summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2023-05-27 16:28:54 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2023-05-27 16:28:54 +0200
commit6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094 (patch)
tree8569b1338763364c82079a13c55d56318a3b2e38
parent39f69b5fa3db2024fbb837598be1249b3a35c3fd (diff)
parent6242cca8eb8c28e12c085cc67181f5a36a1cf844 (diff)
downloadpaper-6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094.tar.gz
paper-6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094.tar.bz2
paper-6b0c3bbe1b9d560ce7d07ceaddb40e18cd4df094.zip
Merge branch 'master' of git:research/first_order_singularities/paper
-rw-r--r--.gitignore1
-rw-r--r--IsingScalingFunction.wl292
-rw-r--r--IsingScalingFunctionExamples.nb10814
-rw-r--r--figs/F_higher_singularities.eps343
-rw-r--r--figs/F_higher_singularities.pdfbin8097 -> 0 bytes
-rw-r--r--figs/F_lower_singularities.eps270
-rw-r--r--figs/F_lower_singularities.pdfbin6542 -> 0 bytes
-rw-r--r--figs/F_theta_singularities.eps374
-rw-r--r--figs/F_theta_singularities.pdfbin8379 -> 0 bytes
-rw-r--r--figs/contour_path.eps440
-rw-r--r--figs/contour_path.pdfbin9494 -> 0 bytes
-rw-r--r--figs/figures.nb2399
-rw-r--r--ising_scaling.bib36
-rw-r--r--ising_scaling.tex62
-rw-r--r--referee_response.tex240
15 files changed, 15151 insertions, 120 deletions
diff --git a/.gitignore b/.gitignore
index 80d6041..089f9bd 100644
--- a/.gitignore
+++ b/.gitignore
@@ -9,5 +9,6 @@
*.fls
*.out
/*.pdf
+figs/*eps-converted-to.pdf
*.gnuploterrors
gnuplottex/*
diff --git a/IsingScalingFunction.wl b/IsingScalingFunction.wl
new file mode 100644
index 0000000..81d5e47
--- /dev/null
+++ b/IsingScalingFunction.wl
@@ -0,0 +1,292 @@
+BeginPackage["IsingScalingFunction`"]
+
+InverseCoordinates::usage = "Numerically convert Schofield coordinates to t and h."
+
+g::usage = "g[θ0, gs][θ] gives the Schofield coordinate transformation defined in (14)."
+
+ut::usage = "ut[θ] gives the scaling field u_t as a function of Schofield coordinates."
+
+uh::usage = "uh[θ0, gs][θ] gives the scaling field u_h as a function of Schofield coordinates."
+
+η::usage = "η[θ0, gs][θ] gives the invariant scaling combination η."
+
+ξ::usage = "ξ[θ0, gs][θ] gives the invariant scaling combination ξ."
+
+ReScriptF::usage = "ReScriptF[θ0, θYL, B, C0, CYL, Gs][θ] gives the free energy scaling function defined in (19)."
+
+ScriptF::usage = "ScriptF[θ0, θYL, B, C0, CYL, Gs][θ] gives the free energy scaling function defined in (35)."
+
+DScriptFPlusMinusDξθ0List::usage =
+ "DScriptFPlusMinusDξθ0List computes the first m derivatives of the scaling function F_- evaluated at θ_0."
+
+DScriptFPlusMinusDξList::usage =
+ "DScriptFPlusMinusDξList computes the first m derivatives of the scaling function F_+/-."
+
+DScriptF0DηList::usage =
+ "DScriptF0DηList computes the first m derivatives of the scaling function F_0."
+
+DScriptF0Dη::usage =
+ "DScriptF0Dη computes the mth derivative of the scaling function F_0."
+
+DScriptMCasDξList::usage = "Computes the first m derivatives of the scaling function M given by Caselle et al."
+
+uf::usage = "uf computes the singular free energy u_f."
