 w +2 J +0 j +[] 0.0 d +3.25 M 8.371 116.121 m 32.953 116.121 l S +49.336 117.352 m 49.336 115.176 48.473 113.094 46.938 111.555 c 45.402 +110.02 43.316 109.156 41.145 109.156 c 38.973 109.156 36.887 110.02 35.352 + 111.555 c 33.816 113.094 32.953 115.176 32.953 117.352 c S +295.125 116.121 m 319.703 116.121 l S +295.125 117.352 m 295.125 115.176 294.262 113.094 292.727 111.555 c 291.188 + 110.02 289.105 109.156 286.934 109.156 c 284.758 109.156 282.676 110.02 + 281.137 111.555 c 279.602 113.094 278.738 115.176 278.738 117.352 c S +49.336 117.352 m 155.844 117.352 l S +172.23 117.352 m 172.23 115.176 171.367 113.094 169.832 111.555 c 168.293 + 110.02 166.211 109.156 164.039 109.156 c 161.863 109.156 159.781 110.02 + 158.246 111.555 c 156.707 113.094 155.844 115.176 155.844 117.352 c S +172.23 117.352 m 205.004 117.352 l S +221.387 117.352 m 221.387 115.176 220.523 113.094 218.988 111.555 c 217.453 + 110.02 215.367 109.156 213.195 109.156 c 211.023 109.156 208.938 110.02 + 207.402 111.555 c 205.867 113.094 205.004 115.176 205.004 117.352 c S +221.387 117.352 m 278.738 117.352 l S +165.266 21.145 m 165.266 58.523 l S +162.809 21.145 m 162.809 58.523 l S +172.23 66.715 m 172.23 64.543 171.367 62.457 169.832 60.922 c 168.293 59.387 + 166.211 58.523 164.039 58.523 c 161.863 58.523 159.781 59.387 158.246 60.922 + c 156.707 62.457 155.844 64.543 155.844 66.715 c 155.844 68.887 156.707 + 70.973 158.246 72.508 c 159.781 74.043 161.863 74.906 164.039 74.906 c +166.211 74.906 168.293 74.043 169.832 72.508 c 171.367 70.973 172.23 68.887 + 172.23 66.715 c h +172.23 66.715 m S +0 g +0.36 w +213.195 117.352 m 213.195 125.543 l S +BT +10.8 0 0 -10.8 210.748688 136.975703 Tm +/f-0-1 1 Tf +<01>Tj +ET +0.999985 0 0 rg +1.152 w +8.379 116.582 m 8.465 114.039 l 8.574 112.461 l 8.684 111.281 l 8.793 110.297 + l 8.902 109.434 l 9.012 108.656 l 9.117 107.941 l 9.227 107.281 l 9.336 + 106.66 l 9.445 106.074 l 9.664 104.988 l 9.773 104.477 l 9.883 103.988 +l 10.098 103.062 l 10.207 102.621 l 10.316 102.191 l 10.535 101.371 l 10.973 + 99.844 l 11.082 99.484 l 11.188 99.133 l 11.406 98.449 l 11.844 97.148 +l 12.062 96.531 l 12.277 95.934 l 12.715 94.785 l 13.586 92.66 l 13.789 +92.191 l 13.992 91.73 l 14.398 90.84 l 15.215 89.141 l 16.844 86.051 l 16.945 + 85.867 l 17.25 85.328 l 17.656 84.625 l 18.469 83.266 l 20.098 80.719 l + 20.199 80.57 l 20.297 80.422 l 20.496 80.125 l 20.895 79.543 l 21.695 78.41 + l 23.289 76.254 l 26.48 72.312 l 26.699 72.062 l 26.914 71.812 l 27.348 + 71.32 l 28.215 70.352 l 29.945 68.488 l 33.406 65.027 l 33.508 64.934 l + 33.609 64.836 l 33.812 64.645 l 34.215 64.266 l 35.023 63.52 l 36.637 62.066 + l 39.871 59.328 l 46.875 54.008 l 53.75 49.457 l 60.164 45.695 l 67.117 + 42.066 l 73.613 39.039 l 79.977 36.379 l 86.883 33.793 l 93.328 31.641 +l 100.312 29.574 l 107.168 27.793 l 113.566 26.34 l 120.5 24.984 l 120.703 + 24.945 l 121.312 24.84 l 122.121 24.695 l 123.738 24.422 l 126.977 23.91 + l 127.195 23.879 l 127.414 23.844 l 127.852 23.777 l 128.73 23.652 l 130.484 + 23.406 l 130.703 23.375 l 130.922 23.348 l 131.359 23.289 l 132.238 23.172 + l 133.992 22.953 l 134.098 22.941 l 134.207 22.926 l 134.422 22.902 l 134.852 + 22.848 l 135.715 22.75 l 137.434 22.559 l 137.543 22.547 l 137.648 22.535 + l 137.867 22.512 l 138.297 22.469 l 139.156 22.379 l 140.879 22.215 l 140.98 + 22.203 l 141.078 22.195 l 141.281 22.176 l 141.684 22.141 l 142.484 22.07 + l 144.09 21.938 l 144.293 21.922 l 144.492 21.906 l 145.699 21.812 l 147.305 + 21.699 l 147.414 21.695 l 147.523 21.688 l 147.738 21.672 l 148.176 21.645 + l 149.047 21.59 l 149.156 21.586 l 149.266 21.578 l 149.48 21.566 l 149.918 + 21.539 l 150.789 21.492 l 150.895 21.488 l 151.004 21.48 l 151.223 21.469 + l 151.66 21.449 l 152.527 21.406 l 154.27 21.332 l 154.676 21.316 l 155.082 + 21.305 l 155.898 21.273 l 156 21.273 l 156.305 21.262 l 157.523 21.227 +l 157.625 21.227 l 157.727 21.223 l 157.93 21.219 l 158.336 21.207 l 158.438 + 21.207 l 158.539 21.203 l 159.148 21.191 l 159.25 21.188 l 159.352 21.188 + l 159.961 21.176 l 160.062 21.176 l 160.164 21.172 l 160.367 21.172 l 160.773 + 21.164 l 160.977 21.164 l 161.176 21.16 l 161.273 21.16 l 161.375 21.156 + l 161.672 21.156 l 161.773 21.152 l 162.172 21.152 l 162.371 21.148 l 162.77 + 21.148 l 162.867 21.145 l 165.258 21.145 l 165.359 21.148 l 165.758 21.148 + l 165.957 21.152 l 166.355 21.152 l 166.453 21.156 l 166.754 21.156 l 167.152 + 21.164 l 167.367 21.164 l 167.586 21.168 l 168.016 21.176 l 168.125 21.176 + l 168.234 21.18 l 168.449 21.184 l 168.883 21.191 l 168.988 21.191 l 169.098 + 21.195 l 169.312 21.199 l 169.746 21.207 l 170.609 21.23 l 170.719 21.23 + l 170.828 21.234 l 171.043 21.242 l 171.477 21.254 l 172.34 21.281 l 172.449 + 21.285 l 172.555 21.289 l 172.773 21.297 l 173.207 21.309 l 174.07 21.344 + l 174.273 21.352 l 174.473 21.359 l 174.875 21.379 l 175.684 21.414 l 175.887 + 21.422 l 176.086 21.434 l 176.492 21.453 l 177.297 21.492 l 177.398 21.5 + l 177.5 21.504 l 177.703 21.516 l 178.105 21.535 l 178.91 21.582 l 180.527 + 21.684 l 180.746 21.699 l 180.961 21.715 l 181.398 21.742 l 182.273 21.805 + l 184.023 21.941 l 184.242 21.957 l 184.461 21.977 l 184.898 22.012 l 185.773 + 22.086 l 187.523 22.246 l 187.629 22.254 l 187.738 22.266 l 187.953 22.285 + l 188.383 22.328 l 189.238 22.414 l 190.957 22.594 l 194.391 22.988 l 194.492 + 23.004 l 194.59 23.016 l 194.793 23.039 l 195.191 23.09 l 195.992 23.191 + l 197.594 23.406 l 200.797 23.863 l 200.906 23.879 l 201.016 23.898 l 201.23 + 23.93 l 201.668 23.996 l 202.535 24.133 l 204.273 24.414 l 207.746 25.016 + l 214.23 26.281 l 220.59 27.715 l 227.488 29.5 l 233.926 31.383 l 240.902 + 33.691 l 247.422 36.109 l 253.809 38.754 l 260.738 41.957 l 267.203 45.305 + l 274.215 49.387 l 281.094 53.93 l 287.512 58.766 l 294.473 64.84 l 294.574 + 64.938 l 294.676 65.031 l 295.285 65.617 l 296.098 66.414 l 297.719 68.059 + l 300.969 71.594 l 301.07 71.707 l 301.168 71.82 l 301.367 72.051 l 301.766 + 72.516 l 302.562 73.461 l 304.152 75.438 l 304.254 75.562 l 304.352 75.691 + l 304.551 75.949 l 304.949 76.469 l 305.746 77.535 l 307.34 79.773 l 307.445 + 79.93 l 307.555 80.09 l 307.77 80.41 l 308.203 81.059 l 309.066 82.398 +l 310.793 85.27 l 310.902 85.457 l 311.012 85.648 l 311.227 86.035 l 311.656 + 86.82 l 312.523 88.465 l 314.25 92.105 l 314.352 92.336 l 314.449 92.57 + l 314.652 93.043 l 315.055 94.016 l 315.156 94.266 l 315.258 94.52 l 315.457 + 95.035 l 315.863 96.105 l 315.961 96.383 l 316.062 96.664 l 316.266 97.238 + l 316.668 98.441 l 316.77 98.754 l 316.867 99.074 l 317.07 99.73 l 317.473 + 101.125 l 317.574 101.492 l 317.676 101.871 l 317.875 102.652 l 317.977 + 103.062 l 318.078 103.484 l 318.281 104.367 l 318.379 104.832 l 318.48 +105.316 l 318.684 106.352 l 318.785 106.906 l 318.883 107.492 l 319.086 +108.789 l 319.188 109.516 l 319.289 110.32 l 319.387 111.227 l 319.488 112.297 + l 319.59 113.668 l 319.691 116.098 l 319.699 116.742 l S +0 g +0.36 w +0 J +[ 2.88 2.88] 0 d +0.18 117.352 m 327.895 117.352 l S +BT +10.08 0 0 -10.08 333.65625 120.589891 Tm +/f-1-0 1 Tf +(Re)Tj +10.8 0 0 -10.8 345.32625 120.589891 Tm +/f-0-0 1 Tf +(\()Tj +/f-0-1 1 Tf +<01>Tj +7.2 0 0 -7.2 353.68125 116.145016 Tm +<02>Tj +10.8 0 0 -10.8 356.53875 120.589891 Tm +/f-0-0 1 Tf +(\))Tj +ET +Q q +163 16 2 202.641 re W n +0 g +0.36 w +0 J +0 j +[ 2.88 2.88] 0 d +3.25 M 164.039 218.621 m 164.039 16.078 l S +Q q +0 g +BT +10.08 0 0 -10.08 150.290625 9.12 Tm +/f-1-0 1 Tf +(Im)Tj +10.8 0 0 -10.8 163.111875 9.12 Tm +/f-0-0 1 Tf +(\()Tj +/f-0-1 1 Tf +<01>Tj +7.2 0 0 -7.2 171.466875 4.675125 Tm +<02>Tj +10.8 0 0 -10.8 174.324375 9.12 Tm +/f-0-0 1 Tf +(\))Tj +ET +Q q +163 16 2 52 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 164.039 66.715 m 164.039 -46.508 l S +Q q +163 167 2 51.641 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 164.039 167.984 m 164.039 281.207 l S +Q q +0 g +161.141 63.816 5.793 5.797 re f +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 161.141 63.816 5.793 5.797 re S +168.133 117.352 m 164.039 113.254 l 159.941 117.352 l 164.039 121.445 l + h +168.133 117.352 m f +168.133 117.352 m 164.039 113.254 l 159.941 117.352 l 164.039 121.445 l + h +168.133 117.352 m S +161.141 165.09 5.793 5.793 re f +161.141 165.09 5.793 5.793 re S +0.18 117.352 m 41.145 117.352 l S +45.242 117.352 m 45.242 116.262 44.809 115.223 44.043 114.453 c 43.273 +113.684 42.23 113.254 41.145 113.254 c 40.059 113.254 39.016 113.684 38.246 + 114.453 c 37.48 115.223 37.047 116.262 37.047 117.352 c 37.047 118.438 +37.48 119.477 38.246 120.246 c 39.016 121.016 40.059 121.445 41.145 121.445 + c 42.23 121.445 43.273 121.016 44.043 120.246 c 44.809 119.477 45.242 118.438 + 45.242 117.352 c h +45.242 117.352 m f* +Q q +286 116 42 3 re W n +0 g +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 327.895 117.352 m 286.934 117.352 l S +Q q +0 g +291.027 117.352 m 291.027 116.262 290.598 115.223 289.828 114.453 c 289.059 + 113.684 288.02 113.254 286.934 113.254 c 285.844 113.254 284.805 113.684 + 284.035 114.453 c 283.266 115.223 282.836 116.262 282.836 117.352 c 282.836 + 118.438 283.266 119.477 284.035 120.246 c 284.805 121.016 285.844 121.445 + 286.934 121.445 c 288.02 121.445 289.059 121.016 289.828 120.246 c 290.598 + 119.477 291.027 118.438 291.027 117.352 c h +291.027 117.352 m f* +211.898 117.773 m 211.59 119.559 l 213.195 118.715 l 214.801 119.559 l +214.496 117.773 l 215.793 116.508 l 214 116.246 l 213.195 114.617 l 212.395 + 116.246 l 210.598 116.508 l h +211.898 117.773 m f +1.44 w +2 J +0 j +[] 0.0 d +3.25 M 211.898 117.773 m 211.59 119.559 l 213.195 118.715 l 214.801 119.559 l +214.496 117.773 l 215.793 116.508 l 214 116.246 l 213.195 114.617 l 212.395 + 116.246 l 210.598 116.508 l h +211.898 117.773 m S +Q Q +showpage +%%Trailer +end restore +%%EOF diff --git a/figs/contour_path.pdf b/figs/contour_path.pdf Binary files differdeleted file mode 100644 index 7fb273f..0000000 --- a/figs/contour_path.pdf +++ /dev/null diff --git a/figs/figures.nb b/figs/figures.nb index 5d47f55..f2fddc9 100644 --- a/figs/figures.nb +++ b/figs/figures.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 575676, 10294] -NotebookOptionsPosition[ 572542, 10235] -NotebookOutlinePosition[ 572938, 10251] -CellTagsIndexPosition[ 572895, 10248] +NotebookDataLength[ 710113, 12495] +NotebookOptionsPosition[ 706934, 12436] +NotebookOutlinePosition[ 707330, 12452] +CellTagsIndexPosition[ 707287, 12449] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -79,7 +79,7 @@ Cell[BoxData[ 3.827383160348928*^9}, {3.827385962751856*^9, 3.82738598922388*^9}, { 3.827386034376981*^9, 3.827386035376443*^9}, {3.8273869985697823`*^9, 3.8273869997536163`*^9}, {3.844329603873919*^9, 3.844329607908242*^9}}, - CellLabel->"In[2]:=",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"], + CellLabel->"In[1]:=",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" @@ -138,9 +138,7 @@ uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange-> - NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, - 1}, {-0.6180339887498948, 0.6180339887498948}}], + PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{}, {}}]], "Output", @@ -148,8 +146,9 @@ uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr 3.827382821172866*^9, 3.827382840956325*^9}, {3.827383007560814*^9, 3.827383129164433*^9}, 3.827383160604924*^9, {3.827385963050185*^9, 3.8273859898238077`*^9}, {3.82738602858241*^9, 3.827386035704603*^9}, - 3.827387000123047*^9, {3.844329605815187*^9, 3.844329608477652*^9}}, - CellLabel->"Out[2]=",ExpressionUUID->"214b4f47-73c2-4169-9a4d-ef2b4e5fb5f4"] + 3.827387000123047*^9, {3.844329605815187*^9, 3.844329608477652*^9}, + 3.851585708242787*^9}, + CellLabel->"Out[1]=",ExpressionUUID->"47b1d716-2908-4128-af4c-2c85a1c62384"] }, Open ]], Cell[BoxData[ @@ -157,9 +156,10 @@ Cell[BoxData[ RowBox[{"Export", "[", RowBox[{ "\"\<~/doc/research/first_order_singularities/paper/figs/F_lower_\ -singularities.pdf\>\"", ",", "p1"}], "]"}], ";"}]], "Input", - CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}}, - CellLabel->"In[6]:=",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"], +singularities.eps\>\"", ",", "p1"}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, { + 3.8515857109622917`*^9, 3.8515857113301897`*^9}}, + CellLabel->"In[2]:=",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"], Cell[CellGroupData[{ @@ -276,7 +276,7 @@ SubscriptBox[\(\[Xi]\), \(YL\)]\)\>\"", ",", 3.827387056043375*^9, 3.827387113115541*^9}, {3.827387242150291*^9, 3.827387318344166*^9}, {3.827387529243909*^9, 3.827387531995368*^9}, { 3.8443296126213083`*^9, 3.844329634021158*^9}}, - CellLabel->"In[5]:=",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"], + CellLabel->"In[3]:=",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" @@ -363,17 +363,15 @@ SubscriptBox[\\(\[Xi]\\), \\(YL\\)]\\)\"", FontSize -> 14, Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange-> - NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, - 1}, {-0.6180339887498948, 0.6180339887498948}}], + PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{}, {}}]], "Output", CellChangeTimes->{{3.82738699503043*^9, 3.827387001000444*^9}, { 3.827387056404755*^9, 3.8273871135979233`*^9}, {3.827387261706016*^9, 3.827387318714815*^9}, 3.827387532223402*^9, {3.844329613323139*^9, - 3.844329634256328*^9}}, - CellLabel->"Out[5]=",ExpressionUUID->"d190cc8e-c3ee-4623-b28c-c47d1a8228bc"] + 3.844329634256328*^9}, 3.8515857139189787`*^9}, + CellLabel->"Out[3]=",ExpressionUUID->"ffd47d51-d7e9-49d6-8d88-f9c2685bf164"] }, Open ]], Cell[BoxData[ @@ -381,10 +379,11 @@ Cell[BoxData[ RowBox[{"Export", "[", RowBox[{ "\"\<~/doc/research/first_order_singularities/paper/figs/F_higher_\ -singularities.pdf\>\"", ",", "p2"}], "]"}], ";"}]], "Input", +singularities.eps\>\"", ",", "p2"}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, { - 3.8273862326284933`*^9, 3.827386237604206*^9}}, - CellLabel->"In[7]:=",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"], + 3.8273862326284933`*^9, 3.827386237604206*^9}, {3.8515857167144403`*^9, + 3.851585717186307*^9}}, + CellLabel->"In[4]:=",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"], Cell[CellGroupData[{ @@ -521,7 +520,7 @@ SubscriptBox[\(\[Theta]\), \(YL\)]\)\>\"", ",", RowBox[{ RowBox[{"Style", "[", RowBox[{ - "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(c\)]\)\>\"", ",", + "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(0\)]\)\>\"", ",", RowBox[{"FontSize", "\[Rule]", "14"}], ",", "Black", ",", RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}]}], "]"}], ",", " ", @@ -548,15 +547,16 @@ SubscriptBox[\(\[Theta]\), \(YL\)]\)\>\"", ",", RowBox[{"FontSize", "\[Rule]", "14"}], ",", "Black"}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.827382480044902*^9, 3.8273826908509808`*^9}, { - 3.827382820190197*^9, 3.827382840645884*^9}, {3.82738300603374*^9, - 3.8273831764043293`*^9}, {3.8273860050562143`*^9, 3.827386063937243*^9}, { - 3.827386126458579*^9, 3.82738620035579*^9}, {3.82738626700533*^9, - 3.8273863320539207`*^9}, {3.8273863645590267`*^9, 3.8273863742232637`*^9}, { - 3.827386476137185*^9, 3.827386479416823*^9}, {3.8273870103864107`*^9, - 3.8273870114740887`*^9}, {3.827387151108595*^9, 3.827387206893936*^9}, { - 3.8273873335042467`*^9, 3.827387391017824*^9}, {3.82738742603411*^9, - 3.827387500451023*^9}, {3.844329668733633*^9, 3.844329681670041*^9}}, - CellLabel->"In[9]:=",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"], + 3.827382820190197*^9, 3.827382840645884*^9}, {3.82738300603374*^9, + 3.8273831764043293`*^9}, {3.8273860050562143`*^9, 3.827386063937243*^9}, { + 3.827386126458579*^9, 3.82738620035579*^9}, {3.82738626700533*^9, + 3.8273863320539207`*^9}, {3.8273863645590267`*^9, + 3.8273863742232637`*^9}, {3.827386476137185*^9, 3.827386479416823*^9}, { + 3.8273870103864107`*^9, 3.8273870114740887`*^9}, {3.827387151108595*^9, + 3.827387206893936*^9}, {3.8273873335042467`*^9, 3.827387391017824*^9}, { + 3.82738742603411*^9, 3.827387500451023*^9}, {3.844329668733633*^9, + 3.844329681670041*^9}, 3.893239233336535*^9}, + CellLabel->"In[1]:=",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" @@ -576,9 +576,11 @@ uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr Axes->{True, True}, AxesLabel->{ FormBox[ - RowBox[{"Re", "(", "\[Theta]", ")"}], TraditionalForm], + TagBox[ + RowBox[{"Re", "(", "\[Theta]", ")"}], HoldForm], TraditionalForm], FormBox[ - RowBox[{"Im", "(", "\[Theta]", ")"}], TraditionalForm]}, + TagBox[ + RowBox[{"Im", "(", "\[Theta]", ")"}], HoldForm], TraditionalForm]}, AxesOrigin->{0, 0}, AxesStyle->Dashing[{Small, Small}], DisplayFunction->Identity, @@ -625,7 +627,7 @@ SubscriptBox[\\(\[Theta]\\), \\(YL\\)]\\)\"", FontSize -> 14, InsetBox[ FormBox[ StyleBox[ - "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(c\\)]\\)\"", FontSize -> + "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(0\\)]\\)\"", FontSize -> 14, GrayLevel[0], FontFamily -> "Times", StripOnInput -> False], TraditionalForm], {0.75, 0.1}]}}, @@ -658,9 +660,7 @@ SubscriptBox[\\(\[Theta]\\), \\(YL\\)]\\)\"", FontSize -> 14, Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange-> - NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, - 1}, {-0.6180339887498948, 0.6180339887498948}}], + PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Ticks->{{}, {}}]], "Output", @@ -673,8 +673,9 @@ SubscriptBox[\\(\[Theta]\\), \\(YL\\)]\\)\"", FontSize -> 14, 3.827387012286086*^9, {3.8273871575708647`*^9, 3.827387207139093*^9}, { 3.8273873631427307`*^9, 3.827387392526597*^9}, {3.8273874262628717`*^9, 3.827387438548918*^9}, {3.827387470865808*^9, 3.827387500818487*^9}, { - 3.844329675205503*^9, 3.84432968190254*^9}}, - CellLabel->"Out[9]=",ExpressionUUID->"55ead135-59f9-442d-ac33-7c08fd310e39"] + 3.844329675205503*^9, 3.84432968190254*^9}, 3.8515857205104523`*^9, + 3.893239234109535*^9}, + CellLabel->"Out[1]=",ExpressionUUID->"cd4d61b2-4474-441d-86f3-942c313cde21"] }, Open ]], Cell[BoxData[ @@ -682,11 +683,11 @@ Cell[BoxData[ RowBox[{"Export", "[", RowBox[{ "\"\<~/doc/research/first_order_singularities/paper/figs/F_theta_\ -singularities.pdf\>\"", ",", "p3"}], "]"}], ";"}]], "Input", +singularities.eps\>\"", ",", "p3"}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, { 3.8273862326284933`*^9, 3.827386237604206*^9}, {3.827386389102764*^9, - 3.8273863926784687`*^9}}, - CellLabel->"In[10]:=",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"], + 3.8273863926784687`*^9}, {3.851585722850504*^9, 3.85158572359441*^9}}, + CellLabel->"In[2]:=",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"], Cell[CellGroupData[{ @@ -1017,7 +1018,7 @@ dW8QFl5SR+BT+dA02XOl8/Bkn70CFY7sLWjQ3n/DDrc2C+Rshv/CH+91Bx6h VmwqdmBM9LIezjRU+KqnzIJzeZkfdNp75EKugZEAaS3RydBkSeLDfyWzARU= "], - CellLabel->"In[29]:=",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"], + CellLabel->"In[7]:=",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"], Cell[BoxData[ GraphicsBox[{{{}, {}, @@ -1146,7 +1147,7 @@ mwzsDvMHNcQZsG+qI3lHdAmI6ZY168gwQDLyw0mfrmIw5tWbsTjIAPZ7MiXG OZF02LP3jVOOGQNW/2z+KPAoFY5xea+VWDMgRCiZeQdTAlz4diq61pYBPE0q d/j0AyBlj2SIuh0DOAfYXwe5usB/5zTXsw== "]]}, - Annotation[#, "Charting`Private`Tag$8492#1"]& ]}, {}}, + Annotation[#, "Charting`Private`Tag$4201#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{ @@ -1231,9 +1232,7 @@ d/j0AyBlj2SIuh0DOAfYXwe5usB/5zTXsw== Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, - PlotRange-> - NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1, - 1}, {-0.6180339887498948, 0.6180339887498948}}], + PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0}}, Prolog->{{ @@ -1290,20 +1289,22 @@ d/j0AyBlj2SIuh0DOAfYXwe5usB/5zTXsw== CellChangeTimes->{{3.8273909699521523`*^9, 3.8273909789452953`*^9}, { 3.827396042711411*^9, 3.827396059416113*^9}, 3.827396117784916*^9, 3.844329699605468*^9, {3.844329785633713*^9, 3.844329824137244*^9}, { - 3.844329864747488*^9, 3.844329905004916*^9}, 3.844329946140485*^9}, - CellLabel->"Out[29]=",ExpressionUUID->"db8055d2-fbcd-4066-a806-99ab1f7161ec"] + 3.844329864747488*^9, 3.844329905004916*^9}, 3.844329946140485*^9, + 3.851585726073978*^9}, + CellLabel->"Out[7]=",ExpressionUUID->"27b04507-3c39-4d5d-affa-0b88d32e7be4"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Export", "[", RowBox[{ - "\"\<~/doc/research/first_order_singularities/paper/figs/contour_path.pdf\>\ + "\"\<~/doc/research/first_order_singularities/paper/figs/contour_path.eps\>\ \"", ",", "p4"}], "]"}], ";"}]], "Input", CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, { 3.8273862326284933`*^9, 3.827386237604206*^9}, {3.827386389102764*^9, - 3.8273863926784687`*^9}, {3.8273886033746567`*^9, 3.827388609494101*^9}}, - CellLabel->"In[30]:=",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"], + 3.8273863926784687`*^9}, {3.8273886033746567`*^9, 3.827388609494101*^9}, { + 3.851585728434494*^9, 3.8515857290265512`*^9}}, + CellLabel->"In[8]:=",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"], Cell[BoxData[{ RowBox[{ @@ -3332,8 +3333,2208 @@ nj/M84d5/jDPH/4fGjhzeg== CellChangeTimes->{ 3.8278290102675734`*^9, 3.827829059120655*^9, {3.827829133148831*^9, 3.827829148282629*^9}, {3.8278291923049583`*^9, 3.82782920335533*^9}}, - CellLabel-> - "Out[160]=",ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"] + CellLabel->"Out[160]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ +eJzsnWfYXlWx9/fZ+973k06RABYQRHpLSIdAqCmQ3ui9hBY6CIQqRQRE6Sgd +UbrSm/Re0hPkKIJgOSiKyYf387vfmVVnzZq175LAdT6857rWPslT74QnP/8z +///MmnT4GccePffwM4478vCNxp12+CnHHnfk6RuNPfk0eFPxX1n2X8fCOW6j +rAG/rrIsehyXZe3++pvqWfyfY445ptdhhx2mfjdJPcv/C2/7As7fzLkGTra3 +ft93jjrqqDfN25+GM2Du3LnZ5JrPmyZ8n0arl1CcNmfOnGfhlPglJuovfyf8 +/hT8PfzfVfDri/DXk4WPn5H+lmvod21+3HHHLYd348ly9SxOh+doOP9Ub/tU +vQ3/RJ/ZP+XY5Oc2TzcvC//vR/Dre+GlwH+ibB/9yr+EN61pXslW8K7F+OFT +9JejH27+ND32ZXxqTvAyzJ9koHo214JX8w75g9o/9FT91e+C3/7YvrgJ+lPw +3f+HvGD8qv+C30ufMqn+u5T6K6yr/5iHHX300Reaz3R/+ear9sA3WWr+hlMv +pN/xxx9PXkjwKZNrvoV5Fevp/9D4Y/A9eL323eYH8Bz4zCvgkL+J4L/LlvCD +vZj8wAYfP1n+0uE3xv+yD8N77HvNS54NX6Q5a9Ys/NF8HM5c+DD7r+kO+P3J +5ptcCb++AH9d93lT5G9lXsj6/keqsn85k/13+qv5McJf41e2r+JbRxxxxBvw +3f4Mb38K/j/+d6j9vKnC9zEvoVMMqX+QFX6VAyr139X8C63Iz4X5kQ/ftpbw +trXbfNv/9s/9Or6H+jv9r///d/51fo9u/s6nCG+bugof97/tNfTW7w/+x7oQ +PkdBYzb5xIb/n233QXmbX0y9gArfv4/6oGJQRv6PvjyNtfr/RVbfoVQfr36J +X7Jaf9v1skb1vfHfyeGxQQmPDeFFbDx+QzjfxQPvhSe+aSN8bJxXG43fuITH +9+A93x3/PTib2FPC4/tlteH4TQt4bFZWG4zfvKy+M36LHB5bwtf99vgt4WyF +J8vVs1F9C37/rfFb25NX39SPbeDj1x+/TbX+hG3xwMfDM6/Wm7Ad/CHWnbBd +te54e7avBo7fHj5g4PhB8EnrjB9UrTMBz2D43Tfg2QPPHapvjLdnCHwMnAl4 +hsLnrTN+KD6GwasZOH4YnOH2FPAYgV94ZIa/HAXfTB343brjd8THTvgYjY+d +c3jsgr8ag69w3K7wK3t2g9/vhp80bnd87AEfOm5PfOyF33PcXnDG2gPfbtw4 +fIyH960zbjycCfqMnZBX3xi7dwMe++AfdOzEap29JlYD95qIf/i9JsIX3HMi +vGO9PSdW6+0xCQ/+te0xCR67w+Obu08uqm/uNjmvvrXrZPzPsevk6ttjpuDB +/xxjpsBjlynwju/sMqX6zs7qwDu+s/NUeNPoqfByNhg9tdpgJzzT8MAbdpwG +b95wFPwWzobqTIf/+iOnw1tHTM+rDYdPhy+44fAZ+Cv8//i7YTPgHUPVYyb8 +vAyZCX9hG+4ws/ouORvtMBM+dKPBM+HHbjD+cuNBM6vvDZqBB34Hz7zaRP1y +k+1nVN/XB14tPOGx3YxGtel28KtNt50BL3CzbWfAmW5PUW2+7fSy2nyb6b2q +LbaGX225Fb7KLbeaVm2lD/zMbLXlNHjbVltMq7bWJ2vis1FtvTk8ttl8Wllt +s9m0vNp2M/w4+Me0Jv6Dwn9eJf1HmVSlEsI0BUr1TxP+UVb7LtoBzpBq9qIh +8EebvWgofO3Zi4bBGa7OrEUj4OAP56xFo+B9MxftCGcnOKPVmbFoZ3jfjEW7 +wGufvmgMnF3h7AZn92raQjzwozhtIfwoTl24F3zk1IVjqykLx8EZD98Pn81q +8sIJcPauJi3cx5yJ1cSF8OM0cSH8JO2zEH9g9lk4tdp74TQ4+Pc4YSH+nY9f +OBPOrGrcwtlw9s2rsQv2y/rDc/9qL3UOqPZccCCcg6o9Fhxc7a7OIXAOrXaD +s+uCw+AcXo1ZcAS8lF0WHJlXOy84Kju8Gr3g6GqnBcdUOy6YA+fYatSC46qR +cEYsOL4aMf+Eavj8E6thcIbOn1sNmX9StcP8k6vB80+pBs0/tdoeznbzT6u2 +nX86/P8z4JxZbf/+WXB+AOecapA686rB750H5/xqh/cugHMhnIuqIe9dXA15 +94fV0HcvhXMZnMurYe/8CM6P4VwJ56pq+DtXV8Pf/gmca+D8tBrx9rVwrqtG +vHU9nBvg3FiNfOvmauSbt8D5OZxfwLkVzu3VyDfugHMnnLuqUa/fA+eXcO6F +8ys4v65GvXYfnAeqka89COehauSrj8D5DZzfwnkUzmPVyFeegPNkNeKVp6oR +Lz8D51k4z8F5vhr+8u+q4S+9COelathLL8N5Fc5r1dAXX4fzRjXkxTerIS+8 +Xe3wwjvVkN+9Ww19/r1qGJzhz71fjXz2/WrUM/OrHZ9eUO301EL4D7Lzkwuz +DapdnlhUjXl8cbXrY4ur3R5dUu3+26XVHr9ZWu35yLJqz4eXVXs9tLwa++AH +1bgH4Nz/+2r8fR9WE34N51f/Xe2N594/VPv8Es49f6wm3v3HatJdH1WT7vxT +NemOP1WT8dz+cTXltk+qKbfC+cWfq6k//xS+99RbPoWfy2k3f1ZNuwnOjX+p +pt/w12r69XCu+1teTb/2b/DuGT/7ezXjp/9TzbgGzk8+r2ZeDeeqf+TVzCv/ +kQ2oZv74n9XMK76oZv4IzuX/qmZdhuff1axL4VwC54dfVrMuxvOfatZFcC5c +Uc26YEVezTp/Zdavmn3eympfOPvNW1ntj+fcldUBeM5ZWR0I56CzV1YH4/nB +yuqQs1bm1aH4OOzMlfDP4/AzVlZH4Dl9JfxhjjwN33bUaSuro05dWR19Kr7t +mFPgg+ecvBL+Fc05aWV1LJ65K6vj5sKbjz9xZVGdcAL86sTj4TH3uJVZ72ru +sSurk/DM0edkPMesrE7Bc/TK6tSj8ZucehR8wmlH4i9PP2IlnBXV6YevgO93 +xuHwBzvjsBXwjjMPW1Gdeag68LuzDlkBVDnr4BXVD/AcpM/ZB+H7zj4QPumc +A/CxP37UufuvqM7dj5x98UvP2xc+YN7sFUV13iz8rAFrrbORpGCahnxS5Zwm +ZWFI+W2g5GD4bsBL+DhNzKGKl0hN/B92Qks8eQTMnVoAc7cAmPAVpy7cE6lp +mVl0ictc4bKE58wQmQv2zTQze0XM3CNkZo7AhC8bIRM+FZgJ5+iAmqMcNY/P +EZnZfgaacwGaJwE0T05AUwNzOwfMsw0wz60GK2jKwBzy7iUOmEMVMK9w0ByO +0AyA+TMNzbeuI8C8SQDmbSEw37jbQJMD834CzIcNNFPAfNpAc3UAcz4Fpubl +gI54Od7zMkdYZms7XE5UuPzI4VKh8o6PA1xO1bhEWFZTb/7UoXLaDX/JkZXZ +hkhLhKVB5d8NKuFc7XCJtITzT5mXlpWXfGl4aVh50QrDy5WIy2o2HgTmPAXM +HGkJP5qUlQdZVmpeelz2obisjsSDqPS4rI4+ZSUCs1DAbFJYVseduBJ5WR2P +uLTMhH+6Jx63EsFpsZkjM+GfYJfULBCWmpUNzspGiMkGktFDEVTmebNXIBn9 +mbnCMbIkfOzRxOS9vfbQOEihcTC8PC8oFR6/NjoqMZkjHOHLCnjMFB/hywIg +FR4JIhGQSMmZXFQu0KIyRzbC+/YM6ZgjGrNjlZjcTZHxMCCjoiOyMSDjaCDj +Tk5PHqv05Mj5Vk+e0JGetHi0aIz15EVwKBovJXhkaHR6kqPxeoXGEQqNVk9S +NN7u0DjSofGXERpH1aLxcY/GV1qh8RWFx67R2CRoXOLR+MiyHLkI764lY+8a +MmoqTr7tYyxobv0EgKLIaKg4lYhIIKMRkX9FLObIRfix8mT8HMmYIxbhzQyK +OVIR6zCnIb+EbwhUhA8VNWQz0JD7eQ2ZIxSBDAESf6CQWB165kpFxRypCH9s +x8TTRSZWx5yMHwtgzJGLOUIRXo9BojqOigWlInwScBFeY0JMfrVU7CVS8XxP +RgGM3GtIg7GXAuMmAMb9Fm0PZxACEvFo4Vgo4djjCm0NRgvHUUDCUfDnBDbi +T4EnI57cwHFG53CE1zp54XgrH+EbAB2BlYaPSEdg4mQlIFFGToX3ET5a+Qjv +AzzCKzCARD5S+ZgjIeEVeAV5CAISFeRh8BW1egwYCV8RCJkdItfcwMjhrua2 +8pEz8jTFyO0cI1PyERlJ5OO7Fxs+Evn4LpWPbdbbbwr19hu03r5bqLctHx9g +fLT1tsDHV1Y/H0fX8PE37fMR/mcV+XgP4eOdH2GRnSMcs/6AR1pjWzx+FtTY +Ho9KNWaaj02pyEbVmCMd4d0J0ajZ2Itoxv+EmlHDMUcyZn3r62uvGT0cc1Ve +9wSKsQUZVW0Nr9hgsTrh+JVIRsvFXIGx6epshsUcuZh7LpaUi+qcoflYj0ZV +V8Mnn33ACuSjPlhZ74/VM3ASn/uuQFjiyRQxG6q4Lh0mz58hi8heGoOBI9pK +QWpQbgffCHCpFGQAy1z1JptGUEadSd2YLGhjEn9wJFLuGpOyoKRUDclx8Aqm +KEw6VK4aKRsBKYGSucfk8RyTTkfu6hjptaTXkZyTcV+ScnIQcJLqSF5mx4z0 +ZfaQhI4MS+yQkcOVjuQ9SaHEfuO2NnqS95OeZIqRTzBG6p6kZuQLq8TInSgj +1w0Yuftvl4SldbK8tq3I/w5akRN9K1JTspQoCT9FwEjgmNCJpLV1jojEH/cA +klZB/jNHRKKcCCD5ZQRJLSDDotpCstCQ1ICE1wWIhK9ImpC+qO4VFNVHxEW1 +akHCZwMlkZG6qDaYLBQmSwmR2epjZI6MbCAjc8Qj/OlM51HxMe+GkqoFmSMk +4TMtJlOolEznEIvfAiBuq7C4HfyFopb0aBxMnRtfaBeBaZN768byUenK0Vh0 +KD25izljcuQjfCghJP7kwbMDRPaREGkKbaHYbqpCe7xyb2JCwru9e3OQc2+U +lgRCwrt3lWvtHAEJ/wFsI5LISHj5AMhsQKLU1hKSIpLJyBz5mE1MqMhLhSak +cW3e9lX2cKHKHtlGlT3qdakByej4GnNsHB2f/CrpiHCEs0jh0XceHR5zZGMg +IX+v6DhB0zFHNKKEFOA42cJxILdplISU5eNfw6YjkY8zaNMR1GOObMQ+VKwf +TXHdQ0yaFVxAYtfrPMQRqa6VejxQdxxzJCN8eVZdq9o6RzzC+wQ4IhVOwSeS +0fgzmUej6jRik9FzEanYfkXdioqRLXNw2pZpcFuGlNmlVGbD9wE05shF+GIX +TAc6rtkJHRuEjtsgITUgS6nYVl3JIdrXbvByW9OxSelIq22tH0ujH321PW3R +7vC6EmT0hbbzaFShPRG+kOXiRM9FeB9QUclHLx21fJwF7wMswtca68GYaTIW +tAuZ6TZkr9o2pMIiaEf44+4UKUeFRk3GgREZV4NwhFcIYMxGd1Fc38SKawGL +yeYjMbKVcPzasYiicRH8jY95PEnF5fDusZSK9/3e2tcxFYOmo5WMcVGtJONN +n6GBHRfVSMUckYhSMaqplVxEJn6BdXXERGXC5AhD+MaCXAxxaJHoC2qNwwav +p0k53fTltGS+FNR8yTwMdYOxF7VcJIWYIwvrO4vw6s5Ag9qb1LmWiMBCeB8z +qYvaNmPDONKkaM4U93LEHlrVa8pWdRp+pYHfN6v9F21tAQgfiQQsqETUVrXC +n0r0RLVzFuNvR4q/wuCPoQ/FYVoYdoe/HkBeUDnTVI+xqHucPR1b1IdkuZeF +xyn2tVU2zw/LZtte7FATAv00+UJR2Ib1okThNUwUtiqZbVuR2y73/m8inxOD +IfqcFZ1p9g1U7Bv3YBjdsbVyG45LRD8slSn9wmL5755+Azz9vBxEMdjKg9b4 +6yupQeW17Bt6Lb5UdlrQg49qwRB+p8XwU21E+LdFbOeM53SaqYzOqpKvoOTT +GrBA7MEnmarYy79z99UMhPfNQ/nnJaAqjb38a3SNwSbB4FYKhfsrFG6Tex5a +PaidaZ3caRJrehjVg7k3pZOtxFIKOHbDwg0kFpLyOMlC7rVwQ7qmi3hkptON +J7qcDs3qyE5LXCK3EoKSE+1TjTUuS7I+voHVx+mAzsiEwxKisCacE6Dw+a8L +hQhCUxgvj1KMe2sZ+AdMdFkS3vUR/hjd+SdAmKXg5LrK+KaE79yrrjBu2TIs +pZYhZuHOQ0+EBheZqZJpDg6QauLaFI7xVNJm8wnEbM61n4IFceOrZaFuFDbD +RqFvFuapXiHqQk/GTHcNG0HX0CpFqJKndcfJgnByS/geQMusN5WO5mzHi+cs +5uVQystCiccGq51HFz7AY32XDDuLu2H/WncVzaH29Nh6XPZuB5fKbJkJP3ok +u8NxmWnTpeT9RKUbUT0ens1jDcWjCC4lw+UEZrjIpvS2iMqulWOrPGNdK1Gu +mUeqVmK7RouEyqdDVL78gjKjhylcfh2ojGxoMew9kYa9bzec9OlFE/TubVj5 +l1S9jF3ErN5f+ULDsn8163Ka8m6RWtSSMQvcFSoZ4Uc1aT/DS3G0bN9a0Q50 +w/HyRG2vKFwWCpcFRWX2VbCyoKzMdBexoBISfheEukU2Tg/ZeOHUTvuINqWz +PvBwC3O2dHrSask8VVo7Ng5ZZTb2b8VG7raIcNynJRybCTgaM/qyaFImnJKJ +Oook1Egi30FVXRfYkWTk2UxGcpsF2ciHY64QK2oVZnyrVVCnnSBjKy7yEOP/ +Pi7uk+CiPADzZ5roxvrmxr9k30zYzlZA/k8oIDuKc1soIgtIbjGuo6njzGPc +jok0q+ir6DxlqLSI5HAmniwwsUdyUywTs7wmipPr9uHZuo42opEKx4L1EsMA +juGgdlFyBGGOHOxKKfYoGn4faHjA4s3gbE6JqJTj1tjXFVQjUJFU2A1OxEI1 +Gxsk26iIqGzo/CtBYk8dEs00TC9XWnMkBjHGXkFlTZFocKiHYAqqFOE7AA/h +L4vHvI1SzBGH2WzRYEkPv/BpQSGV8047NXVde/G2uL34RgtjpVUapyUMX+sc +hk8sSk+5PIyuykPKVZFTODmCMNsgmgfkwy1RTlEymX1T0WPwJ2yyxWMw0wnu +Zkof5shBLKxZRxHFoZ5oaaYmWtT0H2gBVUfbWprV0YaEdPhP2ynHUTsF/qUy +DPpSOkcMwgecbExlc3zcJkcK5koaFu1B8GwDwcJ5KHmHTUSiApvVhdNWKCWo +zhSnCNsThByBAQZN8dyLFM/bSMWzPAYzDC3o4blCYUFRqOI4O6lBGBfxtjjM +dCZnAM3kdIJDTcO1WgjEsNEohHFI5dxMNBoPzz0Ljwiq5lScOz3uEirD7QMY +dqIMO6yY32LhmzfYuPQbks9Cm4utQGibizIIh72op/5agXDHdkCo84ghCEng +RtsrGoTN2FrWPUU9ytKfmyutwzZQJOdIQfinIpTJVA7mCEEsmWU1GHKQqkFV +HmORXFAGZmQEugy7iZqA8AGYrenlEtpzaIHsB/pyn7EphOxhgzvLRccQ1IHD +Bg0ctnJUkIPYPpy9wvIwT5bGFIqqMoYPQBpe1CkRC0PE9YCEm8Lrx2dTEohI +RQTkNiqGY6Ho9KEZDmzy4UCrETUYmw6Ms0I7WsvEJpGJY2iaWzsw/dvFosoo +TlJMjIcCGRftrIvF4lhJJMZU3JVQEV6YXDIfS6ekeckMLwywmM2MnBc13/K+ +0Erk8Zt3uUK0qUQ++1dTLr/Voo0YjERLUGSOy1cGxQX1UPxNPRR999BCkQ2x +2OahhuLA0GehQKytkUWTxQIRa9/LlDgM1kM4iyVXBXJ/LgxbrYVQupAUyI2w +QMZmocsb2oZhpp3mhnOajdvcARJZibzakcgahIWkBguqBuE7AQHhCyEDL5rc +IQcbhIObwPm+RmEp1sqFqpXLSCDuG1rRUaGc+0xi1Dtsi4AlIaCb/MvkJTuO +gG0CMDSgNQD3DAHIm4ZjLADLAIBGFcLrAvyBuK1XhXx4xanCHOmX7ROIQh89 +tK7zJUQUhtXxsCB6GFfHI9qpjoM0tmUfbxW2Ct74WT6JfUPbYd9TwL4nZfb5 +FqEK3Wj4xS6zh1//Fh3CT6SyGEuVG/6KM/s0a+PHmnNEH0YK46oY4YfsU0ow +KopDNYgTKWwnDqqSc1DwOfj5YWb4p4hisBmXw9ooSaascxYs7O2ChXPlYCHi +LmO8w5S17QVy5GVq7oTmq3PXD2zhJXv05UK8sHAQVP3AhukHWvUH5IMXgM9u +eoQWg+tWBy7+HpxN8lYsjPuGQrFc8mIZaZjpvmEP7xuaxWOqUM50LqfxdePw +OCGP47M4KRNlTGKiT9iZIxgoJ4s5nO1SkcREBidVIisavpMukUfUlsh1GyAS +xknbNHy5JQ2HwxkR0xD+SwMLsyHiuF6LzE2NYZLuEsrbwqLq2AtBXh3X7glT +QjDTLcIBUoswqQSjhTc9UnHcuj3InRJjHYfTJ2VbZGxKZHTOMW4F82DMCBmJ +c7y/cY7T+Ro2fKIhqQGJ03nTV6jZE3VQJ1oXWQvFwglFg8xJGpnf6BCZTYLM +jeBsrNB5gEGnKqY3lciZGxG5f2y4KBE5SLUY6RCgHgBUfUbsIQfbJMjkn1aS +/ZSSjKLdi2h/UVggsWrYPFbqLAYzflKEsVPfWe4sxhrSL4k4RxSRYhaHWyy1 +BfRNcQGd7CqGyBxV4zWPiOKKiT1inSNTE/MbSWKOJcSULeY/cl8l02Mq6zta +xhHFv9RMNYt7H9K9xAFp9Xh+rB4JLLWzXKSq5h4pZmPbiFkujKbU5Ww6IWWD +kzJvA5MlxaSbWo5IOTucWgY6iuqxQdUjnsLQ8OJJKxwRO+snDgQKfhd7uIs3 +QuXuqYhQdL3GzeBbH7BIwGKD60lNxKY0Fu2h2OBQzJ0PDaUH8V3aZaLRkqUE +RdNYRCt6SkBFm+72+yEGdIFF4j0PrEkptue3CEISXhowMdu1YyFJ14mlg9yt +pvlin2VUZDhL6ZuviIgDpOk9QkR53QPoxxxxiO1E66+4VqKaXMmRhvDzo3gY +LlDM9AbFQoggru/biJG38i/DQ1E9aiDGyx3kmE0RVNJiC/HIuIU4J2gh9oQ7 +Ek8MIjbwGeHICmPh6kAhmVMOE4bKWy5SVbQdTiYiMcudm8JbiepMgjdfrB4T +u1OKvRwbD1q8AfBwQ2QkVY2IxE2UYvy+V40ej9qfLlm4myhGXWz3VoCMU4t0 +O6NdPtabb/qWCGkGYNaUCJm0X3yg29FRjwIWAiCbkvWCgMyRjvBuOa5o+Dhb +LLRHJpOK8erF7WwwZ7409VwXygkTisOihGJq1WJdy5GktsUVi/H6sJHRcMtq +ZOPIGjZ+ILORrsFxPgsLacthxLZq6xZKMb1TlkpFT0advCmEEZa6Ub6e1PiK +p2OQx5YyNygRYzTq+KFoNzd8Od1OEDtpN68qGqXiuankIsDRHYPISDkqOIaJ +nHWAid/mXFT6cWOQbgeE2pGU05FHbevpTMe6+xljhi7WiTqRFI56QrAPm5VO +slGviejXKRb1Eu8eUkkHupEshyglLGaai73EDiTpPuq1iwcaLkYLITrI6Ph8 +TrgJgm7pTk20tFtFt5qBtkykiW0+/+xzOTITX+iOiXrNrLJgalPaDy2H/zSA +xGxzIZBDZ53jyZVw53YcS2xdPv+jDSgqIGZ6wnlAJBcT0818U6LOIvaNZ/rk +8pkBEUBxHNWKJ7TPREDZqbjq5qiVyEXHRuU4o+9M7h0QwXh2O2Bs2Vtss3zu +CXm4z4rqh/v4clrd39RoJRn7GDx+A9D4LYPI70jyEUn5PSUdN5HkY64Cjv3o +7AtzrkVA6o1jPYSPiZ6jMq5jQE5fpJya3VV0Z49OIZlpSpZSv1ELR43I/gEi +6wem+bD0QUJkJ94bYRnJJ/+2TenG9+Ylpv7ka198ftHykdfU3JhJrVXkEy08 +osP56Fdyez6+6AeiAz6+1ZKPO9fxUe9O1HgcEKzC2bsGj86e1noxRzZmA8Pm +Ipvnm/4zQkc+t8JWQKhhvmgbWEIuzrODfL352puaIb4+IRpPi9BojWm19wF+ +2gUwZqSrKEzvwb8+hkU7r9ItGUtNRn8Li3JditpeopeHhfGfL0L+6ZOpsjlH +DAL1EIQ/3DstEGtbi8jC9XF6cvG34A9umXigYyLhYSmpRmVZbwGfKqhGBKJe +Uts0DnZiC2OTXXcQTr0EyxcVDtXMy6qzsJmIdhsSNgXLWjUZc7VGrCnV0P5a +rAPFGnoEYWFqYURHWpEtU0zXz6kliiSy80aqt1g3zGLjOo99JRwc3R4HjU5s +GmOag/CPOVIQ3h1Mr9wWcPBT5KBYNktXsog7YyWFaDjY9A5LqBA1AvuLApEi +MNj6oPuJ8KUxpd2USmaPwILue8iC3Tc2nCPthIV/7QIBsxYIbFIE6kyidlYK +0Xu2joounBt8WC9X03oN5zkb3zmvaSoWtKloVSLAEb4PPrtpNOoVYpuOXxvI +uC6c9eB8kxEzoSB7iQryAO7PFFRBZpqYpaQgs7ZwWQhDMb34JYPtGtZBid0a +mIIrs4cMzDEcmKcaYErCMS6u+bKxdoRjdF/gO3zJGLvbpbbZKBXWvNn4ADNi +OCyfZLB8/quDJbvPSso0BgmeOM0drcwRCuosedkfvYNgAKunifXyw//UKUZN +y1ISjPCdgZXwnW2D0dbSxnmxsBRAiS406S4W1IHOOCxPWg2wVEoRPukHPrht +QZkl3RctGHUhrcApMpPNNheigpxoFCRl5D6GkfCY0B0o19WgHLd2dfDideAM +NLBcH4HZquS2EcmoK3nAYlNvN3i9rXuSTbbom5Xb9azU6Z6+UbqnBpTJRGRA +ynUiUraYGJRuEQyj4Vhmn5Y0Z0YI5kx7TchzEne9tJiFMVnw9gps6W6XlClD +U4+rl5OjAk4mVkTU3pPKLyX4yFTWH7HG45+Dy/6E0lpjckA3itIvVVxH9GCS +Lce4qA5nny0jG7ym5vZLEdjSIiDnMEA2JUAiHovQmc7DbLfyo7PCdxZtLici +4ixDRD/orEgIkDWqkc45o8cyZUUuYLFQz5JKR30UEy/pkoy9DRnXAip+wxwk +5LpwLCG/pSTlt7O1SQEu0ZETcguqJ2n1TfEYV9+uG8nxSGYJTTeyn9OTbSKy +LUKu25KQXfQhvU1zdXJfo2TTRDslIuv6PEFJShZNnW3NIz1S+zFlz3DL2tLx +cU9HY8+EuyMEOr6YoOMzLejIcjzjuFcdXdnyUWIsRvapE4vEBEtGmo6u86gT +Y9FhtZ2rmehmqthWaNTJnQbvNXaMxpNXGxqbFI20vUiueG6lEVUp3VAwbFAY ++h5jM2Sh5iHSEJA4vjskNhwSD1m8Np4cuZhZ3egK7VXRjT7m0xR9mv1syKcp +hnxm2/HCPqkrDzgUdUuy7F42NqXcIy2wNROjZbb6SoMrpeI6MUkt34IVL2SU +ZmZSayXCi6W9JSPdmlpTWXdix1AevirzcITEw5da8PDZ1jzkuUbKwwmMhxMj +HsrruFMNyBl2a46tqNvN7Mh5Hb12dqDDYTQGQ6XimWI5XZ/VycK123oSurcf +fzFHYGK26lAkcy4N2mtsn4jiBKDMxhzRaJuLhooKijk+8+pSxcc1uuTjZsDH +w4CPhyIfAZKg16x6PCiur5WC/A783R0YcNIxUs/Q9ErN0AR7HJVw3C6qrWfb +22Ga7HaYMCWOo6t1iFwV12ZAipHSpkY6YaghKXYg08OFRDQOayEat49ueWmR +64m2MZKSOhivrs85RncavM43MKauSK1bJ9EtIM0odRxuzJGO2TC3QiKK8dwV +LdVJdxzt8oi6ecEkH6VtYvLlBGSFTmpbBDGnS2loOqOrFI+lU9N17nRiRQT1 +po8K2OiveW4bju0bMTV4nNINHicwPF467j8Oke3Z13pOcHPA4xGAx8PhBJhc +n2ByXYJJLyUPVCeWknIwsiNG7vu/l5F2Cjtm5B6UkU0WgSR3YuHCxguEujq8 +A2EwcWjkuWs+QCjfexDvZ0zV1PwuQIJH7sy8Ls1Z060TfDntasIjoFHh8dHF +YvbbdxqZfR1MCMaOjOs02tuhb/ysjVqatBpdm/GLcJY61o5632xD4ZFMBerl +YmsEvrXYYUzc/OxlY+n2ikWmNUifE1Oy0UV3SgmNGWMj/HizZRLBakW2Wtav +WKzrOOJKMb1d1qa8WX0N3zSwqrVd7dxqnuUxNbZqOSpUwucDK+H8p7psnD5r +dJL36e2AeSSAEg8Dp+KmLsL7qyL84EQRfmBUhCtxmWl1uUaCnO7GGb7jh2Iz +64KbM1YnN48y3AzMbbe9ImXZ7F7fkKy9EiEVGpeEpR69nhcLyyAExL2a1Fbb +VsOFMjVlP5uHIFN7ejqmZo7IzIZDwc2gSe4A5NDc515+ASCzZ1quaOTAbLfg +7lhQBrcWUF/GDcaUdPlYOEJN146RecG2aalmYgAWqwWV55KVOxqVTY3KWVHu +O2+34i65pFSQVJKySFXc8JIYJ/Pq8nH/6aoGLxwzj1q8Fnx5oGa2gcRNYOXa +xNaxDUxbmKe42bbiVJmgbZTc5OzsVm5G2BworMptPZCY3o+rsIljNwv2VX1L +7uMoZKp7CLMmT1BSuTkn2ydh4ZwUVeNtS83kBtwr2R2rfCI7VYlLrcr7WKuy +XWC+IADzjVpgknsPMk3MTeMRw4iYUvAHifknKSou3iAdl+DS/QbOrsn8Qm9C +zHBno7rO4PyaOet+dM46fRGW70zqm1BLt5uHoFIvZ0SDhtyDym++0phspBuR +WZ8UJGmwxwhJX3yTrmSWaEv6ODi8fr6r+yI9OVjPSV16Nygng8LbYzJTnMyr +H437UsFy7Q5huYGC5Rbj16qOWbxWdfRiBU1A5lopsSlAMy7TD1LAjMRmYu8F +263bk9Sas53WLAk0+Zbx/sk5bmp+T+vc6JkKBXqCmEZkUuebrkgzxDxCKs6J +xrTVeZgJaq0xz3brfWjQfIjo7rRZmb+Z3oJW7+xIOSB+S8Iq4zJ1K0ICl5Gj +o28W7C83LG1BbmkZFuRmPcVAX5AL2nKmaOa01JaZ20lxNttJkfV25TjfZiZP +XGd9+SIKpywFYmYRMk8TkVlQZOoFFLjHMUamJ2bCy2FXvJgR68Iry2igUA9Y +l9JAYRbpyrBV2VStSluAX67Ol4hM4ObY7ri5jeLmlsDNY5esVc1Z0j4/DyHs +PDgQnJafGxB+dtbi3D9dqOs7sgfyW7xYgGinenYu6oadUzQ7LxJTQ/KKybYS +Q/LtCy3jQnVa83ymNe1i3VbFOZ3OkZaJSy3NlCX+25ZTOV2B0yzObQecKhqU +snqEFRb1F8i4qlyD8zuJovxfcVF+8ZdxGkjWmCmHB6GpC/K+qRamTQPRFqZx +vvuI2GRJcnR2ugIniQP1CScNfRwovBRGvg+ma1z2cHnpSvBLla5EddmgtERY +FtUVXRKzcMQ8bgmW5cBN+PKMnPXVuiQ6v1nVxYw6gGbm70B00My+XmraRZOq +QNfUvLQlNeUkejvUPJZU6OkIurQbyLU0SZgoLTf5rYWhTx5ees0vvGZXLzgT +iO28SEbOOTFfXXVikqg5hofGk/sVJjDzR9xvEfUx/5KoykXjJ1cl+YCazFBa +ZjrTpz/fId5ORa7bl/ADy2hpDZ9cqMpPqqnKT/PXCarWJXwquV2VApPzssF5 +GdyhNSuFS5xJpNW48XiiQPkkYc7GzSI2U9QsJGCO08DMqx+P/XdX1NS7gbYC +ah6/RB+gp9WcGFJYvBaAXNNTNIgyba3bDHsqpSmhM9KcZmp8LWIOSWs06nYM +8eVrTYVPub25yLpC9e3NfTg5M43OZiJttG+O3MzuEA0hvpMXFwnpO7J9FJOv +MF9lrfnexcI2NaM1oyK9VbpIiKO/Ti+sqUkW1VLzNZmaz3VGTRu5HJ90f/xl +hZOiXiahZjJ6jr3Mz+nwYjpK9EMiMi8S16KJMaKWGUthsNuqTBc57x1sF5dc +n9q63EGzlKCZ6XtmCjqqmNWys6DszPR9WwVtamYtEdpacXbFzsKwc82O2Vk6 +dp4IvDxB8xNDXPBsaoYu1urzGFe3r50jQOF/X+vK9hr1qbf9rt+p+Ey1O1P0 +pPD02tPemGPg2Y43lPKFaAwp6HJmmp5N4gsFmjNHdGZX1EY0Q1OoHclp73yQ +8+vSGsq6qfB4lqfeDBIzR6+2AufLHYNTuuYwyKo/UAdOunz3T0Jbs2ZmR8xg +knkdUWsK1bm8dtyLTV+ZS3uBaGVO57wdM9dpyUxWmPs4Orm6mlzGoIvzUjKC +MnsXA0kVYfYyMoHkCwp1Q7N1gV5QXBKTPPcRIm2NXzYutMZzB0jQf1eM/TdS +Up0r8ez1L8fLTm6F3RpYOXeJPq2YeTRn5nptVuw0k9RKcvKLaQe0AKaFZgKY +DV6s6zUbvwFc7paq0wkw924DmJIthEX6fskiPeGi10z9yIF2SWraXRq+rUkL +dL+gUt+TKN0TJuSN3iAtzdf5sqHUEvM0Lf2ET/u03FmiJU1mRht5P4ymHNEy +n3yHkFqvWTqZvK8hGvwW777mizFqJ75TWUyCSh1SLykpw+kderFXC05mas8u +XloTc9KvIG9wTnJMnluHyYRXrn0fa5VnGpilBmaYujST3g0+6a3XX5SStsy0 +uGzyTiaiE8Gp9WXTcPPf1VXAzqs8PzvZy4b4PEnh8iTV3GQYDSgaOUaB8ozN +dl64857nRnpPcDOeqtQeuzxR6WbM9W2NTVaxM3w+mJyibM3PCW3wM7bVU5n3 +cNXG4WwoSJfqwRL0BdwWkiYmQ7U5mMWPdgj2EPHllXKZPlIs01N20H2yj/4q +H/4Jd2kMX1V28lS7s4E+NBPiH4b+ObsljNtAtqkpbzCv314ehzLrVSYtz4lp +ntMbEePKnGMztn76OtfcdTO/FnJqz7zZpv8DH8iqcSsydU+zKSWMakd7UjnM +UiJnZktzgk74Mvgsqqs7lqB6dnKb8WtWpwAcT0ZenoQPoCgmviI5uqkA0mRG +3pC0fS0aWu5tF++ZDFKyWh1BukHdOLqJKckgnVKT6Nw7sZnDgFRV7vtnVzKQ +tjtZybemcxFqtwFTEeoXuu3ggu8XhyI02Hx5dThNGQWS4l7nKFeytwdRGkbS +EP1d5xB9KoZoKrPpIUpCSKTH6a5a5D3O1D5LcbXGP9jVih2Iz3mC+KTXKJZ0 +05DVnhklKGlt+mUa8C8goOex6YlINy0udjVVaX7ICt/PTGOTT0ai4Gx6wRmW +5n5db63SlHcKJavzyzUwv9SBzIYlpS3Oc0QlyHGqM/Fcrc4X1U/2/KJDaJYO +mqctWbM6dYmCJ7y+k5XSPGmJWM+nhahiZ47wzAYmSnk5sSTMrQcqVN9SYcv4 +O40M7dg1Eg33r56dVoBSEZq69jYu4FW7cwHfIJxod75/VrQ5uLVPxIt3crPE +m61andxZf1C4YYc666uJm4+14CYwM8wg/THmppTcbF20o/N41T8wJvxjaQe6 +LDxN8CjTqyybSnhyT0hi5umcmQ25tdlPumxWWvNrudmW5uxFr8PxZlAQbVcZ +zXn7uXtlxYHymXXFejwm6VWnnpAsOUHNTrZLTJzdKU4dZy90NpMY51ZhwoHf +eYVpoAmfhs9uTCJduW8LAD19yZqo5OFZGJCuqTCqq/mCQhTeRjAqpT8dRndU +GOXd0IMFB0kOzG/Saqb9a0VozUCRvtlsQEDQ1GoPoQWaIz6zn7gKvm4PnLzO +wwtPvkmYCs+0V5Qy2dvpfKZ8ohieIzqE58gEPIPRSh7gJENCe9/LhoQSHc94 +2yWp2uvuHEuNUl7YQbdTMNOPoCW7bAqxRUV9ZFeoTXQenkTn2cmpIHpZjkUm +6W1GyJxKkUmWoLeYKLdaU4fZe4JpctbUzAg1G4Sa/8KjS/NGoDbhFNU1rdlJ +risrHTHPWKJPPTnLQH76Gh4DoN9LwbPGS2oVX0oJUImcwd26g6EuR3Duq8A5 +dLWBs34Sc2qmyXkeiSpx80jKKR3SMhNP8/DDgxt8To4bn+/zxqeUT9LL15Pb +j6LVHnGiUzKM2sbmyyE2h7XA5o4Mm7vWYNOtf5OMojupUSQ0O5XeTFvqCZNI +X+a9gbj5kl5EVucPHWr8IX77GA+5y13OZoqYuQofNTU0xRr9cNR8Z8Q1uqnQ +D0KGJYEJSGCNTX+xWFbQiyOynMU02b6iYFWRPC+pg+wFJWWm536avDy3sCzq +QNmA5z+rn8JZcw0FzPZuMdPdze2AmmcBHc9csmaO6MT/FVria3dTv7vmJ2On +iX8adjYlK14LTwBntrFBp8WmXaokjbeLU5qkbt+i5tI0WXTq29JGZvoqyYGr +lZvGNDLcbEopJeRmjtCEdydanXo1+7lBtZ6aWBet9vep2AzXewyJxKY0dslD +SdLI5Z3GJqIdTiQmn05fVWKG9962ImawMPPXH0YLM31n85NkCElX6Il7HIUr +v9sSmYnUpruvseQLgtXqdL0guJmiJXHSG9xJ16QsJVJm+rragl5Xm0l1uSAu +C+MDCR6Qu3WsBSmjiyNa1OFN3sgMhyS7g2XpYPnTPf5ZrbVGJ63NpiPmD5bo +kyDnaZ2Sc11CzjrHiKeXrOKMblqzblGuptu/Sy8sN+TshJojzEC7XV5cN8wu +jRUBM9VYEaWms9ptmS477XRFcZxScreN3ySU6PENafE6OT+wrnPw50XhJLtG +Llmev+WDSSPEGKc11/llFRIxH2cTQ+0S831GTLtJsybzHqwYThvqU/iFPZyY +NOtudnbIa+EIMRMCc3ZqkDIxF1SXbw/WdJwQDp7Xho+CxW8r0sgsJWRmqfnJ +BDfz+i5meC9Z+yV505Xkl5tjynFVjcNLF/KZuo2ZIzZzWoUTXsKr+hk8C8fN +9ruaXm2eA2A8G5kJAMWkq0ZoTem+VrJ0DyG6gYIok54tyva6hmecl98/3A6i +linl+nZKdNoH1nQ6KT7F8aIEPscbfN6fwmdyAUirKy9aFephHn6ukIcXJKfL +wsfb5ELJyXPw/MrxsLc5MgnPh5mh/oSQ6KyH5zCA5wgCT7pnc9fHlrgk5x5C +ktOPWDIjnV0fHqY46/PuykRPDQnRucoLo0sgA6kp3f54WHhPD98HJ/UyHTxb +ZI/0TFAPrcpDG8iBs7eoNYMFcOqusnN1XW7B6acos6K2kZla+ubHfsK6/FJN +zf/QutzM+2RF3L10JnnhUJmzOtzgUtOyAc9/VNfCMdTsRGxuD8A8d6k+5yxd +BXD2l8CZis8rcB6mRjVxYHNbA85OlGd7BTu/4TzlEHlujm7JzSkBN9eVJtlr +Nr/LVwXZQUwyhKkvm5wXXIdBJ9dDzXlKG5ozrtJ1ID6cu/QXpQmjQylkvt4J +Mp/vDplPxMiUApy4/CjY42GQOZkhM+5n+upc3SVukRmMB30RriCOd8MF1bk4 +TylpTY3LjN/9yHCpjfNmTMtjTWV+clCZn3pUO5X5qtHSdzGb4fW3PpkZ7H5j +U5K6jVlKU5Imxc7bmG4+ssHz623isulwiee63TvEptaZgwCb85aqkyM78X4j +TU91Vq10N+DE7QPwHMrDSm0oTr6Xznc7ecDzgJqafb8OwDmzbXCO4+U6CyVh +uT5d9ThjRx2wmSMzs9OkSt0pzTAP7+/n5c1NSWnSRR9SmR4g8x3a2EyV6ald +xcQKaguZmH1/idyS1jkyo8w72RenkBlZQDSq+Ukc1eSj6LQ8b0dhXiSu0iSV +ea5uzO0vFub8Yh+WzMw4Lanr42jZjAYnA8enJ+X4KMNH3C2834qCOj6+FDcz +5edPp6y8cJqQYq+TliWXlmriJ6+f+OH2uCGmqsULT8ywFi8QlzlSEr7wtbtr +Vl63++fqdMnM85euUZ23dI28C3Am3CJBcRpwNumQOwWn3g+ydVJwHhTdaRkO +aOob26jgTDFTHMzshpmkxykmOTU0fxqY6X455wF8OWeL+jy+L4MH3zsWmu3U +5nQlUlvEDK2gVSKm2bTpA+6MmA/FxAwWEqcamvSuNLog7lq27ki6LzIpMPVU +UGT90I1wssBMOuWcl7yRWcvLlavISx8pwgBmCMxC2sFhNWVT0pR+OLLBJKVZ +ulHSAtxN9lhE/nivGJENlbVEZ+eLwN35melY/kNTsqCUhN9dr56dtzJLh8sL +AJd4AJuY7odnQ8lOUrHnyE2cE/DkzDQ6C4pO3KsCTNwI0elC8mK1jumkJWK1 +3mGLk04UuTynviJ9h9RQpuAPrQo368cwWzU2eXaTFej+Dt8ziZUeLkjSzDy5 +ZU+zpdIMivNE6CjaWMyYmbTPu2DmMwlmSuF2YwLtzbcSkzvU7H27U8SiXFgR +FxhAwhUXwm64hMSMbwLSvIR/MUeqYjzRv9S4HJD2fRKLOeg9aJ3yUtj9FoxK +BpvYC2EDe4OrytzjshmqSjbfkxUEl19mYUxdhS2DQcir96Qx9aaETgRnIYCz +YcB5w26fd+ifa505GMB5IUDzQtSZFyhmGtmpTnfK0wQ8/Xzm+DQ9a8v1tMN+ +EOtzdlKq1wSSaoKcKXSmJ9g76G3myM3s+mhmqB07yPY1/ZylNCtE5Oa7Uvoo +XaAHySMacX+jbq5S8tCfFbD5asfY5DNB1Dvf29o/97A5Smm7Zq1vLm1v/xeT +meIMUCQzhfVG0Z27vIcp7M+s9cqFZUbZ6oKmb17Go+VhQe73FjVpBtNb4xPo +4qJedUn1eLqHYjOKE+VCnMhQM5OwqfRmjtSEr3XDbv9T3QinozK9cPi8WOnN +ixCgQFF4EUaEGpCqvmfmKLqkTYquZWt3T9Gwfg+XfG4cTbdz/XlQ1PAMU/EH +BE5RmqDeJYoImumb1Qe2RdCpCYIKUU6VScqRn9nlUpuzDUfd36PBb7hMuulk +WigatXTXDF1OxtN9tT6c3JcxMupv3sGq9XYjSKuOT3d90CNLxeiRiE+yZnOq +xefNcV9TV+k8pMlHz/8l32AebyJObYYTdx0dg7uOcPtwb+8AzXUXAnH7B+ef +5+BAUJAySq2BsxM/BbV+vjJwlhI4M76/iI5EFuYmNALOGsG5yuTUgrOpBKcF +J561O+9x7gDw/CEw8oeIzouV9rxIS1F1LsA3n6+IaijqS3lVo6dqeS5GGUZ3 +URitE6JHir5RneHOU0p0JJMidBvBaJfynSNXE0IDg10T9GxhgEjKJPnhIXlH +Z2re0gtQ2u+M6UkXfPBlxnZIXZqx5L1OdvcvdYfaoufrq4eedp7yl+GiYmWk +30boye87v55vP5Lr9XgA3RvoTHjqHe6lTbYL1082w9FJn9HUdwM1U+DU3Cwo +N81yo1LiZtYxOEsOTmIDld4G8q3NrM4D8uV6YheHgiaLrnvX59/dEjNHWMLn +ofVzvTmASyzS/6dAWMKH3bSrQ2ZHgnMIMPNSJTgvUcBEfgI6FTitBNWFfOEK +eac/cwXORnslfCQ+hfIdRyNAfL4Yle/tCc+NmPCkQ+zSPFErh50TM+541hOT +R5JSC+dst9Piknc7bc3Os0jHB/s9dqgVnNwe4tFNxOVVwk4PtgtJ3PmeMNMj +XD4X4vKl1YRLZwn9weMysoT83ZRTb07cS8lXEgcj58IO9wvDcfPkbiPhrguh +Rs/4RWo1i9o7oCVLGPF70/TlP1mES+Kaaxeo5MkiewVvy+oce5uhxrTFuV5b +VEqjPmbtRpPD0vYyc0QlfBCFpTKCilawzIGVf4fPvHnXv3dNzMsUMS9FNF6i +0Gix6Wp3eOVGc7ry3aCzUJV76Sr3WG++myKn6BvVbaQ7VNxER8WmDygdECU7 +/a3saWzWmeytsJna89G+SSTv5/R5JElljmhLZZ4jXJvhVaZdhTQ8cNRpjU6R +mWpxmsHKIH9k3fRVQOaTNcgMNnbomKZC5t2yI+Su8+W1ed3VF8FeTYPMi5Lq +0iFTdILOaA+XLVuaXwkumxIu3R52JEBISyUqL5qox3zsUmE/HKnnIstoLpJP +kPPN60H6UsWInNsDn4dhotIikiYvMyTl5znxe7D8vkGpSaMp4ffASs9LeK7d +5WwQUvNyAODlyMzL8HGp0puX6HrdApT0PRudg1OWnHNRcgI1s6d5rzNIxsdy +c+1EsFMaYZcKdGnlnO1xrk5mToyYOSFgJr28TdpprCvzXaLKPLziUpKZegsS +r8rpBiQrM38kD6RHVTmPuduqnPLS9jRjXion3Ww76p6X6ZwmjbVPFHuZn8a9 +TH5VUJ28RF6m5KUwNhncbtETLzHyoUyDyzIqxXX/EmAJ/3oIKmkiUxs//Z3x +c2Zs/IiknKdJqW8u96TM8tQ4ub21wk9E2v3rRFN6w6dH0pTWKFdpdbMz2A1B +5uEQpEqpB9a4TqmXUUqdW+OmUwlfEJ+N6sZd/0eV4AaXuaJlWd0Cv71lzN/U +6UZrDgVqXrF0AOIfniXQcwDC0x1fuRe0co8kqKcoseDbIymTn5qkr9OovEst +8bRn6BjZLXRcfcoxz7holyiqlybNTlI01eKkCz+keFJ8HdH4RH+zzmCXVOfQ +pOqkmSR+g0a7hXqLvuZr9yVXeQT5zTYJKm14F4eDDEExg6TvD2JuUNTPBILe +KPQznRP0ubyEmN9LmVCbB6XUZro4Dwx01smM8Xm0gM8BHp+H1uPz3P2DofIc +2QmsIx1MqzOt9ePoKa1447dX0FFyPxRZx81/h17PnqxzWaQjmTa0fj2JZEb4 +xObl362+vGXXv1liwnt/Ds/uNefQ8WtUPwZiwskVRgvEqILo5QqSToeWTode +HFA09N8JQbPWCH227Qr+WCH1Se2i1IgRX6YUV+91WzvFizdWAz/DjBJbCs9m +L1tX7eFtGj4LHzY6ZQWqg0mXBr5QXLFfH2c535TZ6a8CboedLxN2vgnsfLuW +nXaRR2pRnL97Ddh5F7Dzzo/MUmJ2KToLIdGs+8xWPlAHjU1y60WiSM+V7GxG +1DxRU1NDs3cKmrQ8z/S9af06oSZCU+/I7Esr89Toj6WmWcPe5Ns3glFy+Gcf +CE5jkuvJyDLYtm66l1kwGZmIYVJYqrJc9SytwiTFuONljphsGEr+YsxfO9SY +mpLDgJJXARKvREpaVGrB2QgEZ227s6Ba08Tlp3OPnZPSTra3RcpYaa6VyMZT +pRnbQ0G9TjJJciC+LgzfLSX5lHq8/t1S0tTpOSIy+4Ep048UdsjpmzLSAvMs +Fj2yAlNygq4SA+9y7IiG3elSYnJxZYulHe0AcszjMiDtzb7R5ZSklTn5NrLd +6JbPakvzaDmHFDEyO+CSSzmkBcPpupytyOwjtjB5rshtLurfnqjcP8BjJi4Q +NmDMlZ4krUtfi/vlRD28HqfBdTMO2aCi0o9BlsGeDYvHgsz4yKGhkuLRmjoZ +IWRB6+9MkpMalKUC5S920aebohyBebUqyq9CUAbchG+iJaar0bXALGijM9Pp +pKZLJ1GBeR6W5/NUtvPcJSI1c7UMZIyU6+xYWh4iSks+SERKc7IjaT/X4EwB +czgBZqvkEd3DWZc6Uo1N+BsEXGYXJxqb0mB6PJReJyl51GhwMCJ0qTGBTFDz +bXuPUCe05LuIvWce0fLlbmiJI5RL5S2alpbcKw8y7XZFe00ZfrUQyHSRIjmM +yaVkclRSGi23a4tCswfL72NV+S2ScqUmZSmREj4VI0TNFCkJKAsKyszN+Ezj +yaGewApnhXdGlriVYtOyIJDkGvJrhGQzgOStcL7RSRxTz1AOB07+ZNkAda5e +htW35SVOegIlrzDnR/hmawxhqgowSHDZJS2NvtS03CCgZdJKJ8uS4kYmHx7i +RTgfudw80/OWtxBShgNDMinrbKBgeVxbtnnYvEzdKGSj7XwQPdyyKQ+hc115 +YbDBPbg1SCq8hcFzvYO4npIjHSWf7ZKSdvpHoKS68FwniuxNQKLdQ4Ylp9E0 +ES+4nZ78Qt6SKWwtqouri1H1/sFSzMSWosDiQS88R0Riuz+8z8cSkgLynAQg +TW+SeeDa2ZGu1+Vrgu02daYjcz4vbjZq/FjNi1+pV2qYUlsj8l91VbZrSRJH +J2l+q4xQA/FYIBVVIzJHJuYIxByJiI+/wEd/o+PmZOHo+NNlqCKvUWw0lPSk +xDuCdfPSwdJ0LxUs8X9AdFGuWHlJ59JSKMY1LJvG+FmT1+LqGqLs9cA+56oy +Tmry8fSNOCeFqFEdJ0fUcnJagpOTEpwMtrkvQE76u4P4cjhef7dWkz5SNIhM +Tu7A1WRwywW94cIy8qaWzUmZkTR9SRn5iszIZ2sYKaUu2W1pE+9kjEysLAqv +5iXLNwIzhzckfc2tVKRdulG3cKNma7AEyJNiQJoZnpWuH8kAmbVFyH6ekDMi +Qkp9SO3c9HABSRlJ6uxAQ+bm5scwb07ikwjIMDr5Tx2d1DnzkgtIhcWGw2Lh +sFggFhuOiPCXAEisbtvZn45Uo+biCODizxQDkY4l0pGqSFZ5EyX5I6IkCRwv +jeA4IAVH1660o+kiHZ+LOpWpWXRZRtI0puTl0B2bYQpzf8EHT6NxpwCN01qi +kaaIws7kuGTqUt4AJ+0xiuXjGUFbUvveFzjfxhfZVj7yayx4kU33b0h+d80M +z8svrBIW93JYND63aUVOtHM7d5K5HVtc3xLvCnbFdWrBOt+t0Uo2/oANiMtD +OhIS4Z/KXFVUJ5CYq4nwsoaIBSVipi9+7O3cmSA46W/JJVGgptR+RB4WdXKx +6eQim8HJVf6nGV1/G8TJm46JLPujvesyGlK8ydTUJvDToKW0E47GmzHVNPwO +WdnQrPS8zKvbd0Y9efvOnwE215K7kuRatIaj5bXL+uMpPDYVNK9R4hKwiSF6 ++P1VeJYOsF5PrSsOb4u5KYtKFyd6K4XNVCiTr9yMJOURoqT0zk6KmQcEO4np +pPkgklofWsPMXUQ5OSVgppQZYldRLkyX3GOiWUhj5cw/zmSF2pCSUdKyrtxu +oyn52q89LwOPu0teqqt9FsW8JHdHTuC85IM7UZn9lxZlNkmgC/vUuYRMLQXm +hna7EtI2IdHONhdNaFb2kVgpbf3lqLTJSV5bXyihkkwtunvKmpFLE6wWKmll +zRI//NbbsLI2sJTCPnlbwIz8a8tIrScLxchbNR/hbbcZQP5FQRIOvO2O0Z/B +K7LAtHV4+1Lz+mX94atct6x/jgzFde5AUwCpwigcXZ43aXmOEjRwzHGPvK/O +M61AG0F53qKNOQ/fHa5FirQn7n5/wjGUtjAl3XlUUneGRs9BtSW5zM84e9ku +P8eJ/OQDkp6f+0XDkXgRJdebo6NFRrHe1LvfzmIDkZ2W4UKrUjR05HxQip1D +ODufltkZ7XX7tcDOuhZlsvxOmDjt6syUgSPcO0G4iRrzOKUxGTdPpdzsT4d0 +6rhph3OMxY2hyVICp4FmT3XR1HAyJ16N3k+TUx5ejFXmXv/WQ4s9vOKOA5La +sAkbkXp9UBnyUts1WcPhUktKhKY3aFwFXtAKXCRmqYhZBMTspG05Eph5A4Cy +QHIqcOIfRTFTHVO3F7RuhxdytarlrfS80vc0TbS9afXnaqTm6Zaajypq0l6m +ND+ZVp10bpIuKA6zRGETk89KdkDMhXXETJs84QY4XqF7g8fuLmpXbYazkBey +63ltqlKozmnTMmHsjHJNyzpavtQeLZ9I05Lb3qKhIzUro+Q5S09yM4eubkvc +1sNXtimVWU9KCZSnrAZQzrag7JEVpne29W1lUiFeJHqS2rAJNq81wtwPdiLZ +EI4VlJ6Q19ZYNS4aaTztm/XJcewmYOUvWrOyIOU3EFJRUqnLorpz9Kfwjjt3 ++jRdl9fEK0cBMG8ENt6IuLwBy3SUnCWS01buhp/IQqc4Q0NINTzx74+YQS6l +WUrcbFGzG3A+FYGznXr9+JZaM2X/8EARvXQN+5vdUXPawt0SOzR5iIjep2Yt +Hx4gCmv0tN1TpzFpFv1CojHthebt1OepDDq1edon5tCImAsdMYOpR05MtTNY +30rh7B3Xx/yzu/Ms2BXM9wSL1o5sfScmHJ22DHao8/vManRlhMtSwqXs5nhc +FioLVEqkzIJbw0kR7nf89iWoDMa76W0RbgGGm1XEDb6kVRmb2vaCiMi18V52 +XjNe8/OoOVlGRo6DY4FMzJGJOSKxqO7a6dNVkJNIx5tVCX4T8jGEZEEgiQxM +9Ddz5Qn1pY1NZgqtwQmpI+y4t6SuoznO5YnkbmYcJgpil+y+38MCMnr358DI +GNdRy5CM3BTnufR2yMjjlXWOD7/BIqq+M31F2tnBrDjfrRFqSRoUsk6PsDZY +xSn5dI7UteSTOdT8plR8jlHxNZGKOwIV7bqhIGz+CA8GfUhM74+0u3P7n4Kg +ebBBHVcBkwvH9RpgYQVwKw1ppxbbiEvWdimTJvcKCYmrSkSUILTA5lAspfo6 +05uBBvC2ZGjf7CUW2JSLQhxS4CIKRpSJCMafu6OzPu0BUYvEHiUS7wrOn6t1 +uhCNOwIWbwHu3YI8vFn1JW/SGjLQkrmoJQd4LYm734l//hPfvNTueU8dKPVk +ea5I+VaKlHq8x0QvJePnVINKqfy2F1SmRSTNWoalt2tWimYPxeSQGkyOYZiU +UujSYCO/6AeblPwySb5Sw4jHBX6dhhWP8iAjHWIML6Ww5bafz8Frz2hzkhs7 +dB1wCpG/6x6RarVQmJ20TclJd5N0ObmYh5fZ03mZHc3gyAOKrURjaqA7MZZY +i8fTGR7PSuPRD2/PwndL4UhApCbkGlILUhyvETRjRq8XI5HxXLg2J1iUptI+ +vKx2Q9l5aNIUNUY2MbERi2hkf9YwbcY7oZQGNCo8NpRWbCoo3m3Pjg6QnYSE +kI8/V7Lx50hBi0mmIrNeyEdFR3t8p9K7O9ok761N8tAg52g07vijPKLeko5C +bzJZYqdEZJiw5OW1QMZgDJyTkS5v65yMk6KRb9aMjJap+2VDfKelF4/HtyEe +paXpoeU9AsVjcLUZbUKmqPgImb95kk0reioOJVQc/jxeX5ai4jJCRRILMtfv +pFZfIBWnKyr+LS6lyWTiLB4HsqKRLQtKiEZ31S2rog0Qc1VG96cXkKUzkSEP +kxW0BEQS/LnQAvEiJxmDnZJ0n2Qp1dBqbwW62Ww1GrKQjl+XgVY0LcaMwFA2 +rUUeltGYDGbCG8x20STURjXhIYrFHJGIjz/D+ywPzcmre3b8M3ziOl2W1sjI +W5f1Q2gv6+dBiVYSAPAmfxQw8X8D4LfX66NLb/jzXRu64VGo6OqYl4UbHQ9K +bq0jH0tliMTcZV25LWnII8kat9C+4ZONttSuo+SgDijJpxh9sHKiOME4kyzE +4CW2tAyjXjvGa9j4AgxaXpumI72RJ1i9hqa2aTq+Zk1tsjDIEfJpRcgRjpAv +d0nIDxKE/FNISNtsDMpqIOQ1fzfX3v4jKKvdQqCEZtxfmEKULmukmtHgMRP5 +GIZ+NCNXnY/Mi5H4yDf7kBWSRCuavT5N21/kSUh5l09YRl8XltF+e08e2tOF +d1nkyjlnlXPJKmclDuHFWAzi4xNgyi93/KT65ahPOpOMuqTeCXB427J+eArk +Yh5ikelH/F8Bj0MrIzMdEiocEq9xAzyl82sIDnUwKHsxmAmn0tFuWm8HiLz/ +SOdzeJLS7siQ9gCHXjbvO4aOjJycbAHDaKTbOzETmRPD+417JQtpOelD5eL2 +klw0t0QMUXKxroimW4BonzHcPzmKpntsknw1gHAvAkKXiMT+4j0fCSBM9BeF +4tlv9yEglGRiiyRPq76i4LT4XbtfBQSj+2ctBC+hEAxNFl8srx0toaD+yjV7 +BL1EGtTRjcTdQgLm4T4e5aj8zboqWe5rZYtCMZiTMFaIKITfWRSWSMFV0Iaj +AYZ3gDYEDiMEYyZiNxSYd7M/io04HQm/vUGfLPchoAaXihqLDY5FsiqjfzdY +hO8JUMweSvYaEYvckgkHctbqvJIOkLhNLRJnJZHIB28sEut6i3GcR9aGetiG +a0NnSs//gdGG84RNFtSQDnuKI8WeIr0kRzCjAxy+2CEOMSAuhByJCY29xEl0 +r48U2eFV8xX/TMd1EhfTRpqQRnUEFJ6Q7iFmdO24TYF3iMJENidCobQntw+5 +T9b2Dc1lC3sFWlD3DPtIjopEwTxEIF96a60UqJEzPzdtJ19YwxD+DLePdtEb +Xyfv9GlD18hOECIETWkMJGwgCYvq3lEfw+/vHflxh3aLx+GdCod3IAktE3Nk +oiqf4U/1c9COP9eWjEUjca3xArNYLyITc5WKLKlt7TZi6FjPEzzW07VclIZv +bJeR+y91UvEQt0bN1s0yEw9g9nTnMlEO7IRMjCOOe0b1srx4t7VEJBeJOZ/l +8mqoWCvXdRPppWE8nGNXkz/vF0OKPAxvvPEDM8L2HrvnjHkrtIuoB2XIxd28 +RqZhHHtFAw7I2E09bKcZjS0ewT0Vs53H7zFremkYslBCoVKGqw2FQlnst+70 +CBaKjdzQKw35cCAUww3aMHRXJzAG6qA2HDYC6Bfq3Oo7heiccCnomoVKCioV +WAjsyx374DveCxUxAFCfkR83ql+N/LgrcdhwNLwLaHcXwu9OxOAd+Lgdf3ub +YiFgEaloTn8lGAvVXCxoczEjVkyTMpFqRTpg85OlUUdRS8UnpRBPDRLljZNh +9RybLnxu+/AotbNe1EY8wLYRF9kbbrfqCIfTgxYiv+GB289hdtHv0z1Q4VAy +WFzSm8nDQcR2pskcvTv3omTC26dy6I0NfBZm9aKQ5xM9CvX6CWuoTOZpbptN +5PPVksUsyELJXg4qZDNTLVrLwo00rk1Yg8FDvhYMlrwwJlt1/Iw0C9gU5m4E +rgRvUPFsuqrWZ7ExWZPXYfA2dVYDBguKQXjHKoFQy8KdAYR3L0dZiE/4zhqK +eOBtdyIPsYhuIBptb9HpRjSHPB6tdMzy2lqaRB79Dowm1YwxGx/riI3zBDbG +JXSiq0huyqHl88GkfI6TjNxe8fnuumhOios6lhMuhqwvmw8Wy2ZJIg42ElGt +NntfsFPeo3cx2F3ipmR++7qwg+iYSCdeUhGcDphoFjyKTMTojZ0HdPfFfmzy +2p+Y22kS0y1Xfx7f4KXmp31O281OJ+I2fKKFdwyPT/HwaFsi95eA6OdYZCBm +mojrikRMDPjxvd7VZeP5Qm+XxNaqsAz6hKY6zvR9MU2Jif521pIT0bcJ2+0O +5m15JbpDiEy0fklaHzbh+afq13hG6NNFDmfn8QOqXyo23rO8n8JkgXTMnWz0 +xXRWUNmYJQ3pGzH9fYMqmali/BkdkWmFxF+3hcTIbBHC3p1IxTC1mKqc+dUM +PpMj43C0CXOPYcOBYRZHj1HzNRQeh3qZ+IFBxWzXT9BhQFkihobK4GBz+GXM +WfaXeo101bI2U5yr/Dp3leneW4PCl7tDId9OZof9gusSpCr5Wj8SPaOlNFzR +WhqeHktDwGCuSuSBWhnKvoldW5ue5qul4MCAghfWUdCLQkdAQRUqTZiTuear +Wew6CBWqi1f/QfLW8Z2rAv8alH9+GU5Jp/FMW/DTLHfBGZUo/DO1SLxZXCD7 +ckSfUoYKfHjgd0C/HMHXQOrl1X0j/gRvHNilRtwFCHjv8r4oOJf3zQGG8LAs +lCRj21QUKmnSZAzzjAPaouLzLfuKvKeYyuPU9hNNlpsXzwcHxbPkr6SJOFsk +oh2XjsdbZCL6gb94RLo7cTj4PTsWTZdImILZjLEMf5v2Dm9hvUPrpdjbs7uj +IY4/jzaLyegFXIqG97NsDekZTsY8Nhl7Di+NMYWyKAq/jC7YwoU6taKwHRuZ +Za9PTeRoKArPbqNCpne9TF6h76we0AYI7Y6Hf9PQjLo+EPMe0ehJyEASlvFB +GXhVhIHeKDbTJikS8rlkSQd+qnRgrnRgg+pAh0NaIwMJS1MeEw0In+6Y2ITn +R9V9wz+q7jdnYOcCEfH4a8AjUBfJaBmJ0nR5PwSlPQqYueJkAzmJmLRH9R4z +1XxUtLxVkfIXJtvIamtcL+THZDLdfWwwLdkeMO8Xgdlux1GSkCclJGS8c4JX +1Buz7TxbCrDcoRaW0xbxKHfYYdzHdRhnkIAin4wOpaOLb8+PzedQOuoqenCw +rSysooe7HA4HJe8sPmjuzMYMzmMsrv0CgPIlACUuAX8DQPlWBMqdOSjVLYUM +lGQT2RQ7uKI6ip8K1fPncfUcRbPbk4zWVJnDJpujTqKGZK7c5VJiJHYRD46u +NhAYaTPYEiPX4NEacXiZzuiR5Q6Z3+4Q5K35llk6elLLSDuM5ydOTIXccOHq +TykTda66dPrwHndsaRzy0LYLf8V5WCAPc0RhAzkIH/KAp2FHIcQxgMP7lvfF +kyMXGwyLWEf3tUjMPBOVDwMvEIF4uzk2tGMajaTJ6DGIa3tNj9EAUCcYe6l6 +moS66WigjukgAH/VNgBpYJHPufAZF6oW6+vnb8c2y2qBH7dXJjv4hYHE/cwW +8ANdGJHeJ4PJG7Xm1qyDCFXiGWZV4znVoEAl1tXMUvuQge+1NPiGdwU+turB +WikIPlUrfxKsEEPwzVAJG1srfx46ygx8LdUhr5P5VatxuzBz1DM3BcbUG5Ci +XrBz9gIJexdPQneEY8+vthkQY2+vAHtSbYyOca7W2AzgyGPLa/4mYc9dN6A7 +gw3qkliPBDd7Mf55PahHSUolBjE+bQ9Wx7nyS0pVH/+KHFCFWVAhEzWYUQ4+ +MOyPeOAL4bP7ShrZeL+qpO9HHAIiC0QkV44CIrEPsFzX2Xfqo6rsrKDGTJa7 +hCNuT/Ok9IbMcwEshe5jipbsggaPS8mFCQI7S2OtSItrqhVj94W70hsIzksX +qDQjf2Ewh2/RCUf9wvsKudviNeKIqL0ohXG00yIV035Tzs1Ca5G6LKsHkzjc +vFeESeo4sy21UfAmVUR/SYro0GlOZbFTrorThvIWRe+oBIhcV28F6wCRtoco +jOVZRiIh9VLZQmgf9g7w6FXhP4RFX022BdHxUUesywCPvzCDd4XCY8nxmOga +7uhUoZ4uKd10iUGjN5JVzxBpSNwSqwuRjL5G1mRsIAob1YO1PGyqt5T/F37z +BZy/mXMNvrPRgpW7AisfVKx8AEVkAMzcAbNQwGw6YN5tjoGl70di+DK0sG1X +EhuS/UgYPBgZ/FXQjkxy0uweb5eT/LZt24Tko9NcUnJLxt+enWo+2m3hW3TF +yKkkvBg2HdGRnsqSOr6O3l20YLyUDBuOfqsYHX8ekqihR4g1NLdehGSOCW37 +PTkCH5/xfMSw9u6/NXxku3Hc4gdpizdtMv6MbO+2IW2+fZYEtCUJeTiXkCej +PMR7p/u3bC4GbDyMsnGD1cbGuGT+MqUdTbncS2vHcDw5Cl3r61g642JTm8mh +m5LyUhwVgR6jIirScE3YPdSF8oiPGBVzfJZIxRypCI+h6vGHvHpo6B8QkgPq +IFmcNmfOnGfhlPjGZosiG+H4ECDvISTgg/h4AB8JSMKfECgZtCMVJ5fpyjuv +lZO4W5LU3W5dT9P1IBkh9RKzG2JARkJS+9d1Lg31reMYT9hwpItuw3qbxncY +HBdt6iKNeuqlXTjuTi7AHi/AUccY4zrbi0eb6KZrF0PxSJPcZ5MFtUKN/Q69 +m/VGFluki8Tuj+M5rcD4HAXjIgJGIZbjvGiyDUdqKtq09lUp58XHcYxozJGK +2bZOM9aZLoleoh5e5kzUyWxvuKx+JppVX02xnqbX+REkul0NvWzQxu5pcEg0 +ZTTfAHsrjRs2BaX4mcsbxkRUAyd5TeewGxYWyEJ4KQBDZKE7hoi0u9hYrvB3 +OgHfj+DX9wIY/8t+aKk+VOFQwXC38RgjfHh5H3iRD2so2pMLcMzDklv5NH0p +GHMkI/7V+GLbOdrwpyDSkZKROzM+8HivIeMAWTcKWJTMa19brxkMw6SiPHFd +zXc08hYk9V84Ege1QOJuAhL3jrbSyvV0eONBeLtWqBXDNDeppZkxrW/SIrU0 +S3GPfOMehsNHVhGHbIiFm9EutS0N85kamm2SdTjkaW0hmXh4i1SiHdwzLcYc +YQj/jJRENL6KCSPCj+xZqrsoofC8Vii0l/r1ig0VaqaMM8uyCwrBTFOwyZuK +VhjqqwOaAgX/7ilYcgqatGHCYM7dBPKnFoKZbiT2SI1EB0NfLH9MgSi1EYtU +G7EwtTOg0YIRviI+y+qhIX+oHlbnv51sbGpA9tJa8C74zY8tJFuV0gDI6jeA +x6J6ZHkfTcoC6NjHUjJTmGwgJnMBk/i/BEo+qpOp8A96TlpC2uyPny7MGSgt +LANQLgy2PcZFduegTDUhZb8m9mp41tFPTq9HruLaiJnUWwnT0iEkZyhIjhEg +OSEByZnqNmsa8eaLIlpqxvfPDKahsZgeiprxHT4JzZqNZjuOA+Tr97HUjgXk +s2RvWAxIdzXWEx6QPsbNLiowYy1TbvuYTfdJRfQ/wyKaaUW78IHvBJOyimTb +jZtqFoOK8XIHH1Jsl46peHaw9PDLpNdMDJecjajQG0z1dMqAMIsdZnDoGi9q +MFd37PxZnjKZ79bLu7y5jH3E3I0lJ3qHudA7LFzvUOJfgc8C0ddA9iGwgIDr +DohdaIPBnrlz5y6FN4xup6O4+/j+1W+BfTk+CyRijkBsGOlogfigPkWIQ15S +l4FqNMox0+mewqV7brcLKEi0h4UgX3NNRwmE17YBQrxWJuXGnG86jHx02qvF +NQMXRiqgMa2j10d8KwnBeB6QQpCORVsIWpPaQ5BfV50qnOtVIp/5syrR308Q +GtN61s/dS/DGrWQrDk3jkNVgL9vYYj0AR1MA0rjiA4IZfbvuIjoAks03ulg2 +91jZewacOvwyUofBSDNbEVtbKae6hyn4HVAPP5XMrnNUTIVsdGGw3NDsrTHc +y+zdpaQ6JuEaM5XXTHFP5w5LCXtkayFl3p+Jp9wMpCCRgYVQEmu/pAwyhXge +UL6JLYgl2Zdz7D2ygzrwZ8cnvG2HD0UU9taIO+foo4++Ag7FXi0KH1Uy8FFE +oeWhKBAftAIxd0QsnEDEhCV8zL3maCZajdjQVozXh5ITQ9ShBmIzBUSd62kq +cSjwUOd5XlbGC8ehpAm54XIq2apzglA4++xO2Es8wJnRMQrjopmO/u1Glohp +FHKDJdwK4cf97AbFOi2oN0HorYl+9PkCd/X0sGDsmfcO+TYcM+7sQokmvf1K +exi022/sZQN88402UwgG1Rgf6xnS61aUBvzCGymCBjywhQbkBXLQLDzmq0eg +LY3DnOG/09pP7ez6B9lU48OFwQpX+DcZCT934WgzFn66KUgKYp4n/AQNkkzq +CuYKgT3RnN196qgqWNvFRWvJV7Rg32/0gd/9ZjA+1631U8rZwMLmrFmz0E95 +HM7cOXPm1EjEhuPi48C9x1EWPoYsDPiY1xbQio+ZsqptAtJzsqCczPwUDYFk +EOwpHSQ9IFE33qIainWS0RrUkmTkxjRvMFq5OG9peNuBlYuS36LD3WuxxmId +H7dui4/TFtGQDt2cEzcUxy6ktbKViYe3IRMT3oqrk3kj8WbBV7Gzfik2vmh2 +a9excUnARhXEgfp4b8FPcSPO5prouD5mOcWL2KoHsv3L3SDAliAGwRtSG59M +NsCS0E2unOVNRSzO43c7h3FEEYtBSTw2Gk9R83lsLkWqh82qf0RiP4bEvwV1 +8K07R0jMqUnCcKgnTUo3c+czhSgAnQx0BCxsbEb3/+zhUvBBi0MvBRvIvwZi +T1GvUf3WoG/NOvTdAb/5K5zP4OCvEYMtq+M9AH1PLO8Nf19PIOMex8djiMFH +kXuBQsyRgDkCUJXNrmQOfRZsCMDbfmWOC+s0eFBH+c9Zb5f8jpVhv3AdWXaH +Ax+FnpTI4Wkc6qqESZzYUTldqI+PdfXxWqY+lp2UAx3wtuwAeLo5OCXhoExI +GMrWPbGh7ToxuL0Vg4FzcplZB3ZVsP+GNwXdGjBqItv04SvPkP0O9bALr1TR +sKO3lgb37/FmoK2Fr5JqYRbItiIwnaSJ62DhehQ7qXzmYQZ0W4Wg2z9hFAug ++6ENXUcXnnjQpbQfQu5nu4dhGZcgBLgxW9iPHvfm2whJQsYVvVnuyl41WvcJ +DcWoAHVuuny/krp8DV7xNkxUGhBnAWfh9tAQLHmtv2FOiaTLkXQNJF2BpIPH +oN+DBBv0+xrmtcpcI9eeAq4V1ZPLexcKcQ1EnNV5jnRe6+Wh1tOkw5xNH0u5 +TNJ6QYNQJ7lLFUx0gcTlxCXJFkkKL0htSwpPBB2LHbasfkmahs46UzfERrE9 +5KgTQiG3WZuQC5MzHHI4xxwuufEVr59MOVxd72xXZMeKLkzL0GpXr8Qm0yiq +2r1Jdj1WG+CWV2MTdrBt9k27hSdjyPKuSMn9J4xSMyV3BFdypMKNltIIDsdZ +dva4W7oJzb3LkpWtzUkTCbd7KOE02UgGcIwjm9k53SdevR+jDcGmd8eUrJXH +3dyggFXTcIUrXrVaa9LiVR/t1Sq5VqhytUHLVafdciQaPn6fI9aaCmugrrb/ +ffXY9h9YvHUyabcnkO3p5b3xNBBxORIOH32KUMMVTsPlTsPB3wWgLcjLPKjK +1AfUk3Atyx3ZUPPGQcKMzzTfTneEvRDEB9NYIz4HWZHoPY50wXoeuYAq9DZY +sWoumvIpmHUSvkY7SKNhwD0I0vTuLhoE1F6GTb0cEK1k2JlcfzI80Gzcx6Dh +v8tJ8+6niebd3e4SKGfidoKzJynOlqkpkSDdcs8f3E5Cu48wGKIL9m6Zbf3u +mjt/oZOo1YxncSSdFqaTwgZlJ82pb9Zhqo+i7Nw2UVbjU3iRBofuEDTBFb0g +oYxIdtOuWIzi/ugeFVrRe6P/lkyrkLBelnsftukqUTvLYRpyDYax+wjGciGF +ortxpQLaQyHQstw15OqQVphyFJiGSMOTaa6VjmuEbR1tVdgL4PaMKkfhWSLj +ihTj8pBxvlOnU4GuSaeS0vDSgHCKb/d73abbc1kvYmL0CwIud9I1DW8Q1dYa +bZGFG9m3clnaSq25knQxqrW13UAI9ShaY43v46KBvj0Swx9TfbZ5Ad29JWdU +6MCHH4iLy9AhURl6XdhzU9fFe1uW5lJGqDWDHGmvC0hbWO1i9mnRwJ66kITb +sRRpPIsSBPUSmeUW6kyVnnRl4LHef4iCyoCzM4330BJn01k4Od6Q6j2HuqxJ +nMELo8jeaNXhu95ituSOnT+LUQb/0vjKAkaz3JmrLmKn88YJczUPO2oOZ1nu +Omq5Mhia1GAw50NXd+YC0kpEWo5E60GcwXsf3657qD2natFnEWrPINQs2Rqa +bIFwy8OSFDGsNFsfwzVVmmIZaspSizYf4MvWcb4DHQER0BZVo7+QuabvQnkq +whpNpfDRjnbUGp9zs102bit0hjSeUeZ2Au2u0Ws9vZWwG0ucUJU2OFBpZ1eD +QaXZonMIKzpdVy3AmbcQRrqdL4+STdLP1eAsXA8YxevoDO/tQjdNKDaDKzcl +dXZ2Om+cXGcQ2wUOZUHImKJshoAytuyZ2qfhvBm/8igYqqjDWBaHiOl9bhgU +6eWu7SAbCAzHfCpOLSQNvIE8aJWNCPhV1KKLtcoeMaZA1tBSbLA7XI3pttmj +qoO2/e9LRBcope0+UPjCx3J493pddtX2Gte/el7Js+cRXc/h41kkmWWar0gl +oZYpqCHTFNdyUpE+5E5fP/8rVaRZvwBtbWBNb0ZoOsXG1JrOl9wTUY0HjtsV +alL96Vtqazvf4EA3lJYm2qxFw+GMNESjWbo9VJh4siPaJEU020obRyZzuVfg +2mhkucsgs/7PLnbx2wp4zalbaOEC1DvDCVxCs5GWZi/LNNvxGbuVgNHsfjJx +a41Q6g1ArTnNTlHU1ZothNlRzBPg5ietM4kfEJLsQIFkM8PdUymSXRqQTLXK +9EaB/vV6zNeWrvf/cwMyzHq42jJs/IfDD2RnFHU2yZYUor4iepFhhlJqjGW+ +jMyjZtig35eWU75ehO8BzwZiCh/Ly+qJbbtjle6TjQXV9bsPeuMpqt8hmiyz +lA5rOGblyKzC6bBcKC61DmsGOuxhT6s6W4CMUeiI3N1qjEJgldn893RQWtKy +kjuePOKBieCk9jIup50Zo83/45eE+/oOdSMQ65PRWb2mqo5S2PBH3cVdzclu +z4rtjtEykjb7ueY6lmgue+mbafS/Zxr97wklpLrUiHfFbJMfCfUQuefyabJf +7+UaQunx15BQ4eira+7f/Km56vyv7v5KXzoKIwwttBaPrfHkrjiyII0rpOjE +r9zl3S95flXUWNcDlgSN5W3JASGZdg4G9v3idzp0oMtDta8kd6rKhi3o7Gke +zOH/ISGkPJRyJ6By6jnKUFLaqRdCCWq2bZatgopCMr34QS94zfAsqhc+6JXD +A+tDxavl6mSKV0WosfKwI6Yszd7U1vT1o6i1GkRrEXLN5+RiEsvLrLrKsRNs ++ZLRY4s2+OmKFKm578rFJX5tVOxV2guM6pGlgxjUo6Sdr7hMlEUV73r5ncpx +I18qEW3HizfxrSfZDa5s2GI5mdT/o5+8Ip2u6Xa1Ew1a2NKQDByQyfxQTLEV +nzRJxocMxIa9NFnVClVCo14qB+nKumsdpsRSUMfEdvlrrKB2jhaL0J68x9TH +jlJRT167itiJNu34B+2xIQklmhyrMgYqr54aAqgKfKoiLzdF3uPbLkdaKRml +xFQvxa2yemqbZdVTW+uzXhf9rHHAr5eAXwU+GwixBkIM/sC/+6CX1VzV86i7 +LMKKFMJyFc3AOrG3ZViW10MsLBh9NMMl0G4SEUb2QymEdYOvuOMVxi5obWgH +UPmgga0LEV200+U9SYquLVqgi8YraNN+YlAP2k1NtGFPg7I0N0ZDsmGzntSC +b1/tNjKF4VjqPdooBWLrKTM82gm29IIRurXYTdP/nGxcokMCtAYkCivZzWKN +ebpZiW4QMZ2sHJmVbRCnJTokFs1/UWIFSzbDmadMb0caoIhlB+DDTZo00MpV +lYl49Ui00iWfXQmsSr0/0Wa7alRhlTcsikDoKi+K6w/+MMtNXB+QZVtTGdVX +jxps5RZe232g+utwVKd9eY8jVgNBBdTaeukqaC5k1iuKUS9/0KtEcJVOfSnh +5cCVFa5QzJFaediwz1TH3uiu3q5gzNTgADJLnSBOFsiuPl52ldSLtLzSQwJZ +Hye5yC4SiVc6GvsAw1XcoE8ViOepMdFQaUnFoW1heZ+xDlW4S2moQRVNgoX+ +4iTTugqKwoWzg0a8VlhHeIVl0l9BvFUprHlugZwf97zKxSR8y8o24KmfqBNf +nWLKLdA00YhgnulWMtJJC8Gr2TJ1oqz2TSmrU8OGu72VG5XVybRFdSS5XIfH +INpg1A8FRrnogy3+9gxiD34mySoqmkkNQvf2/q9S4pO53qGpATUqAlTh2ERu +bsA6T7eh7DilaT/9t88wlBpLvmGOOMpUxjQXZJTEIyWomsijplJQjUBBWTj1 +qp7eqjtC6X7VeCDUq4ChVxFNgKomkqqBpCpUtYhCqzfWidULy9VRXS0Fq9xV +iQpW8KEYEHvKHBudYAFYq7FUgwt9BXjbI+Y8HHuM99OxpheJujLWotB/51EJ +2ninu5GuWRYmv7iqulBQVbQglDB1aEeYojGIuMMeFoLTo0Jwd6emjgzUVBBQ +VZ11KALfp+NGtgjUPauRak36LVFXnaa4RqqdvzKiRiCinqZ7LA2ibHqL7q+0 +3XSb3IqKP7Nu45Jw5fl+82pUFOuiWz/wFBJtOIP1qJJ4mpHGk9Q5t3jiO8op +nm6M9wdRPAXZBer3hTuCmsFAuG6Vf0x9vvtHuHyCt/h6osCVrfQesZUeoIp6 +e0Y5ZUFr6jGOKl/xtQRU764BVThAvaZA9BoiynKqEXJKt7IaClK/88eXgkpU +ZaoWtDnWzCurPopRhlOkEGy6QpAwyu16I/EuIqf01WXZM0lAaTnVPyr9eIaL +5rd4dos22mmT/XQCJ9ut8g12G2zoDk5hlypV6oVNda2fjo310/s2xDCPlXmm +O/UW3RVkl+7qZvpI1UxHMD2qwfSK3g8UgelZA6YnFrp5cLc0zYYW7MI03AdE +ulLuToZEeTebhBWSuomN+wilXdSNoil4NePNc1Ys/Y5QuoxASdhn4fab+Yyo +3IHi3ac78AQBBNchN/PZPQxIpO9km+O4iII2nob+Ueo55a7npCeuDYY+pBhq +UAyFELKm3ZPbLEcSmUa5LeIKh6Fe1TNbLlkFFk0AFr0OLCrxWSKQGg5IRSSc +oMbTwklXeDkCKWdAalAgOVvQVXsSk/oGTGKddQ6kTLuBTaea7vajQTpjihbg +HY5HNH/F4/KUR1ILyu7QDWu6MJZg1/34SIINWW3MWLQ9Y5GNIuxqTD7bdgpr +ObvKB+ez/RofnRGlgSoqkra3Ikndw2rX9oTtphHuHhngkGo3WVOPcuiZJId2 +ehrj7TGHVNzATOpMtpM6qs2kV/J4DvH6rbU4chED1hWnEzliR9wyaL8aBhnT +7hLCIGra0ambnxoGWVHkcwR/1xH1UiEIc1AEPyYD1dSayOafbH7T3kXq71kh +9NEz0LnUQDIxgZw2kKz8MbyBZ8NmmvTZ/vcNHWgKeKNED7JlWe4KMQUYqIa2 +WNKsnt0CUbN+16jpV735QQ+8oDexKHsDKRNAp+Ggk7uGOIGO8fR8oaZ5U3Le +KNxoW69whdpjth2OcVTdV6LAyfSQ4qMScMSYFFc/tPF9kzCcQ2MGtDS7hDW7 +z2VlGe0e6UZ3ijTfF0gzzIWeQm9uL3dlC/fluOLZJVI8OFxjGttqS6K9ckCX +YrgVZzjpFo0IukV3+/lADDcRytgtOENffK2WMvq+UqDMrzRldDzTeHCkSxQk +zXkJRhrZktIJmthk9asvv1bona/Mc+uWMNi5dglyO9PHfLZA4fg5PlZyfeYI +E9PFWf96FzUZ1fvIe/44oGcmjll5VbDUpKmq8lT/x0uZwkqZbZmUyZ2Ugd8/ +vfVSxI0qrRqmwHpmy6VIHyVxSnyWiKAGPBbDv/3NFzeq5zZfvApE2ntcv+ot +IFITn6WCU4FwQjbhASpYSjUcpXJXqylKqewBvLqAUppUOt2pUAUfAKxSpLLn +afUBYSP8cSKNsgclUEXKqA5Sd7UJqWuVK9ffDUTz8qyd0sz2jY4MpgPXZ4Da +kgBqBweo0IHbw+3Atv0iPwVoW9r1MkiPydB2tt3UcHnQJ/LZptt8KxsdN5tr +etXmyNuAk9pOaNZymYDApLvC/pDKMuHKGdsfcmWYXzVDU5aS/KGta3enEx95 +OYxN71EwzWoHTN5Sw36Qyynt8c/ATkMwuavb10hUXWSeeLQIJbIJq0GrLW6Z +MSCZ5Va9qVtGXTIrdNAh06a+mTwBJCljv0EjSKTPk+UCkgoBSQ1Te4E2Qi4p +eZTjs0BC4ZTK5ouRUIpSTXwCsDYDdD2/2SKkVv/uqfUOoKqnehupZdGFrOop +EFgNB6wcgVU4WVU4YHm7rjcyymTRA6cu68eb30FGypp0hE9qrw28LJImCHSU +N+UeDjJQHE83Ezxd5/AUBsqtfrJZpwuEnJOt1E4gLW0ZTTbbtE0NmnZTd8jr +GOYEsnA1bmPbW0AxFGB1UzjuchbJMV0cVmdv/Yx1iUz72gUBKJaer8GSD4IH +S2JI21pFLG/i3SFSldmlMNT4b6GXTjy+RUV2sBylTCJpQrwH4Uoandzjn6wS +k3VS0AVi+w2wLc14ZK18v8zAKaRe4QoD33y2w3DasW86Fj0asih3hRdwDVn0 +xLb0YNM50EZODG21xJEHOaR0kIgaJYsKRA1a8JstRt4o5jTw2aye37QlfhR9 +KHT2Aei8C9Bp4LOJ/Gk6/DSMcgL+OOWkGFQggwrHoDwUTTQy8PwHnEHAkWd8 +PRcgyEWbcFpalki6mf2oqJBchong51aGH+quYWbpmhbKKC7dwnilN/3XITMr +G5MkuEUPTt8NB+zQRnXYHPJDxLxk8zFKroi8wX822ed8qTL3sVwbocq168nl +wmZf1Wu/9sb+q493jh3MHeGCUreXijSDojKN5Y06VEKuRDtKl2juRktEzkHE +HWsTOZezBrQz7A1yguYzbTzz2KO9Ocg2nHdiE7sxbqz80cTpw5s9usnsR2+t +G++Lsdxmrr3ecaVYw1pbSu4stUcpnBweSxqOLqhmFveYKus5kSSN6nebLsqr +330ff/X9hfAeChZkS3uqBgHzHmCkxGdvpEyJlCmRMoWq0hrw7KXKM3MaSJoC +QZOnQJOpcJLrWRsvTRdmmYom0bpMRSqzhoFN2KnO7hdY0zdqUoeg8W4Zt/K5 +SyZrnDWcxrlIKL9OI1cVHWdcMQ+Z9SLI4E0bNPzoryAaE/SFpLLLdp9DbTOn +GjH/eDJW4jPaeoyXlVxv051R2HW+J7TlOwTMuAeJHQ+AcVnsWwxgjBU/016v +yzvNCU1ztKRpzDiuK7P8lZCxy9USLisCuAR9H7OK83qAyw27fx65WnTbiZ1I +M3WV3m9SUCnjFgxbrtyPx1jqptFDJvwx42N0DOsg2x6Pd6xMpifs8ARmFZZS +SsG4IirXiIEaqhBKp8IQZ/PFpRMwJXKmBzlTIGcK5EypONN9/TQRSDNf9aHn +I2ne/6CnB5lTOuYUyBykTY/qBuWupspdTZUzzBQUM5nyxeAvEysrixiDmayW +MQ87xhBjPqqlaGSoji83BSJGO17cfb8kqJ/0EO5ZrLUTsuUbLdii3a2Zxt2i +LR2pbhoLdROGqbHfHIiX+cepoVq7yGl7F6I+3+ykszWTvYTiRsOV252b5Vz1 +V20i0awDePHVkCu4d44MztqNJv52HbPNxG5Uv07XSi6BaGc7SEjaDsla0cJn +Oug8B5/liFyrLpniR8ssU7xTxV3y2+AE8xlsfozXRrQuytYCmfJR0Dh+mJVF +v8Fj+zODPgz6M4YoKh34QUNASe4cKduFeVp1YVQnBjcc6V6MR4kDia+ECidY +cgeSHgRJn+qFTVaVJgsUTRYgTeYjTd7H6ug9ZEiMFNVh7rFdZt1hLlJwAXID +XRRbHF9MFMhVS9njQWv56aBYSvZqFFwSTZqof2zT0lJzxg6jUdFSVxlRqBxj +Yjx4VZgMlW2NkTXEQUUbWbYZE1ZEdmLfW+WHmsiOFSt6MmNQshr6kWrC6On8 +G6Le8EhlXNUDZeSzuMhST+KrOdeHl7mdIt6wsj3hT83kRVgFzRSqILTDI5Fi +rPAoI2guJrQVUNAHxul6syOkFUyuGMtgYmM3e/jKx47OB2bULr7REjZ91Y4P +CSS+2umRQaI1iRmHaBiQOIiQpkpBmyraaNJapKRaRB1AiG6lJPBRID5y1Uhp +0EYKniJkiRIlfRVLGtUL31sIZ4E9zerF7y1YRcQs/KAJf3Z49sCjpxfCpkTY +NBE2qmYqEDYNhE3uayYPmzctbHKV91HtYRuTdtDJVJvYMkfP1WaqT2M7xYY5 +vZLMoYno7F7Wl0nhpm/gqdM0Ia+R7IJLrWHk+ugHrP9rvfP2UDNU6PvaKQu7 +wc3WRfuSQTC/FGQkaJdhRLvYfq+zod653Hvkb19Per13+VlVt/zjybYwo5dL +csyQuVTbbIlqIT01oTTLuYJmMak/3ttVdZC9+/TQcEJinm2ymOmIVoi50iyC +dNNaZo8trX+4VrHeEkZpxB7uqAgv4RZa6yVRjeLXl3myuEEGah3lyJZcjAhr +jaKoUriyZrHtz2aF7dCGNMldiZMpnCBNTJmjny/A7wEuFjCbLMyRMvgOYMyL ++mQKNL2rFzdeUFQvbYzI+WaXyJkEyFkMyGngs2+16INmgfBpIHyaCJ8GwqeB +8Cmc0smd0qHwsR3hQuBOWEQ1jMhxsNGsucexpl1tw/1x6o1b0HjTSS6WrKah +4160UPJNmDUdZOYkIbOZuep0W2IujXJXm/r43/i4QFq4HwBGd3dxNmI0abz4 +jUNWy7Di6J2fkKbLL0IzqVPAPLTcXKvyoTORVLTvFmMiqfWO5hqVH5PADe/k +ChqmriCyTZZgvqENuPzIwmWvGC6qucIKoWh2wRRBBCxqjT/8IxO44lZlwLsd +V2yDVtc9uV+G6CK/hilZ4XlSuL7s01sb27nQETzbjy3kfqxGx6aLLD40Opqm +vHlhkwUWFfjvTImSjRc0EBPwj2+jBf3hMV8BY42ugDEZgLEEgKGevZEapaMG +PoAQlho5UqOB1MiRGoWTLDlSI1dmUqmw8To5ryk9AtDI+iA2nE55ydVGDhu2 +56Jt7F9G2JCR0acDZPQLTCLbu6W9FatLLjRrg2xfxeLiBBKXiXsqFhfbRbgI ++ym89LF9WlmP0B6tn1KwJtDVrI9yhzeA3JofMzL10gsGFW8yVJhRKYcKM8l5 +B8vnGa955lWfm3LHr0ycTXJ5VIeI/Vi6UIz3YikmzAhUPSbstUimB+vjLa7/ +6kocNR3+mRlv8uVNTWljGWF2Eja9b0x7rb7L+mjQZV2u9EZht05YPvAqRiEC +k2beC9YH6pfcqQxVs+CKiU0XWpWBp7SggNrF6okcnyWCIjd6AkiBoFCwaBpk +vPTd+dXL+mR98VlWL2+4qixZqliyFFkCQGkiUJoIlFIDZQFywyqQvJYlquiB +F2sg4vSHgYiWHk3CEO1GBwy5QzGEpvQeE9spfSJ+3LM87s/iPSWi3DAXLqHc +uITVNLYnezKcEwk79AQUZ8fWhB3aTPb53z1dLWPvDMFpcZQZ2kT2Cy0wuzLC +RepOdYsstLdjxy6vIu0S0399/W7DjQcNN54g3Hgl4oYdsRxruKENY9om0Qsq +nFnMvZwLViTlheu38trlSNIeofldzowpkjEs91ivM6tRw5olNILDesVPZ9u8 +f6QpjDejg27/HYTcdIVihoeMkshN1+OJbZcF/VPl7C4NMbFFgAg4izKbTXse +dYQ+WkfkWIHkRExYRhT4zB0j8AEAADKAsN9ofi9FhQY83wcouNO3emXD98vq +lQ3eX0VMLF/ek/XCZ14tW44VxzKoOJZ90MSTqV/1IESaCJFGqEoypIiqZVT/ +tnDSJHfdFFXQZKqiQZyoooYwpXRMITzJNFDuTgFFKGR6B4okRZNfMppYJXKL +4CJfvcyn5Hjh4huxmiTHRiTZwMxRbk7CurQBu4uZnQwLFj3QHTrF1s2xkwN+ +Pkk3XlWx8g4N5V7vBrdHqW7Ir8heCaTIM2ZgGyjyIqHIk2RCwLrC1r253STd +aBfEFCmziHODwVulPM4JoyZOeZBrM07hBDnYE+Rc6tZYgkzinY+QID/dIyTI +TbwwsYqDEMR2O35pdjsEakPbu0Zt9CfliFYbYffU1iLLyaYrpIaJoWl0qFLE +J9BIJYLNjEW+maEVxsJc1SAlbVxobmxiChB8brwAmYHIwNMwggK44QRFgc8c ++YG/BHq8og98ZXg2ESG94fEe/Bvc4L1VgMmUsRomfdUz5MiajiMlcqRAjuTI +EXz0YFe2J3eKJA8VSYyQXnoAKmu6EqdWkTi3xysSNJDvCpogMTv6Mnb0q+4x +TvHtzMy5kaiQnyQqGNrwaJ8b1A3eiSwz1U6wr1xmqvSsdoFpk0MvLXUOsJpp +nBdG197WDY6wg2qc39dsZK09ZljH1xo0qnNKUyQuouarFev0YjwtUh1meuik +oFLxDq+LpDFeXCjwgru6Pw0mgzwvgqSrSblGaoNEzTAOYqMgDznHJWpdmJ7F +76nS0EKj4Yxa0wHNuUNrM/G591JMKHVTBYtMZccyFR4joHD9zRexHgFGwMmU +zEBuqCrEnQaWIMiI+U2sPHLkRIF4aCAe1kQ89CAecni8u8qMwE4mPL9lVAea +vstQYSxFMlg8wIsEPiAekA54VM2iIieALkAEEsKdd5WwQFL0cqQgLjGlhPZp +fk19GucJSxKjE0TczRKxti96vVnhEBYpfnjRNjjONCuv5ibxgBvatzBp10HO +bKGNDbvOaqIrTnTCFSXFrkxSeC/XhkNs6OxHqqGhF4LS3qfxcF/zYTM93hyi +Qe990VfcKDRYU+XOj0zPkzQyhILEzvCglDiENzHm/j/avjPOiqL5en4zc3eX +jAHjLiAgiFky5izmLGLOAXOOCIKAogKKCVGQnEQkiGAg57DLEgyIOSfA7POp +3zpV1T09c++S/L8ferh74+6y59SpU9XVIiX8JnmWEoUMjPPl3GdLC922lhZS +3ua3fEzWIG3wSHzNL7yCyafuWFI7EyqPElpWTQm2NGJNzDBhgiK3Y8YWV2c0 +q0xTQYXNNpQK0sUO4YHY5wF1Lhsi2bASAcBX28FSQAgKCEEBJaCAWkD/DnRZ +/B8pYO3qkqAU1xA8UEgwxLhGaUZgwcC04CjBMUKiGQLOO8AE4IGAXYyg2DW+ ++lyQzjde5aFWGang5RlpEnijAAn4jR82vyioEVYn8xK2RADXuN3KaQKQbjHZ +oezcifKjOac4I5VTnOt21tgNf3Am2nvaIC+f4I7TrCsxWAsf9pz5SVsEv+sE +G6W7ZqyLiS4wTPnt/41UU20e4TmYqKRaTXC1pwmse2mPQ8jLITLOJTdo5OkB +6fKyO4btPBRuR9fdL37ukOzCy+/oSlzKTxLXweu8AOg9dzIL+iARAakSaOg2 +y1nY28JnUdJGYR0GYL1JeSQx33oJFCM5MUjsxgTqocO5ZgPsItAVl6URIj2y +gSWI+YuLzdyyxTvQZdF/RP0Hq6oFe/A1MmtXVSP886LkCnzAkgBMwGyQw5VJ +IAYJhFlZUM4rg/9gjJUCPgXYpCEFfy9ZyNMA71QB/UkZ6PsN67YJw1oLVcZ+ +TQ2spcDmpBY2LOxvTMF+Nx3L1MR0Wuk3WbRxVoI0nicpwSmUEiS7WtI2QluO ++bcm6cDSB02LJV35gGJpBlULAX1bbEQO41pn+zzIz8qDvN/8eYpfuHj5M5nt +ptaB1DeTnSoXoOHT68/yY72ra2ZSAK5pXppvOtp+rEfPKAz3pxzck81ukP4v +ZaS/i/Gp5k2J8SmDsQDUbWz3OjNTsT2oVqCNysE8XW+QsqSD+bvWQcxJNLed +C+ICIJA1XB7brJ/DuQduBHJW8EuLAG7AfHEMcFcHuPegy8L/hPBa5sPK6kE9 +XHPmg8rqEWG9ei0APgTOiwvAPMYVkZ8QbmM9/WwrWfgXKdI9dzEocsI/g3Ap +evZjgM+tAuB+cfPtKuK6rWRacI/0KpiDMw0Pz2X8QpvzW6/wwUzF0gJbmhs8 +YHP3lFQbbK4vO0p8MS8NDVKhzI/lSXXybpkoohWG1ksed00MPB57/iuuutCe +d8O+yY2YbWa9kwb12x6o0YDJu1/tLhGpKiS5vTZe2h2v7AVuTFUhbQz3K5C3 +ZsQ7z4n1mixtTu8aFKoE9I+bAXR+7B5Oa4QXuxXMQcibOYoKgtmeXUbRyjZH +JiHbArmyEJAZxlw35BS9wk/TvXDtVQYJvqEDceLXhQ7EAYdogJjz8dDBmR4g +PAPOHK9zuOKyMDLzyhY2osuC/wDxsxjimMRK1x3NhytrFONWTcZ9DMgD8XYV +21DPYb6E0R/jmoA+4JwfoHdLoc+NmsEQri0s11UF8l2LVNYITPU15MG+Gs/5 +T8M+m8/X4KloheJ5f531YfN43+a7b1U+5C/nBoXd+PwiaZjc1ysLtJOzili+ +H5+R7+fpBo+L03Hc7Uq9U5oRIN2XinSX3ajP6JjpQVIGmDsyBfe2heA+JYF7 +Bwt338pL5etpyQ4bb3Px2/ZVZ4uGVUL9tMJQ7+dBvZBM9zde+Hady8uTcy44 +bheAuWspCpP2Z4tx7XXOaRq+Mukg0ty7nP6kXe6djs6hlvSkmkfBWZV3gurY +RzUWgL04BKSB60WRQ3IxkFyNLvNDM79sfhld5v0XYJ9Qy3y0EpPe6VqbLjV3 +wK0QEA8B8WKGeKTQrsbIjnHNAdBRunwooF7F7daI54NdPC/namGRQ/W2IHrW +dqDZV+d+C9LLmpTbAN63ioQcSL5LR4glSN45g2TfqLeJ+DGaiJ+ccuFQ2JNt +Wgjc1/L+cgRuOHAHLbtH1PhSq8b7aAL+vOe+AcXjvFaiBMWtCcXtGcWyDYtb +iEZ/IOcWAsXWdePEWwt4dr84HDdtAagqYLPbVkiBa8LtEHz2lhFst1I9f0x6 +50NWedtWZATqtOr+OGW0+25a1kmjP2oboLXy5ncTJ4l0k4pQd197tXktyqeb +dCQU0zVW+C5V3HLmvITxCl29KAZUiwDVYqC0JlAKqM79j1D9uKJm0BzXyHxU +UTMEXosZvxEAC7xqRMY154OW11oGr7pvSLIJt9VSgTiNV4fVQAy2ZwtgtTgv +8tpuQt9Is7sb3kwZaNVTQjsbca1x1k+dc5s9W4zerxi9NQ+ju+spzU3ZLZet +lW10lN+Rnrg+1Rll+ZH2eq+AZk0yFdapbNkaZCN0AOgbGXzOV3zK9mvX4mcL +ZkOsMaYFdr9YBke8W7K94FI/wmprjpvdkHHC/ew4247jO+B52ERB7Oh0Qcxu +a/QL5yO9yGqH+fq4fKMwLq1ydpuZK4ManmJ2gPSUsh9Jl0ueS5FW4WgVsoVi +AkMOm+iYL1sILNoVqhCeX7YAwMTir+YXaSAljJoFstCDXzaXLqVzm9JlDn29 +R83/ht39cM0Bu/RkAi+wy/jNuagLKAuMNfKqxE5DOQSWIxeCgxJg2XroDtEr +kzIaF9kJwIUDb747LhJatky+kwJy9QyQ813wIZ4DbmVzoUz5Ya2M3+0F2qsd +iPeQnryKZup4t0hXw1ku2z3RZ6WCrFTBr+XeXZS5nFReZqVyb50XZTPjVxOH +2wF4BgF45uYB7Gwu28b/tZPI5/X6SSRyJrhylfv2wsEV8vjejDzu4jvZpyWn +oqTAq6UrrmbrSbwYn/vKkXafj1SxucdW+2v9oJoAN3GrqwCubZqVPrgaEky1 +IG3754Fb51ElRnSQKGBgdiljVn0p0buc3C7SHHZhEKovNZewOk8WNsJA+c4r +mwf5Oy8HvAK6cxisc2jNxkKbSNns5oTa2XigdI5D7rYcMXc2UFtei96Mrs3N +uvJaRbiFLynsfswBuKJmnEA350OXF8GWxTPH3VUuHTZrNAYHHIStbAZoQ/a6 +hzoHrCq1vCC/nLVFwPoWl1PHrmadVsa2VGVz3C5apsqC9TIH1kY8RBc+9QV+ +bsvtbid6ilisLBttcV4J9uQkNtY9uuGvG+/F4Zx2oea0bGFh8InWobmtrWqg +4tBJ1J/hR8O64lY2m8va8pNVwWpb2SZYtK9d70dZbX61ChglJ78FxfnPp8so +/jRIf8oHqduQ91WV0dW1o8FrhjVlm1itx1wlQNNelG0ZKYzO5b7A1YjKyAw8 +aMYWlroWcCQNHRw5dM7j8AmZC3TOxV1zgMvZwODsErrMYjjONAtlBWW4ltBl +Vk4f3d4QC7ASQukbXbeiVgldajcwn6yoXYRbIe4rxsMM5RzHYpbQNghzOFZ/ +KwGvONlJ1UqsrDBxsXq7UOub1lnILsoktnN8uKoz/bYH10leMjvOc6MLxdZn +U0msQPWRzUK1lIRxY3WeD/KSVykn+cIYve0nrLgwFVPt1rm0KJYSEgah8fFB +bD0N1ZPNtF1k1vTNwFQqxacNs5ZTJlnt/aOIYd9uQiy9O0lU01bTxrQQvjAN +0W5bhGjSg+6XhRJrSbrAbLuHH0PZUnK7X1Hn3dmDZ6bm49lIrpzbWKDpKrg+ +NCXnDFMG0SKOkAtdhGRIcpycp4hUWUt/3PM5QuoqnRO7+DgLCMRC10TprGpA +ZXW6vF/DLCp9vyZu1WK8/gd8Hl8beKQYSdfq5pPlBM1PltfZ1axfXifCrSK9 +T+Bam96KQAvMMqwjvRJ8gV5GcMjXnI9jXnCqo4xvhdQ3TPRynNLJajsXB08x +dv1Qu7AgbktSuLWtYlYT+yF2uJaGrfnk6+En1XjqrlWjLGZlO2w9xWwTto4l +mW3NJWDoYDmFp4OWf8/RffU2tEonqDWasJdeNHD3pAOUuzxe1o7xUdrhkcHr +O4TXaTLnBx2ftsx7OvaZYBaqmksuefW0byfVvnkhVber+rqXuzovTJJWNpSq +wKp0bUjVJ52sfiV615pI6UoPG0i+1uUkVY/ZK4xTr5yTwaiziIpSEE2s3EwW +amXsfI6VofpBCkaHRQqWHA4JbgDj+5FAcFHpezvS5V1c3ivGfVsCY94cUobg +8jpBdWBuR7N+WZ3QfLqsTi261KVn003ch4WnLKuTw/MCBiewiUU/iwVozIjM ++Yi0SAzClCklmWwIHEbOfQp65qWqMJ382OlLXVvd9fHnG8G+xPWNpWGeqWTl +LUo4NhftoeUbnD56j5pJNyj2cHQfOq8uqhCzN2m/OIxbLu0+0qRc48dKKdWI +gXS3J2l7K+7EPGrvzN3x0maBXRoz3+cTY4A7nFh1FONO2ytGfCRd1tY0Qs75 +9HeJlO22wXTsIp3VVcbIrIz1ck1r4nILhe62yGLu+RTmJMdM5GvSKpF0R3+c +MmvfPKgw3mQGuG118mKiti+6KkouD2tzSaKGrvJpwTafFyJgAra5CrY5yBFL +Z3O8izW2EdoALAZXDjgD9t6NzOLSd5vR5Z0Yt6rJffQogcEHYLDV8zoBRKCs +iK+CPMIg4zDGdRfz6dK6NcxnS+vWxi08o25OAJsPyYjjKnRvbRsuAcoopXJr +cIKKko5q2hckD4VrpM7RKs//XeFB0Zew89TvtTB814PhVN2MNdHrkhql3dE2 +BGL75vNehmk93cIQtN3PDQiCTbUDqqV2PR/hydXTeKxMB84qL3KhDzUW6XK+ +k6VqCydVNaNk68d6t+O4QsobHvLgJycUAH6oqYhnq00QyCS5npJI1AsLhDxn +9VzvyVNbQ+mYdDAlzQ7JVsks9NDgwPbOEUnmaK0dbIMc48GOJamzdKqEXZIp +prJElaEsQZcVwhwnhfN4OcyFvpOaBzVcZnJIiwVghKicxdaM0CwpndGALtMD +PDId92EFNXCtjuf9Bwl6znG1GWI1gakY6KInf7akLq0dsIJ6uBaZz5fsUBu3 +6MGlO+Tw5FChuZ5Auj4Jk4LGnKBxRW23IF/DAoI1Uquosnpom6NKKA5aEK6i +VSgWbhaAntUzRQuhVoPaGDhUWxNf1r3TNmd8Qr3YQuC7ksG3GxdSOrEHe6DL +Fa3utJYOF1DKbey7itsUUDyxdo50F3f3ckSxctqx5zp2s8DjtsIxH0ixxHqt +z2tuaDuPuJUwXSRJxTzVmTxvqVBOeGZh0PXLgs7LBYd6Vo2LdZ5Nw3uMdXdg +QXsmqyltjKM1i9uAUGcs1sLGEq+5xwEtcEgrnesUZKg6UvI5MVlCwC3kiMUB +DZjDYoy9EwJaEYBXDODl6PL2TmZp6du1cKsm7tNHAcT/iD6CXAjghcBdLYCs +uvl88Q516LJjbL5YtGNovli8I39Jb0WPAIyMzRxfGZJ4G30rh82cYHK5LA2P +9ARRq/lCVW0fBmPQTzuYPH9WIVmZiokJHG1qCDj6aeE7KUlaLS8WWgvHylGb +CvZRKHbTozgsFK93UNydyyGJbdM6JUNh2djuXz8GogQiIwjuYgnacokvQZ/T +jX/DFIYTpcs3A0Ns9OPOoNECQ7ZoOOX7WhoA+3jSU+0Z7iPIxD62Zq7aJLJT +Sxw4VecR7f6xtckqIaiOqStppCCYsWFSMW8L8GucdkMR66wLWgX0nNfpglvK +RlHIBRziGHGKulAjGMLaElnYtVI6HYHv7RCoo9SndFoDurxVC7foYboTj2IF +gOjbxRogtx2JsUMiYbAADksAvGLz+aIddwAYi3AL9zHwFu/gAiWHzVikKSRs +DUWdHwKdEPUyQ/FmBHRPOMDlx79i56Muzfgwc2yTwZrEf7HC8w1t/pFapIjO +V7SZ4DnPc+llgaa7bizQrnCljMbqtRzCNUcWmxXHOp8Fu/WTXO8qr3xxB9cZ +ITS5dME1xgHaxDNU64sA2Vs8zyMNMplDaOuK7KtgxKnN7zyBCU8FO2RcnNMZ +Hc5PUXHJ8wQ7Ju11KE3gmCqcB/OEVzsc4AGMPRSvHIHWd98/Ga/eicS3D5yg +LAQu5G+uHU7imldeYINEBWQBYEkxT/zIINZY9r4C6j3gS9AUaliCWlzC622G +1NuA1DS++RbQhIU2ltK3gLCpu9FlSk3cqsaPAGbT8Ap+FYLgtGL3XtMJarUZ +attSPmSYEVhihQwiGUe0xYhmdC0C2kJgrDbQFpkvFhLkvli4087my4U7FemX +izgSLtrRvTbENXJvXdeGQwmGTpbGDo+KxVBLlhT2nrLFyTQGvSQwiz/RnokH +ahvxpqn3aQOdrzn9hK+/h71HFXt3K/YwX1Rq/nuqz7m/JnrttRv+eOez+AGO +6xErOqvHYnVmD26gkwTvJW2eG811fR93bQh3h1ncjdcy4dB1vEWVa/k2sbP6 +sstG1pe2Qc4FNuenbEq0Zcdk66n1LwVzvzLm+ivm0K1uPZSkBOhrSvUrW6QD +mp/AZfFmgxlqBxZvScKWH8QWWKyVztYANtOzQd7TwPVOpChThDEyBGCxDzAs +YGwq4DQlNMtKpxTRZfJudJlUHbfw5RQ8ZUoJngcsvsXYixWuFmnbE9QUIUVW +PhJovpAVVFNxuZAvO1UHwuiyYKd65qsFhDW6lcN9AVC4k3tZJC9L5KiNgAic +O7D+DJ5k78alhV4gdEEwsUadJVoV8CqqAJ405cj5mFZh2qA3ToPe8EyiB5fl +KS0M+qC7RUGH4XlicDZ1CZ6oStTsxVmRYNeRg92RHOxu0KYaqygf1WJCfxkl +wY7KSK3PTyXAvZsGHDpUUZfHPrHXPhEnhRK6c21C10uVpHVRNMjZOvxttpdc +G2VcIucZl+g8zQPb0Qo2m8DBNWH1mHSxSfImU/YluAnQ/GIA19Kb+ECTAl3i +jCz2ms7SAc0W2GZyQEsBTMJYzg9jHI0gAUMLEoIVoScGjgLcnGSWy8J5HKWT +6tPlzRLcAvImleB5uEzhJ0/FG2DRh9O1SMPetuNNo9uxdRghJS50MbCKAaJi +wCkEsCK67FzTfDV/5yLz9fyda5uv5+0c41Yx7gv4YTwPL6Cv+GX5KAz5ipi5 +ow9CdnAEg0UOg9aL8YNe8JDVnpzorc1Ar9LzW5Z6NQfrs6ChNT/WSV2edeYa +Seist/J0CnJ1HORwkNmlFOfE0GymiVwbHuEg+vLkVIzDmR5cR1ihXorVlpiB +vaiv1Nq5d22k1O1mT0nD7a0V3BDO9XXUDYaslxYY1Or6EtwwapY05QVdN7Cm +xBaOqwrENq7PXaZ68gIZHYtmUgu1x0/yoHZMArVXbC3uMNl1xTrSq8G5mOY0 +pGylYjPS80YczFyj5xIPZgv8ZIxgNVshVuRimNgd72jWJbkWg2CaF7emcrSK +8rD1JvYflr6Jy8TQrCidWJMub0R0mVDX3pqYw6NA3ptFDEd5A3orfrscrsUM +xCIfiLwUf9siLM9V6IVp1MWATww0AXo7lwBhEbBWBNThUq/UfDO3XoxbEe4L ++GE8j9EYepj8MsHkwp3CjArNBMDHk8CnwJOsTwNfoYCnmV5VqLNt5NO9QDdB +bRRWl7ReUQvlWS0lWMTBybxL5yxdzYjblVTlXl5G104dzBPUNjnbC3BX857K +lqQoD2BF2UVLBk8ldgm7luMJbZN57yRO2mrzzmJB20RBG6p0OFGLBzwP0AzO +KUmxSFAeuEazNwQ22CN3UWDDBimoSEyC75KyRmQ7xZNVIU23Toyw6tGvvFFA +Q0enVY42oFnL/z0vmOUrRk8tsssoNsciUopeALPo4si1lNe0FLSCWAHholbo +4DURIAKagsihi2++bspl0avpWpcu40twix8swfOK3esm8jvRkvcEFN/MVYXH +UAPj9sY/gFAilYVe5KDHwS0EtnIa8ObVC8038+pVB/4i882cevS6b+fUo7UL +VlAdV7rM3qWEv5ZHv8GaW4++YVwZwXg/WRa4C3bmSEtPYsxy2JTQCdXKySK9 +VMMl54lemBRvtIsH1BqbBeoSZ8WI72k9Tz80jndeZw1OAV9Sn1PqfWmQ3sQg +FX/zopWNuMyO7lG0t5xNKlQslzO4vH6ChkSUF2C3oK1bFGh3TfmeFauFJxeM +KwDQcm434zK69TFhsVCqx5MJSHleQMoT9TuUEVA6v05DIcrm1lpxqlPL5Wyr +nLzRgbOfgvNFBufXqfI4p3aqNrHZ2LagwEZJKc1mlQJML/zNbkDArG/9SBv6 +5mvom70VoBRAIgLhbz9UMGic47WC10ScyFT6Bi4TQkLbhAiQAwLHF5uK0nF1 +6TI2wi36yygdV4wHcngKXvF6EV5WVACVYQaVsUPlNgXBXII/CVL8518IeAhy +9WoweBh0FnJBMa4x4FbdfDd7l5Auu9KtWbsW41Yo99GjOX424LcL3iVZ8+rR +B9KbU17pRdAkcgKFKmA/X2RR2I1R+GkKhbVd2R7x0naxfagqdY3nigKCyzwI +ovQwy4uTU7X6Z5UpOs8GqwPznFb8fPhho3JnLrPvTPDbk7c0ShLYmh3Ps8qP +Y9cFZYWTND6iWbvdihtZjR7MarQrqVFJ/trCbZn3mpYSAL0ZBaCHEoLnsmAo +CAaAsQpVh+Ue2eKE6t3NWjaAu8IKVLc0WWcFbmYvH3bHfs+dKS872MmuB8CO +y+K68VfiYeJc2o5MJHcofyeJXRZy2Tg4U1Wmhdv0DNwg8qbYwMcBL9QIRfgA +UDjUhRLSCEYBruMALWAsAMjGxnQZE5mVpWNq0WV0jFs53FeCR3FrXJjGIb/L +BPf2kUMkA5KjY84F30nb6G6K33Ie8DefsDd/pxz+9kl4zhPUETDmAnoc6ebW +K9Fw981swh6vXSgeCbhm7VJEqCMkfjcTt2buWsd8PxP4mykPJEgMgd0QbxXi +TUOWr9U98O2UD7wkWxSd+qDD3CcOc2lDxuJtpYe3xV64m+mFu8lqvozVjRRD +1HipCms3cikP3ZxlXFFHJ2eiRU/UyoINc1dyVUEG9tzNOlQqCn1lKB9cTa4m +TJINEIyzJTyX89g3VvEmfmx6wNZCNldQpntc9Ce6wy7R6gE26nN4Q+XA155a +NWBDRTGGw0Awb+NZi7EjPYzZ7K6NrzkzYQ0b5x2+ynkQZUF8lfrhzGZw2VDG +uhJhjLGVhLCJLnA5/TieccUIwUVBBfxg0QMVpaMBolG7ELBGhnQZxV8W4YEi +fo68olwWg2ssRz4OiUUu6IUCseWlb+QU5Htup7o875g6NhnTgAYRyfgCoPIC +WuwCWgzIRABPDgGtBIAqMt+/v2s188P7FN9+eA+X9wlkdF+MRymGfT9zF7wi +WbN3wXupPGUhGjDuKIZlxKenOlOQS8U4H29+PriGZKbF2wovD5yvhie6PKfr +rog31egcpVuFB2lloZ+HtQd0mNb1XFHYhZ0WlMwvqGghkrL8WO5a4ZhW3pFn +6aBMjk5NHPMucrKHDMBkd2WwVg/edDhrqzhDJzSqdZi2j64U3r779PcyHENl +5GVaBudY1lkrBVdK16WTkOqk9OywgTstLcZeUIzZbhProIh0/MiTjjaGreJK +gM3nZrqKm29K+nJxZsodEWxNy2DL2SCaobEelGxsPEcqiVZjgaIxDCUEqlG4 +jESgGrGLqSwdDlANL8aXRQ5jwNSo2IKPXzsWb8uXcTkGLSd9DGNdOXwLOdWW +QPue21GYA7gQPkIHqWKJKfl5Gb4iNFlchQ5X9Mj3s3YFfBhCRXyNgCmAi9Zu +JBvpSpf3dqtufnxvtxLz47u7FeFWjPtCfk7Mz/4+WaG+EX2ERWPAnx90tekg +IiujMC/wKQITlVnH5XpQmT76dBOiWbW2mOvtfnI3NxPpJqmqHO05Ly94yOum +yMN0aykr7MLbAbFvN1GTJ1CEO417xeBtokcaTgtqd6IkH9UkboBu8xsptXLs +Q3h/DqPuiKkV3IjZYdSH5vTX1vM+IUyhwp4DTJbGIAv0PXPJQCObbbi0/qUt +FcBRwZ6CJzaDOFuHQ19X4qKs5fMhbOOkRDTt3VK0JdFsnmy5SaHtHe38eFsL +Zz7SXART6WbD11iOUhK5ELVGAzsBgyxglBHIsIZjxXQZhsvQWmZV6Ws5ugyN +8GURHsjZp4zg14/Ae/D78LvlgEzAc3Tool+sHy3hjxEv0ZQxGqneFIB6elMl +7vYDtF6QH+nqeZEucoiMCyAyVwCRQNtuEdCXAw4jIDKky+6R+end3fc0P72z +e4hb9ES6E4/KYrRayJYIZOVjEpwmEVMC5QMC0XkC0a9SEE0HyPVVwVM3BtuK +4GI/MGrry2Q2RiXhG+ZBs78Hzfv16JtrK2WqJBK9jhUHifgsP5o9FpQdbEBE +WZ23DC27m8sNONm37cL+sk0IU6DnTOBtCjiOxsISbZoooaNFE54KT3vElgQS +nBc+LH4KyuZ+IISXgi0/EJtow7Q+Co6UwkRmDGXNg2R7SeREZEoAnIIAuP9q +VwpHGRwJ3CxnZmbhOEurb9nA5wtKG/De8GA4zhOOo4GUIGTo5LIQBNDob4+B +pxAcUsesLh0c0mVIEb7E5bUYTymyeB0eVQXL2MESDDA69mFZoUHYwTJ2sGQ7 +5j+qUPwth0l4jP3wiJWT7MyKzqgqKAI8uyYAjB0Ag4jB9hPWO7sHxbgWmZ9n +ECh/nrFHzvw8fY/a5pfpcos+n+7Eo7x+mrF7zK8qSgD73m54f3xQEk9zglOH +0Xr6Y0EF3MlxFDEUiSNKHFlwWvWaBWelbpRY6sXN97VWOFXN0LG0hqsR+mIG +mPfRuoWAeTWPiNuTs0JRqofxkBpUJyReXsx9ZmjmtCpVssF+4rrMH871vxQo +p1SYE15fLfv0Xv2U3RaeTYEqBKnTTuq0oLRu4yT2BFllarM/a2w6QB6TAHKY +56xYM9NWGWx8xD4eVqNav7NVBVGic1yWBxWKuLjUZXdZIE7QUoAFogMhQ4WA +EwJCAUc/wErXayHQFgF8uLwa0+UV+ptbU/oKrUFYQXVcY9zFjxbheTm8AvtE +S4fgDeyKHWxdmNVoGvuwdbGU8TtaQ/bogKVuzkrdcdby2V6Ann90nST9i9JB +kZEYAoj5oRBfpZAYMhLjBImycgwuAuI7u1vMEWpwjQSH03nhvul7REBpsfnl +7T1C8+u0PerRZU96y1/f3gP32RXiWYAxXjrDLsRd+qRcGsYE4R9m7hYIhu9g +DNuslHXwvHoaYHfOBFfVvhnsot8NMylXa8bpB1Xb0zZNXVTsIRypDupLGdze +u0qqi1dyLb++Fi1a8x76M8tP5LPhTiy/gHvUMEhKNC42IHWXSiJvPBpKmB1P +mJ2Wwewac8qIj3loG85tOw8ZZc+fTUfSthffL/V564xiHAUcG6trUSlEJtmb +6/E/8V72NF4/5w1CNoPEfjzr0HA10NOy0gSdYHWBw+p7HlaToClZYhqnNliu +ZJwyRgML0lUOpK8BVqENjq+GgCHgOQiXl3NmbenAGnR5KcStHN03MJYHgFzB +8WpZATD7auTibJgGbOTkb1ggzobpOBu6OJuT9Bbh9T8ClZK40GGUc7xdVD/u +GoQF4mZcQMKGDreRpJL5EZRBG7kIytiMgboY+KMnA5G/vr0nFgVOQml1s+Gt +PWvQpTTGLXoGX6btSWCl5+QEu9Md3vG2gSD2XkHsewliv8dSZQy0uqwVaJ0v +3T5fLNwxHWkVqR87pCbeUEVehE2kLzpOrR/ko7QrIfSeVahvYJpUPd46ge2D +4rcew3UNNLYhsqLmz7uVlsFn7Sq7lFDrZ491HHeN4pyDtjOW8MQKdIueOuxj +Hm5+zgDNPntA5m7kDhoXUa9Tr8dKXM06e3aQegXGraHr2o+m8Hewdc9JW+2K +4UgKX8fV6JcmUbTUj6IiZxNk2giayNhEwrrIyZI1QSQCnYAxiBhbGisx+aT0 +ZYzuLh0IRNoV0eVFeurashdpvWA+KHshqMPXiK4v4lF+BhD8Ys6+YiC+fJlB +Hrn460L0YI68DF7W0cDyMEZw5CvlyiTcFkRwzrNvtycTBW6/Y9xKNaLKNFPx +WQijhVRuBqMaD39JVh5WpwGHdM0BoaHZMHVPenTD1FKzURZ9Kl1LzMYppaHZ +NKW02GyaTHDeOLk0h/tiPDfgFwPdeCdZhO+QP6vIheSfZvA3aZEtae/NCupd +0iGYpXM6/KYBLQUWC+jKtcUsmZd4YdfKZTT4jFYwD/TAjHE2d9G6ga2lXblF +HI08kMliKyHcduRwC0sJ2zBwRDP2OXFPAFrk5o4lIE/lmYwM5MkV3KiDlm9M +OD73Gc1XH93ARUgUR9AGh31LqPvDPsI8RZbFp0vbWx9txLEgxuGCthAyTosg +bBehAKLNNhJeUVhcaubUXyw1/NK5Xmi1ALYSOB1WK1T6JrJ3uKd3EUoHAzw2 +kA6i/1XCF9CWAFZQGgKgwOfzuDxHf0wflj1HawBWUAvXEHfhec/l7PNewChC +fgMH69gBGhRAH7ZGFvMEB/FX+Oar+Kbscnq8aohbVe1B3AGcRXUQq6weY6G9 +LfVLRrYYrP+HuI5VMP80IyOYI9bJkcBblDC+ehvQ/2XaHhDMFpMxAApwE0wJ +5g7qENMbpuxJaMYqxcoB3/QgQd1smsSL/sdxpfveLDW/yQpKcI3Mb5Posokv +k4kl6A3oefx2+jEhPlQ0AX9HVrcLM6hIv5kFuv5SElbwRblNqH1GWJa4XDaJ +Xs3hXXZVLtTNJe9yy58kz2N0erNlg946h+5ONpp35LaFThX7cN86NoqgtGPD +Oso66FM/hIQ3WviQLPNgqrmjuVEWTNBuxmLeZIyOIAzVYOcKpdJeIrjZtboz +CefsWFmxfSaxwMmykapfARaAcQyXipNiT2TbMD6roS19LuSWgoVsEtsQ/rZ2 +6kzJhO9xTlBXptD/GuepinzNa1+2cZrjLgYQllJsLn2e1nMANZA9AJdnYwL6 +M/TfUta/CLdABc/qA/SUWPmBKIBwT6v0eXkzF/eJVdbIEnHAQV34B2F8kBXo +WJFwE5LriOlKE+tA83T6WcQ5g2ONJRl95JL7ESrbeSXuGOffkmhXxQZ5A3HA +AQT6gtUbTpDDrQB77IMdKy4A9dAC3kEd97HC/pXD+Vt7xhboCbwDxmgkQdxH +dRkWPUrX2Pw2sSwyv08sq2N+f6Msh1v8QAi4B9WEFybLkvdVvCdKQL+92wTn +79job400dbpn7+pAXhDgsLFtTwUBnMP9Gj7ChbNs1u5qW7+pfROwrFPg1vrt +NZXYDdaAK0jYBQY3jMP8io7cAogpdC3Ynu7GW5l5kg6mV6Hlj4G9xBw1aSVP +DkDXO7tfT33POr0T6XT03trwjs0k2C3JGp0y6B6UQT9+klSFnnOgls0ibD23 +/Fh6G6zLpWEdB/FaXY62vAV5gPb1+ASnxZPsOAHzKgbzqyq8/fj9IqFXUVwG +FA/QkP0sdtWWPcNhvD+tfuajsn6Yw1TWL6ZL35p0eboItwJ83Y+fogvw748X +PhPyOwHwz/J764osXTwPKuGLgB+3BPMvMdno2iL+Oa8YrPAXIhDoM/IZ5kP5 +l6Ercll76FAfKur3rFnLpeTBVozg0fB/VB0b67kTQiuxNqpZ7Hvm2P9BoPeC +vMN+lKfnFfsRX1nBO/xy2CZA4wLkEwlEwD9Aj0XfAq4RmIBWfSzcR9fI/EFf +/zGBF70tXWubP16vH+IWPWVCfX4VCR+8n1IM0w2IJ8RHU+Tnby5FHimBkCIO +ZwI4ZZAmjc880rBJv1UES3UzgM0PMEthnFrpaLJ6RgnjId5CWtdcpSVn5AXY +ToOaFpQATj49bPl1puXy23l7qCT3L2gdaxKRxUwmC+xKQzMHrHI0cqApEbkA +GvVRt4ICQCMiZhegCRFbYJDMW2vcJwpsmR7T+hO22LCLbMr+ayTyN9XI30Bq +UomthlqU1f2WJKzmT/Q+Qt8qRxCDVUr7BPGihPgyRw7CCTnmhI+EE0AB4ALm +hqfoD+HjsqdoPWlXEV364N4niu2tJ+mPB8/6SBYTyNN4eV/mF3wIX/rzx8VW +PbC2eI51A6uHF/i7oyVGAOcNrB4sb7wceMSRdvbiRDXkWfIJccQFuEIKaI4l +tiX5v4A4YiulQKS1Y2jkfHs8SmX0CQmIBAjYbxO5/xaL/KnI9TcmXCBrMthg +k+h91voE0UllgdBA7NMAVlQA9Yp1Qn1k/nwdj/45vj6tBlj8VYM65q9xDfhW +iAfp+6An4hX2TRyl4DN/t1RB34tLKW6QrEVNBssOIEr8xpgZnKSAPbiL5AwZ +OYG2MeseoBV6tbaILdZWzHe15RkWINovBykr9NLj127igQ6785HqMOdh+2E/ +KyQE9rG24gr3/byZru2iATywFg0nbWa97xgBQ2nZiMcOgcd/4k3gsPjQNsnS +4apNbO8hH0CxrFeHDWy8D8iwwdjW65wbgDwAdh5LhobLeauN5ABzuUlEzPW3 +M0xgtX8iFaxVl5YJL2UY4FmAEaj0oR8CzaEDdh+A3awre4K+Wlf2eF269M7h +Vqh34mF5Wh/miyf5DTIswKzQX9VHf8cGoigiVimiJiSVEDmR4gVJJVRT+Lww +MEgJCo8XMglFYWpIzH+u1rGLn0iGbXHxLziqLv5+g21XBWzCh1LGrloLhOK+ +ixbw8C95QFYLqAxAxJ6URGxeogHylEDs8B8C1jFgHgHwsflrLAjg77ENzN9j +eOGrMQ3pMrphiflndENKkugm7vNWA7wiwotDvE1QQ8jEZwz5aMcUm4Qp9KfC +T3pFmiZSAmI3l3UIReycUMSyumIwVtR0ndsVaizO0yoBdg5O0DqepQcMWbqv +UsxEHBQjGcahXLeDYMAuh3bLb5DsYkl3yi6e4UoA5keAGtoTNWCXH+rq6PqE +XYC5LJ0e2sim4Y03S3MLDENkFKjJPXbyRnb80WOG3XrYqYe6OZx+zIuedKBk +EjAIUSv3BUJiDE5XS2AS2wFiBo7NCIMhGVHwEsMLdKBZgqcEmAosmvtgPhaz +wOOAv65e9EfwSVnPkC6P4Wb9x2j1wKL/aVxjua/MLff8XiAPvvTG5XFQyxPM +Nkw8kVCQZZDI6giPNEKxIKvWEVpQiAroiNBVFTI6InT1BU5BHFEEvg0pzTsg +2T1rbI9qqMvMELrusiCyBJFoBfb+bTdLUlljioiqVAqxrxQ2TxZFWbKwgqGg +XnijTLKEnK8XZL2OcP8nSwZlCwY8PTVhC+UDYokIXEGXUXT5d1TD0Pw7smEN +uuxFt0bxhZ8zqiGex7wS4hriDYJb+S3pE3gJlTSogkZYEHHClFIaMxIKQSHS +zz8cfaDoqG7kR6ouVqlRsZBzDjEpJip1vKLU8ZjOZbuuUrbwS65xFLfpQFWI +43g7j8QXU+JVoo3XiTbeM+2nLzbHgjaGf8yz09iMoPwCGzFQMEQ5/64rN3Ep +H71wKOPDWUQJ/yWfMlqt47I9CoPWTcSoFziJqCVgYxIKgUvy6GK85hFWPbym +bmFVVPFMhiaeYgmwLsURvYB2wD5kNojMemKH9fW7Y9H/6/r6j8Z06VZkPq3f +LYdbkb2vuz5Z6OQxDOqrL+QBTqE3XseLiSjGJ2K+LcsQJ0VCp0SYR6LCSuQZ +Z2imRMiAwCOV2CeVbU5NIq+ekbYxIscfWy80Ysch2oIT23ph2mTUEnxKVcRp +IcHhlauCsdiIRAQRK4Y4qxgicQ0JYSGgFolO+FN0gmYG5q/xjMtAQj1LBqEA +XgphwvaYBNuMdHoqQR8cYBfRwAi6/I8vw/nSKDL/G9ao2PxvqNyiF/1v2F54 +1PwrS19ELw9udATyt130oX+NrYo3spzhZSfqWzjJYfnCkxtoUuDqRXktZ2xW +rJF2eWQiM9aKoTlKuQJmZnfe37yDuaZyF+63Pb+iDY9MPbn8bHPMist4w8nB +yx5gP4L3LM8dz6erM0+8scqcOnQdb9xCTRJZBwxLDApgaXGpbBxBvyyMSpyK +6nMEqg5oHuBMgyUFqg2UZdRf5GUZM7jntTA/DPMyi5fZ3JOy/nMFJMRTXgbx +uMK2p8O0kAII4VHgn0mhK933af1HzKcNeGGCS4MuMV0ejsxnDR7O4Ra+7MJP +w6Vr6MgjZPKIffLACp3uYKLo5YkYl8asE95gtZOQB2c0T+sP09czNYhDApDK +M5ZFgiglS4Q8tIxqdUiodVBljaQOmiIN8T9fdU1PQ4IiFSKvuaXUsS3Ko+OR +dZksQicwQtcAFCYWRC6beyT1xqrlRK6QnEAFYhKRRz6DsNMA84AwiHTArfHM +H+MbWBL5e9wWSSR0JNIwTSLEH/RUUATxBxY9FdQRgUXMv7wa033/vtYYLx/S +mFYTu+juwU3o3sF7061XcRm8d4T7Qn2UXhThDeSNhuHNiYWIe4iG+Hv4h0jt +n4L8Iz+rmCVJ2mO5BxJOtIokjs4rnW11ijghn1kXBCkO8U4l8c4y7Zt4l9Zk +rZCCc7AVBxvgbq/c0VyxcjfTaeW+3B+BA+RxhA9mJiClQdtw2wUvEN+M4dkI +hxLfYEsNJnFhUAk2r6E1GBuwoUlQ8UQ7MMb99O7wK1c6Xzz6G3Y2HNcc9AFv +QEP7IIog0tcgBZBF7GZMUyfjDc/FGMEeP3xMcS8Gck9BwjGiPz6WFCWVm3wi +/MLwV14BqxBjdFVO6QJOaQg6afgQXfZ6MKTLA9XMZ40e4Ft8Hz8a4PowaAes +A2JS2mGO6grh4nhLuAeXHmGaczjNYeJ5XBUSr9DJFGezPq1kk7JPhWk8vRIk +CVCUZprEOWWmSbqnuG0yiCzBMMnEGVNkmygl9ikFKy7Y97vVrBJLZ1J+vwKb +GFG2lvFGmZqM7GP6Dubr1pQU71KX1SUhYAjrgm65fETkwiimkpHISUbgAcYx +kwfTiBJHY/O/13iBTJQmwB6v7m3+fcWupvTqQU3psZeb0kMvN6MvB+LCt17G +A4OaBjfJk1+V9b/BTfB+9M5N+BOEVVTdOEaxbNIgpWYck0xUJpmSZD3ONMlj +kZ15MyB7qZTpwEddTQxSvkayHGxUmJphEAyCv3kluqxKeXs6tstiPBJKrm2W +38blVmzQQ6kV4x3AHse/vsacPvhTHuWA3T7omUCDMrqmsJUc2UzPUzZwlQTb +xi1zYMMAmo+nNV+lXqj4oKiIwPCAB4r+h0SdgDVs5iI9Dpy1cCnUZix9XaYi +jNHbZii0SIWUKVskTAHYE1c8BMZgnmCKaHw/LvfVMp81uZduNbkPPNH4PjyA +FfBTIjw5YC7Ba+270BXq5SF5Z6z6XUKmFKiWR5iqZHVTVvmEFE2xqJmyHp6b +0pOlFGyYxEdhJnlc86AnEoJJV2gSZyVV7e3vCr0BV2n8Oq8vaSgV8olmDXo1 +iWhiIZrVsk3CNXFse5IjE1w6HlE3lc0UqpyGbjtBVKBU4rqi0qUSZpnQFUu5 +XlKW7pooQDU26wHBFHkEowmFmBKhGqV/jXHWR8BEYzMd4hdYHrI4XxF2gUAZ +1gjCBLwyFIKEeWaIsILoDpYhrzQNmF1oNQOjQHcMbEaXl/YBm724D63mWPjq +heZEac/zZV98/dy+uGW/er45PwXvRy+jN+A34fcDO73cTD6HWYq/B2Uop3ny +mCmfleqLvpmcsJLVNlztgQdDjIQty6j9wrpFLoVGb2ialWtKOI/Cnsa3tMaL +rVIYoNGlso65fiVs2sY8hhvdXceXd+JzXQ5Z9iB3dOHYXmwRPuztJeb48Wu5 +WgNvBd1bmN+EvYbYIoEKTY/TNrAN+zyz0Jfcp4kaLRo5UJFBnjS7wWLeJ7iw +bCZbrsJAE1m3SNeVZaBXtOZq86I0+9hcSICc6BTRKI51mDuIRWjdr+RyHzjH +fI61N9Y95vOm99D/4OdN765pPm92F8ZgNr0LX3rrHkwY2puftre8mN4kEOYq +SZgLH4IP2+sB+eCGIK0HhbNyylddwFecnxFZab5WrBrrUV3dQVmWsAJnDwtZ +qW8MRRQ5RURcFeTJIWGrp7fEVWGBgnLSghI5jkrEEMsg28Beup0eDNOT58pu +bf1WbRfipMj2cSSZU5BipEkeI4UgpNBlUR4ZxVkySoRO1oT1bRe2XukJnC4R +jP83QuyU/w0TCmKLReXOvx4FBdWFEQbtLezwclNhioHNmEH+wQIJvbBPpNTz +3L50GcCM8yxxz7P7mb+f2Q/1o2f2I27svx9lef331y/pUTx5v6AzXqKE1Rws +JbT2kvLUQJ+b9na8xIndcOElUO0/qpb+1rwLZaeEkzTfmiZd9T+SSvo+w0fs +7Syvwz4w1BG2hM1bIwO1xisXYZzrg8RF13Dv+b48sAc+DoZhYdMIxha0m/8a +b+U67O3F5oSxa82ZA79g7wa5FBrNoIbQN4IqcZ8Tf+Z+kcHKQdjsgR6RGU0r +uCIsKmg294TAw034Z5TzZhL1Y/OlfurTCvd8wtzTg3EqiidRO5853snyDXON +UEozophmd5ovmt0Zmi/2uYP+Vr5ofget22Xte3s1utzGd9+W3N389hjPDvFa +eozfxZLV3nczR4X4LAqwnze5rxAxIT97EIe90DcJgvREVCAqqshTUd08Yuou +QiqnvJSIqE9UQPWil6ol5PMSfmdR2ksOitQL6uetpKYdpQkpzDORX3AKqhA7 +hWobbzsxRY6YtHF885XkQl1lW+fmBOmussgxEgpEzspxpBRwWYjChLOEx+ST +UqhFISKlWmlCElJibP/vtUZKSI6UbOolqiiIHRspE4VOBdE3x3wyQEkoIaL+ +++Pab3/zd1+sA/DV0wcQOT2Fm389dQCtA7H4qwP1vr+xnj4AAo+fTK+7Vt6l +v65n5FOY9qz0Yiaj72xgs0RhvdqUfxpmMPykyPlGNlRVJb8yVlSva57n5Xi/ +aH5nlRRyO+y2+XRJXXakUfyuWCPb495ZKwVvsBbmvt/LnXFlvKn8jIoO5rgV +F5u2y2/lfvi2C17hHTGHE2OdNPpDc9bzX5kLHvuZDziAaoLLjC1rj3f4hcfq +YdQX2Ar97HB7kLPNbrDUzC+dp/naNG5tRa4GpkJ/ymp2d16WllXO0fo7x9jm +Zuudi9NVlAczlKoi4gbwRKKE7mY++QLMtM+dlpLovwtclDNf7nur+XI/rFtk +7X8LRbMv97+Z/mrodnL/freEeCK9EC+hF/MbRHgzobtI3p9Z8C5RX+AsfA8q +sDz+8hNB/tYlEYSfDdqKVU05wkrMJMtW9QuxVa4QW3kqKuGrKrpwvNpX7Dfg +bLYtr8pyuq19/Vfa2kI2l8tmc4lltFXZ3ETN5mLb55qiqwae+Rz5dBWI8xxb +urKWEasoLj0RayUSymesxvCKE7YarJ7PK02Zr0LO4SKfsQJHWft6lKV0xWQV +gmbChKmEnp48EB5XnwNRe+tzkPnrCVqP86K7e/Pl4Jz5s9fBKNj1PhhfYuFF +/JQnDgo6yiufPFAWvSvenT4n4bVn9hdOs+rsBVVlviIbsrdy2V5OiYHH/hrr +ZYYTPQX2tmwrgNP97exduZkHDjeq8DgXY9VqyQLRtIORith0/8SqOuYOHuPW +2JxbcRg35xy+4no+wLrtwheJuyabI6YtNh1GfsRDoDp13cCVdCgtjAh97JRf +uXqOw4wwcRct+6iYY3P73PoLeQrMEs7wJnMzjeWsNZrZJVmdONAJX3VnV1j8 +I+KqvR5SrrovEG1TA1rH4ymVTUQyKX4CHxEzEREdcBOI6IDO5qsDedF9Xx14 +I9331YE3mK8O4kXsY6834lFvdcZr8QY3hXlcB3K7NcSHh8yUOfl+mNssv92N +75v4LU7xG/087HJhdrSTZw8qx7E2Y4oLPYr7NM/ZkkK/R3GcLPbkZNHV+Jnu +tEoXexX+Jx3JRSzKchlRxjQXePsW0l2GnjarssuwyKc5XqXbXna7kIhty8lg +LLtwM/27jsHy+nc9Eot8EkMzjvbh0G8kLbikBUcbalwKGCVqi1iMK+70g6f5 +q0k6Baxm6UskDK1/EvoSSiC5xakf/bn/PWA/n72ESvoJrfyVkBdTl9BQTonr +YOYpYizzZ09mrccOoR+vBy7dW5SYPx5tgVtyX3AJHsYTZeFFvQ8C8cmbPaEf +8qR8KPNavwyfPe9rs6bC0/i5UeVTTWZdLnQQ2EwSUQj/q+xqMYftwjuf4Wah +Qre2srpZsUZcrDcpcwR/9Sb9dXPlzjzU58zyE7ix8ODl95g2C581bedMNEe+ +tdicPGwdj4zELgMc4IZeYlT1+x3/I4/0B2+hZxiNgWgKRPUe24ngSqU5a5BW +zwZo1exJzQJ7avVdXSdkfo0eVF0lmuoL0lR5PCUcZenkqwNuotVZ6eaGkJmI +7j7oevPVwVjXma8Pvi6iy7XVzdeHXEuP0dd8vzx+PV5yPQiNyYyJi0muc5jQ +VuQoC8osTBSZyDwSZZBmd0KGNfP8r4SywL5i1LuMMpB0Mpaclz35hxLWijzW +khJfN5wjmrW4pJWBuCu2As0yV0Jcm1dlUbazMbWnqmp6EhVWuh1NiMxJb+mG +3m3uKC7cHxQkzcR/vKGbCXyBJSuhJ+uVey2CHjcRb0hBv2G+Q5WY5VZeBVyV +D+KsvBJ1ldsMPe1A9LRvPj31PUB11QGWmoRBiEn+xEpoiVgHEgoMRETc/RCw +kvmjWwv8AroSP/3xCC5dWpaY3x9uSbf40qUlPxBciefg2bz+pFcSneG9Ei6j +T/mrV4bDnvL5az/OZhMtZnPKvTlL/od+Uf+MlE4En7cQYhCFYGFazsK2TQxH ++qi8pllJeeP8NSV8agP4qgfprRsq9zDnV7RkrdVmxU2mDU5KnzPBHDV1sTl1 +yCfmgt4/mivvkoGayA2x1wHnaY1u/Qm76O/uXW7mNFjIHUbiXE1QjnpN8kDu +LuzP5i/zU33VU3DFUYZvpK6UdaMI6JLnpXgJdAHeSEiJaUXYCMzz9SFY19K6 +xnzd4hr6n/q6xdX0v/d1i6vM1y150Z/SNy2vDM03ra7M4RY4q+WV9lE8U16U +wxvIG+END8a6Lkjx2YGOzw7oTEnCl/vfJN+gJ8JclpmwmS/CVID5CeZ9SYLZ +6H4uS4LFkgQTiwUYa68ujslssxQLsKBE6b9HoTTTNWjndS708az6yHUuQIN5 +XZaRn2kG3maPwrkmty+w4HJtluxgbo/gOrxuIq62q1upan+rqJC/leSMWcXV +wPYrWdfddikF0qkY+aTmtSdZ252JbXATeO4JqTnPvQCrCantUSWp/ZVHakIt +GUITCkrITGjqkZZgLvM71sO0HmpFKvTBVvj9PNDK/H4/L/zu7mtdbH67tzU9 +el9rbAO7Tx99gJe86Gx6fUvQIb8nv3fXlvI5KRrU78nKuD6aloKg8XNZa+0F +lW1IPweLZPtnRCMn1/C/ZqUaCpBo6ATlfblgRy44rl5ZwyxeI0VG2GPdVu1o +rlnZyJxVfoy0NyzpbtrOG2OOnrLYnDboM3PRoz+bzjdt4qEvj3f4mbdzYVPn +1P1Wm/cbLzPz6s/hAiHaE4TihnAeIRKsr7QfML09StRG2NQ0UewsS21Wcvm0 +5nQWc0zIfFPs0dnVjsaItsBfAVjsCrq0vhyXy4jP2lwam2/bXBrhVoDrZXgA +K7DPa3UFHmDKY9oTkgzxIUFkiQ6MGji9d6CS3QGdE9VWK8VxX1bBcUnF8h6u +U0qiHJnPGzuOC8KUi/ZQ4qJxf6gn1j51Yi12Yk1pLtOXJWVIa6EFhZQa89vT +WobsG2y3k5ZL9ZBvm2TLJawmc1h4nlP8/8WpzzRJoYA4JmV4wcwJEtdL0sWW +qsdcc5RtWsjqMa9U2CzpVWDq2jdtzhcQY+y3Z3iLPSzLWz0OFt54lBbklMdZ +zDPgmwdbJWR1X2vz+7207qF1dxvz+11tzG93tcFv7842dLmjDX57t9Odt7fF +gu6lq953By/35LtwubsNaO0efVu8/f2tE+ajj+ZvwdGdUuujSnWs9nya8xTe +AFF3/OvDr5N+xf+QDP6b/kPQbwHhjT8AzA9haptTjwfoQcktX1XdTFfX/2HK +OC+t2M+cvOJs02rZvabN/OHm2EmLzRnPf2kuv38DD6Trefov3C8+ttU6Pm5x +9l6LzMKy97gXHF1WcO3xR/xhaX/JJOv3MusbdBcas9kjMkdLYazMMvQFYQT+ +YNq6VkQUqAtkw5T1NREQaa7WlyszXQquIl5qcwmkWdtLaF2s6yK6u91FdG+7 +TjnzbbtOEW7xfRGeEeyOV+HlluT4bb9ufQU+JJF1YE18C8Si+La+OkRTVAhH +1nE3mC/pW/9S6C3RccJvQZ6Lhvqo1EmZ3JIWDGm/UEcQFlrk22fSIybarcjT +bo/4dU2Rb5EmorLlrlCfReiloR+nOk79hjBft4VVlTFtRQAcVlqj5rannMRf +ydyK4uzcitSe9Whze9Di9B403awa5Xc+eAXGVJHR8+xr2A5PITA/qXTVRVth +ZK9+UFNUJ9MVRqu9PBIjxDKB7WerilIkDHYUs8vLJtmfcgR2SIrAnOhS8vo9 +Ia8QFEP6/fe7WxP3tAYJCSWBmm5razbdSuuWtpSv39w2MptuagdXsXM7s1EW +okdnex89ap9xczt6xS3tgnPkDfBGt8tiDsQH3MkkSVxHH0pM95tjOmG4332G +w8/QXXNZ5LHKbEzm+N2A1dB5Nkjqn8Joe7GkhlhDfgo2+2buzjywdyWJtPdW +C5PdU7mLObeivWmHA3AXDDLHT1xkzu37jbnulk2m67m/chcXRvHM2KfczGsw +l/fLYwcL2As9oYjo6+r3VubqouLrXvHlSZ5Aqrg8khlLnayUyLqSKeQby1LQ +UaCZNpekqIl+s0RLtC4037a/kP4Uvm3fkf5Avz20I60LvHV+UNN8e9j5Eb6k +vxV6Gl6gqxPeipalvUsSWmujlAY6a5VHZyH4jN45zWbEZFIaUDZLMtIvJBsN +U+VOS2ZEZBETWU6J7L4qDLUH/f4M31BTGlONVuQZaj38JlepBBRnduv0rqLY +WUXLWEJpUQF7LZChZdvGZrHPZmCxqMqhG1WWHQs49vSTag+prLRxHxTuVs/Y +98PZvh+2F/3f+HpMqSwQ776Ftm81LUBjHpXlVx2TBolCOSTT2EH5+eNmaUyE +EtPI3W0SDrutjeUv0BfzE/PWjbRuoHU9revaUyp/LS7X0GXDNe1RH766PW7x +V3wfPxrp865rD9a7vr28/gZexHY3pmjw5rZowbulbdDB/EbfAqiUKVVZD3TL ++g6MRz8C5CT/WI+0ENamH/svy3RPSYrKv8qXRLfBjftr9F7m99cb8J8P2A2V +gg9X1DZzmdlqmWtX7mY6oJq5sL858fVF5uKe35m7L9tg+h/7g3m9xUdmZpOl +ZnHZDN7ejz5T9Hd9XP8J8wkz2cOiv+DaI8lC4kXQThjsWtVZVwlTtLLMdWki +qohlPLoSFnJUdT4IitZ5oflOLudG5rvDz4npcnZ1890RZwW16Xo2vtR1Dq1z +8US8gt7iPHkbvJ0lOP44kCXJtdoZuXY5ktF8mdZCLDdXRTjoBi6LomLQGb0e +aXmWlAu4d+MOS2hirYk0K8o2bqSbziK/6YybzaRvX3pgi/xWs4TPynpUURvg +3ldOQF2XWZDadehRWWFTrb9vqhX5m5c59VRW2xZS60Sk5o8RC3J+H2qVo0Oc +25+MDgmdGovyRoeoyy8d8SWFHf6kgSLkvTbV091eBRJKv9uLfht5HCb8JT0T +zZKeiSpTSavE0tYXY91PIbP0RVyxycovS11MW+2Feq5VhgJTXXWo2XAlrSsO +Nb9eTusyWpceSpr010sPi/FliPtDPCHEM0O8hGnuUI/m6C2Do8Bu8gE3yAcK +mbUTDr01TWK/+QT2sCai3VWi9TmI82387niDAQiL/uvwd4CG/c8X7WBWrC4x +Q4ioLqtoZY5c/IjpMGqhue7eH82Tp/1gJhzyIW/uw0gilB3x1wsgwN/ipJCg +x5BEIgg7/hAhJED8m1Y20bvEfNtWScgRkJDPd4edzyzCbAJWOfwc+h0Qz+AM +F7DOEWfJOvJM8/2RZxKOvj/yDLocdXotupwW4laE+/B8eo4837FUwKxGfz/f +FWIolnNtL6GHfXbykkipCdRMcsis4jrgxrTiEnKS/rQiscacLeZ6Yx07Ja0X +vuZKWmIfrKIlNvJbLwLJHXNpzSU9scFWiy4Z9KTe/1NbntbCUmtAQalVJCZX +6TXXXLOA7viG1jRatW+55RZpINtMUtnpsLpqeBXaJGgNr/yUMaqCpLKlSDCJ +Ne3T1Ug7mWBYIzR+Dc22pdqNfU2rIqogn6lSSkuYqiabXlWa9flCi2uLwR7w +5hOddZ+IFiYp4P+OtglJ3eKRFPjjOktQhwpBXWGJ6TDz6yWHmV8uotWJ1oW0 +Oh4emV8uOLzE/Hz+4TncinFfSA8eTr/MXzodLk/tdBj9sPRC3Hcxvc3F/Fbo +h7n0sKAtvT19fflhwoFXKCfio5XmHLXhW7xJKQ267E6lsvuVxlA2AIWB2+mX ++vdrTcwf4+ubH2fsbj5csoMZvGoH02HFpabDoLnm4Uu/NxMPqTRL60/i2QXr +6j9mPm3yoGR+B9ws1GRpibKrb0kXCR0JFSU0dI6KnLPM90dgMe2AYIhpzgiY +bzAs/KjTzPdHY52q6xT6bXx/DK4/HHMKrZOx6Pm44r4O5odjeeGcyGM7FNPl +pIi/LpJH6RXfYx19ir6jkFuwp3y45TanwM6Tb9jnNVFd/MOl0kkQm59Ktrza +OWNfp1lNW9GKCuSRSWsZASTNbHd6LRr3pLtmE2oLwoTcpEHDI7bIbZjs6uku +uwNbR0+5Uib7YVGyR9KqLpn1EBXwwwrxGPePPbs5Chty/fXX365U9STd7obb +m6Gwg0FhPTvtbnlrc3Z9OmVM3K6t6aoPIo+9OG/cHH8Nrpq//inIXwVde8tf +XnOXSxQT/lLn+9EMf5UJf3k+PYusu0TDsCXF3CUah3PDGzzuUmHFhOLz1oWH +g6TAVubnc2mdQ+vsI8xPZ9E68wj6iX4644gS89PpR9AvjG7iFn8V4hrjrhye +GOEVofn5LLpFr8eUrnOOkHejd/3lXDDgeYcHjcwv58sH8uqopEmM+OtF8k3x +NwdyvVIUITMdMtFb4a+1Mr891MJs6nmg2Uhs9g39zw9a0sj0ffBVM6nNu2ZN +sz7m0wPuMV8ecgMB9HJ4TQTqC1QYqRBiFjo9BEGAbpgqEqLpAD45CWxz7Im0 +TjA/HHcCvjruBGKb444PzY/HHR/R5Ti6dfxxdehyLN8K6tPDx+EpeK6++iR6 +w5MSZuKPOg2fTlR0unCio6NzHR0VkFgeHVkqshlgpucilfwpE9VRV6tQj8Vt +SY9FYSpSiz728sD7XX9FQSZq0EWcrVy2h581lkdHkU9HQWb4nRte5QbQVN3A +n0uVHW/f/5CqyOhX+qLuFVdAJgX7EhmtdGSUw/Puwa1i8+NJR9P/aYeja+IW +fZd0k9YxWDg0scMxObocS/effFywG12PNz+egnUCrRPNj6didTA/nnYyrVPN +j6efaX44k/57z7zETLmhpxn25C1mce/TzYZbjze/XnO8+eXS4wgAtDoeS+A4 +hvBC6xxaZx9DmKLv5Oczj6Zv7+czjiaw0Tod6yjz02lHAYOn0RN+OvVogt+p +R+FbPfUo+iZ44Qc55ShC6MlH1aDLkXfjhyuSXwf/aoKiEvpV/OlxMOTlz/R1 +1fRczArzlt2OsQXe1Oh0VzGR4omVwU8GiR3pBqfaNkBO+ns5L0C7baQs3d21 +RHfjuk5XLfuIhu9i999K4VtrRQ9oUby22xv8eaG9ek2lBpV0cbpOzhAGUVDP +K8+J4f3lgdnGqUKluowB3sa3kS6Cy92uE8UWhjZgnsrcztFs7UxLUiqRRBqF +kDaQTUQn34NaPILaQbiJboK4TgjxID3z2BNDPBU0R7qJX3hMB36jDsG+THvC +SbqOOlU+UPkJ30SSCp4Lf0u+aeIkyKKvW15Bv4jrzOdEJOubP2TWNu1n5u43 +3jx95jpz28iHzcAF+5oPpu5hfh7W2Gx6trn58/H9KaIdTCGsJZdnNsHSvLmt +aNjr2sGWpDDVPsn9Lz0UESGEOKZLJ2jlX1li84J+vgBh5XyNLRRyztMgJgsx +iDT4z2cfXosC0+EITIcHB8ij9EyJRPJ+v3ZyGpyjz4bLVXNfLf4Ef383tBNP +VC0E3wf9/S7PA9Xa9h+2leeRFq6ubf1Q28KT6sTuI6rgb9vJ2Fft5f77BbwJ +mP5w8vf/7sNtA//6O+deSfYAq8U9pAnsb90LLFU9O8NFB8Rpg2kuNZ1JB9YG +oZtWa6dcv27FlzdkBhOseJaVqDRvJH6gu7U3cRlzv11q17Ws4m+GqoKUanbu +3HnzpCRp7zk7HpKc6aDlDR0V1DdMj3DWEgl3tlga4o2uvXQTsDKRDEyK3Pi0 +R10k45ZBayN0sduEQT0NHyLuUCpKjSn4vPF92qOYT0VfFKYi7XLiTqdAeoea +aPEtn4u4/SjLRa2ulHSttWdps5N0sWQ5npv0HVK4Q/P5iFM4m75BtqR5ibjm +6FOQnJ3MOVgJbkW4D6rJZXYstY46ja9W/XAmSNc4UULCNiE7WC34uxDSOZ9l +nM3PIOs4L0PXApEQflr8BpBv4bf2ebN7zPomXczHDR83a8peNMvqv27ebbbA +DDzmC3PNvT+aoyaNMheXn25eqdjNlFMS/N379fjQhj9GNjZ/EoD+IpD99fT+ +IsthIwDAD7bklj0u8Vq9rbUYV4eRGozZkDY02afExJUrhFdY3bKReSkuynAR +FDAMAlwuZF8A0rwjLxwnycbChYcH+4mBcJFHWCyZ1SywRsE1h/L3wfJZ/U8x +CtpJnmBL11q2TjXncMnaFnG8ppzuLZI27F6yD0XI6yBHXpntcajRPbNfsKNs +J3GTVhLyctvkmLyaZclLJ8/JdsH/DW3sukGHizH+74ika5RTuWRoFdx0aTR1 +o6HGai+Xx2K51Jx+HX8ZbB2RobhZVqfa1ojN5tdcc83KLWS+zGJnM4sNCNw0 +M6EyLXJ85J1R01dHuKIyklPjsY+vsAKP3HLe5FlHbkH+tEnR593AbV250+YR +t8HYk1pO9qensLgxBXlbj7klXcrmOY/cbsuQW4MqO9S/SnWnZ4RWhuC+rYrg +2mcJzhddZ4GNjjgTDOXI7gzK1Ymr2C+3DxzBi598Vpiw1Ympel7iKqmzdGiS +znHDAtI5ZrBLudzIP0qLq8Qfx48MX5y0Jw+KoN/eZ03uN+sbdWFLDp2y2BhQ +XjbOzG/4nnlrn0reUHD/xRvMhX2+MUe/Ndkcv/QWc/3Kg8wrq2uZJauqmfWL +d+ADJNAnib/3v0fuZf4evLf5m9DHXdEkM/7qcwC32gHhjHaUdh7KuKV32Y6a +tpmSTtu8avQGLFSkN1ybLkZfxQtW55WHxnA3a4C5KF2B0cn85cxO5dFruaZz +fXv6A+FPsIVprePwd3KHmp93e7Ucv8nw4VbyE3Vtmb+txG4pKcRnjst4pkH/ +/bF3z9/qu1k+4/YoGU6V8Fkg5bsiT4w18gnN57N/fD7DTuvkCAGsgsIsTlOa +yjK0nL+RdI7xAWhqrk3SIwYm6Z5xulpay2o0pbbB9MVt1157Lb7oQ7cfwe2q +qa1Iqa2F7f+1h3AlLBdEOumAV5C0E/d1Bd+PU6dwZJPJJxLXoLev5CJbak7G +bLukUmgul9BcfX+23Wc84Skl5YTnAtk1V+RJubvdBBg7/SVMpixkWK6+1OHd +3mXb+el2BRZMKYXlMlJOuxMSpttMcfDw8yKu5kVKerxQ1TvinNA2K8ij51kO +48rf+YTM7w7zO7I6ek1YnTinvYj4jy2qNgmvOcecy4Bec4LyG3ZIcmcVwgH8 +Jooa+CWjZRb/Wfjvxaw9tHOgSW1J2TQzu9FCM3n/tbxBHUfKXn/rJnPOC1+Y +o6dNN4cv7m5OKT/JdK7cnTdn4USLD8prmS8W7mR+mLkrj3xBGEcjHY+hHdqY +1Qaj1nIgCkuUimFnBadoMGG7tnBlblZG9wu7/MZl7jbOgeUKks+L4sSG3EYY +s/hyFHkjem9uQBfO9dKFE/lUeV17ylJdhYcL2J6I66xC7uY0Abr+67uUBO9V +UXd/a0eCvz+c32mdv6nEy0r7JHvr/sqbebBfhgibq/1dsxARFhR2//NFXTK8 +3OPBhvTH9+8or9E+lZ3yBIqxdiqFtolp61jsZgrr0So6HYyLBxB26UPb9ESm +wG7mTJ0AmRz8ugVe3OOqq66aT1z4Od35Fv2L3HUrJF8Lt6XVHjBKtOia8/q7 +kbd9I/XWvPPHgoLJbFbv9bSV7ILTxbtp1cjjwUh7rRNjLTV0L48B974ny4B3 +2sEJ6VyWSfAWVMe0kfTLtNyLwIKws/M5UDvgi/LSWeXBUPqlYLHFCQ9Kp1YN +bh+NPPbqiK/aX+iez0W/i2wfqXTV5/JbrqQRv+VVwfFJZ7yt/dlOeO5iuFVd +9Tv5F8OhAwNPGwi7oXkAwQ29lhjNik0EGKuBIWbvNVnOozcw7Ozxk3/hgdIX +PbDJnPbKp+bI6e+ZVov6msNXXGEurGhr7qqsy2z33tpqZuVqUnrLa5uv5u/E +BzNiDBI6yiEDMOwNAGKtAfihcoXeRoIuw/lpLanbcpQto2eafVI19Pv9Onrr +iDeKRF7bNfcN3oZe61vbhq71Ogfu4sZqTaFvwf4RekpQpkxWuKv697yu6laZ +rXJZj02k3V+FpF2SpgY8OAa98f0zO4ef3zcp6Cmj/ZNmNNZ1mBeYIrRGSZIa ++kTmneBSgMh4exG36lslF7qzJoMoOc3lDdtsVpQmsETFxXqMPTMWJgOV1qme +l6RuaWsCWAkDjmK7EfU5vunOTnUUxbu7+vvpaSHLzdNrH/t6LXJ6TbZm2Ekn +zn2zBSPbn6Nzy71aQGTHkCd1gMBtjLPzQVOTZtKKTWf25ZlvX+7LZJXMdMiw +lWxoLkmUW4Hthl9jv7Rs2+GSXUJcQjCRSCbZtoOv2l4Ug4Zi7ZOnO3OJqnK9 +CLxBsfVldOXsMcVLZ8uHH3K1t2PH77bqLPKTe9q18tdMOIr7qFiBPcTjnjHN +Af87iDYo9WCDE7YKYO8mjtjDWA2MBZrRrIJHnOEwjadP/JFHCd100ybTscfP +5pSh68wRM2aa1gtfNIcuu82cWn6auWxlcz61GLz19prqZtnqEvNhRQ0eLIkD +T8Fd2IKPU51ZsVEAR4DnOcHQB6+JcuPOIcthz+i2EvCY3UrS2+u91sZFt4Wk +S4v0/rcUp7UKZC9JkXCb8JusuzgLLkntcLObTpJdbq1SySdvCqZPC+oqWcn3 +8WeBPb1CVgfl5aFcFOh7gHBV7aoUmKShL+xThQKTYxvop8oIMMtZoaMsTI0Y +uZefgkYFMlD6T4n1TAoZs+rEVuzEVpUuWsHMU7ZupiaZTRUWw6Z1y2NZ9bWl +baJn79jS2z+PoW18LIAlNt38kDLcMporOfYkZbPJAKacd7yT5bKeymWxrWfq +8kuaVYiuXCHRxVx2X1ArX3E19RnMm0nTXEv7+6VYLHK1zC9l/sJBNwSRP5Ym +kJ0xuUR8ZQTYlcw6V8hewdaXB7w5uprSEfd+ypKnYb9iqyuNNydC+hVi+hSv +H1TG3dwQXJBsJ+RedW2aws9i+9N5gA26olRQNXzYI6te/D/Dwqp0AG8uxyZz +EBbmamDeIgTWrL2W8Fwz7Bx47dAv+DSgbmdtMHdetdFcddcmc36f73lG2uEz +Zpk28webdksfMseuuNicW3GEuXplmem+qi7vt8JZqgtpraqszucFYD4bZk1i +Yi7mHmGvFhIIGC8Ax1/ADo51Gt5I5icBhoRM7IQAav9+rnnSmN3X21Biyay3 +HUaQ9Aj96YYRtEx3ZMPweqiVFWwhyKgaskEYQcncAZBfiCcKQZWk1FRCUs74 +D3nqVJGMX8nw1N9PHig7+oq92qWnqYSnApk7uqvjqX83lym6GeuNC9Uvk5Mg +RjTM9/91MqFXydwWvyzy/bJk85JHWaGaZR5lBW5G0NRStzOdVqTTGredwWKP +wXBS7Utu1pHHYNxIHMSpw2t1t2p/1mf+MdZ9XfuMVw11Z1naM2Med2Pmernh +ALKTtoeOedLj6pjGunlHNDxit4EQl1VXVfZgwZLoZ0lJ1PVzO1GmtCaUJm5a +7BLJL7xpW24aoJCaHSwjxKbazBEbLtfYsQ0trioGI0XJ6Bp6BYqJTE3XuFfQ +i893PetfHnSjkNSBeT3rqV4q10Nlu9Pxg/NmmS5EWN20vbwX/9phb4rCep69 +/YS0XqescCoPi51Xf4F5v/Fy89a+q5S4PjfPHvO9eey0X839F23kYWgYnX1u +/2/NiWM+MIfNmG3azhtuWi95zLRfcb05rfx0PqDkhsp6fCwj1NckUl9z15SY +CsocMc4bB59gxDe2yqNegCG6GJGMv24EbwAENgsLAHhow+XMKJ5sAKi+TGQ2 +UHfMgcwGeMrMjo+yjY+PHxTwDE6M5vQbt2WU3SEQFSrYMLSAVg0QE+BKVPen +paduGHf3aAs827KUZaq/iKnqFk7/nmS28lotDqiKroStirxuixRbib9fpLbW +3qkDIWSnjsqqIPKJKuBTddBuUZWpJTu2Yzk5wp7QN75+QcqasCWLXxkrEVo5 +LztUigp0/jVPwpapjP+NrXDSw8DQUVYQ6ckPvIKM/AoiP7EMNl/55MKAPWDz +qSTHjHRKcp9M+VMPnPJzyx7Z3LLEyy0f8QqfOl0Z23VRECjJENkDLEQ+zxCZ +zKaq5vV1ZNLL5rfJZmqbYrIf5g/psmXQzraZ3Jtr6s3tuh5jZ64rwvQuvgXR +xdme6/+k62Vu6Cm/Z7YP1J9B40TWXTKQdW9tP2+UiC04WPhVye+wF4cKaRPv +x/4AhipilxMGmIHDypnDJvPxiRBfOC4Eg7Axvh+b0YcSjz139Hemd4df+IjG +O6+W413P77aBj3M8Ydxa4rI5pu3c0ab14idN6+W3mxNWdDJnVxxrLqpoYm6r +3JkHR0KQ4fjZWWtLzHLitDUkytatqMXD275iTtuFT8cGp2HaEf7sgQlAxfHa +WHHJGKk4yuU1FWm6O5h7vZFa6f4UtxNYdwFnJnfK4M7In44XhG5sp+q4xw4J +eFJezvzB4/KcdSUPPHawvCJ2LRd/uvnF9ObV0ia9M+pT8guM8ux+FIz/9lPF +TNXynyypVU+RGjdipNNFPUJQTxXMuYzR7gxyQizUY9F9hysqrL2iJGeMswZ9 +IW9+i1wWbTeX2dyxlRt0S/lEEG6G1Z73WC2IPLfM7+coVOncLlYjUviEByx7 +Rn997Z1dT+SW831+27UWuJP6Gri2jiCP2tL1TkttbsYBNlKnutbuDJITL1Ls +xiPjmeEiL/1Uegt4/F+JG9xs+UkeuEleca3LAm3D+pfNsw3r9rSMe5L9Mpaw +9npIf9Ku/JsQ0dVTSetJVsQQXrDhEbFgxWM6LM50xVR+zPfBqWqYzji3/nwz +c69lfGbj5APXmHGthLxeOPpbPp8EGeS9l2zkkwCuuG8jnwt51sAv+LS3Q9+Z +SwQ2zrRZ9Ixptex+c+SKq8yp5WeY8yramStWNjB3Ve5k+iiJYZo37HxM964k +YYZT6GDrY3IuplEykUGcvbs7W/zIMq1Ag0PMdtm4+izSIC3+VdtMCM3bMWwJ +7aVkxEFqRN4z3oi89Jg8VNz6HBgpvbkBoKzo/mRqepwfeEI7W5/QV+CaUBXk +H2WL1RO6km5X52xhkJ1HWWLG100Y66VmWUN+c71jGZdLTkL1OCvQQTiWsKS2 +WOTXFmXZE4W20D9WVZnRNY9J/lhUyPICmdk52G/ZAdnpE5Tk8Eg99G0bLf7Y +o7ZBcvqTPa97oFVuzHR8ZKZkm3paC5Ciaxt4rl+Q7NV3HR2BDipPSC6/c01m +0uWyPblMcMm5xgnFrdfGXC8H1UnGLgdNnVhI1AbFdq+d5O6acu8OQSzpQmbq +MB9wGc9PSCbU34qTM0jMRd5wPxZ4fNJG6tQf4a6APyS43J7243GYNz7eba55 +RH/E7jqW1IqvPppA9lcB9gJHK1j1q0qHqQgbxyeNYMIszpedXzqHz5x9r9EK +8/Y+lWbSQR+Ysa3XMZ/hxElMqe1++gbzYMeN5g4SZNfdtslc9NBGc96TP/B5 +ccdOWG3avzOPJ922WfiCabW0q2m7vLM5sfxCc2bFCabjyoPMNSv3NPdV7sCn +qoDXXidew2krC9bKiZprV1UzH5fX5KQTzhmsfxFpu/K2ehyaysnnVAn1v8nA +K+U3FWujVW6MEFftf47j9k447mV12F5Kj3JRrtMW1eJkMlU/b6yLJK3YUEjX +XJIs9k21hfXbHyxmT4LQ6ekY8c5Tr9L+fIj5fiG+myAq0CoWZynMHqvMDCbd +YkFhChuZR2Ha/KpefeAm4I9vkDXsgyivzsg09p+8+w3Wu6+axSKfxYJQz4tD +WNueouVZxGg4KIpP9g23ntjkqPYXtoPY+hcktiir3iyxRYWb1MRcyzl2+yRp +VAuSGet+2dNtg0qXPqVxTSkOzGcVnKi40GWokQ5R4JN6khT1ziCyw60StqO/ +fpl61fwOkXmdU6dhfNG08L7lz5wOszzmtiqrU/ioOomWy55IcZkctgpD7CUO +UziSudLjM5zxBnOME8vSWTxiAxP/321SYd7abxW3UFhOw+zGvsf/aB47eYN5 ++NyN5p7L5azuK++mRLPrBnNuv+/M6YPXm2MmrmJeazfnTdNuwct89vchlHBi +3O2p5WdyBaDTymbmupW78Pl2Tyu34dy7t9dUM3PXynnjOBcPug1VAZQ10YSW +5jepENhEFGjhsTITdXwMOG689nnalgE7EAYl0KG6OdluTC48vso7NCdORokO +YG7KgaSY+2Kmwcgnq0BmJhel+1uTbDGEzYeUz5dfUmMMQtcUkdfpFUS21Stp +8wJ/RckOpMi3w8CtY/jI+7ENfB0W6QlqeQQWbUvJsWr/Pp1Minmf89lLF47w +BmMVMWP97C1lr22RY2ft2NoeQx7pcXdyzDsrtCBmJos9JuNyQMxZaOxnoVhR +4Y4NN8Syf17e+VEm77QjTdIlAU09I7+/jEudj4U28+zuDoTo5suyQDZMVU9v +KOD1UEahPaACjXcZN76feczbPCUUJulorWQYTDXvnLGCI6uSSaLBVXlMxKqq +DI1ZPZWdn9AM8WkjJ6w+w53LUkMeyG2psLhwui1OuRVGeoPPGZGM8X0+e2RO +2WLz/l7LOWucuv8abpQY0+YTM4xYaSCxEmqPPU/aYLqetZFtfJzFhLbWS++n +DLLHr3xO02lDPzFHvwlmmk/MNJmYabBptbiPOWTZveawFdeR6upoziw/yZxf +0cZcsrKhuWHlDnwSME4EBjuNJXbCEG9YY4tprST1hTPwcI4UTvL8nBjqywxD +4dwptsqmiwoDIDYhy5xUmmIpHvU+tkFqJLIe5OydUtg4sdKS2aHJYRRx+qjU +l/aJlL1ebB46zRTjvkjYR053plcWyeD3vOxvb3cIvWUfz5DPtGZFGdHk0Y2s +0LlWXlvpH1vbVprJ97bMN1urliJ7pKXPPTP2iBBZtsvxijweGhzwWeWxngi8 +mpmI2SioQljJ2SsirKogpK3obk0mjLtOC84Tn8ijIp4T0Itn+3KCmGqzYB6q +Yvu47tp04qmBTrBryPPsZG6UX6mUaqWwEJ8PHWNWcYRbfOR9JKlkehT7p3YU +e3AFO1DrG/hTWbq7Y+vXaRZXmG8G6Hh0q4AGO86pSHHOZOYcZHYLSmeTElpg +ZtdfyqdzI7ubckDCO1BDGMz/7LHfm8dP+oXPTnqIsry7rxBFdPWdlOk9TJle +75/Yfj91+MfEPZWmHXFP29lTTLv5Q02bRX1Ni6UPmzbLbzbHrriMldE5FUeb +CysONJevLDW3UNbXdVUd04/45xXinzFravCZKe8T9yD7WwGFRBwEhYTzOD9d +Vtd8vnjHghxkM0H80QMQLht80+OhCTKs3Q0JHaOqSUazS0dTziWIbia7O0oi +c0YON3YO4gsfQ/hyM8syeOYgrvdZtrFLmhUS1mksPQvSt+DOjvZaFywFJdrH +TtfKNC1YNooKsZDf3B6ku0RFBhUXanNPS6BQJrbqIOo0EW0ud4tTDhQtPvM7 +Ag9hM/4MOdJeV4Ro8h9ZaVXpEPpoXGPOBoAHXWCoV+0pwatFMunhm3qGsGfa +S9oXcbld6Mk7+m4AJ36ujyLI9IRVOeMisjNKnvDdK3uEsrfxUo+3z59xEYp7 +tZ6nOKUrkNIaFjOr4Apn262cZHyf8jzOT+3EO+Gf5MjBBl2CG9VDyhwDXWbZ +yA7j7G3WpU4UTDMSJkVDBckRgK9oXgbPfIRjpeXKSktLp3Gb6MKyWaSG5pk5 +9Rexh/7u3hVmWvNVZvKBa82EFh/xqW0+M8FP737qBtOFcjWc8HY7qaIbbtnE +J+12RL725A/mrBe/MKeM+MgcNWmlafcu2Okt027ecNN24bOm5dJHzcHL7+Dz +xk8qv8CcUd7BnFfR3ly0srm5auXufEpmd2Ko/spQo4mhJrE/VcIbh5DDVVqP +ilQS8jj4VOzBL9iJT+Nklpq1K58yjHzupxmeWlJPXpiqzHlXzFSa2xViq391 +hDE3YI7Q/qbh1rYe2ijmrYOkX17TNoMhTQjhdI0tzTTGpAfXJeXqdHhXr7dz +hJt8BYJUAfS3bJmWyX/2vFev9yCoyvL+fYK/ZTrET2tPaNz0piWbsi1JoI1Z +CRS5+l3OsUsIdglBLqHKHPzaIVSFXvRKQWP7/KM2KP/QMyjMRsw0uDqWYU30 +KshH3KXYHvLrkUvkWrOiwpSS6W5ImrP8fd2Z9ixRQKCYdG9Wbzc1qadNwsp6 +uBOS7YF8jyZ9WswxOeYYf3RFF2z2xuCm9XxszPoG6ZHkcj5WcK2nXhIFk5yt +0Nv50aJknlJTzB4HM0DrbJY7Bmm9zfo6I3mjH+puUDXLSyexXw1/ZxFlUwtK +55i5ZQv5BG341jOais8D7/r1lsQhbdczhwwiDhlwzHfmyRN+No+dsoFPXXug +00Y+xwMKB80FlzywyZzf/Vdzbt/vzJkvf25OHvWhOXLyStP23QXEI9OIR0YR +j7xgWi3pZQ6iLKv9ihvNcSsuYaVzdvmx5oKKVubilU3MNZX1zN2VdfkkOMsl +o4hL0IgwnTKuOWuQcRWz382eUGV14ZPltbkxAb73lwus6qlnvpsltb0fNfuC +pGflM23PxCea7HtFiPNyqOCfNhsbp0mLWCf/jG6QJGZ60IMd+8KMMLxRMWqD +EDpo55KuSuEfiCaPKpQu8KZpp2a0DgqN/GxJxArP5UvSJfWZY3CGDkvmbqUo +aVfK+e1KttgfJCIl3kZVEjneCCJflQTMIDFTRsyU8WOyQlD6f5IrYJJhLFeG +enSSJ1xiES4USCOXVkXpHoPItasro3zot6tzf1SBLoKnC7g5kW0jSKpsUbpB +ChulH0OyJGNv6roJkpxB9fA6pzBA4kY+jjANfl84POWlM9bQVRIoe5HWQC1U +vaKpzVC1U0aliGCZEgGOnkYnJKc4pQu4gDWr4XLuJpq+D+yV1ebNg4kMWn2c +IoPniAyePv4n06vDr6bbGRt5f8q9l5GouHaTufEWMYE7IeXp+bM5p/83XODq +MPoDIoQKJYTppt3cMabtgoGm9eI+5uBlD5rWy28xR624ksTF+SQuTmFj+MKK +g8wlK+ub6yp3NPcSKTympDCISGEkkcIbahLP1CLYchUZa1ZVc6kQzl3LEsM3 +IIbZ6ZQIUc+Rw1tZcvBFhz11tIiPuXQE4c5TcMXuvLMUIAv2QqPiXkV2JAF6 +PnlpqYnnRcW2Ws71ptRO3Gy9SdfrDURL6DYRlMxzkrdMTPUvBpH0/fw2yXUx +TrZ0YPe4hRAOod9k/f+bE0DO26MuziROoL9v+gwKd/T2KM7ib14XswSnN1AZ +QyKX1qTsl1fYAh4UOp5ITJcMT0RuwoKaLR+lUxg7TyEWflinu4gj3+VNGoxk +c57YLbX0yLj6PbkHyZ/h75hAtsbcsQVCeCafFEoTUljl/I5htEYoMYzllsKE +GKYqMbxrFpZSllE6j1TCIlYJ75NKeIdUAvZ6wAOZeMgHZjzIoZ2SwxFfmeeJ +HFAZ6n3Sr+bR0zZyxnH/xaQWrtpobiG1cN3tm8yl90nWcd4TP5pzBnxtzhi8 +3pw05gNzxBRLEDOIIMaZdgsGmTaLnjYtlnY1h1D2ceiK60g1XGxOKT/LnFV+ +vDm/oh2RxL7m0pW7mc5EEvcTSfQkknhGSWIEkcQE9WrRAYRMBF1A5eqXWM92 +HWUjQhQ7CFHAN5m/M+89wQGOkpUkKsKRxTSPLPQA0E2TvcMM1E/5PRkKzorf +bkkdpyVkN00J8b5hTdvd15B7lnN63tT4ZCer22jx54RM17I/nWSiB/83RQtw +vcYKgsmpHflBvPmdFltVak5oINpCNiEUsFvAHMAUEIKL/4NCOHPHtvijpmcQ +J0RbRQmhJxj+a4EozqtxPxtkhk7lMQZMj9iXFq5/xw0h6MMubV2rLGRznBvh +almAHd2ng9s0P+jn5QiWDZ7TwyETRljjZMIQTyqM9JzQ13lbqvgOU9kRZe+h +dKaZXzaHXdE59ZeYWQ2Wm/cal/MJ8cgf0MsHd3Rcq3VmFJjhsM/5JHn09fU7 +7kfz+Im/mB6nyunND16I2rFIh843b+LdYhfZXOKpH9gxPX0IscNYjx1mgR3G +c9Wm7aL+puWSHpRT3GParujMdeWTVpxvTi8/lR3UCypamotWNjVXrNyVXdQH +iSF6eQwxnBgCteYpxBDopZlDDLGI2AFSYhWtNX6OUYAlvvJYgnMNX1K8I05r +Kud4Syo/TlokbOG6Q/S4E//IEzlI4HUp0UrHHC1RAswgMW7lMlVcpZpCsyUn +2PMKfk9WtJVlXt4OH8TZ7hTWDUl3SqpZOK/KshXeQ4hrCLKARBC6YMqIHVtE +8IqCiLl5+wREW/zF00etLB0BFTGCySMGeYAqhsaOL1gzuEQj8Egj9kljy5Uc +t9PMUxaZ1hg/F8nfsRG70g62mD1VDA7gYQA5e0vmOQd3pdggfZBsmhU+KHtR +2S2bQAxhvbCK9cLITCIxoQp2eJ+3Jcwvmy+6oT7phr1IN+xdQUlFJScVk9il +/JC7SUZmGAL12z4n/MJOQ9czJbm471LSD1erfrhtk7n8HkkwzqcEA47DWS9+ +aU577RNz4ri1whLvLCSWeMe0mzPBtJ//mmm7cAA7Dwcve4ASjVvNESuuNcez +jjib67znVRxGOuJgYoq9zNWV9cxtxBQPE1P01oTjZWWKccQUk4gppq9F0lFi +5queqFhbxHpirW774sRjeW3zaQG2SCUg1u2ErkBd5h219/MYg48Y56N4XUKS +aIwgEptQdll6p5DAWkQPB4G/utMHUYHdmFV2eHCSwIKhNE8wFNonEG9HY5qW +WoP/ohtijwng9xAP01NwJUFRdzOCgsnB7xoRThiFFTM5RGzEV8oKYqcu4jwn +wjM2MyWUPI6IC3BEtp6S1x+c8j+zu7skKYkLEAaP7a0JMsi5wyZk0kiRvoN/ +lvTzwk/QOLd6UmFQHikkSYRIhiSRmMCtsVliEMsRxVRNKEg6zGy4/P9x995f +clXX1uh555yqbkWCyBgb++JsTFBAZIQQOQpEMmCCMcEXMCLnaHKOAkQWIghE +zhkRBEotAQaMTTBcG2Mw/AWv3op7r73PPlXV3dzvG+P9cGogdau7JWrNPdec +c61NpipShyd+sYSaiodEfrx37IcADn8DcPiEwAFjtFcCOKAM+adt/kPKA843 +nbT3N7TR54+/Zwrxu6nftvY5URqM81GB+J/WTjd83Nr+jr+0Js16p7XRYwuB +RiBAPAsA8SAAxB1AJa4jJWKdeae31p0/tbX+gkNbExb8FqjE7kAltm9NXri5 +NBu/au3Tt1rr4MXLtY4GgDjNgMQNb49o3QEgcS88D4ky8ZxE2OYKpVgMQIGU +ghoPAYoPCSiWrtKKOUItXjbUwoBF0IiEgJFrzOox6wqEN0h+qzdIUtUPc5ph +0ykENB6UuwU43bkM0jB0e/qn1IJmRS2gcz997P+TH9zj/sKKOSIq/Elb8VjY +3bMBeCMTG7gba38mlv5dRA6KBDlop0IWdU2Fz3pQ8Reuo3Aeqq93QoBrysos +Oj3L+muveulj/l4+X8psLUo5HyW5h7ikb66UdZ+UdZ8r61nSDcyW0n5UBMQn +xU14jhKjmM+as9rrlNHC5CjpBSImcmfwLqVIsbwxOxGX91VU3l9Sfgu1g9Mn +c4dw/L48xojn/yFw/u9/LI9mTzkLSvyif1Gma6cbP6JsxaT7ocQfX9gaByU+ +jkr8odb6c2ZAiU8TLQGdzONaYxf8gaaGJi3YW3jA1q1dF23S2gM6Bkyk7tu3 +CgmPU7HMlyzdusCU+e3vcAbjQdIWhraehTJ/SbIYbxEfgO6B+AB3D6oxJEv9 +NeEEUOrIC7iTWDEodz7wsCoaAT+Qks+o2rJCuYLUIkn7ULJ4e9n3elwwoekK +d9WwcDue3U/EJczRhEYcTUBYgt+tHtrI46GE/0UlHB3aL/Ch3ZBDG6nRP/iB +XwH+dTrI2xb2eKSt8Bnwii9c3aWrbk/9C67uxd+7nc7z24X+0lNW/EtWEjld +isV+k69ukg3o3J+mwoErddIOKC1BdwMv7aKlXLDyFL5yC8PObyAIuTE7QSCl +WsHcy/vDmav4HnjuMwf0g6L2PeqsAD6kbSW/Bgf1XGLwfFAvJI8Q1T9l8djn +owKI1TwDqvk2W82bf0FzL+dt9XXrbOj3MZF56u6iBh7wTesoOLBxrRX6h/ud +8G1rz9Ogos/9Cvr+f7Z2ueaz1k7T/0Z5hC0eeLu14eMLpKKfg4p+GCp6JuXJ +13vjcuj/zyVmP3r+UZTexAQVagDbw8G9y8KJwO43EHb/X63f9q3UOhTYPXqM +Z5iqngZVfds7nFt4gPSAoa2nxVqYYw7wPlEOMcegugAORWPqE/MMWNmYvPrk +jVGtT6GyHePXgzyqbtYK4HlG9IJn9CD8ikI/VOFU5fQU7nTHbntVZOCrDsd6 +xu4AP/Doqk0fseZK1pom0X5V/UpYzc06El66Yxhp9sqF49pF2+M3KtucXksi +L/T35qdAiINPXXWA1bwjVPPC791L1Xxvie/s0pU0Hdj4X0zUZ5CmJQ8d3DmV +dmFLmyzFRHFLk1+64qaT/CYdXs58mTewyom9L2vKlccspmWSlVIt8SZKU8nJ +SwJkdmKidO+MuPU95iB+QOx8z7ExFmRLmIR7kui4CSeZbnU+kMndM3z74bWg +jNd9j8Zv0eWbsb4t488pPoRu3wVbft06B5ryM3fyvBulOwxYYwzg0CO/bR0I +B/NvTvq2tfsZ37R2O4+b812u+3trx5v/1trmrvdbE2ebUn7h+db4lx5pjX/l +7tb4V2+mmNGYN89vrfPWqcDBj6Hxt03NAb3jwm1I0puyaD3i4b/pW711QN8K +rcOhnNEdPDMq51vFJbyfmnbPx182B/VCdQzFDHhv8bBESXNMyR/Yo8IDOypr +LAlzcMMBuJJIWdzZ/vspjjV99ZRvg02J05ELFQgVOxSLuBf/i2ZTc1ezpVLn +p1YOqXOOR29/T97n7clb2hLGhw7f3BVuA/++A6rehlTv+iQu4wMHUoa1e2/D +Hc9302nVpyy88G14SQrUYt+KN8j7o6oWmZ8e35ZT/d4mzJyehrUA34FjUy1A +ygtgGd/U4ATSu9+7cRjNtmEt3+hqPlfiTif9dPoOegDTISy2An73k4Nq9pR6 +ZqKiw0OZ6bWt6mepe8aqxtAOV/XrIr7Pa73wQ65qPJxRYnv8l28T1UbvHsOA +9439C1X2net/5Cp7GlT21VDZaNVduOVXNMiFG8DRrkPKTZLbgXBIHwJdtRzS +KLvteQpU91lft3a74EvajITSGwr029z9HlT3ktaGT/jqpnjzK/dCdd8C1X0N +ddho5a097/jWmPlHtDZacDAf1gun0DalnRdOIt8fw0B7Lfo5ef8H9i3f+m+o +8BOWYIUv5Sr8eqjwW8TiQ1nuIbH5npGxjDlGyEd5Dum47by1yj90Mp05vF8f +RVkBe3iHlR4c4mpccZ+6MinWudYgMWN6skKq9ivH3lelcadVR0D9r0q0etWw +T+7Fz6Xkb6ng8UwkixVtBfLGoOscQ1Ra6/2R1rnOZ8H3gdccyz3HesdKv5d4 +OP6S6jtotaHGsa5nlG2Km0R5Yt6uuClHeGsTK7DBjByqeziVaGFL1PP1W6Rn +9ycv6fy3c5bg5ErN9gU1e5+p29lUt/OpblXx8q1xbe2u9iYQ63mOWLM8zqcy +kmtqlYFc3z/6A5LJZ2r9buTr9xqo38uhfi+C+v3T1tIy78KSOZJsPZ2PkNP5 +oGPYet8difY5X0Hr/EVr8pWft3ZGdey2D6mGN4ca3gBqeKyr4cfYiicZ/Tpo +oS8Bwn12a615J8Ip/cfW+vMPbW224ADaILTtwsmU3cFAH5LuPRatA3X8E2il +V20d1Lds60g4pU+A+o3r+GaR13GsCjM9j0nYD8cb+LTuIZl9AdRxn5Pao1oW +JQ0NupCIYz0vW1fPOZHRBhfBC3qAr0Rlw3VdykHuUiulKz5f2iu5OaEcS5So +MwlY+Md9ZToZyx/COdZmTx17zl1RNvAHLeRHfnn5HP8CBf5NBsOkR22A5w7V +6P0NfEsX+N6mg/g+eqfDk+WOZ/uSbdTJ476TbmIhNbCk8OW2pjPdh+shTOfk +rU5Fuz2ngF8zIMC+h51JhCA7PDo9uaVdKJx4AVUi82I9Rd8MuPGzbFA5foxa +9GskWGGbi1a2cmQcMHxSTtNHfy08Gdtdrcjxf23dscFHrVs3+pSCLzgS7Spy +0lcsYmnbuxtHZjElN/XAb1tHHsJa9cF//La1/3FseRNnRkML2l8MxWCMdvvb +/9La+p4/tzZ/0FblC1yVL8+CNvh2EbYua42Z+yfizuvMO6Y1bv4fWhsv+F1r +4oJ9Ka6//cIdyeiavGhT4c+/hnZ4DajMFVsHL162dRRU5olRZV4HlYnxW9S0 +tS1+RHj0s9EpO4+4NPyve5e5NFRnjv1xNoK1LyzOBXFx+gJVWi0FCu8ieGPn +egK95Pi1WDpNOs++4DL1bTSeeXL88Smsz8ruoPTtbAM/v6zjwk2nJheuDMvk +2Yg4glXYwz/yZ3MGX5CzAY+wLAs6YPjtfX+GZ+j9dJpipd5HvLmZOEgbiaos +HF/uxepahqtSlC7SvGbkKobNzHpNid0jMHCfPfRy+iFPknPPVtvjUm1PwqNn +33MUGEHnh0UlrjgUll5eDSru+/PJHn7WnYGLzRn4juOws8b8xUnGOOqbqjp0 +hkhs2haqbkfgsrsJl93nm9axB8BZeLA5C6d+29oPh19OERn5/C+5W73m762d +bvq4td0df6FI2uYPLpbKe0Mq73GovPuh8u4kAQoXUI2dewHw2tOB1x7XGj3/ +yNYGCw6hIAqeidvAmYhhlJ0XbQHcdiPhtr+E7vWHUH2jWr8HbvtHqL6ToOrO +kuq7XKoPAyq3S/XNElcJOe7T0dk41/FcDK00tQJZepbz8QMoQZagl6qckR+/ +4cvQnpP4ZqZSxCtChP/6alyBK+Of9MKM8vkVbWVSdfVgnfVgxQ3B/2rg7zUT +AlJv3RFIvLSIaq/0tcdPE3/MBv7EBSFIQfm9/hHX0tUgvrHhKMEynN2UI9LU +Ij5NV4kN18EW4fnYgyVFhTiKT8U+fiGBamZWCqd0pUaCVla4SsOqL+i7/9GV +mtJMLTduEXEmjA84Tze15JhyoitDWi7QzheJdi5g2rnGIjJfUdNFh0YFIaae +71OG6251aqDsbonK7ootUOP9N6U9SRzagV0boqAiEKFzc+ShfOBh+hPj4WjQ +7n4q57wwBYqt5C7XfUpRcXRxtrr33daEh2zpvchzJJjoIDfnptZ6b1wFpXdh +a903zyI6ujbQ0fHzD29tsuAgd/DhfAk6O5MXTaB5NaakP4Py+37rt33LkRaM +Ri7mwmz5XQvlh6kP1ITvohaT3Z5HhZo++64/AF8Xesr6cDMoQaGoOdYgHIZV +lpo+DKkKWT7OcnpD03ubmatnr3w6In01XSl1plA9RCoLLK6RWGk5/tcw+b0X +VyxdbdG5VibPtZeXh7qE71fiN2+Ywvo7P/Arfh3MgQdva/g7wmsD3+X0jn9Q +yNxsqrvZdBzioXN/EZYeFcu9jqn6M7FJRm4hYhKFObLl6BWLTBWYu1lyyvUU +vbfgPpX7VlVl5EfJ6acrofIeciLNvO89lmMZZsdJv/eU6fmeI6ZJfR8UIZ99 +vhCddoP9348W0pKdZ4BxBj3gmnz+oTqLJsu9pON8SAotRqaoGDeRXnACFOPE +f7Uu2QKKEZXabf5Do+jYD546hdknaToHfEthS1VsMS1BcSq0U4mBfkVLyagv +vB4K8hY0YT6gaBUW5PpPzKeCHEsF+SQU5OzW+q/MFAX32ta4uZdQIHPteafA +cwzNdaApE56H25PWM3nhJsJG14Ki/Glrn77vtQ6AojwMinJqVJS4euMaKcpb +Rfe5l1jpMGKlT5hz8SWKZvU4ZrqgpjDfc2ejaEFIUf35CO9KqE1cZDc36CVz +LE9867/mC4GLtNn67BVTpK5QmctSrynVBnU3CisQO88Vmvh7zTan2xD8WoUr +whxrsAe/b44/BNQ/kudP5RmIWrPDqA3xTQ2fAQcM1uFDTSnG+fzup2LE0pyN +hfEAHopchz18BEIZUgWt5GoJy+he5Kv3FSoB3V9TVVT9/L31cMuwrh7LTpcD +7knp4J52Doc95Li+5tTWF3V0xC/7qoedRBKYY0KNwWE3k1yQj7jGNv6UZp6m +bfY/psbYDTlXNBfs8BzXRN1lf9Zd6ND7A0cW0RlB7WXPU5VvQqd3KXR6V31G +S01RQ932rvdbW856p7XZw32t9Z+M6+xBqLO7RUu9nju+N8+Dju900lPXnX8U +aTEYacDBSj78dibXBE1Q5Z57LlpTOr9VWgdCrR1eU2tXQ63dIBrrnREHVX1G +u8BXxFGZG9fbOz1hvVX4qK85jEXgifg3PhFzLDp4Szj55vVRma+7UeYAwror +oT6Ws3VH8giVER2RnKrAo3KlunOuwNeh4WEX1Rl95xJ/iJJ+noEfe1xuj9Bp +8gi+PIwl8HDTFR7+cjaVWw9WS492XVRus0ZhVVH1lXwowqcU0jjOd3qkI4zw +D4e1PTRQRfix/ZqrrxwLLJtK5RUeX3MoEzBntTeCEntRSkxlTC2x4Bhb688k +niinvEfKTC0JLDPcVXC9lNmVrsxY2sT8ABqPp+/K21WQW6KYghYFBv9wRzDu +M/jd0SyokAlJMidaFf/yrd0NH0OpfUhm5CRbas9Jqb34VGv8Sw9Jqd0m4soV +rTHU4p0JpXYi7UFAgQXtCwwJ8rG2K1kYLLJsJvLnaGr19u77EZTbyq2DoN37 +A5TbMVRu3O5hePBSKLeroNSmiRSKgstM4ZyzRXSJjzfmnZw+nidGZp+kjqKS +y7Hm4GhSlVSDSFx1S+V01DWIhn40N6Ci8MaB2stKQ0npyfFGROZ+xAa5BIUd +UiEu5zWRYVhYI+UAk1Osx1VXr6uuEr9yA79NE79fgS4M7r9+nc9dKbX+HWob +0VFS4GuTCg7PmEfonMG6wGp5uMcdPg8K83yQ9JcHe91ph0X3wDKqvzzg6w1L +8kF/hFERY7E9ktM3vpLWKXKbFlbam3KSMVP0Kgm7BC+RU4CDd+wWvMYevmiU +L5lTzZdc6B74k+09Otmo7MQFJAVFyu5maOXiskOv/0Itu22/oZwttnQY3UHP +H1mkqimurTuKR3cwxrPXKcwkMcqDDsOul/8PjfFgQI9chpnvUUgvLL2XTOnd +S0uRKN7z+lXkGqLjgIxyrfnHknOICsum5qTDgcAdFm5LQ4EY4kNWya3ezykn +sF/fiq3f9S1LTiJGf05ZUi2/60XvRMXlLscuOTuAF1Nx29dLwf+XJfyvrZ/q +n6lT789w6iHTxJPvfWWbIohqHSLj/KucgB+9tYwtxgyPwmX1KMRYER+FVB3M ++ZZjKko19Kq2aJ+9ujwJOE18hQNyDhdhA/+Lfg9flitcERbuiKMi7MHvkFMR +NlwRmkLsdyUinSNSh7XxWA8WSE+iJvH4e3io1OQCOMC0JpfCV2oHh9Ov+aN8 +xEkDWYb1R98ou8AddaqVhEX4tDMGLK0MChHOPqWXryi9JPvurYBixsXoaabY +8XoGKtWUgpwhkiZae3UFiRbfeVCQ50BBurbOyJuss3CmDs9CHMM/WM5CCsMr +7cRQjrR3qLfsNP0j2oa4tRTlpo8sioryaSjKh8kCXH/OHay7vH4N2YBj3jwX +6Odpjn6OX3A4Tdbombj1wt3EeED9BS1BpKDjqN3bG9o91GD261u+dXDfMjSb +VynMJVyYKoWiFoNU9B6hog9GZ+NzUJAvmuJ8w+gytjjfligAZvigQNmoaITM +lOsTR7Tnj8T1m9oV+hqFNyBUaREVJzzw6cwOnYjzGh6P8NrEOqMjc1hYcT3h +sUfH7hA6gQsSZwdec4/DTwOvTSq/gs4jFi4ezfBEfLRXq+XhXiye1VwZ0Sdr +O/YIUchHCq4q+FIFfenSdGdUUjnWE748k51rzjVfUq8nSmqOnG/qCLy02jxy +BSpl9RNfVsE5t5Z2cBG9HM9ZttvFLZjerrS2gtLa5hvfzcU08wAeUT1CzjsM +oaObjuuzyLs77Ruhml9KVyfqyc1/IycBt19scf/bXF5PxeX1CI2zsqMwnVUU +8vPOk7TMSXDuTW2Nnf/frQ3p3DuAz70Fe1AujtyFhVvCuce003V5i34MJfY9 +KDF2GeISwzFYXCV/JZSXyp23RPTTnn9PyoisUtBXxH2Iy2wR+YDN1tuh2sJl +1pSjcLiho1RqXGmFrbSMqGlJIkzheCnWW0Nqg4I6/DBLpaNreSypIfhfQ8OS +GmpKSr8UqjvLFtJtDrSf237UxlgC8BlwvlBV9GKB9CaqDruwR1fFamo6cqrd +mDsg4c/iyxM5fr3cfemnVGGEX2GNNeuOrRyLLDs7UWY8m4Gnlyu1H8wnN8CW +Gu54wIjokz8LS01DZbPX+TOfYqO9KIm08k4RTeJyw6CZK7dJX7XO13JDexy6 +utOUXopIeawIKBg++4M5zdA52PdEDqHhlnGimBdyd4eW+c7TPoGS+ys7CPf8 +mZLjYcm93Br34jMcTCMT7y4WLl/DYMvlZOSNfvOs1tpvndz69fxjyMwbv+Aw +stLDU20nCbpMFLo5HujmumLs/Vdrn75VoeyWpbI7Ep7jpOzOlLK7GMruChE0 +b4CSw67vdhE175GJdD3dHlfq+Q7PnKZKz4oucem9+zaUHtRfNszpL1p+etJh +CVJX6Bkpbimbt1TpCpAqRJmo+oVYTU1Xipyb+4SOPnhdCmuv6WpvqUTtNfC1 +R2oPdyZ/xA8frYOux6cyLJ2nerF+SqwkPAWfGI7V9T2ssx5XZ4WrszI8xlAK +eZb1kMtMkRl+SNpI6kB73TVtjit+X6rthwto3xpKkiz7h5oJBU6k2nAXW3i4 +feC0k7vgcLtzA2zk2AqYvsnfWzds+hlNUYcVx/4cRjzP3l50lMlsC5y8l+GP +oqWgRR4fcqin7IET18Ah8R4m19ippnLLX8kmwD0NE6XqxkPVjalU3QM8u/Hq +raStrEf2+UU0w4FcEnfD4f0AqK+gbRAfdjjTwRoL80lu9NaGyvsFVN6PoPJW +ae0PB94htvIWLx1U3uUib06Thu82qrzhTuLUQw93Qii3tNU3p6b6FhmbwVRg +QdVXUPVJH5ixH9h0vaDTZbgC6RikCsTlpKqM8oOmxNIk12D5LNMj59cbyw7H +Cmvifw3B3xuKHx3BWir8CSipt5YeZEnpyUO18VQTS2UIFs0ILJ/lsJqwfB7v +wV82KqcWliP82SKqq2uglixJDHuvbuuLTjOqL+nHqMYWsuxfU2OWQPKp5nsz +FEs4bsJWwB0biE65EdsBuGne19kXVGcYPzlfbAHSK0U4QWvglD05kqlkkuyB +Q3j+KTjdTmArbvfTv2FvHGMpGAi7kv1xDIWRVTDjffLIMXK9yaNxrT0rATGs +NdUxb6AtCGjPoW1giSUKKjjwjLtd7Sm3nRNVJommuSGQy7Fi1/1MIiwrtQ6A +ejvU1NvJUm+4iQnvYFM74Xrp44hkynDGvTKgoaedI5oyrKH9XFxzb0nNLZR4 +92Jv7xVYdFnhtRegnaSBFlR0hT32sMFbAOUWdnn6/O2tpXCNJx+BS/fyOfgR +VhWUFv3XcmF9jSAtdbBF9gz8KPA6FKulx1XaqomCKvG14ZuuAipKtYxnM19k +OdYXvrwAn8LlRSUGnwIFBl/mNSovV2I51lh2qasyp3hQlWml8UlGvJEMbM8d +w0qL+GOlXfuARv1VmiQOiS0byZNdVhvKlKKKULXtYaTK/VkZqZxsU706UuGT +0sLtAi3cTjexbEnmHFTc5rUV97iY4feIfKlKCbZy51NKBSXMX88/ltQS3Fa0 +ERnjfMJtSSfcZHIRvGmH3HJ92mKEkc29SDX5AVXdgabqjpWqO0Oq7kKoOpU1 +r6twTD7ptL17SFItj4up9wy5DHHl9QaVN99UXnTiZVx+JZffkqF87C0exi5E +yQqocE94cqxE+DNqBaLoUkatIB+D+FrQqAaUJdXZSDkO36LjcOke/K8V8Pea +1D3yJ+sXaMgXWGWZgZbmJqjW0xn27Aistl6su9VRRcQifQZr8dkSqw2r8Hms +sxew5F6Eb+1OM5L1qdTgC0GxZb3uRJsT1JqrtxyLLbtY2jQ+2LRV8yXXFygj +cckFB9zo8ICbactOiKSKkBjyum6CL7vLlEyaskMx0ikmu4eEEs05dQnwoMO8 +CR505BSIcrLHaUIq/ySk0rVyHAZDcXLbme9T/gRT0Js8urCm9B4k54BFyuky +q3AFBcQwj8Lk8gQy71BJ2WDBoRQUm7BgP5ow3HrhFDnwmGDibci7OoKJrd2v +Wnsv+gmJlpiarpQflB2W37nkoXP5qbIyDcpuuuRW7nyHFxrrwTfbkU0vZD4r +KosvwR53+M2VEpwn8xAqbOoB+DaUYI6FmHMIm7mnnIP+LMyxELOCS3ERlWLm +a3Gkq8VctRnoBR0nLdir4IfqbGm6dbC3bQU2u6lAs47H1x3SRNQ6nmvgiTYc +C20UltwIqkgklM+JCvIcHXr0ec/jf/F5p9rjixkXZFN0SF+Ur3FRFlSTN5ma +fC06A+05OM93dKvLWWhZpzkLOxXng1KcbNV9wGfiOD4TZ8pIrmWg002B4r7N +uEAxnEL23Ta+QF3HZ5joscJE1TWoOxuVjU4BNrrbxf90nR8GV1DixDEFtPUw +vIJFurEp0jEvvNIa98JzrfVefIJ3cVCR3imBsevhuZKuIceb4ZCVrgWs1Gsv +h5PLjuExPiP3FKd9R9JfQmY6Tiy/X1LA5Td9q5Htd5AU6lGmUE+H5xxyGUa2 +LnkbtZgRpMVYhoo7PmZI8AUHDD1LHeJYarpY+bx8PeoQ50vBLgoLFifXoGRL +o9f0pit3GPwKz9CG129M8ZbtipcruIkVPMQepFLBQ/E1x98ahR8dwpUOfwK+ +6irLDHPVmnW9Sme7UZtiCWY9+LoMluQyXLp6PFJdupaPq5SoKXwHX5wveTGz +sBxVDs8mLZkLD1Aq1hyrFeq40h1Kvb5I9Zo+TJ/uWLNsraOb9yDVrD9U700d +qsJlMeGCdYsKzfVStzhaf0Vct9aKsEqN4bTH7c+parUkUocrKzbAa88UXnvB +v1q7USf5OdnxO0MniXt3cS0WDv5Notpd3NoY12NR7c6t1C67gDMohDb+9Wlk +z6MTOBb4Ld0QQvz2OFFw/pts+k1cV7m3WPW7yCG7NXHcycBx2bYYS1s69ur7 +BW3q2IesixVocPAwU78nSf2eLfVrFZ3rxMa4WVSdO8XKV011dsB30zWs+uqr +pobnGt67IOK+bet4iWivpaHCng7jy3Cs50W2nokb45pXR4yxpuHB3dALRjaw +npEiL7UC1mkT/2sY/h59dBAMF2sWa3E4vg7D8sRyfX4I/he+vNDA+iypbyyd +OMMPnZyvUFUWvoEszeFJUk2O1ZiNEO9BrT57hpqeUmryWT5H4d8XqjK7smNd +2vM0Jrt3a7hzvJ6n6FWw634Tqaefk19ha/PSdrWp/abxLhzxFf+C3HiJyOi5 +ih4GqTyW/Nq+8zquT1R6trsT7UN25zGATfX5dF19zhJP41aKz4yX/pN9jXNo +PHCt+UiCWfUZP/+wyvm6NZyvODWhtiIO8+JQPnscY7gP7fs5pdrY51guUaNL +Q40uTTV6nlGBrjKE2J6zd7lztkqKu6lTJMevS52+GRBkb0lGtfpu07JkV6gN +S5VpHch7fXrwFnTwSrHi3uZFw3Os1R4s1RwrtYll+gOsw178L6peZdWDKUst +uRd/iiWIB+KLPe5oRPXmZaq/kk7FwpyKr2ZUiQUWIh6Kb1Dx6aH4Jo0DaSHy +ATm/QmihGOGrQDnCVya7gg7JPinIJk3sJWTVHNktNK4PRfx2FvHbv5DmY89K +Vlk/Jo57qzShNNwQ1OQXFMCuq0l0Ns6IavLEfUKuqzpQfGaiy+G1ILbzme+a +plT0IEyQosfItn5dXT4PdfmkpGfuF9eDdaHxr11Lm6vHzb2IUjQ4PMi8l7Uh +dD/SZ6fXhzz39U0qh7t/5pyQZG3KPjuNAKhWhBxYVdobJYmqZ+hMOUMtD66v +T3ZK6vjw3EhHMjWKO1/gtfDNLPyqdJpuwTECKFAyU8hSkVhdokaxv+1RxZdJ +Mh2spP/+DIuylF9bitu/ytyMqCmW4surYj32uHrswXpsUD2Wth7xKehwLAxh +fT0rqDjLoMuEJ8fqhN/29UmHZY4FmmN1ZvAPDg0nHpahIiQklojsYviHhQqF +r5Os0QsTPag/N0mbNeemCkWYVrO9qGq013SqU3FGVDRC31970pjbonCkaTY8 +P39nXJK9NeHt+C3U6iVf8CQh9qbTPuF0G2q3MyQP0LFWH5FcwN1Sq9NpNSz2 +qOOoRz1PUuDMc1VMwsGLjSvn6G5GUEKuuwWN39tedU8SlX5KTgrX66igXjEp +jndanLrEOyoXSM9qOe8N4mTeavpWFZlmGZ03WbNyN4atWX+u9uq5il46vDZM +L6s8uEfqtrR1iw+VLhawb2vxaSREKVvRapI2ExVNutWvpKwHU7gowfbi68ro +Lw536k+JYw6l47B4aNKLHJ8lVKW6jnMdpS2oTHt8idpjdHU6RuEnx4N0KOlD +z4nzT9yWj1PXc8pxmmOtZtcERiVSXA0FoJ77YLJc/9LmWFVLBaiu6ruShquW +7FeuZM82JZtsRy3lNTYLHa9/9CGCQE6KaS+2pSopTf+blO37EuPBtPhiWuvq +y3aOlO1TUrYPiPWC+u/NHC6g9vRSbk/fPJvp77wTgAKzvIQb5jBkgDNTqANv +QcfsHjSjuN3CHSMKjFYMt6kcOPil6MGrQ+muTKX7uzale65pV0MqHB63d1To +8DDXtmooQcv3KWOUvhDR4jmmhM2xm+O5K1VsKticvpUqpsa2wFJuiLMqwVkq +Y6dTQX+LBQ0PFAIWc+mKWZ5lsZ6XwnLWE3ugBbwtFfCc7Af42sSKHeIOVjxJ +Xys7VSydqcp9ydRko2VIWL+SjTNUuPU8EGGmw8OiGg6OXMrOPfnzJdqnwp+B +Ms6m1RbybKMj3We0JPJF7dkrxXyL48ifUTFfvylw5M1YC8ZixptWLp1UU8xG +E3Z+qRg3ypVrz+CpfAbjqIfTmJQvn2dMnKs+l7GPj51GjB4qphYwl4fjH1zQ +80xBvyAF/ajzUlkrvsUnGKifvRDO4nMcb8axENSc1NjBvB6fxftKmmGKpIcM +d144wfW1HJldi1JEHJv9ART1Sq3fmqI+Uor6BMrysdd6julv1fDpdCbf08/C +fl5GTl4yZ/Mcp0/1xpw6x9LGyabaAvf0egn9Ckl2g0PxwdObuXp/e4jWPBzK +TMKXDKUDfDiWOtb7sFFY4g3RqQdX2K9m38dXPIBfRYP0tR7kysSY31A5KaPq +JsJc8BH8MhzBhbNmsJhzLGb4W9CQojuOSWbKmD0XFMTDGwieo7IG/oxdri9p +6XILJzshj+az+WZzNvOQY11Z+7ZXzmgjRalMjHIURWc3rNJqbX/V5sFdN1Ta +W5rS3tqU9k5haTvLR+IQxxz4rZen7FmtrbBYPyxRGYqt7fDl3A5rIMnJyDMl +lOTKe0FrHJX3G4nyVr92hpGruC0eS23xnxzVXmv+8SJZHUkLPjgYeCC1xniN +C5/ZKluxf7sz0W3bHmuE4hd00WxdiU+lHXW+xM82bTLT7hHB2X2Tys3vcHLe +Um8rZz0kV8ekyhynyrTMXzSl7s/wHm2fMX9A9W1lLql1eJcupAPcyl3wFL7Q +qczfppQGFHnT1Lee5w1X3xFDH+oqfRms9OagK30CtcEr4+vQRH1jab/RxPou +XX1zO9zr2mF9XpTkn3g71B7DUe4sHgncSp23nltDpWWseah0+GZ6fAsNL6jQ +ZziVOSh1ozQ/lCh1f4onVC5X7iElx+zujZt6St5VuWv8wijRrpvem8u9Qs0P +9ZnDQxKnOalfRM+/5lUgQM93A3qOXfXka6wC9lcabCHX9753abFzquTHQsmP +oyGXx6Tk7xOF+jZ4boKSv44ywJxLtDT9RKLprIaxk5Q+1Sc7N3gnpOqLMDXF +XfYU6rLXlbL/ubjC368t++MlRXW6DMjYbvsyOd3VJdbTXRXsO8RputuV/tCg +9B9JnPCqmD2XKH9/yvfY8ufqD0XuqCHHRXFU7ooCfXTyL8Z2fAmCwdtI5KH6 +exLVPwxficyTEL6CdOWDKXJUt1bC16HBgT23yfoWVHUhOafV5uH57VtoqErV +uuADoRwNr0TC+cge6o5sJ35VO2qoZemqG844Mp01fFEo6Oz2akmPfr+WmOuM +mTvBDTmfLuT8RijpuKzZ9MWy/jfNn7FA9rUva43p7+JFMhdqDEg6z6UdWXOS +B2aTmsG4+ZWIOnbe//CdNw7PaGnf+QGZwlve907H0l7PlfYsL3K/isLZ9aYD +v8ARdrztGa9rRPGMTKgFh7kTfXM50VVA21YENCbtWN4TqBNnw1hFNBW913Dp +LC3vQ2Xu7Wgpbxa/l6p05FYAj0/2W2Um7s6oxNFQfkDEcF/iLK49YQQ2PeGf +S5zwcaeup3yROOWlzuF9ugCBYCF25ovwpQ+rWs95OuZ7JIkJJF5FNyhtdrre +HhJ18CtLBz/QIt+GivyNbCl87cH67sH67nWnNtU3adjYdbv6phovsMTLuMRV +LiuIlveYA9tXOIYevQ1V2EqHX2GZF/bkhs+DQs/udZkrDUWq7u1L/YNEqUeC +muvDP/YnuPbiSNgx3+G0cF4ahBmPS4JyD09xmhbQcp9S7cmPi4i7zX3gVj09 +yXVah9YwpMi76c1x8TOKbTug2EZ+Fpc8Zrg2faSPl7kHJf+iTPI8ZvxmLXkV +3a6WWboLicSPBhK/DpL4ecfTtAEKb+pv6Ym+uZzoeN2aJfI7LtzaEXns1Xej +LLQKcL+Ssv8vynpx2S9bKfvjpOxViOOefWSS0OvJrt40k/pq766lPzvS1R8z +pe9OeNHXUwQ/Ln856THESOVvvTKBAVyXgOWPfL+k7l4N7kVY/H0ICIoFbKAh +Iri+Hlgxud6ADKvJ+T/gul9uc6zzbEUs9AYWegMLHV/m0TkOf9aJaXqaw1/q +BduJs7gGnwk1zwp54RRytZwXZs268z1HuY2KXwU37c598cMj4lthxTc575sB +CDzgQSBHFMimJxv2GTJ5Fx/5N5sj3zXum/0jENgdDlhfLMYBI7RTA7+Xz2wy +o//WMXqnz0l2EwV3e/TvfbLR6M4WVi9ZMMxxBo38zYAFt7PwjmunJ83qBgse +pxuZ2OO+mwV4p9ddSzc0jRXvDDNi68w7LdDseProMJqF2ESa+okBBVDdzjN8 +9tE2MtpdPR4c1AYPtMFXpn+xMP0rxFvzAv1wx/ZvkxD3XTWY8GAXmPCMw4UK +888RGKBKQmhgWCgIFkoHCwINBeJC7mGhcLCwkKi/AkPpmoBe0fXf7VkF4aAk +ta9orTwoJEADDF6HIggMdSBAGIBC3PwG1X8Z1T/x+wXR4V8Iv//RQlbaS88A +mAUU1LU3AqovdB/+woAGuffQEkjAXGCGH45Ayu9of+iDKx/ABdTWYON5Ja/L +32mwgDhB3AIAFgSdvWj0igcXymBFgAfbR8ab5FoCv/y3kV5/iBhwNdygIuzh +2orz/l3p9HX2icS9AWMCTiDe01r/VdXwvchHG2TImDtHphG5LVgL2gI251Ic +YW+aBGaOYFuDSc6k485/PYMLmAf/KWVicB1GjAv/LQu4jxXDToU/VQCwRSB9 +X3KmV4kKcJ3hCtom3F6LDcMqfEGnHU27kCM4wIn0TFoYyBEf0M8KmUOO1CFH +gMh976D4kOUJhCCAIPbgmAM+DQSJBoIEWQNLJdjDUGksBoMU2AcQPjQdPvS6 +VoDoAZIEJQfyPA8Y0fDYwHLejwgZCB90ll4cOcaHpjYJXg6gZzFBBHw9FvTZ +o/M+HcLEbJEH3iHKEHp2RvVb+z2WCbrECy/4exXQiv5kzkfCv2ZqnBooJn23 +mHGawYxAPkj1E4d7ZTCQECRvY9XBuKfY9crPWSHE3A3KCIQb4vkhbtyvuLHI +48azgBvPK248yzlWY+ajObA+mQOoFKqccJkMdbFBsM5bpzhTH9VCyuNU+ARm +clgxZHOf863cX6gXyLKCNwvWqsEOzugcYrBDfcGTl3j1UOUF6jOWqILoecX1 +MpepvKJb/HjQ4MejsozVqIpVDBlSxZDCYggOU1gUYZpBIDKXfqWxAbIWqf0o +EEWo+yCdsUcRJPMQsjRCyHCBkIHDxURqHYbiaw/iQxPxoUB4KIU3PL+65w2M +EKWbSZaHQaIhIBEABXyyMom+kEn8dDH3FfCqVj48mVMQf+E4hUIFSwycqbs7 +7RBYl2DdBFaM+zDIqbtew2CF0xwCfvGZz8kGuoN3Dy4mvPiqO7yYEuGFMw59 +hlb7DpUca3mG6T0o8IPbWKn3sDrEJ6GroDmB+99uTXiI5603iDHjecCMF2LM +uJfchfXn3GYkSNUjLvI9CG2t4x5EZUgMA3m+cQBdTLeF8A3fh+xIGxFoQLSi +S1i3AWdYfkK5vhRu/MGFhJYxsqTVJ6QfQdxI8I5UT3LHO8MDidJix/0GO4B/ +wBsV0ANA4rFIrpT+JEf0wHqpShdZTEIERDyG4ACXifu+gWgxF8FDYaR0ZKTh +yAihCFkW5FcMRwQZKrblQMFjawQPIBMj2UV4cXVAEO43fojgoaoDh3p+ROBB +r84l1GcNIhiSDHAiJCLHTxbB7+G6R0EN6j36fAOC2PGLxUovuBNhKWIYOYme +V1hu4XVJ6UXgyz6w7nvZo2xDGCsijRnck8yQnsQ5jYZj2HCB60swO+R0CrYn +LumEG1HYwAUD9/KBg7r+xLqQMddwTmSiR9lVexTRLayGSbbFzPcMdiyOsGMu +YMergB0vCXZo5ne2cybpSi2nZV5DQ+Sc/Y17leNbv54/NeIcBwecgzTNhbub +fmUHb2UsZKeSh8xV10zjxz6CHwca/LCuZaxnnGv6Fs89RlS4h+1dbIDBYoha +Hfcn9A11NaM+JtQ53vX2RwVISO3IEUTQ/Re541X61WsIEtrUEIR4JtJwTKQU +xUNH4TkAsRAtEACTYY6ODAZHlp9I/sQw51LwbAwjCLyWCCM9Il4+/18+T1Sy +QwkAQjJmjtBBeQOGjjIgHKxmCnpw/KCJliWjxy/5ESWDMaSRwhCRNQuPI+v8 +GX4PUaTJ8qYmFDyO5NikZPdEbYqBkYB+IIww/XBy5yaeflw34R/criQkz4sB +RjpCyS4eSk4xUGKljjjQYGnIwTU0hCRQGmM34wIUVQQ4udJLHgQnN3P+uH9w +8pzAyaOBG0r7KAI5lMMObI+c21r3zTNd4GFNaGHa05HftLZcuKcJPnAbs5O2 +MYtYAtnVSaNjnUPKkPLjAFL2E0jBNYWHG0g5zkghpxu3FG2TCwLHNIw8Ki0J +JJG2sDLMwUqqtbHQQvLIU9Ta1CBLjtCSE7YUzmF5mZDmFfzAHOImqqfKUziI +KR3ElI6lNB1LiSCGXodSyzMQYCk9sDCQDEEIGeL8jwXqgcA3YhfE6J/siRQO +TArlIV4L9aaoi0CILkrAUsa66K9EFyWDBL6n5SOmh8mRlMCHbdjJpSPQMQEs +ye5Lqx7rKZzE3QxP+1lmoi6qnfzTjubKGFK2/IqW1XeElF2rbkqohAhDkc7G +MpTfC0M5SBiKzUo5FdV2N+qykiIik0gUk/wbKanbzVCnlZPQDlae7BZW7jap +6BslQ6XKCEcncYspXw1zEk0qsfPKWSpVRzhCub8wlb0DpoKOS9jpTDDqKrsu +Hlp+3hFa1H051iglp8nKnLMjpdUyFu161Jm90eSuUqxlZgQvylxmV5lLjtgC +iBARFxZQSkKYZzzC5AgxeN6LVRNSGEwriiI7xzRERGOsrfs6QozymdKBTdOB +TS+CTZNbIo5xrbzswGmLa2vQS4mt1SEJaMkFWtZYlDsZlchKjtBSEqo0DKos +VucV/gEAWDh3UVrDBZ/CeS45Ja2aKXBBbMkRWrLeUCeJMhn3jfkL85UyllVz +RBj48eIw1q0bfQJ/MUCY7DbBl1hh/UeIMUZlvdglNr5qndcGY85QjLEOzd5x +esN3QUdJF+ScWwltWepCqqulLmeZ8BZ2Qpd80ZpsVZRIebU4M/GBJV3gzFOS +09Rkh+KMKLCBmhJ2RKrC4uYensQ4grb3KIXZ1FKYBXsC1kwxWLO9d3cDVWUD +cXJGu2nJNNYsy1jTtwzlOY8wjs4Jso3gVMGaswyVudBQmcuTHVJVZYnpjMWb ++6JOKUFpGHMKizkZ05oeR2u8OewcoMxzG485haM1jDWlwxp5PNw0HNw0EW4o +SDLECbmDAJmtVpjoaQp1Oj3S6ayxiBhKwyFI4RHE8hJRWQuVS7wbw1JrTqZM +YXTWgKsUnqu43qe0kIKIou1PgrMgrOTIWODD91o1JYaVhyJY8aYNLvapoy7Y +DV0LnRB2Q1daQTaGlq3aQ8vpEbSgMBsLLJWu6LBQnK1QGJzGDATaqDPCqcxA +aOGBahJpydj5gAxhXPqFa2g3w8Fqgpf5AC9vdYCX+9kYJoNHxVovuIylOPgF +QYe0tixIWFsMYgyRrT/fGz0+Gr43dEkq2vouyQovPBkSQ8zabSBmVOsAgJiD +A4jhgbDjE93SOSZUYinNFQkhN4YZ3zWxoKvhs7sDmKl2Tg+9UzWGjDCTE9j0 +OG3G5lDEKMqI5BDHweyWBNWcYeQBh9ookmhQ7IUXxZgmYkyvozSDRBbb7KwB +KAJ40kQ8aTg8afgQWCOgJEpLyONteCBpWCDhh1DEcZNhATd52AZDRJA1Rg4J +s+8D4EQkhRGlx3VBsf+LgJKjtAKMpL4b+nsNWxGRBeDk6qAj+u5gBcWW4w2s +TLWeT0K7rbCWk/hi9Up3hBkT7Y6uiEQX1HBxr8od7BkH0PIw7mzgm4mq0MJD +4Jw5EWgh7zjWclV8udRnU12XdHLr16TnGvYyP2QvE1w03Wq6u0in5EUYXhzK ++TT0hXAKZXfSdTmj1gleNJNyFIkxyzgxJu6YzjWDaSkWE0PMTQmvGSAmR3yB +w29mUpsZliPEZP0EmcKCTEZuUo44g82G2EmO1BDOFCGpKRFjCuNKK9A0EWia +CDS9fpi9aK3UDmMqG0W3XGELTYcIlGSFDYpkeYgspMqWgRW82LEVypobzlLT +AZWesZStR4WxyMOkZaibGtUnwhp43ke0yRFs4IeflciZAHvJEWwA5izcSGwd +/mIANtkMhhsTVSPIUbhx1tBnEYvR0XLfILEIIxZRPyDHRVKsvttFoxRYzcYy +QjZT0Xm1WcKIyoXGchZRhmBHR9MJdj5wsDMpgJ2FbWDn6TDqhvbzKwo7rPmS +OPO6EWfmxk3TiVVWs+BQYTUHuegbWtEciWXtFyMsvnFSkcZDzxRnSWuUJYae +1WgQDldEHUCx+WUia2mZ2gaqE7uxTZSFn5ur8IMMJ8dOCt7Rd1d6KSI5A4Gg +3Cs5PZ7lyER9pbGKMIi0nMLxHOqrssK52hyReR0ZzxsIRGpuQ2VbIMq6WJZa +ekCiiRaAI4Ce3jDZ7khNlEcxIIRm8xJiOWIxA+Q0EHJKgZxHUpBTBpAD9KYg ++aVh0UbT8PAPdf+YD7IhbrDVQI6znwVz4HMBcbKRzju6E7AmjTlCcwBvjI+U +I+hk01mTcSxHmieTfsObpFT7RdjBleS04aIN7LhBur0S+oy41HGyPmY7ByXY +jtOCXdJFGynjWF/1mdFpYpvpfbo7x0NPX5fQY9zrV6zddGNFr+EhvHMlNXda +oA2rix1rNt7JtkmYyWZCR5uqlEasjvZasj79Z0n42V+mdg4xNtTRbZor1Ytt +SuZSl9z3mrGFoBvbQhBN+OTIgQBnamAo7rVyBCEolhCGKE+DyoUFIjRnvLiT +MRdqGCzirXlOYM4dHhUOj0qHRw3Eox5HhzrxnzY91pYrEvBkHnUiy6iRAJzS +BVsipaY0Ss3jotSQ8ouUR4xqebjVariMnJeCUcMBNII/aNot8a8bgX8tAk7G +czoNN6/HPRf1XfAxgCX49upASe/FPOgJj0myovnWjT6pGFE3ynqdaab9UmBC +f5tj/F+0LqsA09fOlGoLTJNDv/tkA0xBvF+iutSGybRvt5xo94ATmbi/bcVU +5RER2cX+nQcuEd5acHoNwOnlDuBkxWRVe+KW7GzXkqmgvDaNCdVxo/1q2rId +TVvmVR9e+bNBAqB+KQC1RgRQy9OFYgcZgFL1x3rltj1LcSQcLbpUxg2tsXVd +AFLDKyCFBtftRgm6y6hBNcJzjjCFNq2QpSitQxp0jjhFMIWlLJGdpwicXACw +EP+LHtx5hXikAhFhVIkYVTqMajgxGps3gCc12AeJUc7RJnQiTkRrZ3sSonGZ +YEEIQx58fEyXs7pMhkZyYCYkRJUe7IEgvGvmBEv1phSDuA8b5UaHIwgKczWC +QamYnpN/NvkMfnBAoWxmYIrruq8r3DhRKAOFOPSNWwGWxKHIJD/J4BDJQTYC +HPdmHUjSb1IkSUcILtJxRN1G4GUhVJx31FGCGe+7PM6k+9+mdfUWi8YCFo2u +YBGOIz0RGuiv3C17h26TFZ/T5NbdK6lPo7W8c88zcb9TpU+rkqUNiSwd7PYR +TXS92h7Sq3lDfUcrEy3c3KnQU5wKraZ6HR6t3NoX8EijxGiuH2bkoqMTpldM +ms6XDM9FZrHJFR0waXoNJkVGWI6gBLjjYWloFZZ6a2DJpX3IHEMdRSx5Z5EV +DplyBKTSufKl6+E8HjUcZ2qKEY+bVBSE+nOP9qQVJ8m0UJULNfG116nLpUUc +Q3kM4qBf9W7hInoObbLc+9+F9b9ZYmbRp3Sij4R/C480Q53igztJ7hpfizQ5 +wkz2pBCeWGvmWYJA/HFgY/XmOgHoa+eSDwhsVHuOO7KDEx2ZuuY1xEedc1o2 +KhliTuiYrgznn8U9V0Fop5vZ4sKFZgQ4mtTpADhjAHB4JUoMOPebWabbRI++ +gS6o4tTO5fDY7uws050dT3NNOifdjgD5rPFuSYEo1KY7gY7t0lYR0GGXXS2w +P6Q6NVmcliJC50eO+2UJ112B5wbTscVpHwWeNoQIagYoEdSRQZ+M4aeRgh+s +T/HmDS8qLS9yepJXswmFRNL2clKAR40Qj5qUQRw4F5q00iQPO0Ncz0UtVxNh +pxkym7ItznBTVXhXHMCmEHHZDyYFak+Ocg9AeCT4COQo3Eh/VRjN5+OMYadp +eqy/2x4rR38re6iS+VN6g5JziDq8QYFQZ6uvneyMqHN2t6izZxgv1u0KxxrU +0XZL84Cu3ZJt5G1pjpGhaTPqhTIteek/IuTBfOBHvH1BJ6Bw2jpCnk1xCVNb +5MGr8HxWEJ2w8YETpnlB1YWukNt7fOvFC5o0y+Nl6c50Z0+ZrtzVTEqxPoS5 +np2dPuTl6RB9fh2hz49kVxujz34GfQ4V9Klrw5T2nBU5ZRcoAr3t3bJYsg5N ++QQCma0wCQTKEYLgnW+0I1RO38FtyKofiYaU0yRW4ShQAoewmfEsyMlJRIQK +66rpoOdzFANSCCoRgpoIQQ07ZjEY9MEOqwdfGw54chR7GiH6lPUspyruFAkc +yhM4ZHgPBQAL4j0FdViB8px7DCotBiEC5ZQGbKRarIwxaGaS+ajthXeq2zZL +5R60vs4XHDpX7S/FIdnqQji0cyT57B7h0D4hDumEtmu3Upp0BwY05fS6lkvl +H8ChWP652UxUkS2Gt/v5vDJuf8Dtzes/BVj0DGDRcwkscrnlhwSLdDrzDi8D +vW5kIFoUF7Ze68w71TGhXxsmtJ4wIVwctzExoQNkeZxMXQVa9c5Vl57koIHh +0T59KxAeWdvMykJxG3YKYI917mNGZC20y6OQkMGkHEEp85CkHdltImXHmSED +S1k9LhUWl5Ad0O8pOXpYh0U9MpnEtDxFApkKQqbSIpPTjxoITk3Xr8G3W3EQ +kISiM9Egivb0IhD1hDQIQdYLzZWQoDw83FCGkg+xpHXfK6zx3hGTcoSjHPGI +jbA3aerBm2EfxaDkDbEIlXw/xnOaISrF7Ohfjh2FOaCvQ2RSIboOmXZNI9OJ +Fpn2N7kg25vFLOmP9SwpEKZT/ZnupxJBaGeNIJI4bZwzlxUaCDppHPEBQScr +Uk8Pc0No4L9xEV0mgX2anyM/me5UC038kC1t4iYt9o16NWZL3k0zvZoTrNVR +0yyRRhXrEGpVQahRDqF0CsMKRdZdY9a0dHvWFKGUFYzaMafYcauBqSxWj0L7 +bRjhFJSnOnDSxhF/4nH2wq3bcijlfbjSNXClJ04Wnughjbt0GKXDZP2HpwbB +0xYET2+7GSsPTphb9nObZNDXdGuKTIVv2UpLlfApRB2KkKlI5Jp1m6UiVDbP +NW+6bMIPjnuguj0GKsk8R12cW3xXBat/GrD6V+uKLUIKZQWk8wGkKq7ZAMDK +uWcJIUmV6z+IgxaHGVNUyg2knyELcFxbJ05aJCjtXFGwvZvmwo0RYI1vC1ia +n35YAMu6alVhaT0SlqrtHS/jZDUbB9jXmX9UklJZ+79zi7dVoGrbGED3oLWi +iwPE6vaRJm99XECt6sWmC5ZURzyuMMDVSXS6OWr7ALygHgG6oNLuTCnfPYEh +Z7CLiFbeCcCIYqFVZVDMy1FEsgpHsgjFykSQIGgDc4lyD5RfIYA99kux8aG9 +kymuJoKXjF48zMvwmWOhpa8rLNzzZxTdqOubrat2naUPqL6Oc9WQkSrNKng+ +nQEto8nS0ovdhahPH0rTh6+NQPSWDVv4P2yDj3LEMPgX0akN0aByhLDs4SD2 +eGM8wGE26lxtQIzY1hZxH/gdgJjJJgVJbAUxs/nT9oMKYnYTTx3rop7QJrPP +9TFJ7Qndhg0Csk9YGZ/O+hRbcSYWQEC2pJ9AJrHJl2cLkBlLjoDsRrkd/mrZ +Fnip3+BDvaHJMElyO2Rfh0mO6eBAKZ+o7Ev6w21Mf7ijDImoXoVqeTiLlgaz +vQIw+4GAGWebdGtHnW51rGVhi6uW3bkEaCND2y7KOwGgwfsc4AzOegto0/yW +jxwRLRsSylhvJ8X0jHNQpRPUBdRIU89RUkemIXko6R2pbSxcKorgrAizBmTo +lQkQK1TDegc6RH5IVB8Ubq08yQ+K9SJklc58a6bbvyLUxantQ3iqE8dHVxpA +g0/NUB1fzxlyuY8fDQ8JlhkqszGkm30sOyeRqrDwBH9BAKjs8bYN4aW4yEcb +wiAy2QVExbJ5HUSJYRckldo0ht1wrVhC363SHGqaOyFdOQPvg9bWFqZmK0wt +qoGpV2QZ4XNVmHp5ljPyeOH5LWYx4TV8SSilvC+WlLc2iTbN5BMEuuXDc67f +RbK6jsqqqaeNokLV1gaqJjhjz8cv20HVfwlUfY+gSlMFClWH1DSMyr1OTnAv +3zR67qUpA8+/RgQDKim4khQUvLeBgaFUWzX/cJIBXhuOg7XTuu6j35tF3Mrg +FhuCBQlepRW84o7yUb61KctdOiHCstJhmexMk8iUg6/+xA0mrryljomsSYD1 +TgNRi4hVjqBVJlpCQqvSi1SFxShJSBZuYxh2hUZBbzgyZew8yXA3g6UdOgF7 +B6YIXJTgTQ9YGwWA5fOTTsKypIoRy4nrUayASFU0zsYy1n9IxnLxApOp1DWG +AWrZWZM9DWolhHY3c2JNv7hDVHJ1TAdyZQX3SpcoQ/s4h2JlLRHdt9cRuLt9 +7lJD4Zv0C7keYSPQIdddJiCu4vu1Mp9yOa054xgCXttwdijAm/G4ziSLA+Pp +jpFXue8Y5DKtEO+zmVX0+rmsRWP04vE5n4myclfcOU6NRPmTo3xUu+4xhWCx +9JVAMNtFQj3dSmjmUcxJYFCadxGa2RhDEGVIwVdBgn1h8wwZsa8y1OvLBGI1 +bMiz/ySrdEglAlaZkNlLh1gNkrLKIFAJTymh7kjMwokToVqNlNaeFVW1nW1A +x7YEvAoHXvBkPpTwkUpa8CsEsIYDMBNMgM+/aZO/Q09/o9XgQ2cQPgcgDP58 +hXZt8S/4GEAYULOqvOVB7JwBgthJFsT2jTR5k1wIOkTJTNl1AES/jm1Hv741 +2nxNl2jkrp1Q7pLwOLmHDsj+LKFNA2SPLmpt2A7IZGXAegGQWRfR6vQie7lu +UWWvuFs82SUbcM+8o2EL/uC2IqVoWLpj3LFGs9cpmI3kwuj1ugCz1YOAJ7qL +LIMxmNnO8SgBs2OizrGOjjGgmSB6lL+6okbLt8N7EaDhNh14bXpp7B0/SUMD +fTMIz5SVGVxjXoY17Bc0JRMS2lVSTKIMRbLSMbHS4VopgzYDbRkRzfg+mAC2 +YldQnjCz8J60h8q/iH4VCdZVBLmFYGKOJayEFp/5JEOgxxdRoCraGYDw9Rl8 +OCloTfgHI1fTj/SG9IvB62HpGU240/aMiahVJ/DSJQMntQMvE3cIFg4geLVh +YftFLMwlzc+SvSamf6S0eUXm4ktwVK/Hi3CcwYgAplGsAMAWdACwp00Y9CED +YEa3f83KXdeI2XipmRb+k4RCTzcTw6rdt2NjBzg2pvo9XrC1dRAQ1VjENt8p +iKEBua8DMV7NdGhf+57ypMX1rEzNyDoZrA2QQf0AlEG9GTDLWA/rdRp/oPN7 +dlZEQHZ3DGQ+aMozgi5RkYeymFf5SwSwwhGz0m5NGCx2edgqRHE3sJWVXtcq +ra6FT1nbNvrBFgExXr7WCBxFyYNmlHyAL6OZUN9IrlhpJGstxjgPEe1C8Vaj +A7aMJ4Z/aDa5/TOyHK1i/yXtw9fc+kW6QVJ42Z+2luZSFhg4eDOqfQreJFEK +PwsAXHazsyDdhkkjjR0dNZlWwT8kyk1U+NlJCX7WrtGMJbJAyffTx2RJykZK +vKdjcBCn1mRK0fdSWdBwvikNp6x6wv3aa0qmggduPE8L5TLbdCpPmxJlK/zw +jZPMAqsyhrl1kzC3N8HcD00SbEWAueVMNn7Z1iF99c1nHV+LG1CFugstZ1vS +LdQ163gb07aeAOki6pYxdytj7lbUiGrDCreiwetp3gko1QlgzlbKbM8KAwS6 +zVfZ0sciCONKx8YI2RouDpHT1oJmINQHKyR1fKYdlDEtawa0zFAzZma9DsYq +sS6GMt49ObwNkn3uKJqRyHJqMZtuBUJE03JEMsBVvEK46j4qln0TCGUpLDu9 +I5bdFmBZIPMfFA4lx+lUJ/X/UbAM6dpxhq7p0pZTIrqmcr9Nql5q+k0Vzswm +BdwdpVsvyZmsw7Mn2uHZ8wk8eyByKG9PCmhh3OI8kv9d3/mWl/+rtI03Lmwk +tM3HLvb1g82u99yVrkQOe88Upm1sMmOdMG0Ng2mrBnbAAbKZ4fdm5ueIjvSN +c2SKa7YPtXmyTr2o2WHVDayxvla4NCzmNNAlQM3NpjU0blaQV1DYuBlrbUTm +8hDVyrATLRyqocLmlnoOBtVwS3/hsKxMYFmZpmOlbynLQMh38FVY+Mp4m2UZ +R1JzEfU3/DgbAa+fmLRXuOVSAWx6CGASni9sn5kxgq3uqFh7OvbvwKEMpDKh +Y22DFPUwxig2M0Qxu92uTdNZx8oOMKxsX8vKNG9/ZiT/t2k83aizMy8/dOal +Q7JZ7wwAyZ5pi2Q+hz/drKqK8hamAaXwGF1VcJLcfnJMyM7mW3Z2sFvKWbUE +do+y+Sk0myj5i00DNGvP0H5KaLY3odkPAjTDNGzQjBqDsxuWVt+QhojWrimt +MT0511/Y7FnV+6xk0AplbMTXeIVWGTSpOo6UB+mNYWQj+G6VQK4IqZsHOc2k +DQ7aMO2lgn8xaGj70ELbXRVoa6TsyowjYE3XZd7mchY+CpaT7l+6lQsinfHW +hZF0qXslgD8hyc0ssuUIa9nDdPHJBU5GMzPSHYAt7jVP3T2cXjwpjmFEclqc +0Y9NTZ1m1KUNGseo5WhmkUyQHLMRWOw5rzbbrnDR3nTvC7jZakK3dw26cYKs +Ht3wrsiXDLo96SOxlCSLjU6Dbq9dZ+S1uPfUhXyxR1DP1TZOcDXO9Vf7T5XZ +dkzIbN0h3K/kAhdFuB+Z+AZ6Bis4hDsQ0E0jHN1yNjuh1EZ2gyoCjMuGOkP0 +soQpalAup6a0WeeN5r4nLWxPisVKKVtNpgnKEcjlLm/rwa1Q3jaUeFsRQlrp +BLgBARmbnRNW2Uqjq4RgZhmV9S3LENNyNSw9qGVl1QP40Mtm2HlbDyCYZhzS +usPsIPeiWdBtylUHjZCtccuZcYas6RMZoTPAhG0do535ycdKOMMRNr/80/Wd +MbZtN0hsi2ePKM4f7YYI+0/4qwK6ZTdQ//n72C6oY26nfePj/YBtU0wPuusl +4eR2rKlZfNtO8I0DHFV823ig+EZBDrUP7gi0Nd72d40Jc4S9KO46DuP/dQyO +42gbBQwujqTt4e7SjTFuJ9oI2B3G7dEVxq0WYJxqbb+rYXKKcZbJxYEP25t6 +zS1M2drgRwecyxjoytgzzX30thGMEwjYQcknga5IAJ23G2qBrpCJ8jqMa9Lv +NP5f+MWX8Hwuz2X4wbIDkZuw6lay6lxeR/stfE5tK6zaFsbOxmjszMluhZXd +sjwyRT0ghuqbT3R8VBAmNpMxWp70TmQ7CBIzZnrNQIUzkEh2Akdrh0fRWr/0 +74q4iWVMzBEQs56EFOfiHvDtgexlz5AU978CibEkFzWzwY0Q1mKQLNs+lvLZ +Ec2gof0X3xJhG1oLizeINIdWwy3eatBc25YYB9HBAYXFxxgW13tqXntYfNHC +IsdC1g9c1dsNLE6DxvbaaOHFRXR5Tcp2+DVQvzUN9eO1OzH1S1kPewdpXYbG +uLlVaFSpboJcAaoDBt1A44/FhljdredhG4Kh8QBpcuMUr16KMzWigAqPSgFt +oxtKdyNrc3H9pIGRjJc7LgifEze8EpfzPS8reS4151GyCHtdMWVnOVNWBb3S +ObMElcPbQGUx9ZBDDnkKngb+Jv1egz5OyKi4SDE1RsBGupFtIOCVElaz8+EV +bS7cXtE0JmlglOYe4OIAiON8nF9rpPAtMwDXcABnDFP4BKB82fKVoXJL+tQ4 +bdfQVrIhOyH6nb7LN9mD3aNcPMdZI9mlGttkVsSQv99UyN9/fHP7p1Rz+w++ +LfTqz2ukO7l6yyHdnz3SzfYjUp2RThaJEdKlAnAJMyIp4eEsAje5Y1wQTlf8 +6EbDY8yaHyvjeVNiM2l0N68E4naPGt1Qyts5MCYmuAuP26Hdng7tfhahnZ8T +RdNVB9wt2mnDG2dMlAzG6d+6ptci3oVVQgjvYcA8qJ3Lq/Ie1DRSwkYqRAcf +u4nIoJ0vFchj74IpITmy6mBwnC5PoF0lgjKLNy4y2pUSExaMI+Bi+Mp6GN7O +h1/MAHj7fwjZOjDAzYAB8iL4WarYhdyu6I7bcbNrMLCM7VXW8ZphWsRreQVJ +eYWV8jJa61NQ41tGg+lBEs4GeWVGPfeNbxk0vkDycmR5AIOXV3lekB2Je18H +gR1h8JF+waD1X3VgIR61sgtZ7biVcy+OSRO+vesI3zlfhXs53AYzHmKwU6KY +/90RbyA0I1jBjo77fAbYQuEGHaHw2Wiooc6XVb3Pb793uztMPzzG9sPuajEl +fke7kXi/Ef/QIBvsXQ2//Syt++1odL8YDn32JIZD1v54J2MaDtWv1fEtq//V +98bqcqT641NqvNsQEpeq65EZEZt1pkdOoFhYUMy88cGS4E0umFdYcOTRiTyB +jkUCHYtQGiy979Fw6yDxWV6Yn53N6mW4uw1+caHCYKfGGGEx2e2OkW6XyF+j +jUGbI/4VRABL29+6hAnNsFPMxIt+CeGP4a9HYiafWt1PSSDqf5uy/leJm+At +PwyDjWq/OxEpIZBBwcIYB/Fid0sHvXFbxcKzTAblTG56BQsfqGxGq8PCOItC +XseBkddhsnWV5jfyO5QWKhZSjPiUaJjLeh7dNMBGF9zhFj/YpfkUj4dvB2Op +uFt2cHho/Q8fL07rg6lGWD0QjRn3hx6mm+FtpRmueiGDxEQcZ11kMyzWE/HZ +vDqa6H2RZSqNsfdGvAOcwEV47wIq5mSPlAMBxbR2CL99IzFFO0ems2SFB8TS +AiJawhFjLEJMLGPG2AYGe4444ogl8BsbdaMPbrbq1p4EJiDvr/oUdX1vMK4l +Uw85NsDwjxBLfMHslpmYlxYY7XNsgL2da0LDHFRpBPAnl5xlngb+wwZWuBte +Klj60ZYKVjti1Py2+QbeCjrqpbqfQCAj4MiuEDCRY8kRAuGr1wx/5eSITEu2 +xQe24YN7tuODda0x3nJkB1tv9CKg90ZsRu+d/mHg8yEGhgmX2AO+M8JALwam +WmT0gUdDi1z1SVQQPMoLgvPTvHACYKBtk7d0eWSLgzuaTLL3hCn1snBCEgen +JHFwTT/W73DQ+iarBO3y/gYHLT88wvDDpH9isn0WC88KsZCgEN6FccTvEo4v +d0DDoi1FHGH2Akwn4LP9cyIAeDv9Stc1DbfSISFjmeil4Q8sX6MIDmGwO+ng +gw++AB4LgLWguCmA4r069hU1xTWRvbJLeCwcMaTkXlbYGQpZtl3YWQqxhQvb +HWf9hcjNBCJxeuyfbu6Voy8S6oNPwOnX5QOAvCTgiF+Hxogd5o/65cgcEZ7Y +rEPJHGESPpwEyf0FJO+sFQ8tU9RBs8AmiUb+u2eKfKG23f29q0nIsIgYLS8h +u8TfQKBI6QfQFlNKxiHl04CUz3aJlC/FaRm7RC4lJkYd9Nzz3AZM20HbhPPa +kpoZU8MYY/vED6jFXXQqH+jd5Tq0TLPGNX1WkNDyx+Iyq5VSzQtqN31w1E23 +Y46KmKcYxLQio3GdsxRkXhRDZmEhE/7IVaQvqsPSfgBkhMXO2Iuuyo+NYEen +cMpYhixDa7oNaorlvDsgZnPKlCnoozwCzxGHHHJIR0q56fcYPfP/TfQ0G8Lr +vBUdRDP+SpFMCgpuNiVRE+46cTO3y3QIDabMFk8txWyBvxXgZjY0nO6oR04H +nLu2Ac5H64CTbJdKUvr3aeSMe+zfGeS0HBORUzlmFT0jjlnXZ+t2uooFE5rN +uv6Jb1L4LtEzNp1vhUfT1DrOG/bbvD847rfDTI7dTVDlmna811oyvufmdDVf +hOd7bmvL4IXBgqCLBoigzoz+UWTPrBRkddr13nWcM+6/49xOhKKkS0b5HaiQ +i6klj0zqHF1qAABDPnGNhyqUPYFtozAqwcUsD/1qM3jStG61wc9hhZsj9v04 +D58ke28BzFvgF5/B8yk8+N8Inl0BJsNi4DQ3ovWYJkqTkdlMkemPYquFVqWE +xFJucUkazx4cU+EaY0BznHq1ACBtpJosmAghg/3m9vaFrhrwOHgzMuXHVIZI +amFyJO+Q6g9MshSZI05m97qr8irOTA3HRJRUjukS2F1045OvTCuStODATswF +SMlmtZ81YaTcKImUrwtS2t2eT1eRMojnGKcmSC7qGirflYfpbDSu/ToqTWjb +aboq14ynhMOkdqxQbldJa29rrg/FJXuaZmyHlqM7oGXs3nCy0XboB5o1VinO ++ceIc3bq0tNxnmqkx4iXuL2IDO7EHAtAwtX0WiWeDYOY3aBm4VDzNo19U9LH +Gzu8GqueYHbKbQsmKhgyIqY0yCJBE0tPExshTRQNkvvs0vTZNFGSJ4xol8gZ +kgJF02qbxZ4sRw6N5ueqF2IJceSlLcOTvPF8cwuEDepAx82gON8bM/0DRb68 +L7UPVFCRDJrUXlCTTgxa7yPD1rtCIE12p5ZAUlLx37yf/YIvg9uO7YDK5Gv/ +Hpk1kla0Zk0SGhe3gcY3BRpfFWjUrXxP+0D3SzbPc5/kee4CSLwjgkYdML7a +3U5aacPJyI6Mm3nHVYikmtlhwLtq3mArXl2kwKN6KFxWh1lieNy0n/AYJxut +kbOKGDnLB4RSDe4UodTcj47zVZOOPvsTQ2RsdreBSEbIMkZI6s55G3MjmPYT +XsmLaODP6TCMtOZFAh/V8za0MovwcUDQyHRxE4DGu3nrVG0SkSHRjwp37Jw/ +jqVHFh3xtZmaSEEwLPwFgGWsOUY46G2Z+GJAE8VmHGzShpcqO/w6RyDMRlQG +VQLx0WKhT2ajADkZ++i2BLFZN5OXIxZmT/rojnFq2rXSbltyYkQvIIltIjy8 +TuHf6Xa6nRhp0HDbGX4blkZ5PBry2B7uJt3gyUGi4St3h/aNEyWnRaLk5YKG +cVvtU45ru2HlKlnE61THz+etWRtWbBwmixMjsphGxO3TiCiW9sAQ8Wdm5Yy1 +dHyLncp8p0hjHP05zrTZJ0Zt9iBRUYhjM4BFkwsnZKR+G2o9gkaPjCPaIKM3 +v4kvFpIEwhGa5UdVG+puUFA28I2v65IJAmlnQtAle/slDyKJdR6MjOaRBUPz +eRUkzAwUFhYK0RZTHCwsDqIaDK/NaptssXD5Ljnhf6rh7e2SdjXJif0FQzOx +cpyCYTNsmD0Y5oiG2R2c6E40zINjhsaYiZvmK9jC5qbZ3OKTwsO7wtVZA8bD +F1J4qJGehJ2NeJiUGaF5nnupGW0+z22h97ucPUNcM8EQ7Ub6eCWNjzzGmMir +aapyYydM5JHANCauC3gYz78oJqrNvXpNI71s2Egn0uF1TLFGfswRFOHdWpOM +VBunHVdMeTlF5OVca1rqItpbeAO12TciAt5EtNDEgrIIGs2iaXyWGxAwbmMa +Y5tMJDZYJhAwd3tJCx9ITDnODbc+xrjOWZHAPR5SKTGdQwqhqIQ5Yd8w1w1f +NTFEPxvWlu0yGS9iKOOgYo5EEBCyExWsXThT3xpnSQjctz0EemuFIfDWel86 +keiueNMdKeGXfC+13bKFDfIVnxsY5AZ550A7NB71Xe9HiUYe6xscDD5eA4Ox +hjg9apRVQ7zMT0BTo1x1XPpLDX2zzL71Fm2bZVx3X3VeuoXCKREUxqOA7GHb +SWmrKWrqZ/mkC9MNRRQnBt7BAIb4Dg7SkC4lniMYQk0l4bCRgkP4ipcsQWWx +OjyIH9MOGr5m5G9TTpIxsQxkRg1LRjJjEcuM/QNBlg83BhCcYfYwNKLYTRkE +st1W5jLYYnor7pdx942FxI9xkLfNC/3TIZUsjOH8j4nhIB/0Se1wW4MO7xW2 +Lc54W+DwKJFT9ZaDVM5W/8kpu7hsGN7upBN2MlCqeChZbsbDh+o9lA52cyWs +Y9bYdM0L62znyxN9crD6oWqoBGsIg4gjj73QFbVPzk+C4pgAFJ/xce9gmdes +yFhJqYdhv6zzz75ftlOBpwY3Fa1p1kNU+WE4C217ZuSH6bEYv/ArZUlzqMdG +wbsHRo6Es9my16KUmqhxyJXkelyOhld4Yl97npjqn3WiUMBRuWLsVAfgWMbg +yH51g5I/ETbi7AVRxyvlZvCr3I1vhaWNvIeCrJg83izm05NVM0bW7wyEJRJA +qlVS1DTEn9Q2xGUdRWSvpIy9ktw7yGWMiSlIDOeZmx4SQ46Y8+YG5IeN1CCL +xG2adQMtOQJiNqIjJJ5ayxGfTWOitVAiUAyEw0PrhcNOORzdKR3u+DJ7peMk +Y5z5djtZEwIizb5ww7zdHQYYJZMzOGB8vgYYMZujjvPdBhh1V44VEk0+J3Kd +x9jGOZiJOb6yG8wxxgXKGON9rjbpmG6ebdox5UD7xGM9OMYNdHfguLoRFnV1 +/3Jp5mhSkKkMT6qRjucLT6PUYxcIOTRAyDhPbiAyJ4wspKm2IcnCksjMj9v0 +CyLho4qM/bVYNl5tG++afIfoiHPkRjX0N0PaFQ/BIptCl0lHSwvFQuFB58Kq +hxlLh6UZ8qO9DzmCI3xqFR4bKQUxY2xsegUxxEcrIibgsS1j/C0yxv3jDtq4 +KjmiY/Y0L8BJCYlHmS56athFE2lsl1NMJXBoJtB20rJ/383E4D7ExMoIxccZ +gI8zfWZR94YNFh/XU3x02UXER2u03JFIf9t5waijfvO8itmCV5OEyZw68lhN +5yh51K56kpmdqWLkToKR2yfmCDXTOBCMXNNgZFVo3McIjXF3Had2VGysJneW +DjrsACeXdDZiUvPYYsZkPIJYxL122qi+ApHPCZCEkmEQMoJJcWWMZ21FyAER +R4TGDeSC7qI/Jopb8+Aih5+mxv3kyZ2jwrSxcHtcw5gNh7PLuJnOFR3/hYNL +E+OA9peeOI6o8VZcL51SF6vouFMCHUfWoaPL3nSCxwP8fHQFHu9r6zunBmC6 +oo8d/JbdUn21WetPYmMNRG4zM4p1fycQ+QQ8jwlEWi/aey/rz7ndeC82uOiH +ZNL99Vlmx5gfrV6zlkZy3DumkXGPPakyNBMHGXlwpg4mJ/cbJtWjVhEy5cf8 +wIiQ3qdWT+YAudbuYOm1LZ2s67cFKlmLHBm02/1ASmSVI2v6bgJKIDBWkFRR +sugMlNFyMxMbz/3anwHB5EYAk05oxOkcs/dBdj9kZLbQpkM/qBJMQhfKGcNN +ECw4Cme8QTljEcVuCtdQ48wfGy+l24IopkuO2IgIaX0XH87mpYgjkjsiPDom +W2tByJ6KA32G763hcwAg4V+gvr/uwCDnSHY7sVKnUzYnuk7zIIORXWmPZ5qB +wYBGfuHbbDv2EuV0KjiJpswdH8iIdTW52A1Ojg5wkvcu8jaypxM4addOzDQ4 +mdIhef32epV2W31qppPrQru9jjFo1uwHneSVtamW296AF+uReEWUYuW2kWcd +Y+UmXWDlOm2wMqVLxq23xcqqh101bpZur092kfGxKy0KGk1spHI+MlZTtC5+ +O70NTfM+kvlJNuLxpPf19HnT0N7hbnyg/TaiJeey8bUMkJIHVzail0+LWj+G +PRn2Y4Q73mh1R2qpK2kcYY0Cj40IHu1gdBmP+OUCkNBUN+voY47cEb5sIp3j +GGSN9sjQ2GQ3prv++oQ0gUy4MjnCI/xcCf0Rfi6Ax+zx6oTLscaYSZFIO+WS +IpEWIC+Jp10AHK8GcLz2U69D2is9b7MGjezh0buJaRktT1dPeKivApDjACDH +GIAc3REgHzEAGRo17m4Co0euZ/RI3U3h++3QrPFT1/0nk77ntisduefeMui5 +4ylsvkdPTZsUSPpp7HaEcgwAZBx6jF3tGCSrzjZeL2p77zqN0pLKjjpld0AJ +722ASuAkyi7j3WgX6l0J8RCiVSzJ1El14UVqYZrDSPi9UQOFx+9vI/10jdbI +iFhYRPSCo++rs/gagRvCG+y6wcieaLjvi0h7vIwi3KbLdnY1ICVrkM3EHgnq +stm1bqTWScBXBqCEjyWgMguwcorHypP7hZXJa6UUKx8NTOzDzbXGncKNSib3 +qSOTp8dk0uClNt2X1jfdu0yr7uuhpvv20LcJUz48JWjxcsOu8fLZBF4+FM1W +25uqVJ+0wcdrDV6mmu9zTfPdLankCcI4+aMNuA9B+j1naZ1SN1d4Lye8/2WL +QWAmJoHWjDydaiP+G9OI15PLZSvkMh6niZNBx7l0EKBm1tupI88ROAEFwrVp +fyILyMJmxQ0vrNWToJnRUozChcsZPUuHnoKY/Yn+bPT9bRkghTeW5p6oDnJj +1FZTohFzPKFfTet06k1rjnZ/AR+LAdLleaoDf37Qxa3Zqa7aYXgcEeyNCFKO +aS0yDZG79x8il2/vZ3cxDGM9bWm44ScDlMzu7jenrHg37ZruduIk4OS2dTg5 +24TCHU4uaIOTryRw8skOOCkiZYCT4QhhGAKqa74tt9SNPiluyXspMAxkL0bA +BjzteafFynjLj/W9+4OVHAwaF2Gl93b2rGDlj+Xa+h8KVtpGvM7fCTmmDQod +keCYFi9PcHjZrMPLHAETuUmiJ89dT854aalmQZ15I7iTQZgm583FHA96cg+W +3I87VtkfeXJDBMmAPSYFR5dtNCa1Q8bCD7joBe6yiLEnBYua9zYxxxQsUqQH +fi4bcrwQmSOAIiZTDSTKje9ZkjYyLgptbIYKZE2XPcUs8h4UcxSrJkdchJ8r +gYoZ33L1SLjVMWHXxOxxryR7/E91d1kchaxJ/excJ0eajY9ux0S0CdznxPto +mLo7ZHwhQsbHI2S8P4GMqcz4deFWXNt1GwtndGDhyLaeJIv0W3LHByzS7z2z +nbdNBG1FLLKaI6+zcnaKIpN2k09ndAyd7z1l7JBlymoHHmbLV5IOvD2b7KYL +j7b+MEA2IoAMQ0M1qiUDZOluZRWAzBEh+d7CMg4P5Yle3Mxvc7ayf7BYOlgU +F6bblprhsbTE0WmO3pJBmPSTMBmb1o0URKJt1QYe4/Fov8CbEbKZIo6Ijzkt +0imqJrZFyOAyK4uQZZwKz+1enRp45DXfUQxyan/wsZnsroE55kQdDwruhHHE +UVfupJLiQegnCkXaBtteVk+LyvhWrJ1cYtw6Nu+H4Z//FYgMQ5LtnRu7BvIa +ueTeBoEuMgTyHBMGOi2xErIbAknNNvwvA5DMtq5ptvmC1bDZ1klsP25TC5OL +OsPkFIHJdEDIuDlOqAynEe0qyThM2Y5I1jXeNYJlmksu3TWXjGPoQiYZKgsL +lVkegiX8IR+19EsvOgmTBJeWPG7AKJl9FxCZyvX0AyyZSzZS+XD4KpqD/NLk +IEWDLP3kDO8c4yjkkOAmrJrVttkgIDPrTWZ/AlIJsJkNrYKmMbfN4gleTjan +bQYosHDaDBymiaWPkk+JbZyL/+nikrUtt7lP0COnSJN0lTTOYVdj5cEQIiLn +EyFyrtsWOZ+JkFM87wpyxpZOJFEmW297FU2q9fZR86pMaQlmnBM6MNroE6+H +TKPn9rXouWWAnpO7JJnV3FBqeNFKlvVteDU/xJ74wYZoxq14HEtPRi4ldlnT +jmeMoWWMobmnm6FHHlg/QjfVJw+nwHsiEZP3Yyh85oSf3VFNBFEETrOVVmYK +FTeLuqQPjdD47d4D5pjNCDKDsZovcaSpqk9iXBVee9oFJTPimryerLAKJfwK +IBO+cGLOJlPUPHUQqNkMb5XxKmWOsIlUszqNCN8YCeeccAFuh3bcJoOIb54S +8U07hJMwdLglr0HO66tipTPB70ghp1xUnULOx/uDnM9VkTNIC6XM8Ei0fN2I +lpW1kL41H0O886zEWHd73qnJoQ1k04U3eWwYfd/EwI4XL7epiJc7RAkim7bs +D3qmUpeKnqmAeixixunLKv+0o+Cx8dOpVU8hqCWgXSBoQTS0GVyzaATNogsO +yormQJrzDb6/XbCRMXcgWYYdd+EHZwq7mtaEIP0OMnio10bB1cfEszwaLyyt +GOm3kTVoCU/Uame1vTbg2JlmnCZh1BQiSNaExrnjbqRQEL4D4CB048eZ3Y1x +MpLMmnQ6kmGwWbewJ0cczF5I5sg78kdn2diLFQwSXvYPcw3N5+EOn2kfhwss +7JZHuaJQd/kEmx5n8/3Ug0PCeH14jIR2DCe+xjAUKeMOfIx04BUeaXb9+CUX +VaGSF11UbRzlkfZKm4m2Cwc03NrEhDwa7tQVGk5OoqG97ma8dOJqf6/bxv6O +RUu7G6h7Pvn7iE+mO/KlOyJi3JJXLJ6imiYiUgkVmdixxkM97PIwp9TRHkzI +SGJdn2X743RzH74+ACJOWxd1BnYZQqKZl2kGtDCemzED16m1ZAVZNM1YgNRu +mpGxmRyhAVwsiBf2JJ3rM9wdq3hrTGFX2CI/3K0jMraxaoQf7p8ERuWHiY2O +wg+frt1kRmt8OgR+gnU+KU3SdtcXRt11vO0x0CU/rq73UevGoeN7VXR8kNPk +FXR8qh06vhyiI07fvPhEzeaz+2osHK9Prve6Xx9e3XIRdtlVG+ekYNtFmiv+ +IeKK3XfaW0cbI6sIaYNB7RBy034jZGjrxCvI447bhiuZM+5bxxlr7B2DkvBe +P5rEyYQJjgiZY9ISPtwWJEPtUphjlle9Htd8e6/HLdMwbviyA/C3ERr9tExa +esxd5NEtK9vMLytzUFlYqHRrGw19tOIjZ8Ub0SyN3WPWDNI+F4T7zL6G72bI +pDjbPZ5IVneboRgJPfUQxc5YjPQrfXbDzwXkhL9oDas8sZZVvuO8nFSiXFll +ch+u6pK6BC3RYSuC7i/XucZRIBuZ3D02vZ2rk1h1YWYVk/typ/HV187ZqVzi +JQgqsaCt7uuMoOMHgKDpeBAiaOzw2FUYN5JO6a5FfP3KaB2GvyJ2TOzyULcd +c8ypXXDMuo47tSKDO+602xNGhmwkfWeJDPUfRW10aK0qiga6ZWyQx/t5wwjR +AWZM3C5ia999t909FCNph0SR6cGzImKc58eMM3bN+0UtS4+fm9JKs8IBZhlg +5YQqVhYEkYVP+7RxaC6nJtv5NBFK9vC1g2HLrZpjxqsfmzY6bkcQWXlsestm ++yAbmRPF7AkEyO6Bcu86oCwIKJtJkDwaGSagZLbQRSVTNygcVuffTE0rkfvG +LLNOiUx6OF9WY5N0wWF8TVeIkzvenNiZhmrkXe8F64FinMSYeb9xknaoPdsG +J3UdRuznVFXJdm54bS8uns7aXbHNw8nXSe9YY7Zp+3FdQGn3k1dj6Cms3HqA +WFmNpO8RYKX3eOKZx72TLrntyzlQFLNOu5uts1seXic2ALzUpZbWNncdemk6 +dAoa5VHKqHBEM+mCtwPLH2wXe9rGn8miZT4dGnC2ZsoYLwufAIo3+3wVDyFe +YPaDn4dDiLrkR1DSr7KAnw21yXQzLuqkNOPDQ0LpsTKIk/cLK0fUYWUlV24s +m4zvxG7Wmd05oiV8uMa1yREss/sCuXL3eArHBoUqTXmUMq805ea+LrN6PJhg +nCFNeRQYCuFyUQe4fAOe1xxc+pWTEhyqgUtnf7/SBi6jLUK+Ob/UN+c2Y1kx +ck4ObkWspZYLPLWsN3PiBj2cdNy6YuhYO3zbLiHTypgbtoHM0Njx29ni/KXd +7Vtv7uybpJhBwChHzMxGpnp1h5ptFM00akZZozJmmTW6potnBiuLBtKdj2fA +zLpGy546tMRBRKGYachUdrmFYZd5HAMyFyoUHcGykQJL7MKJWe6MrDFCSqdc +tgPKZgooW8ft9w034GUcpMwRLHNESpQtq4t2BSdPqS69MM23ky9ltrstsYwj +lXHqXC+qucCgpV0WdMXn1YCQ3gF740dVg6cDWk6M0HJj3VY+ILRMhIVokZAY +PcHFNomoZWWh0OWB7R3M6xBa1hHMY+X6LyWYipj/7YJDMcE0M47w/xzwEuAi +Pbuj4aHdKqaPIGaOcJmNDxaedwbMmGPGYfV1OgBm3JPbuyFWlfshOvPMOFNU +o3AiauYImfCvVGsDRVbQKQB7aa5ZWJlTpsuHVKbLbdSof3BZOriUXeJ+QrtO +ruxALFNRyZqpRJ/8SeqVIb1sphpxRE0CTTa/C7tLMqM2vBYxsQlvpBAzCyzw +EDLhY8crYBYWMOEDAJlZr1cs01uCGDPnVjAzGaasiQWlDPFghvHM0PYJGWZ9 +HL0arGSGGVs/YUTovSBcaWcaefabcXPDfuGmmW1M4uYD/cDNcMHQuJqYum/M +zUz4W6dEezQs04xvhFCm6S/I2Rhwc5PICgqjQ/Ei9N26toMGAp6714JnvOfS +2kJ2HtIucqtnnAqgBzgAXaZiD6UA1MSKGEB7OwFojggKhWh6dR4G6i/vHCho +CqcsatORZXBrNTxs7xTW3sl4x24jFZZkdskji4WNSiI5FnoZjHIzvSxjepmL +Jx54O6FqyXiJY1QqW4b+joXMU8IpxsFAZk/Qk0cmT8bh857Q6Al7cvgcQM1s +RnrJWoJrhpgZLVuzs9/nfRlxzWi3+ZXmJpzo4gfCzZvNKI+ZdqSLEo1lHkcr +/8/iJnTo7nKIcDa8KmiGy9nGVqYgdd9vOmCknHPdGs7ZXZeeFjZD7GxnAvUX +OzeoYOfuFey0AqcLHuUIntnyiWY9xT3bNewhfB5GLjqAJ5RqzVTQ/z580iK4 +1jKjRvQbNtcD2OSB7v8pPalspEgl77nI/RryNhBJYfIvY+FSULKZopW6Pi1o +xreJm/FmnXJZQcvJCbRsptASsZJb8jIGy67oZUW/VHqpszoj62d12qeKcsTK +7Og2kcsO4fNk7NLcGXZ1fH1iqGOGg4/2Wllvj1u0VHuc0PKxCC2fGQhaxtvZ +rP1zVxs9c1rXHbplmutUtg+d0IFpxgH1ZJeOiAnvGMDLbLtaXXObyArqjJiT +utQ2N4ha9TiE1Enf/IlAZtyuh4xzH7HR48jmAFt2iiUxbva0w02kOgCaZTwW +VFCqveFm0G2MsxBXXeGye/unEMjcXrLm7TJDHizhbxD04BFechteOLz0pnhh +05YyiFM63DzftOO5XxdUxuGhgnrxMr7XoaBOvJG6DQy+MbrhjVC4ZKTMCCpz +REn4mla6dFDZDKVLH7xU9TK+Ecczy2bdFqEcsRKQtG0zXk8sc+zGs2M68Mq0 +Qe54Zbz4XHRMGnREtLw14frcxXsrvzO0fL4btHwogZYp96eTnnmZubT7gsAB +quvLQ355tOOXo9vwy/Suy/3kUu+qrimICe8YwEsgdCFi7jAAxNw0Rkz42oCZ +2ZrJwFHoCEU7MU2PXh/ftGa6Es1lK0SzU9i9PWo2UqiZubUd1fA7FP1pBJl2 +j6bAJpKv7wQyO7JLc0F2bdIy3lyOEBrM7djlarImI5xfjNZQuoVClflvN8fT +aOOUFzZ+mdxNWRlvLPxo4974R74TNK306TNCNO1EPqM+3d2rY/azVQZ+EoGj +3eJ1G+oLtevV431tgqk7xJiq8XbBVBs8GhimzokwVYOaKUyNAkjkqLf3iMYH +W4ukZ3cXf18Y9uxREGmdRBBJWWhdGMnrne379nR40w+bW4e9G1zdpTtcZVj9 +SQJW2Wjfow5Wa832eHYoTUZ/W4HVZEI+R1yFgqsx3jsDazMFrHwr+Wm0h1ix +1a5GGljXvr3e9BBnMK90494Vgzwn7ycKq4tRXrRDTyCdW7WPGPnlGRlrm40g +jRlm18twEHJnvD1nF3KFTNroVGrapxAZ9Y5Q1m/8HBHgpx0DChr336cA1NPR +iJLmpHRe3jas2YGSVncBB5w0sesy6OD9CHmd3hks4LA+kcHQSnjzO8VQHaaM +MTTtF/mRoZTuWe3kx9V28memPaO23NQmlA6rcNP4Yh8NwE+UC3Trgp3x6Lm/ +THe7DM33bbJxXeLoJg5HUQfdLQjEVz2kPYLRongcPe7q7R5i29WHHDUVkG/T +2Q8aTMsYTHOiqT1uabE+Z/QbRJmUjgMQ9XvOUwjaxjz3RlCh19EG4XXSN+HL +YHy99BssmXQWbfimtutnhu06U80hiJZ1IXammVMQDwEtMcweXj7Wr849HJnM +ESyVayY9oWadJ8RQ2ayDyhyxMjvaI2WCbe4ea51xCsmOAXXrqOuStxq03K6f +aInZzf8VtBSXaLxDSx0PqtE9k6uM7Mb1CxL7Muvj778OWOdRlYFLk1CCdwLg +ZbZC1M3vX9PNp/TPyRW33SAmA+bS1W1HXQCmSSzlSD2z1QLfqBqMT/vuYU8f +B5fqyaeEl+BfCBATiyHd1zNmFtaChz8CiIm2rMwWpde7n0CAGYWZckRNND0k +AarAKWDZHVb2MFauvn0yitmWaZYB0/w/i5csbzbrsJKo5YBxshHhJAU0M0po +ZlfXmed++qfmdjLbmAeTkse2Dx4FxDIV2IwnJpVY2hse47lzvQg33uxmZs9j +e2i7GQYu7/lzbdS9ApdPdoLLV9JwSZH3tKkewqUVPm+tET6jC3QrO4zsbPqZ +6fh7FwQz3mcUEsxKow7vKQBMeBtXL7CgWfUc8RI+bD12j5jbMmJOIHo5CMSM +jKN47jIVVQr79TDrGceVqjSznYGkm5C6kUPNDhD4lwTURBu3DjeXRLhZugxo +v/Cy4fCygpO52TukZLIIF6EXbmb8q2oGs24JURsRM1z8exbfqFO9NgKVzF0s +XJ6WgEv4sBpC3yliDk8jZoyaHjHpxrIc8RJ+pJrNHHzLxHHVxFEnbnm255aV +EXOdB7IrjOwyNwXM68PEZtIhitJHWylgzuoAmE/0BzBTo+cxYM42gBk7RR0S +nNGs0DgZQ+eOPJ4Xitdm1nFMVTaNYxSOpMPbBtcPN+u6co+Ze0Wm0W4WM7dr +h5mrfMeYmTLbSePMETThp9k73ZnniJnZ8uZiNU80960hmna0KIWagpjYuMFr +WU3LhytBIrJpMfPEGDOL1tL9dohKB5ji+lC4KIWVUePtZ3vQKfeaZaaipRcs +jWhZ2CymbG4rY1YZ3GWbXuDG24oi0RLgsoig8uQEVOI/32++aZ24TypplIbK +gqCykYJJ+EtgH96sGy1PIuXUCCkvD6lljJR2yJx8H0st4/t57OXhnTrxxPrL +6bL+suKnm4tyXVazOhs0MLR8qR9oaZcKx3l3Wdjx6k2J3GakX9qO/M3zzbxQ +txQTEdNTzLQXFCeSDowQM+zK2y3zqCaTXA5etMwRXYPmrh40yWtfHyoiAs0c +URPetb49D+RMxM2fU5zTjq6vEXXnlmpWXff9qh069ec5wqZ06YlRdsbNRr35 +Xk81m5VVxkv3h1uybjkWoPIKvTKiC4ikHBG7OhcROqqvk+saIoHGMp7pyX1W +vQz9nB34Ggn2cwq/h4ioJOBi7veiD/VD41O+SQYwv0NojIbIq9AY9t0MjY1K +242rL/nKiavaZtfbq5SJRZjRZHmAj/F0ueBjJZkpdz5W8dEolfe8m8THzR72 +izkGho/PRxPnHfCxMg8kiuWr8eT5te5O3VQLPnZuhI9vpvLtJwE+AqOcV8co ++d5IPx9U5/Ok1sUxRnbOutemNy1E7twVRG4cQeSvanrxWMKMg5zVfnzvSj/e +nl1iPCnto7cdJWoHlAU15WWSXbL/MxAuqQC5g17kPRFVSLvtPNhpGcPjhQqP +0XUR5+Oc+HlEHqsddzO4n7FCInuD4GW8BfiMXb7xeIlXSIR2To7ed00Qs+gI +l7Gd4+6W4L57RP11jvVKZebYZGor5rFyUU+zbjFmjpCZHVMllGfWEcpq+71b +p/Y7tnfMoLnqlWkz/F2/8S3are62GUWgORZAc3S/QDMVLHqwFjTXr4CmJ5br +GWI5LmjD42HKVBseEksNbq6ZIJZjA7sn3g53MLwjADazkYlW3A4IpfRL14/v +AkyuXeo93OjRX+D8cZvtHu3znP76oDqG+f0Ouc50a84s82Bimd8xeA4IN1m0 +HAO4yavaKlPidfF0d2djlsejPeF4T2rPhiaGCpsYCsd75AaJ9gyzjFcTsbHT +jCFTA0OsVBYWNe1YZBnDZu72b1iW6RNDzDLZBx9en7lML3hjwLy0bWyoK5pZ +Gf6JHZ42bfi1nyZEy49MBNO4PAnU3LIWNRcF9/ls8OR8QM15gJpvDQA1Y3P8 +QRclauv22P2ZHdvxzo6P39cuAmaSbh4V0M1qPNPTzU26bcmrZnnG0Llx25hm +N9A5OYBObc3X77jnI4bOeIBorwp0puJGddnN2gYdlc3u4DMtbnL2qFnJHtX1 +4pUL0RAoawHy4gRAur678Da3ImOmuiRfb9sPatms0yfjLRvyMFoWNpqO46b/ +t6By1fQezBon/MDYCU/cSRFgZcgwkQqc+Z/szCrDrDN44rY8iqu3i1tavNy2 +4op3wsuFwf1nHi/fBLycG+BlcIfFC/3Fy3ZmT6o9v5rac7dLE/CyGsEMF8R5 +w0cHKr2EmWKaQbCoqxY9HS6qcX4QMxkyV6skMr8byGxrm2coaa4DDSGnM9Ot +uptUH1kbOKoPaVK3niNkQvVVDXQFzcKCpgyvD3Umet3aOTHSrbipRLO7e9As +dlbHHi8OQuhfWUOnCMVKXO3puvD/+MnHIp4X70AqG3EnToZOQZ14Ud0OTKQy +9zM8DYuTOjmOOu8++MeNA551xsqh6bXqVQuc76a4xKFlp2nyeNFbfHduZ3YZ +5oeCbcLBvRXpnnxykCFKjZgbIZPYZWILu0XMB+oRcwNBzPX6gZjjOiGmyxPZ +Qcp46Mf25lGm6I3YIo9Nn3Bb+7rBCHo6immzRWqTW5aZ2N7OV/U26+aAckRM ++HCN9cOYuUXFLa/f5NE9Zk7pGDXqrkvvTDVTSc0V3cW/bTr15LjQYcglD6e0 +pkkfQakDbALE122F75fd03SAGV0tUf7/BSeHWJxsHf9bc424x0m3mUhvxT26 +ipXIKw9FK6h6kc+QKlhWO/GMrztb2H5bUZwdSk1CBvSyzS4ODVzG7fg13I7v +bNvxeLfwrR9Gl0P6vRzojG+pgHl/zWTkIAFzXBIwTQDzZRUz722FlwKZzHpt +pijKrc+N2/I/SVt+jrskqB3N9E55ancHgOaC9oHMtKhpaWbdSnd2g1LJTMXN +nf6v4ablm3W4GV+XYQlnJXyUI3Bmw2tXG9ekNmOR03DOLBepc6CJotGAmwFe +NmK8pIUa3gmnK8y+DrPnW3XAzWZlhZtgZ3vdEiXL2kB6I2WOm70bHaFz/w7Q +aSNEhyh0NoJbfKQzh48BeGbPpxdjTg1v84mh092b2+7Gin5zzUT8sm68x8Ln +9Hg1e+JuXYXP+94NYpjVwfKFbvHwwOFTx32sga4jPwY+K4vhLHzGN0/6e3jX +q5joOvpzXmLg/IzELUHh0HmVcx5hOOfhyYUePp7JnXpK3VT4rK54Txvq3yWE +2oVyde36utmwLiDURTcz7N3XgN49TrxX6Wd105yB0Tr22RZGe1Iw2lpqAJOR +o3+4Y3sZE75X4POEXk/mk5YcJ/KKZhnH03mtWxlTTwoW0Y51+JjBUETQolvn +J0RQxM9C5EyXUVc5E/5IDYQygo5sh6Bhsx765gygzer2Dd4snBP5nFY/59Mp +ul63Bq4ySP5ljRsUBo+ChRyKoTdGjpBb2J5YPlyDodXB8sFiqI5Mxos1O2Fo +vKwjNTrZLtrul3ZUlxTHizv0Sox6GjrW+Orhsvfq/ZWWhnaDo9vYDh5AlFTP +ylRlRxjl69A37wJG7V7jGEZ/WbOfM9o415aNxpvnVnVsdJ+asFLtEFH7QSKk +RIiqR1J/v9QAY0geRTGi3oyZZ/X63K/juUcEzuTsox/rUS+ojL0gs249XlDU +DyuoG+xUeTMJnJ2oJ/buTQecUYLdgWda5cwRNuuu/jkBPgzICf9yCe6JbtBp ++EeT3PPcr3IETvhwcgfHpf/IETezqf7utMSFQNXh8r/6VRwpL90onXVDQANF +zrEOOZ/zyFlZSWyRc1ZidVyEnFbxJOSMh4KuqDTwdT7ROpJI4nUdJ3VkoGEq +SZGz3VRltYk36JkjdML/7YTFjgSUwbNZB545Iie8zRLYCW8zQE/4ozXbOXMK +KTWTPvvui0Yzcq7WZR+finh2JqGReaTICT/5/jSpXoOeOUIn/KVrwXMQuLku +4KZfqV44rETnPHdZzDyxWf0catUlsp775ZeNlFGeeYTk/UPNcPIx1Zt7WZNX +rPe668f1MeiI2KiXRFZu0+XdGuz+DEvegVbjALGqycg4sm24qNKXe8ecofGc +7mnlWSlaGd/980WaVta25olb0/CSSQXIO1Mj5QiQ78gezercz8AB8sUuAbLO +EpqRyLjHY+a2Rb+ytkWv0ku7z8hu6EjTy6Q1JCpnfZt+ILyv8EahZp3SySC5 +fASSfsURC52pkcrtjKmepJgJmNy0CpMjB6p34qjQL7MVEguQLFR2QzKTwU5G +yjJASkBJMtkBIOpm1Zfq/+DP/9feuQZZVl11fOfsc07f28Nt5tUzDBFCeJgq +KyE8Q9ARDCEC8piBAAZFJVqAJCDIJAYFQkkeEEgoUxW1UkmwtDSUSmKVkjIm +ECOQhwGCsSjBlFbQkqqgCfniZ9u999pnn7XXY59zb3ePpMoPfWum70xPP3+z +1vr/1395MH6Ib/AYm2rHvvkmuzwRjF7n4afFjZVLSItLSOQlAtXHva2s+YbF +Hl9F8pRL71S3dD98FCFtXBEXg9qkFXHSdssHfaDtXuKmon5saYCRH9YjNqRb +Fd2Nn+ySZK/8UCOmmoVZGl/+QWy9/7Aklz/TG4zE3UjCyL8ZYuTfZRvlIiOp +CpQxEu8B6WPMcgv+YdKCf5ApQeVC8l1iIXkKs7d3piN+AL1Xg1SzZuKkskJJ +OXnhujmZ1imBkxOVkzHxCGxIx2SHhnwzDtfTaUmZcxKSN6msfgQpKTtWjmnI +AyzdR+ZpuZTRsiPmIhPMHpXRb9lPKE2VJ1i+RD3pBq09WqzvmAHbpU21ZOix +LU4C5ndzKz+gnBeUlWektxJJlJyOoaSBm2f3Jo+6ZrxkpSTlZFTHaRSRXEvK +WcHiiBJf3f1IX0uyZjtj5XfEMWW3Hykp5YyVyVqUHzAfz8rHR7JSUMwflRRz +LPlo48qRTffXESuLNeV7pJrSfc84WprXFu1GJZOmlun+lhHyjwxM6tYUgQm8 +PEpZERo2bQIwx/rd1erSh3i8OohC8xSXKW2z8sR0TaK4dUnc7/OxErLdTnSs +FDZ2TLpddk6GSDtYSI4A5Ohm2x8z5jpOb01vsDW9Q6UZZmVNHZdpFDmHjkOv +kFvccxsI1pgMaTmVJ6W5c7CmVFmp1pRKzgZ2FKGc9QsYK3tZHN9G2zhWPjbA +ypK7SLib9tgf5RnCmSWTO4x0iTzvv3OX0e2Zy6i3Zuq15anM0F7kZRXOBbVs +9TyqPL68/Fk/q5S3z2FWOSNn0UfB0leX3zzLYWqIlpfKtPS5mie7GmQELA2k +d+xieg9vxXUHUmFRCIg5LRJzPlK2iZTiXuMPOyQtDkg3yJiuYLKRMIknk8vy +ZFJLH7qPmYbUilK8PhEz2+iFXZIJzNYg/R00sfuOqz3Ee5mlqccMt17CyQ1E +npLYQLQ5pMRGIkrKzwqk7CeVpz8mLZZ/vGAmkrrwu/MunCyY55cn+8qSXrIY +WjTHgvhP5iuTQMtd6kHKUFjKmvigt8jxErQdObTDwbKwf77X+G78J9xPFiow +jWfkGxyYSEcu8TIw8rXuBykL8hAKzJ/HSXFTJc8jE3rcm3YlpnvXEDINMHMp +nQjGzFxZoAMPrOy6bbtZ3bZ3B12cJaJbyRjEXen1RpNywld48gZcOinBooi2 +5e13KQVY3xV375bDpblfPhQppWzQnXFqVBfkHHa65+MImJ/Mt3t6vZtIOg88 +m4Wq58D8Fokr+mYKV18MmF8UgKlp33/Ktn16YEo75drYElpxeU8ydw+JJvYn +x5WXfMdcb8c1F9HZbG/y/5CardaWe4Ce4n548dUgB83KU9PBq9CUG1ir3DWy +ztQ7c2WcCdHuNnBzEV6e8Op9qOtuJVR6UNY4ja23nbNsX3SlTBxLjhBvECDj +THJj68hrfR3JIofe6dtobz2flZcc5bO5Bu5JzNTdHW8CUmpJbwr67ZfMzeVU +y3vIhFLruqUs4FBLymZ0GY//NIDHf5gTj19dAI9/OWANond45RVyfsWHXkO7 +R9zxOekbpKZ8YnRNWXk+um8xQdxxX2rHR9fr6lvlss8yErLyeBS78ABH34Xv +c0/Pwcf9G8nHVptaVqGyrJF7KG2cv8aHEMsLlL60fJX7ZA2UldoeZRVOX9jQ +iS9Kxg8EYdtfB5fye9u8z6Y5GbYvIdMNMtsvNWaIhL3GrucGh6R8hyx3Ak2Z +E2j0XPJA5wW6OaRmeK/kTblX0gAtW4mWXvGGRcdWO/NYeWK6p+n5nbgYDshs +pNbbNyG3+r+q7OwAMVeUjccX9e4baFl5XJp3KP5JOK/Ls4hw813O18g2eFiS +28YCs7cK0eM9Dwrb43hcSY/4eGDis2cf40341wpN+DfoyJLWlL+RakotgyPf +7kkSD0Cz1a6iVZ6Y7mn51E9ipnIfbRQzG4mZcXDZass+G4HMRiorDXBzz+D4 +Mo+IO5yUlWWVfFFiws5NaXmRrd6wYN/8UKN7sSR5zfZVZLb+DYVkN5Q0qsot +pWUMM7LV/ORhOAmRvw1dZfR+8rjOWNPhZAKk3G8DIFfnryk7FQdHtOWxQ/7/ +8w+9aG4btdwoOYRCTZkwKc0o/zlTvqVQDW3Rcf2YfIRg8q8FTGoKuDarJK33 +VwqtN40oSnfPsLKDa0uyAPmEPq/sliB5orDefjNWrkgKT0rhKByTBFjOBhKM +zt1EWiqTS6BlqzXh0IO32ra5LzSPNIcqco8P61hV2/BFOfm+tJuoIrKRFrw9 +HPGWzWg0kuVE6YqOLWNR6LLH7NkAGK0m2dTUBQRU3K212sFPPkq20fe9fct9 +5/fNx+S4DC0onRonqSEIt9sejXQaydD4nGoKSuHpEho/t0lopPlDo2QcOpWk +B8hJ2z1kqMxMQryKhLzgoSryekXOgQPlQ2YhbToJms7lpX3xTefjqxAfx3mH +6O0fvv4Y5Z1hSdwAJ2dCM57L4piTi/Dx9Ufvk6/kQIcd1g8tbbEv6lrshlaP +4cYYCe+tPCbdH81uRECfDT22FeSahThpAydbfvqb1Y4CIl31h0MqixNJ3mGn +1Rsi2PgGwjXZe8oV5GjR5ru6x9y12ZUHpfumgUZb9gMxnzmkDLm/60BpfpEp +3QmVD8pecxGVnxdQ+TBB5SMIlXTlW/Wca4p3J+BIE8pPEFQqqvfXtCVG2SPE +ozTKynfnQVd8lfiw7hhaMmvlZtNyItISbOnIml5TWsIt3lbb4gFZZ6LKOjG8 +yFeVx5kdysY4jhnW8t96XM6HyabH5Hl9njkqHdu8dKT5QKMQiWaQNZ5BFug4 +prmW6NhwOl7TTR8tFrMNqNmNpGabcJ/RLOf2H91RDhagVdUnOWwB+oEAyFBL ++vb6rv8095BBZHlRUUr5zU2TfBmnswIxdRsbJx0gIfFXWFrEkIy3JURIPkwh +iXIxvvRFZAvSzOb9SXFZ5cZJwPcTSJLz4mq7LUs5uT2InhunG9/5QuPJLHeo +b7lLBnQa3waUVNOC/Yzy8jijFETvDZ9RJlZWQdxpNUf6KE5azEkDhyUPUX3p +MiiPrDwpzbSw0LNzbbZgKZnYaDe0rR5HxVt4gkUKM7fkuhgH47IERt3lM82O +jSnXIPzS001++1td2ubbNnEr8T6+uR2bbHnjZqSTvBQOFBtt0SfZgZH4JC+k +URcCHHEUOvVKhm3FLq8ywvH0ueH4twNwpBYgCscHiMaNHebSLFJquO9jDfcp +qIrsAoDZFiMLAc6ryLIdCDfd6RJkfjqX8bEKR8dXspEkD1NXTUGj+DgZ0r0r +D0j3c4fwaEbx0WI+GlhznC3SeMcYt0M1SArVZN98z3asLFRBysE+YOxpc2MP +vfTQ9iZIZIa8fRGVJsu1+DlVzR6JTa2evFGuJ2E1scmuNOZ3x5ZkP/kBfLKx +zaeT/WSyCj33fSO2FOWCMgRS4q4bK9ty190zkw0on2dbODk3441wxs3cE6Ry +E3nM18fNhwk3NeuktPH9aVnqpv4gdpYHd9/3Cd13qbDsPELaBjhPyqDec2Wz +Edg5GUoVgvPjjSTnuG9QR073nMBOMwqeSyV4+hHP029ydQ8xDgE8Gwme0ZG+ +VBpbejvx068PEjjLHoqbPG1p9fFo9x7hOGHXjvsq80fcW8TduMpNdn4n0BIW +aQSLz0Uxt1ytIcPIsZ5Hq46xu7dcKeafrQuDsE9jsw1tGzDYahvaUDY2rKX2 +BLSBgI2UIWkAf41UNsY8tOMGy8ZiJm8p/AcdtC0tIgoajXvfHADNrwACk0bz +ckUgPQ6OtZrSAFLurU/Lyke0pPj3d5EkNWmpe7h8hDxKxU1OJG2k2Ri4+Tgb +XPJmuo2DoF0vBFsNglWgYCOZJ2MFWVMI+guRpwEEWy1QiPKPbzJuF9Mr+wy2 +4Qoy0m+eSzoeg/0+oWBylPJzO5+jFVvqy+ZqqftA8iIZLSaje8Kxcbg6bKSD +tJGMFh8Ni9PGadJjpGljzPkx7DptnmGRCMkLRJIYyQrEyuPRNygyICtPR/e0 +0lZXHo5em5EMkJ9Ee9r8hG3Co9dlxJM5Ah7pFuJ8eHy0gEfNPU5vgw+NHjEe +pSUbvMONL0VQUyS9FpFXiScWq8RfL28opuhzFjwZ8dgKxx3DCNK32Ve6p5UY +DKgSLTb+GLjBc2havSnd4lH0GvcW/SSyjYm+DJFyj51KxQFI2sEisZGKxNBq +HxP2FjVIvnLOlhroePwx+9AWoZwAafMESDhp00gL1979LWRA/tYVYqkIunSN +rd8SDg9kOCwuyvTWb7J0DbsyjXTjxqRCka4Sdq0yKC+HMOXlyt8sHrypwkHF +QnhuRGEWEJla5RyFrFMGFB7gV7w75QWjkA0Yn8sk6jIKvyWjMLh5DgIK1V1D +mrXrVZihQeO8DTN394wZNnI1Jq8WlTighEOlawYcztSJ4zlBthaNkLFgXImB +F/Pq12dXI5AIjp8pmzteFtw+mePHQGTvJIkzSggGiDOtdmMcmDhRmRh5OA6H +dY/DC6nB22L9GW3BWLVZrql7kULwls2DoMUQjAr0UklpgaEhxSDulxEGraCz +rOQi9K2jZ4aVB6F5zYJSC9Whcc8s0FAYG+Y0fJZ7Gx98xn2IjoXmF9Rt672f +e2oDaChtyTwUaVjSpB/IaFgeH0rmHU16uRtd9+bSy0lZgKSkTesjRN4/XzfQ +P7da/zwvEVkLXXkYuv/ZL1w/Di/BOHyrqxCnanYaIqIBo7jFZWKg4wnBz1OU +Y6qwXHOIGNTbB1D2WFwHDqVVl/yGNomXqHpZRciYuA0I2bfNKeMxANI9R3QV +gGRDIRkYWflM3A0jZZXOx4Ldu0mlYvfiKQme75o2zhUdK7Kc3K1qWs84RTqe +XLC4YvQzm3u/a45iBxNL7u/ydFEJ8CGkzF07zwAo9204KE9loPwCB6Vq3tF2 +ZfCQ8X5BZyFd9Fc/KuT78J2ZcnqkVDpmpxvcl9Kh0iyTA2LXa0YecDy2yctz +hrQ+sxWNGoUVGsJKVa/eggrHQVq6D8Tx0jGsD7To9JcMlzYMHRsJlSbMHF3l +QgtIjsoGoTLh0kCgeavFToJ43SLnOOByLkx2TfR+tDOtMFI4L1Nqor3ZO58t +ekga26vPG05JKwwYa9G5U3XSC1egvfwCIvSyHtIjLQ4ekXpraUOmEEjB54zj +DTzuo3S09G12ODDLYsYrD0tXYYh3ZlUxJuRT+FnUnzzn3nQRl29D64Qbicsv +CbgkXscvc1zy1cIhv6MUskuN4Thol+7R9LoMry0132PZIE72aSrPS7NNtD4C +LnX749m5PGMgtHyZrB2qwT9QXbYaM2UfZMgAMlBh1hSZvrI8oyow0wZmNhIv +Q5F5YmAla7YjK62wtj0htWVviZwLlGDgOf7Y/fy2DOmnraa2iGPFGo8V+4Cy +tnfiSHcU+itckYULodD2KLQYg1FrmWRZ4YIZB45pN2lTEJWN7k349rrVlqgh +DXcLVI04DVfcgsEm761sE0YWpV/QjN6VB6H7pwMK0TLMRZ/6l/zwQm9njCj8 +1Zg+QeMf47SRLcXgyJ6chW/YUBb+VWShdLhGmjpSFvJ9wtNYKkXeZ5+qiDB8 +5drz8HZhr7Bbu343mTze5Hh4YzH5DFsdCRCrcOGm1QLQwLKzQrSYt5EMtM3D +4RahgsRLh1n+bigfT3ddeN91q5uH0QRp8RzSwI72BHXdYoI5bNXUqfOe7Th0 +7vLRUzHTWXCx2IXtSHPGESILVZ2Jm3uIhJUHofssdj7uwtktUXa2WHZWMm5z +X+IrxezG0tZ0MfD2zqKpOwZLfFA+zVUKLMt66OeVrRfpinYfhKu5dN78GWn7 +ZX4anqzS8JGchtTozWhI5OhHJbM3nTpix87vLdBM0y3rcnV4PIoYL1eH0hmb +PEB3BBEzE+OScqQhENF9hzkeBh8PI6KZA4n7AhJ/miBxZR4k4vuz0Fy3hIip +WKxirZgLMzhxt9HTIwGJtkMhzBPn5OEdYMnBiYx1YZw4UnVJVPS5On2B6F73 +nmjWrmDzb7BZnpuLsB9tM93Fhj65Fg623uxfLbXJlSei+7rpVxJu9SWlcH3L +QApZK9WGHodV4GGrhZH5Y64v+EaZDhUBhpWnoXmHfjqB8BDPFM/bMB4+OcDD +ryzIwwF7zqOaCkNPLJS65Y8KurTeLZ+EKsQTBytErMaECrHyQHRfTaVArEL6 +oxXU6QlSp0U/IyCxVXZiLvOmnUv9UGRMjXjB/EBsCRCTTg1dc4t4qBkca9o5 +AwwnEYbqmgyo1VZI010nCveHRplVhX1MLaRD1DQdAl0+sJiKAMQ+RwcH1opX +q0fzsM54mHzbdZ7GyFWWqaSyUHuigUPWTZauE2tFA1xc6b0589WKMhv/K2fj +AaFtpmqL2jbrI8T7KR2/LdJRc+q8+TP/yDzdXaBER8cfH03H7jgXpyP3dks5 +PEL8LQ2YeJxIL0IeDz+toK8IDskvNBI3EtJ9xzg+ui+5GoubE5IoMEDIRjkR +e+ZTbw9FI26h0+WFMYT0ReNb3c+NiMeZhsdMhRnm45sYHxX3N0wVa9o+29A7 +13K42bK4QYg1mLk65RrjcO29uC70twOxitIrKUFIseSkQdubs4XTBiENIpSD +7t1AIopBIGwwCPMdloyFeP/5xiw6p83uZrGDrHnGWPLmWNw5RxrO+hAd5eqB +0DkbuHywUj7UyuIYv9fttQAOG6lUjILKNYPNc8Bhd7+V5OoERUVWVfrmmdl1 +xiFx78JI1LJ2NCRqarSARKpGqxFl45topWisPBPNsUpamVYz0j5aOkJzHTtE +I6dMiKNFi5hIlelUNU6RrTG/sHB+UKaDOu2+AR0VHX5GcnEAiyBQ11Rssb3a +Qqw8DdKnk+s77ga2qGzM9mPA+W0DHrtScd4J4nuzSJxaOV9wG2zylQIWbRc8 +2yvL5qBgEUnLNZWWq/74y2xokJgfgckKxEmOQ+pY9A203/NrpFmigRTGVjvL +CqPEVtNVKo9D9+lAzbMBF/dWcsyaTxMZEPNpYuVp6PNYaN4Y3CCsPAzN2+U0 +nYfAy70YDr88Jw6lJWgaQVaaKdJF6N+ds4e+S1l14ZFkWYLjE+8WPN4dD8Go +IzfSLOjWwHb0lGxHi8NF000X++1Alnpr5idjI5HR+M76HPfdiRdhAI0NO7Zw +ydNnhtyJM9yPKbl6GESXKsCxJYpLaqnB/N2gspGKLkuIjX3tuB4w2jwmTElS +DCvO7jkBisamwDDFsb2RJLQ4NqwP5kaKSqvFhsHw0GIOGnBu17Q0BEvi6gif +TUFgLuoqK/xM9WC3/O+9yDwrBIqp0ophNPyz5LnpafhLerbYRtAwi9HRrIp0 +H1r3db/xcZpfq00U5+2Zc5WFLf8h26JUIb6u6PGmS4CpQjRwImErMePQvIjS +rnQgIvhx7AAQL94UIF4sAtFiIBoe54hWBC1molF6aSucVViEg687bn9vOxw5 +M6wpB6s0NixxEHTllurKHQYpBduegnlUWEUsNjWmoJdQUEk4USNmY0lIndl8 +h2Upt9nk7uy41txIlkP/3Pu+b3bl4Q9jrrtgr40erCij8F+zbMVhFIKqIqLw +3LTkl1D40EaisLDeoorNf07ElU8XxJUh+40c6c0jGLEFB6fl3FF5FpojhNqQ +OxJ7F458AIEmRmhJ39HJ7b6CjoXuK0jniJGGlUeha3Zz8ZkeRUhSC6xHN+Qy +IYahxTAMEDz3IJOw6nmYt88Q39hkvfN6WFhrRsN+YmjTTgpSS4i3UEz7Go2/ +qYY/rCLLqylLWVIiEU3cX3EYdB8dN9gsyWcJsvibiVwQph0Vv9x8xw/MjrH1 +IDsKKIDQ/dMOg+7nTLxWgLrj/eRAYNrs66K4RX35WaYvIxIaQOEVGQpBQXk5 +oJCODf+4oKQM9MlsB1o7Vv0BUhlKakrHQ8mRqFaG7nPtaOiqv75X1hJ0tJRa +tN1iMQ4N8NBiHhpIq22QUzvx0GwYEG0HRLYSeKYJrm1vnch65TRLrHo/DpVY +TgEYNiTJNpSHBnhYJx7Ods6tp3gURs3EyvUgVU9qqp4gMAqeGjIt5EerJDK6 +P4bSbrz7+hpfJypwJGy0fZPcKSgG5JNJXxzyzJt+wXklz0TsfDbDSds+78H/ +y6g+jCPDKd7g064SxDW+Y+WMxK4+xGgkC8/ShYK0m5LQKInLWElhxmwg4y/D +Sp+SBHFwyfhZQkbtiMGQK5HcfWETxI+QKeLdQqF4Jy4UlVW/UqWo768UjxzM +GByltvmsfO8v0rHVsmrBqdhmvpyfCWBUvDnnM29OEY3cmCOgUZBZGmmSaDga +U+dscNJ3xOJiXAwacjwrEFrjwRGhN9PwQFgT7gvYNCe0m8BA9+Y6RTmGPIQ6 +EeaFjeTA9kVicBomEIKWbAMIWyn7y0Ow8hT0i5WRgaQ8hNybRthiDr3y+7/n +R8NyeQgIbLXMBziE2mrnByqPQB97Jw8MK09A934JarKfGj0QGmU5CgcYuFfZ +09ssBpIMRfWIyxgVJc4NMyciPTnNmuXKQ9CsZr3yqWKvLN12KRWI7/L2mydv +dp/xXExJ4nLlGeieln3ayuJzComoPALdjxBXU3rbDYFg1RPQYgKaKsRFNLQ8 +DMWhLxHPdz8/3fAQNGa1Y44s7EhoeIT3GQZ8ijZbZbFhlaUlB7RSoViFTJ1a +jhqzCYABb3P2ybdDEna00owk4Ejp2I4DYU2jD1nyIW2UMQjfOQDCvlu+We6W +p2xmKBxfMXChalk5wMKkZFYW6tvKRmbiCxITmb+mY+JMnRxeoO6nPBuheL1i +saFJsptNxS+MpCL0zadn23vavoo2Qpynb6b5YaCopMScOarDXGMubzdrOvPe +jo2N1DobD0Y8TiTCShXWnFvJgtO5Ekt4PF/Eo8XaCnTQ7ieUxOoAHluSE5Gs +OGjxOffidJpzKBLZol8YLZ4SrNv0GgxILAv2zPFIALt432nIfUqDle9MsfjX +TeFgSznYySe2l05qKp2kmvAAb44hqaHJUxCzI31LpVMrBqaGNS0L+6pQOm36 +og0EPKKQb6NcOE0zw+8IFkM+M9QZeKrKwLOYzXAjGahsL9N0bVVRpjsq2ezQ +fWyOguZMfXZIL6NKqrJ4zYrPD9n+3hNCIA5RlvU8RXLARcxUlGeIpE02MESs +6bWrKpOXn6LycimVu6YY5BQ8r0zBJZGCfpp4SSwQz3B/RpomXgpZtAYcODXt +m8GhuCQ5FB0Jt7I2eQrw+2/3m8lVV12FK8Ri1ShHNnQjRItHiFAywvywpmso +VVJVQtPsOJ5UlSF1RcOlxbg0RGOGHb06u0LVgXKuGWKbySssOnv3sN2GrjEn +M7Y2R6QF45FyE/07/6Heqbr493NkarPEIDazWWJCJhDzGmREXA8xnxhBzMfm +IOawB+eNjJjSTFG5TVDMWMSV471EceH7K5IXR1Ogx1WOwY9TeWQ6gAlNteFd +dQZN6KpbMSKHMZNacmCjxW4sMN8CwGzobazQV1cpMUcZMF4K2guuHS9n0Ywt +u/USSbk4KGMd+aMX9yvMAialIwLjlZZNAOavKcAENbrlajT02JCV2OiJD4DM +pqBGtzT+pisuwZazBzkUXxqvSEsHoXXpxcBh6FZLgKg8L80qt20nYn67HDv7 +ABGmwbsdBo+VB6b5qYOITGripsj8C4LMMTKMtAw9V7NdeWaamZBOy5UY4mB0 +n0LHTD9ulOvMyiPTrBTDxGiADrt51UibLoZT80pGzdByi+4dq2ET1JhGUmPc +H0i70goxW4mYHS/PDLxkx6k9M+1gr92PIQVOhl+bpb3uNy+6l+fjy/+4l39z +Lys33HADMLIJfz5MK0/wsPQvK9t21muzbTsPdw+rdm22fdX9k4dsX3Uvu/yL +2e4fJ2tbwsOO3YesLe/Y3axNd+y27uGw1bXpzsO2r01XD6vWprvCw57Z2mTX +nmZtsnvP8trSbverdvee1v9q4h4Om7gnDpu6h93uV7t2H+oedq24h9V6bbK6 +uuQedk7d29vp3o3p6o61ZXhx30XusVrbsrpj6h62u4ed2/17utO9fzu3+RcT +Hre4h62t/zS5Zw8/7hj/yQofdoM/We2266677uvoP5buP5la+P8lvm6rezgq +vpg1/3ief2jRVyL82jRXXX311XfEt5D+9yq85ex1+4TX7V/Hn8PD6SV4zeev +vfbao90nYMQHfbDftR9z79qD7hXzvmvbhNdtH/m6l/vfPRj/Bv5STOD5u9xv +1ub97n25fy5/mL4O0sz0/z/nB+FzvuZ/fYV/eEX8I6/4X6z1M6w=\ +\>", "ImageResolution" -> \ +96.],ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"] }, Open ]], Cell[CellGroupData[{ @@ -10212,30 +12413,30 @@ Cell[BoxData[ RowBox[{"4", "/", "3"}]], SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, {}, -7, 4, 3], Editable->False]}], - SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, { - Rational[1, 4] - 2^Rational[-1, 3] ($CellContext`\[Theta] - $CellContext`\[Theta]c)^ - Rational[7, - 3] (-($CellContext`\[Theta] - $CellContext`\[Theta]c) $CellContext`\ -\[Theta]c)^Rational[-7, 3], 0, 0, Rational[-7, 24] - 2^Rational[-1, 3] ($CellContext`\[Theta] - $CellContext`\[Theta]c)^ - Rational[7, - 3] $CellContext`\[Theta]c^(-1) (-($CellContext`\[Theta] - \ -$CellContext`\[Theta]c) $CellContext`\[Theta]c)^Rational[-7, 3], 0, 0, - Rational[35, 144] - 2^Rational[-1, 3] ($CellContext`\[Theta] - $CellContext`\[Theta]c)^ - Rational[7, - 3] $CellContext`\[Theta]c^(-2) (-($CellContext`\[Theta] - \ -$CellContext`\[Theta]c) $CellContext`\[Theta]c)^Rational[-7, 3]}, -7, 4, 3], + SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, {((Rational[1, 4] + 2^Rational[-1, 3]) ($CellContext`\[Theta] - $CellContext`\[Theta]c)^ + Rational[7, + 3]) ((-($CellContext`\[Theta] - $CellContext`\[Theta]c)) \ +$CellContext`\[Theta]c)^Rational[-7, 3], 0, + 0, (((Rational[-7, 24] + 2^Rational[-1, 3]) ($CellContext`\[Theta] - $CellContext`\[Theta]c)^ + Rational[ + 7, 3])/$CellContext`\[Theta]c) ((-($CellContext`\[Theta] - \ +$CellContext`\[Theta]c)) $CellContext`\[Theta]c)^Rational[-7, 3], 0, + 0, (((Rational[35, 144] + 2^Rational[-1, 3]) ($CellContext`\[Theta] - $CellContext`\[Theta]c)^ + Rational[ + 7, 3]) $CellContext`\[Theta]c^(-2)) ((-($CellContext`\[Theta] - \ +$CellContext`\[Theta]c)) $CellContext`\[Theta]c)^Rational[-7, 3]}, -7, 4, 3], Editable->False]], "Output", CellChangeTimes->{3.827831598311305*^9}, CellLabel-> "Out[192]=",ExpressionUUID->"096c6dce-489e-46a4-9e05-19a17f9a5133"] }, Open ]] }, -WindowSize->{955.5, 528.}, -WindowMargins->{{Automatic, 2.25}, {2.25, Automatic}}, -FrontEndVersion->"12.3 for Linux x86 (64-bit) (July 9, 2021)", +WindowSize->{630., 1010.25}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"13.2 for Linux x86 (64-bit) (January 31, 2023)", StyleDefinitions->"Default.nb", ExpressionUUID->"c08a3e4e-4726-4b51-96f5-38c9f0dc1f4a" ] @@ -10251,50 +12452,50 @@ CellTagsIndex->{} (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ -Cell[580, 22, 2253, 59, 59, "Input",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"], -Cell[2836, 83, 2912, 68, 242, "Output",ExpressionUUID->"214b4f47-73c2-4169-9a4d-ef2b4e5fb5f4"] +Cell[580, 22, 2253, 59, 76, "Input",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"], +Cell[2836, 83, 2873, 67, 243, "Output",ExpressionUUID->"47b1d716-2908-4128-af4c-2c85a1c62384"] }, Open ]], -Cell[5763, 154, 336, 7, 24, "Input",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"], +Cell[5724, 153, 389, 8, 24, "Input",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"], Cell[CellGroupData[{ -Cell[6124, 165, 4367, 113, 128, "Input",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"], -Cell[10494, 280, 4128, 95, 242, "Output",ExpressionUUID->"d190cc8e-c3ee-4623-b28c-c47d1a8228bc"] +Cell[6138, 165, 4367, 113, 196, "Input",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"], +Cell[10508, 280, 4087, 93, 243, "Output",ExpressionUUID->"ffd47d51-d7e9-49d6-8d88-f9c2685bf164"] }, Open ]], -Cell[14637, 378, 388, 8, 24, "Input",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"], +Cell[14610, 376, 439, 9, 24, "Input",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"], Cell[CellGroupData[{ -Cell[15050, 390, 6301, 168, 178, "Input",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"], -Cell[21354, 560, 5113, 116, 243, "Output",ExpressionUUID->"55ead135-59f9-442d-ac33-7c08fd310e39"] +Cell[15074, 389, 6335, 169, 246, "Input",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"], +Cell[21412, 560, 5148, 117, 243, "Output",ExpressionUUID->"cd4d61b2-4474-441d-86f3-942c313cde21"] }, Open ]], -Cell[26482, 679, 439, 9, 24, "Input",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"], +Cell[26575, 680, 483, 9, 24, "Input",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"], Cell[CellGroupData[{ -Cell[26946, 692, 11790, 327, 394, "Input",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"], -Cell[38739, 1021, 13390, 272, 241, "Output",ExpressionUUID->"db8055d2-fbcd-4066-a806-99ab1f7161ec"] +Cell[27083, 693, 11789, 327, 497, "Input",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"], +Cell[38875, 1022, 13350, 271, 241, "Output",ExpressionUUID->"27b04507-3c39-4d5d-affa-0b88d32e7be4"] }, Open ]], -Cell[52144, 1296, 478, 9, 24, "Input",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"], -Cell[52625, 1307, 2989, 88, 105, "Input",ExpressionUUID->"9f090f7e-7e79-45c0-9494-a106e69278bd"], -Cell[55617, 1397, 851, 27, 24, "Input",ExpressionUUID->"0656a984-2665-4821-a057-7cc45a6f7f5d"], +Cell[52240, 1296, 528, 10, 24, "Input",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"], +Cell[52771, 1308, 2989, 88, 149, "Input",ExpressionUUID->"9f090f7e-7e79-45c0-9494-a106e69278bd"], +Cell[55763, 1398, 851, 27, 25, "Input",ExpressionUUID->"0656a984-2665-4821-a057-7cc45a6f7f5d"], Cell[CellGroupData[{ -Cell[56493, 1428, 841, 22, 24, "Input",ExpressionUUID->"91c7d63a-9e48-4594-9dc8-9fb993246fd1"], -Cell[57337, 1452, 26678, 463, 179, "Output",ExpressionUUID->"3e4bf6b9-c5d6-4015-ae0b-bca493ce1b14"] +Cell[56639, 1429, 841, 22, 43, "Input",ExpressionUUID->"91c7d63a-9e48-4594-9dc8-9fb993246fd1"], +Cell[57483, 1453, 26678, 463, 179, "Output",ExpressionUUID->"3e4bf6b9-c5d6-4015-ae0b-bca493ce1b14"] }, Open ]], Cell[CellGroupData[{ -Cell[84052, 1920, 1115, 29, 24, "Input",ExpressionUUID->"0466bd7a-1e6f-4e14-9bd6-ee3768a77e31"], -Cell[85170, 1951, 83431, 1384, 283, "Output",ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"] +Cell[84198, 1921, 1115, 29, 43, "Input",ExpressionUUID->"0466bd7a-1e6f-4e14-9bd6-ee3768a77e31"], +Cell[85316, 1952, 217643, 3584, 283, 83182, 1379, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"] }, Open ]], Cell[CellGroupData[{ -Cell[168638, 3340, 1249, 32, 41, "Input",ExpressionUUID->"81f1e5fa-e6c5-4a58-a1fc-b5420cb084e0"], -Cell[169890, 3374, 203431, 3459, 283, "Output",ExpressionUUID->"5a4ab01a-a4b0-4ae5-8785-e1ce54c5c277"] +Cell[302996, 5541, 1249, 32, 43, "Input",ExpressionUUID->"81f1e5fa-e6c5-4a58-a1fc-b5420cb084e0"], +Cell[304248, 5575, 203431, 3459, 283, "Output",ExpressionUUID->"5a4ab01a-a4b0-4ae5-8785-e1ce54c5c277"] }, Open ]], Cell[CellGroupData[{ -Cell[373358, 6838, 832, 21, 24, "Input",ExpressionUUID->"69a93418-6008-468c-b9bf-eb51609b9866"], -Cell[374193, 6861, 70501, 1182, 181, "Output",ExpressionUUID->"84af0ed6-daab-4ebd-8ea9-ddc7be3c2d84"] +Cell[507716, 9039, 832, 21, 43, "Input",ExpressionUUID->"69a93418-6008-468c-b9bf-eb51609b9866"], +Cell[508551, 9062, 70501, 1182, 181, "Output",ExpressionUUID->"84af0ed6-daab-4ebd-8ea9-ddc7be3c2d84"] }, Open ]], Cell[CellGroupData[{ -Cell[444731, 8048, 1894, 49, 41, "Input",ExpressionUUID->"146039f5-3d9d-4db6-86ad-d58679665956"], -Cell[446628, 8099, 122026, 2015, 283, "Output",ExpressionUUID->"718a8e27-d39b-4c2d-9cc0-1b2fefba1f89"] +Cell[579089, 10249, 1894, 49, 59, "Input",ExpressionUUID->"146039f5-3d9d-4db6-86ad-d58679665956"], +Cell[580986, 10300, 122026, 2015, 283, "Output",ExpressionUUID->"718a8e27-d39b-4c2d-9cc0-1b2fefba1f89"] }, Open ]], Cell[CellGroupData[{ -Cell[568691, 10119, 502, 15, 24, "Input",ExpressionUUID->"97973954-954b-4d8c-979a-fa0e01edfc92"], -Cell[569196, 10136, 3330, 96, 46, "Output",ExpressionUUID->"096c6dce-489e-46a4-9e05-19a17f9a5133"] +Cell[703049, 12320, 502, 15, 24, "Input",ExpressionUUID->"97973954-954b-4d8c-979a-fa0e01edfc92"], +Cell[703554, 12337, 3364, 96, 82, "Output",ExpressionUUID->"096c6dce-489e-46a4-9e05-19a17f9a5133"] }, Open ]] } ] diff --git a/ising_scaling.bib b/ising_scaling.bib index 4185f2f..11ae107 100644 --- a/ising_scaling.bib +++ b/ising_scaling.bib @@ -340,6 +340,42 @@ doi = {10.1103/physrevd.95.085001} } +@ARTICLE{ChenPMSnn, + author = {Yan-Jiun Chen and Natalie Paquette and Benjamin + B. Machta and James P. Sethna}, + title = {Universal scaling function for the two-dimensional + {I}sing model in an external field: A pragmatic approach}, + journal = {\url{http://arxiv.org/abs/1307.6899}}, + year = {2013}, + volume = {}, + pages = {} +} + +@article{BarmaFisherPRB, + title={Two-dimensional {Ising}-like systems: Corrections to scaling in the {Klauder} and double-{Gaussian} models}, + author={Barma, Mustansir and Fisher, Michael E}, + journal={Physical Review B}, + volume={31}, + number={9}, + pages={5954}, + year={1985}, + publisher={APS} +} + + +@article{Isakov_1984_Nonanalytic, + author = {Isakov, S. N.}, + title = {Nonanalytic features of the first order phase transition in the Ising model}, + journal = {Communications in Mathematical Physics}, + publisher = {Springer Science and Business Media LLC}, + year = {1984}, + month = {12}, + number = {4}, + volume = {95}, + pages = {427--443}, + url = {https://doi.org/10.1007%2Fbf01210832}, + doi = {10.1007/bf01210832} +} info: 'Griffiths_1967' has been autocompleted into 'Griffiths_1967_Thermodynamic'. @article{Griffiths_1967_Thermodynamic, diff --git a/ising_scaling.tex b/ising_scaling.tex index 2b1fb62..7fa1ae6 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -26,10 +26,10 @@ linkcolor=purple \begin{document} -\title{Smooth and global Ising universal scaling functions} +\title{Precision approximation of the universal scaling functions for the 2D Ising model in an external field} \author{Jaron Kent-Dobias} -\affiliation{Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France} +\affiliation{\textsc{DynSysMath}, Istituto Nazionale di Fisica Nucleare, Sezione di Roma} \author{James P.