+
+DufDut::usage =
+ "DufDut computes derivatives of the singular free energy u_f with respect to the temperature-like scaling field u_t."
+
+DufDuh::usage =
+ "DufDuh computes derivatives of the singular free energy u_f with respect to the temperature-like scaling field u_h."
+
+ruleB::usage = "Fixes B given other data as in (38)."
+
+ruleC0::usage = "Fixes C0 given other data as in (39)."
+
+Data::usage = "Data[n] gives data from the fit to nth order from Table II."
+
+PrepareArgument::usage = "Converts scaling function data into appropriate argument to function interfaces."
+
+θ0Cas::usage = "θ0 from Caselle et al."
+
+gsCas::usage = "g function coefficients from Caselle et al."
+
+Φs::usage = "List of numeric coefficients for the scaling function F_0"
+
+Gls::usage = "List of numeric coefficients for the scaling function F_-"
+
+Ghs::usage = "List of numeric coefficients for the scaling function F_+"
+
+Begin["Private`"]
+
+β := 1/8
+
+δ := 15
+
+Δ := β δ
+
+OverlineS := 2^(1/12) Exp[-1/8] Glaisher^(3/2)
+
+Φs := {
+ -Gamma[1/3]Gamma[1/5]Gamma[7/15]/(2 π Gamma[2/3]Gamma[4/5]Gamma[8/15])(4 π^2 Gamma[13/16]^2 Gamma[3/4]/(Gamma[3/16]^2 Gamma[1/4]))^(8/15),
+ -0.31881012489061,
+ Around[0.110886196683, 2.0 10^-12],
+ Around[0.01642689465, 2.0 10^-11],
+ Around[-2.639978 10^-4, 1.0 10^-10],
+ Around[-5.140526 10^-4, 1.0 10^-10],
+ Around[2.08865 10^-4, 1.0 10^-9],
+ Around[-4.4819 10^-5, 1.0 10^-9],
+ Around[3.16 10^-7, 1.0 10^-9],
+ Around[4.31 10^-6, 0.01 10^-6],
+ Around[-1.99 10^-6, 0.01 10^-6]
+}
+
+Gls := {
+ 0,
+ -OverlineS,
+ −1.000960328725262189480934955172097320572505951770117 Sqrt[2]/((2 )^(-7/8) (2^(3/16)/OverlineS)^2)/2/(12 \[Pi]),
+ Around[ 0.038863932, 3.0 10^(-9)],
+ Around[−0.068362119, 2.0 10^(-9)],
+ Around[ 0.18388370, 1.0 10^(-8)],
+ Around[-0.6591714, 1.0 10^(-7)],
+ Around[ 2.937665, 3.0 10^(-6)],
+ Around[-15.61, 1.0 10^(-2)],
+ Around[ 96.76, 1.0 10^(-2)],
+ Around[-6.79 10^2, 1.0],
+ Around[ 5.34 10^3, 10.],
+ Around[-4.66 10^4, 0.01 10^4],
+ Around[ 4.46 10^5, 0.01 10^5],
+ Around[-4.66 10^6, 0.01 10^6]
+}
+
+Ghs := {
+ 0,
+ 0,
+ -1.000815260440212647119476363047210236937534925597789 Sqrt[2]/((2 )^(-7/8) (2^(3/16)/OverlineS)^2)/2,
+ 0,
+ Around[ 8.333711750, 5.0 10^(-9)],
+ 0,
+ Around[-95.16896, 1.0 10^(-5)],
+ 0,
+ Around[1457.62, 3.0 10^(-2)],
+ 0,
+ Around[-2.5891 10^4, 2.0],
+ 0,
+ Around[5.02 10^5, 0.01 10^5],
+ 0,
+ Around[-1.04 10^7, 0.01 10^7]
+}
+
+Data[2] = Rationalize[#, 10^-20] & /@ <|
+ "θ0" -> 1.148407773492004`,
+ "θYL" -> 0.9896669889911205`,
+ "CYL" -> -0.172823989504767`,
+ "Gs" -> {-0.31018352388662596`, 0.2474537923130002`},
+ "gs" -> {0.37369093055254343`, -0.021636313152585823`}
+|>
+
+Data[3] = Rationalize[#, 10^-20] & /@ <|
+ "θ0" -> 1.2542120477507488`,
+ "θYL" -> 0.6020557328641167`,
+ "CYL" -> -0.38566364361428684`,
+ "Gs" -> {-0.3527514794812415`, 0.2582430860166863`},
+ "gs" -> {0.4483788209731592`, -0.022032295172535358`, 0.00022200608228654115`}
+|>
+
+Data[4] = Rationalize[#, 10^-20] & /@ <|
+ "θ0" -> 1.3164928721109121`,
+ "θYL" -> 0.6400189996493497`,
+ "CYL" -> -0.3563974694580203`,
+ "Gs" -> {-0.3550547624920263`, 0.23465947408509413`, -0.0019083731028066697`},
+ "gs" -> {0.4410742751152714`, -0.034817777358116885`, 0.000678172648789985`, -0.00004305140578834467`}
+|>
+
+Data[5] = Rationalize[#, 10^-20] & /@ <|
+ "θ0" -> 1.3403205742656135`,
+ "θYL" -> 0.6238113973493433`,
+ "CYL" -> -0.38002950945224295`,
+ "Gs" -> {-0.35127522582179693`, 0.23704589676915347`, -0.007319731639727028`},
+ "gs" -> {0.44371885415894785`, -0.04609943321005163`, -0.0007458341071947777`, 0.00005966875622885447`, -4.403083529955303`*^-6}
+|>
+
+Data[6] = Rationalize[#, 10^-20] & /@ <|
+ "θ0" -> 1.3626103817690176`,
+ "θYL" -> 0.6462147447024515`,
+ "CYL" -> -0.35576386594103865`,
+ "Gs" -> {-0.3520586281920383`, 0.23316561297622435`, -0.006649030656179257`, -0.0016899077640685814`},
+ "gs" -> {0.43845335615925396`, -0.05312704168994819`, -0.003914782631377569`, -0.0004080160912692574`, 0.000026262906640471588`, -1.0974538440746828`*^-6}
+|>
+
+PrepareArgument[data_] := With[
+ {
+ θ0 = data["θ0"],
+ gs = data["gs"]
+ },
+ {
+ θ0,
+ data["θYL"],
+ ruleB[θ0, gs],
+ ruleC0[θ0, gs],
+ data["CYL"],
+ data["Gs"],
+ gs
+ }
+]
+
+t[θ_] := θ^2 - 1
+
+g[θ0_, gs_][θ_] := (1 - (θ/θ0)^2) Total[MapIndexed[Function[{gi, i}, gi θ^(2*i[[1]]-1)], gs]]
+
+ut[R_, θ_] := R t[θ]
+
+uh[θ0_, gs_][R_, θ_] := R^Δ g[θ0, gs][θ]
+
+InverseCoordinates[\[Theta]0_, gs_, wp_:20][tn_, hn_] :=
+ ({Exp[logR], \[Theta]0 Tanh[x]} /.