~Sethna} \affiliation{Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA} @@ -46,8 +46,8 @@ linkcolor=purple the low- and high-temperature zero-field limits fixes the parametric coordinate transformation. For the two-dimensional Ising model, we show that this procedure converges exponentially with the order to which the series are - matched, up to seven digits of accuracy. - To facilitate use, we provide Python and Mathematica implementations of the code at both lowest order (three digit) and high accuracy. + matched, up to seven digits of accuracy. + To facilitate use, we provide a Mathematica implementation of the code at both lowest order (three digit) and high accuracy. %We speculate that with appropriately modified parametric coordinates, the method may converge even deep into the metastable phase. \end{abstract} @@ -67,10 +67,11 @@ universality class. The continuous phase transition in the two-dimensional Ising model is the most well studied, and its universal thermodynamic functions have likewise received -the most attention. Without a field, an exact solution is known for some -lattice models \cite{Onsager_1944_Crystal}. Precision numeric work both on +the most attention. Onsager provided an exact solution in the absence of an external field \cite{Onsager_1944_Crystal}. Here we provide a high-precision, rapidly converging calculation of the universal scaling function for the 2D Ising model in a field. Our solution is not an exact formula in terms of well-known special functions (as is Onsager's result). Indeed, it seems likely that there is no such formula. The critical exponents for the 3D Ising model have recently been determined to high-precision calculations using conformal bootstrap methods, which should be viewed as a solution to that outstanding problem. The universal scaling function for the 2D Ising model in a field is a well-defined function with known singularities; in analogy, we tentatively suggest that our convergent, high-precision approximation for the function can be viewed as the complete solution to the universal part of the 2D Ising free energy in an external field. + +Precision numeric work both on lattice models and on the ``Ising'' conformal field theory (related by -universality) have yielded high-order polynomial expansions of those functions, +universality) have yielded high-order polynomial expansions of the free energy and other universal thermodynamic functions, along with a comprehensive understanding of their analytic properties \cite{Fonseca_2003_Ising, Mangazeev_2008_Variational, Mangazeev_2010_Scaling}. In parallel, smooth approximations of the Ising equation of state produce @@ -83,7 +84,7 @@ This paper attempts to find the best of both worlds: a smooth approximate universal thermodynamic function that respects the global analytic properties of the Ising free energy. By constructing approximate functions with the correct singularities, corrections converge \emph{exponentially} to the true -function. To make the construction, we review the analytic properties of the +function. To make the construction, we review the analytic properties of the Ising scaling function. Parametric coordinates are introduced that remove unnecessary singularities that are a remnant of the coordinate choice. The singularities known to be present in the scaling function are incorporated in @@ -99,9 +100,10 @@ With six derivatives, it is accurate to about $10^{-7}$. We hope that with some refinement, this idea might be used to establish accurate scaling functions for critical behavior in other universality classes, doing for scaling functions what advances in conformal bootstrap did for critical exponents -\cite{Gliozzi_2014_Critical}. Mathematica and Python implementations will be provided in the supplemental material. +\cite{Gliozzi_2014_Critical}. A Mathematica implementation will be provided in the supplemental material. \section{Universal scaling functions} +\label{sec:UniversalScalingFunctions} A renormalization group analysis predicts that certain thermodynamic functions will be universal in the vicinity of \emph{any} critical point in the Ising @@ -130,8 +132,16 @@ $\delta=15$ are dimensionless constants. The combination $\Delta=\beta\delta=\frac{15}8$ will appear often. The flow equations are truncated here, but in general all terms allowed by the symmetries of the parameters are present on their righthand side. By making a near-identity -transformation to the coordinates and the free energy of the form $u_t(t, -h)=t+\cdots$, $u_h(t, h)=h+\cdots$, and $u_f(f,u_t,u_h)\propto f(t,h)-f_a(t,h)$, one can bring +transformation to the coordinates and the free energy of the form +\begin{align} + \label{eq:AnalyticCOV} + u_t(t,h)=t+\cdots + && + u_h(t, h)=h+\cdots + && + u_f(f,u_t,u_h)\propto f(t,h)-f_a(t,h), +\end{align} +one can bring the flow equations into the agreed upon simplest normal form \begin{align} \label{eq:flow} \frac{du_t}{d\ell}=\frac1\nu u_t @@ -149,6 +159,7 @@ matter of convention, fixing the scale of $u_t$. Here the free energy $f=u_f+f_a Solving these equations for $u_f$ yields \begin{equation} +\label{eq:FpmF0eqns} \begin{aligned} u_f(u_t, u_h) &=|u_t|^{D\nu}\mathcal F_\pm(u_h|u_t|^{-\Delta})+\frac{|u_t|^{D\nu}}{8\pi}\log u_t^2 \\ @@ -163,7 +174,7 @@ $\mathcal F_\pm(\xi)=G_{\mathrm{high}/\mathrm{low}}(\xi)$.}. The scaling functions are universal in the sense that any system in the same universality class will share the free energy \eqref{eq:flow}, for suitable analytic functions $u_t$, $u_h$, and analytic background $f_a$ -- the singular behavior is universal up to an analytic coordinate change. %if another system whose critical %point belongs to the same universality class has its parameters brought to the -%form \eqref{eq:flow}, one will see the same functional form, up to the units of $u_t$ and $u_h$. +%form \eqref{eq:flow}, one will see the same functional form, up to the units of $u_t$ and $u_h$. The invariant scaling combinations that appear as the arguments to the universal scaling functions will come up often, and we will use $\xi=u_h|u_t|^{-\Delta}$ and $\eta=u_t|u_h|^{-1/\Delta}$. @@ -196,7 +207,7 @@ literature \cite{Mangazeev_2010_Scaling, Clement_2019_Respect}. In the low temperature phase, the free energy has an essential singularity at zero field, which becomes a branch cut along the negative-$h$ axis when -analytically continued to negative $h$ \cite{Langer_1967_Theory}. The origin +analytically continued to negative $h$ \cite{Langer_1967_Theory, Isakov_1984_Nonanalytic}. The origin can be schematically understood to arise from a singularity that exists in the imaginary free energy of the metastable phase of the model. When the equilibrium Ising model with positive magnetization is subjected to a small @@ -235,7 +246,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant \begin{figure} - \includegraphics{figs/F_lower_singularities.pdf} + \includegraphics{figs/F_lower_singularities} \caption{ Analytic structure of the low-temperature scaling function $\mathcal F_-$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle @@ -282,7 +293,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant $\xi_{\mathrm{YL}}$. \begin{figure} - \includegraphics{figs/F_higher_singularities.pdf} + \includegraphics{figs/F_higher_singularities} \caption{ Analytic structure of the high-temperature scaling function $\mathcal F_+$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares @@ -417,7 +428,7 @@ entirely fixed, and it will be truncated at finite order. [0:20:0.1] '+' u ($1*f(12*-t0/16)):($1**del*g(12*-t0/16)) dt 2 lc black lw 2 , \ [0:20:0.1] '+' u ($1*f(13*-t0/16)):($1**del*g(13*-t0/16)) dt 2 lc black lw 2 , \ [0:20:0.1] '+' u ($1*f(14*-t0/16)):($1**del*g(14*-t0/16)) dt 2 lc black lw 2 , \ - [0:20:0.1] '+' u ($1*f(15*-t0/16)):($1**del*g(15*-t0/16)) dt 2 lc black lw 2 + [0:20:0.1] '+' u ($1*f(15*-t0/16)):($1**del*g(15*-t0/16)) dt 2 lc black lw 2 \end{gnuplot} \caption{ Example of the parametric coordinates. Solid lines are of constant @@ -484,7 +495,7 @@ $\theta$. Therefore, The location $\theta_0$ is not fixed by any principle. \begin{figure} - \includegraphics{figs/F_theta_singularities.pdf} + \includegraphics{figs/F_theta_singularities} \caption{ Analytic structure of the global scaling function $\mathcal F$ in the complex $\theta$ plane. The circles depict essential singularities of the @@ -541,7 +552,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes its real part up to an analytic even function $G(\theta)$, real for real $\theta$. \begin{figure} - \includegraphics{figs/contour_path.pdf} + \includegraphics{figs/contour_path} \caption{ Integration contour over the global scaling function $\mathcal F$ in the complex $\theta$ plane used to produce the dispersion relation. The @@ -594,6 +605,7 @@ Because the real part of $\mathcal F$ is even, the imaginary part must be odd. T \end{equation} Evaluating these ordinary integrals, we find for $\theta\in\mathbb R$ \begin{equation} +\label{eq:FfromFoFYLG} \operatorname{Re}\mathcal F(\theta)=\operatorname{Re}\mathcal F_0(\theta)+\mathcal F_\mathrm{YL}(\theta)+G(\theta) \end{equation} where @@ -611,6 +623,7 @@ where $\mathcal R$ is given by the function \end{equation} and \begin{equation} +\label{eq:FYL} \mathcal F_{\mathrm{YL}}(\theta)=2C_\mathrm{YL}\left[2(\theta^2+\theta_\mathrm{YL}^2)^{(1+\sigma)/2}\cos\left((1+\sigma)\tan^{-1}\frac\theta{\theta_\mathrm{YL}}\right)-\theta_\mathrm{YL}^{1+\sigma}\right] \end{equation} We have also included the analytic part $G$, which we assume has a simple @@ -1101,7 +1114,7 @@ Notice that this infelicity does not appear to cause significant errors in the f function of polynomial order $m$, rescaled by their asymptotic limit $\mathcal F_-^\infty(m)$ from \eqref{eq:low.asymptotic}. The numeric values are from Table \ref{tab:data}, and those of Caselle \textit{et al.} are - from the most accurate scaling function listed in \cite{Caselle_2001_The}. Note that our $n=6$ fit generates significant deviations in polynomial coefficients $m$ above around 10. + from the most accurate scaling function listed in \cite{Caselle_2001_The}. Note that our $n=6$ fit generates significant deviations in polynomial coefficients $m$ above around 10. } \label{fig:glow.series.scaled} \end{figure} @@ -1197,14 +1210,21 @@ the ratio. We have introduced explicit approximate functions forms for the two-dimensional Ising universal scaling function in the relevant variables. These functions are smooth to all orders, include the correct singularities, and appear to converge -exponentially to the function as they are fixed to larger polynomial order. +exponentially to the function as they are fixed to larger polynomial order. The universal scaling function will be available in Mathematica in the supplemental material. It is implicitly defined by $\mathcal{F}_0$ and $\mathcal{F}_\pm$ in Eq.~\eqref{eq:scaling.function.equivalences.2d}, where $g(\theta)$ is defined in Eq.~\eqref{eq:schofield.funcs}, $\mathcal{F}$ in Eqs.~\eqref{eq:FfromFoFYLG}--\eqref{eq:FYL}, and the fit constants at various levels of approximation are given in Table~\ref{tab:fits}. This method, although spectacularly successful, could be improved. It becomes difficult to fit the unknown functions at progressively higher order due to the complexity of the chain-rule derivatives, and we find an inflation of predicted coefficients in our higher-precision fits. These problems may be related to the precise form and method of truncation for the unknown functions. -The successful smooth description of the Ising free energy produced in part by +It would be natural to extend our approach to the 3D Ising model, where enough high-precision information is available to provide the first few levels of approximation. In 3D, there is an important singular correction to scaling, which could be incorporated as a third invariant scaling variable in the universal scaling function. Indeed, it is believed that there are singular corrections to scaling also in 2D, which happen to vanish for the exactly solvable models~\cite{BarmaFisherPRB}. + +Derivatives of our Ising free energy provides most bulk thermodynamic properties, but not the correlation functions. The 2D Ising correlation function has been estimated~\cite{ChenPMSnn}, but without incorporating the effects of the essential singularity as one crosses the abrupt transition line. This correlation function would be experimentally useful, for example, in analyzing FRET data for two-dimensional membranes. + +It is interesting to note the close analogy between our analysis and the incorporation of analytic corrections to scaling discussed in section~\ref{sec:UniversalScalingFunctions}. Here the added function $G(\theta)$ corresponds to the analytic part of the free energy $f_a(t,h)$, and the coordinate change $g(\theta)$ corresponds to the scaling field change of variables $u_t(t,h)$ and $u_h(t,h)$ +(Eqs.~\ref{eq:AnalyticCOV} and~\ref{eq:FpmF0eqns}). One might view the universal scaling form for the Ising free energy as a scaling function describing the crossover scaling between the universal essential singularities at the two abrupt, `first-order' transition at $\pm H$, $T<T_c$. + +Finally, the successful smooth description of the Ising free energy produced in part by analytically continuing the singular imaginary part of the metastable free energy inspires an extension of this work: a smooth function that captures the universal scaling \emph{through the coexistence line and into the metastable diff --git a/referee_response.tex b/referee_response.tex new file mode 100644 index 0000000..0f2ce95 --- /dev/null +++ b/referee_response.tex @@ -0,0 +1,240 @@ +\documentclass[a4paper]{article} + +\usepackage{fullpage} +\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode? +\usepackage[T1]{fontenc} % vector fonts plz +\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx} +\usepackage{newtxtext,newtxmath} % Times for PR + +\begin{document} + +\section*{Response to referees for \texttt{LK15589/Kent-Dobias}} + +First, we would like to apologize for the large delay in resubmission. As is +evident, the manuscript has undergone a significant transformation as a result +of the reviews we received. We would like to thank the reviewers for their +helpful notes on the original manuscript. The first reviewer was supportive and +asked instructive questions. The second reviewer, though critical, led us to +some great insights. + +The manuscript now focuses on the approximation of the 2D Ising universal +scaling function by a smooth functional form. Though the singularity discussed +in the original manuscript still plays an important role, our approximation now +encompasses the whole parameter space of the relevant scaling fields. We +compare this form to the values of the universal scaling function and its +derivatives previously measured in the literature, and find exponential +convergence with the amount of data fit. + +We believe that the substantial changes to our manuscript merit its +reconsideration for publication. Though the new manuscript is so different from +the old one as to likely deserve a new reviewing cycle, we respond to the +original reviews here, to make clear how the revised manuscript addresses them. + +\begin{verbatim} +---------------------------------------------------------------------- +Report of Referee A -- LK15589/Kent-Dobias +---------------------------------------------------------------------- + +New expressions of the scaling function of free energy, magnetization, +and magnetic susceptibility of the Ising model in a magnetic field are +proposed. These expressions are obtained by combining: + +- an essential singularity at zero magnetic field (as predicted by the +critical droplet theory), obtained by applying the Kramers-Kronig +relation to a scaling ansatz of the 'metastable free energy', + +- a parameterization (in the spirit of Schofield parameterization) in +terms of new scaling fields of the analytical part of the scaling +function. + +Even though both approaches have been introduced in the late 1960s, I +am not aware of any other attempt to combine them. This is the great +originality of this paper. The agreement of the proposed scaling +functions with the Monte Carlo data presented on figure 1 is +impressive. The improvement compared to the series expansion (8th +order plotted on figure 1) is undeniable. It seems to me that this +work constitutes a real progress in the field of critical phenomena. +In the presentation, the focus is put on the 2D Ising model but the +ideas could be applied to a broad class of systems where a continuous +transition lies at the end of first-order transition line. For these +reasons, I recommend the publication in Physical Review Letters. +Questions and comments follow. + +1. I did not find in Ref [3] the statement that the essential +singularity is not observable, as written by the authors. Could the +authors tell me at which page they found this statement? +\end{verbatim} + +The comment has been removed. + +\begin{verbatim} +2. Before equation (1), some factors are missing in the expression of +the critical droplet size that should read $R_c={(d-1)\over d}{\Sigma +S_d\over M|H|V_d}$. +\end{verbatim} + +These equations are completely changed in the new manuscript. + +\begin{verbatim} +3. The steps leading to the scaling functions (7) and (8) does not +seem to depend on any particular model but only on the dimension $d$ +and on the exponent $b$ describing the fluctuations of the spherical +critical droplet. I am therefore wondering if the same scaling +functions would also hold for models in different universality +classes, the 3-state Potts model for example. Could the authors +comment on this? +\end{verbatim} + +The observation of the referee is true, and these models could be studied with +a similar technique if sufficient data on their scaling functions is measured. + +\begin{verbatim} +4. In the particular case of the Ising model, $d=4$ is the upper +critical dimension. Could this affect the scaling function (8), for +example by the presence of logarithmic corrections? + +5. After equation (12), in the expression of $F(t,h)$, the term +$t^2\ln t^2$ cannot come from the integration of (10). Its presence +should be motivated. +\end{verbatim} + +We have now clarified both of these questions in part II, where the +relationship between flow equations and singularities in the free energy is +discussed. For the 4D model, the presence of a marginal variable dramatically +changes the analytic structure of the scaling function. + +\begin{verbatim} +6. Did the authors try to produce the same comparison as in figure 1 +in the case of the 3D and 4D Ising model? +\end{verbatim} + +We do not, though it would not be difficult to apply these techniques to the 3D +model. For the 4D, as mentioned above, some substantial changes would need to +be made to the parametric form. In addition, less data on the scaling functions +are available in 3D and especially 4D. + +\begin{verbatim} +7. There is no function $f$ in equation (13) as mentioned in the +sentence that follows. +\end{verbatim} + +This is no longer relevant to the modified manuscript. + +\begin{verbatim} +8. The presentation of the Schofield-like parameterization (page 3) is +really minimalist compared to the rest of the paper. I think that the +presentation of this part could (should?) be improved. What does +$\theta_c$ correspond to? Is it a free parameter? Why is (15) analytic +in the range $-\theta_c<\theta <\theta_c$? What is the interest? Why +this parameterization is more useful than the original scaling +variable? I understand that details will be given in a forthcoming +publication but more details would help the non-expert reader to +appreciate the interest of the approach. +\end{verbatim} + +In the new manuscript, the treatment of the Schofield parameterization has now +been made central. + +\begin{verbatim} +9. In the conclusion, the authors wrote ``We have developed a Wolff +algorithm for the Ising model in a field''. The idea of introducing a +ghost spin is not new. It is mentioned in R.H. Swendsen and J.S. Wang +(1987) \textit{Phys. Rev. Lett.} \textbf{58} 86 where it is attributed +to the original Fortuin-Kastelyn work from 1969. +\end{verbatim} + +Indeed true, numeric references have since been removed. + +\begin{verbatim} +10. There is a minor typo in the acknowledgment: I guess that you want +to thank Jacques Perk. +\end{verbatim} + +The name has been corrected. + +\begin{verbatim} +---------------------------------------------------------------------- +Report of Referee B -- LK15589/Kent-Dobias +---------------------------------------------------------------------- + +There are a variety of problems with this paper and it should not be +published. Since the authors will not agree with this I will attempt +to detail my objections: + +This paper appears to combine the droplet model picture from the 60's +with some renormalization group language and a computer computation +which is not explained and it is not clear what the authors are +willing to call an actual result. + +The two dimensional Ising model in a magnetic field has been studied +for decades and any further study must relate to these extensive +computations. This paper fails completely to do this. + +1. Several references are missing: + +S. N. Isakov, Comm. Math. Phys. (1984) 427-443 where the essential +singularity are the phase boundary is demonstrated. + +P. Fonseca and A. Zamolodchikov, J. Stat. Phys. 110 (2002) 527-590 +which gives a comprehensive scenario for the scaled free energy in the +critical region. + +A. Zamolodchikov and I Ziyaldinov, Nuclear Physics B849 (2011) 654-674 +where scattering in the Ising field theory is extensively discussed. +\end{verbatim} + +We thank the referee for their helpful references, and we have cited the first +two. The second one was especially relevant to our study. + +\begin{verbatim} +2. Several references are clearly not understood. The authors state +the references 15-20 deal with an essential singularity in the +magnetic susceptibility whereas papers 15-20 are concerned with a +natural boundary in the susceptibility. Essential singularities are +isolated singularities, natural boundaries are not. The authors say +nothing about this natural boundary which is a major feature of the +analyticity of the model that must be explained. +\end{verbatim} + +Our scaling function indeed does not show any evidence of a natural boundary or logarithmic corrections at complex temperatures in a field: we see only the branch cut of the dominant logarithmic singularity in the free energy. This is to be expected, because our calculation focuses on the universal scaling function as it depends upon the relevant variables $t$ and $h$, and does not incorporate singular corrections to scaling from irrelevant operators. + +The logarithmic corrections seen in the susceptibility are thought by these authors to come from singular corrections to scaling from these irrelevant operators. Furthermore, these logarithms are thought by Perk (private communication) to be associated with the lattice models, so they should not be seen in (say) the $\phi^4$ theory or membrane Ising phase transitions. + +We expect that a natural boundary in the susceptibility in the complex plane in the lattice model is due to these corrections to scaling, and thus should not be expected to manifest itself in the universal scaling function we calculate. + +\begin{verbatim} +3. There are completely unsubstantiated claims made at the end of the +paper. It is said that "Our methods should allow improved +high-precision forms for the free energy." The results of references +15 and 16 have generated, used and analyzed series of hundreds and +thousands of terms. There is no reason to believe that anything in +this present paper will improve on this monumental work or on the work +of ref. 43. Statements such as "Our methods might be generalized to +predict similar singularities..." have no place in a scientific paper. +\end{verbatim} + +We believe that our transformed technique and manuscript can substantiate this +claim, in a specific sense. Though the free energy computed point by point in +our references by Mangazeev et al.\ and Fonseca et al.\ are more accurate, they +are not functional forms: they are tables of data. We now show in the +manuscript that our functional form approaches the numeric values +of the scaling function and its derivatives measured in the aforementioned +works exponentially with iterative fitting. + +\begin{verbatim} +4. The statement "Our forms both exhibit incorrect low-order +coefficients at the transition (Fig. 2) and incorrect asymptotics as +h|t|^{-\beta delta} becomes very large" does not inspire confidence in +the paper. +\end{verbatim} + +The asymptotic problems of the old manuscript have been repaired by treating +more carefully the parametric coordinates. + +\begin{verbatim} +In short, I cannot find anything in this paper which makes an advance +over the previous literature of 50 years. + +The paper should be rejected. +\end{verbatim} +\end{document} |