+ FindRoot[{
+ Rationalize[tn, 10^-30] == ut[Exp[logR], \[Theta]0 Tanh[x]],
+ Rationalize[hn, 10^-30] == uh[\[Theta]0, gs][Exp[logR], \[Theta]0 Tanh[x]]
+ }, {{logR, 2}, {x, Sign[hn]/2}}, WorkingPrecision -> wp]) /;
+ NumericQ[tn] && NumericQ[hn]
+
+η[θ0_, gs_][θ_] := t[θ] / RealAbs[g[θ0, gs][θ]]^(1 / Δ)
+
+ξ[θ0_, gs_][θ_] := g[θ0, gs][θ] / RealAbs[t[θ]]^Δ
+
+ScriptR[θc_, B_][θ_] := (θc Exp[1/(B θc)] ExpIntegralEi[-1/(B θc)] + (θ - θc) Exp[-1/(B (θ - θc))] ExpIntegralEi[1/(B (θ - θc))]) / π
+
+ReScriptF0[C0_, θc_, B_][θ_] := C0 (ScriptR[θc, B][θ] + ScriptR[θc, B][-θ])
+
+ScriptFYL[θYL_, CYL_][θ_] := CYL ((-I θ + θYL)^(5/6) + (I θ + θYL)^(5/6) - 2 θYL^(5/6))
+
+ReScriptFRegular[θ0_, θYL_, B_, C0_, CYL_, Gs_][θ_] := C0 ScriptR[θ0, B][-θ] + ScriptFYL[θYL, CYL][θ] + Total[MapIndexed[Function[{G, i}, G θ^(2*i[[1]])], Gs]]
+
+ReScriptF[θ0_, θYL_, B_, C0_, CYL_, Gs_][θ_] := ReScriptFRegular[θ0, θYL, B, C0, CYL, Gs][θ] + C0 ScriptR[θ0, B][θ]
+
+DReScriptFIrregular[θ0_, B_, C0_][m_] := Piecewise[{{C0 m! Gamma[m - 1] B^(m - 1) / π, m > 1}, {C0 θ0 Exp[1/(B θ0)] ExpIntegralEi[-1/(B θ0)] / π, m == 0}}, 0]
+
+ScriptF[θ0_, θYL_, B_, C0_, CYL_, Gs_][θ_] := ReScriptF[θ0, θYL, B, C0, CYL, Gs][θ] + C0 I Sign[Im[θ]] ((θ-θ0)Exp[-1/(B(θ-θ0))]-(-θ-θ0)Exp[-1/(B(-θ-θ0))])
+
+ScriptFPlusMinus[ScriptF_][θ_] := ScriptF[θ] / t[θ]^2 - 1/(8 \[Pi]) Log[t[θ]^2]
+
+ScriptF0[θ0_, gs_][ScriptF_][θ_] := RealAbs[g[θ0, gs][θ]]^(-2 / Δ) ScriptF[θ] - η[θ0, gs][θ]^2 Log[g[θ0, gs][θ]^2] / (8 π Δ)
+
+uf[params__][R_, θ_] := R^2 ReScriptF[params][θ] + t[θ]^2 R^2 / (8 π) Log[R^2]
+
+EfficientDerivativeList[n_][f_][x_] := Module[
+ {xp}, NestList[Function[g, D[g, xp]], f[xp], n] /. xp -> x
+]
+
+InverseDerivativeList[n_][f_][x_] := Module[
+ {xp, dfs, fp, Pns},
+ dfs = Rest[EfficientDerivativeList[n][f][x]];
+ Pns = FoldList[Function[{Pm, m},
+ fp'[xp] D[Pm, xp] - (2 m - 1) fp''[xp] Pm], 1, Range[n - 1]] /.
+ Derivative[m_][fp][xp] :> dfs[[m]];
+ MapIndexed[{Pn, i} \[Function] Pn/dfs[[1]]^(2 i[[1]] - 1), Pns]
+]
+
+CompositeFunctionDerivativeList[G_, F_, X_, FSupp_:(0&)][m_, θ_] := Module[
+ { ds, dF, df, fp },
+ ds = InverseDerivativeList[m+1][X][θ];
+ dF = EfficientDerivativeList[m][F][θ] + FSupp /@ Range[0, m];
+ df = EfficientDerivativeList[m][G[fp]][θ] /.
+ Map[Derivative[#][fp][θ] -> dF[[# + 1]] &, Range[0, m]];
+ Table[Sum[df[[k+1]] BellY[j, k, ds[[;; j - k + 1]]], {k, 0, j}]/(j!), {j, 0, m}]
+]
+
+DScriptFPlusMinusDξθ0List[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_] := CompositeFunctionDerivativeList[
+ ScriptFPlusMinus, ReScriptFRegular[θ0, θYL, B, C0, CYL, Gs],
+ ξ[θ0, gs], DReScriptFIrregular[θ0, B, C0]
+ ][m, θ0]
+
+DScriptFPlusMinusDξList[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_, θ_] := CompositeFunctionDerivativeList[
+ ScriptFPlusMinus, ReScriptF[θ0, θYL, B, C0, CYL, Gs], ξ[θ0, gs]
+ ][m, θ]
+
+DScriptF0DηList[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_, θ_] := CompositeFunctionDerivativeList[
+ ScriptF0[θ0, gs], ReScriptF[θ0, θYL, B, C0, CYL, Gs], η[θ0, gs]
+ ][m, θ]
+
+DScriptFPlusMinusDξθ0[params__][m_] := Last[DScriptFPlusMinusDξθ0List[params][m]]
+
+DScriptFPlusMinusDξ[params__][m_, θ_] := Last[DScriptFPlusMinusDξList[params][m, θ]]
+
+DScriptF0Dη[params__][m_, θ_] := Last[DScriptF0DηList[params][m, θ]]
+
+DufDut[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := m! RealAbs[uh[θ0, gs][R, θ]]^(2 / Δ - m / Δ) DScriptF0Dη[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + Log[uh[θ0, gs][R, θ]^2] / (8 π Δ) Derivative[m][Function[utp, utp^2]][ut[R, θ]]
+
+DufDuh[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := m! RealAbs[ut[R, θ]]^(2-m Δ) DScriptFPlusMinusDξ[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + Derivative[m][1&][θ] ut[R, θ]^2 / (8 π) Log[ut[R, θ]^2]
+
+ruleB[θ0_, gs_] := (2 * OverlineS / π) * (- g[θ0, gs]'[θ0] / t[θ0]^Δ)
+
+ruleC0[θ0_, gs_] := Exp[Δ t[θ0]^(Δ - 1) t'[θ0] / (2 OverlineS / π g[θ0, gs]'[θ0]) - t[θ0]^Δ g[θ0, gs]''[θ0] / (4 OverlineS / π g[θ0, gs]'[θ0]^2)] t[θ0]^(1/8) OverlineS / (2 π) * g[θ0, gs]'[θ0]
+
+θ0Cas := Sqrt[1.16951];
+
+h0Cas := a b ρ /. {
+ a -> c2^2/c4,
+ b -> (-c4/c2^3)^(1/2),
+ ρ -> 2.00881
+ } /. {
+ c2->Ghs[[3]] 2!,
+ c4->Ghs[[5]]["Value"] 4!
+ }
+
+gsCas := h0Cas * {
+ 1,
+ -0.222389,
+ -0.043547,
+ -0.014809,
+ -0.007168
+ }
+
+m0Cas := -Ghs[[3]]2! h0Cas
+
+DScriptMCasDξList[m_, θ_] := CompositeFunctionDerivativeList[
+ Identity, Function[θp, m0Cas * θp / RealAbs[θp^2 - 1]^β], ξ[θ0Cas, gsCas]
+ ][m, θ]
+
+End[]
+
+EndPackage[]
+
diff --git a/IsingScalingFunctionExamples.nb b/IsingScalingFunctionExamples.nb
new file mode 100644
index 0000000..c522108
--- /dev/null
+++ b/IsingScalingFunctionExamples.nb
@@ -0,0 +1,10814 @@
+(* Content-type: application/vnd.wolfram.mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 13.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 158, 7]
+NotebookDataLength[ 554332, 10806]
+NotebookOptionsPosition[ 548041, 10697]
+NotebookOutlinePosition[ 548438, 10713]
+CellTagsIndexPosition[ 548395, 10710]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetDirectory", "[",
+ RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}]], "Input",
+ CellChangeTimes->{{3.857727143976652*^9, 3.857727184451297*^9}, {
+ 3.872827316271285*^9, 3.8728273233104467`*^9}},
+ CellLabel->"In[1]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
+
+Cell[BoxData[
+ RowBox[{"<<", "IsingScalingFunction`"}]], "Input",
+ CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}},
+ CellLabel->"In[2]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
+
+Cell[CellGroupData[{
+
+Cell["Checking Convergence", "Section",
+ CellChangeTimes->{{3.88717558687833*^9,
+ 3.8871755894618473`*^9}},ExpressionUUID->"c6615333-57fa-470a-9d07-\
+45b7998853ef"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"expansionData", "=", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Rest", "@",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[", "10", "]"}]}],
+ ",", "\[IndentingNewLine]",
+ RowBox[{"Rest", "@",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptFPlusMinusD\[Xi]\[Theta]0List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[", "10", "]"}]}],
+ ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DScriptMCasD\[Xi]List", "[",
+ RowBox[{"10", ",", "\[Theta]0Cas"}], "]"}],
+ RowBox[{"Table", "[",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"m", "-", "1"}], ")"}], "!"}],
+ RowBox[{"m", "!"}]], ",",
+ RowBox[{"{",
+ RowBox[{"m", ",", "1", ",", "11"}], "}"}]}], "]"}]}]}], "}"}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.8886448431935587`*^9, 3.8886448702334423`*^9}, {
+ 3.893236672936851*^9, 3.893236714190187*^9}},
+ CellLabel->"In[7]:=",ExpressionUUID->"80831edd-bcaa-4fc0-b1cf-e561a87ed645"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"lowExpansion", "=",
+ RowBox[{"ListLogPlot", "[",
+ RowBox[{
+ RowBox[{"Abs", "@",
+ RowBox[{"Prepend", "[",
+ RowBox[{
+ RowBox[{"N", "@", "expansionData"}], ",",
+ RowBox[{"Rest", "@", "Gls"}]}], "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<True value\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\) acc. \
+(\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",", " ",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-7\)]\) acc. \
+(\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 6)\>\"", ",", " ",
+ "\"\<Casselle \
+\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
+\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "m", ",",
+ "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"-\"], \
+RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)(0)\>\""}],
+ "}"}]}], ",",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"ImageSize", "->", "300"}], ",",
+ RowBox[{"LabelStyle", "->",
+ RowBox[{"{",
+ RowBox[{"Black", ",",
+ RowBox[{"FontSize", "->", "14"}], ",",
+ RowBox[{"FontFamily", "->", "Times"}]}], "}"}]}]}],
+ "\[IndentingNewLine]", "]"}]}]], "Input",
+ CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, {
+ 3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9,
+ 3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9,
+ 3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, {
+ 3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9,
+ 3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, {
+ 3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9,
+ 3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, {
+ 3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9,
+ 3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, {
+ 3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9,
+ 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, {
+ 3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9,
+ 3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, {
+ 3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9,
+ 3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, {
+ 3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9,
+ 3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, {
+ 3.887182861536953*^9, 3.887182887361492*^9}, {3.888644779680475*^9,
+ 3.888644805864798*^9}, {3.888645052645789*^9, 3.888645082429496*^9}, {
+ 3.8886469041838827`*^9, 3.888646906527582*^9}, {3.888651934772694*^9,
+ 3.888651946156498*^9}, {3.8886519793259983`*^9, 3.888651979938348*^9}, {
+ 3.888652017390772*^9, 3.888652019678075*^9}, {3.8886521205763397`*^9,
+ 3.8886521472005053`*^9}},
+ CellLabel->"In[8]:=",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{{Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{3., -3.2476887336074802`}, {3., -3.247688656415082}}],
+ LineBox[{{3., -3.247688656415082}, {3., -3.2476885792226895`}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{4., -2.682936452811683}, {4., -2.6829364235557143`}}],
+
+ LineBox[{{4., -2.6829364235557143`}, {
+ 4., -2.6829363942997464`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{5., -1.6934518408101742`}, {5., -1.6934517864279734`}}],
+
+ LineBox[{{5., -1.6934517864279734`}, {
+ 5., -1.6934517320457758`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{6., -0.41677183895602404`}, {6., -0.4167716872504016}}],
+ LineBox[{{6., -0.4167716872504016}, {6., -0.4167715355448022}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{7., 1.077614026885801}, {7., 1.077615048105556}}],
+ LineBox[{{7., 1.077615048105556}, {7., 1.0776160693242682`}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{8., 2.747270914255491}, {8., 2.7479117345273405`}}],
+ LineBox[{{8., 2.7479117345273405`}, {8., 2.7485521444115397`}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{9., 4.572130331909891}, {9., 4.572233685741827}}],
+ LineBox[{{9., 4.572233685741827}, {9., 4.572337028892852}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{10., 6.519147287940395}, {10., 6.520621127558696}}],
+ LineBox[{{10., 6.520621127558696}, {10., 6.522092798170153}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{11., 8.58110651715989}, {11., 8.582980931954241}}],
+ LineBox[{{11., 8.582980931954241}, {11., 8.584851839890053}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{12., 10.747207591575448`}, {12., 10.749355820113736`}}],
+
+ LineBox[{{12., 10.749355820113736`}, {12.,
+ 10.751499443656988`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{13., 13.005829561148378`}, {13., 13.008074231002201`}}],
+
+ LineBox[{{13., 13.008074231002201`}, {13.,
+ 13.010313873595706`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{14., 15.35237777756354}, {14., 15.354526006101828`}}],
+
+ LineBox[{{14., 15.354526006101828`}, {14.,
+ 15.35666962964508}}]}}}}, {{{Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{3., -3.2476885792226895`},
+ Offset[{3, 0}, {3., -3.2476885792226895`}]}, {{
+ 3., -3.2476885792226895`},
+ Offset[{-3, 0}, {3., -3.2476885792226895`}]}, {{
+ 3., -3.2476887336074802`},
+ Offset[{3, 0}, {3., -3.2476887336074802`}]}, {{
+ 3., -3.2476887336074802`},
+ Offset[{-3, 0}, {3., -3.2476887336074802`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{4., -2.6829363942997464`},
+ Offset[{3, 0}, {4., -2.6829363942997464`}]}, {{
+ 4., -2.6829363942997464`},
+ Offset[{-3, 0}, {4., -2.6829363942997464`}]}, {{
+ 4., -2.682936452811683},
+ Offset[{3, 0}, {4., -2.682936452811683}]}, {{
+ 4., -2.682936452811683},
+ Offset[{-3, 0}, {4., -2.682936452811683}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{5., -1.6934517320457758`},
+ Offset[{3, 0}, {5., -1.6934517320457758`}]}, {{
+ 5., -1.6934517320457758`},
+ Offset[{-3, 0}, {5., -1.6934517320457758`}]}, {{
+ 5., -1.6934518408101742`},
+ Offset[{3, 0}, {5., -1.6934518408101742`}]}, {{
+ 5., -1.6934518408101742`},
+ Offset[{-3, 0}, {5., -1.6934518408101742`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{6., -0.4167715355448022},
+ Offset[{3, 0}, {6., -0.4167715355448022}]}, {{
+ 6., -0.4167715355448022},
+ Offset[{-3, 0}, {6., -0.4167715355448022}]}, {{
+ 6., -0.41677183895602404`},
+ Offset[{3, 0}, {6., -0.41677183895602404`}]}, {{
+ 6., -0.41677183895602404`},
+ Offset[{-3, 0}, {6., -0.41677183895602404`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{7., 1.0776160693242682`},
+ Offset[{3, 0}, {7., 1.0776160693242682`}]}, {{7.,
+ 1.0776160693242682`},
+ Offset[{-3, 0}, {7., 1.0776160693242682`}]}, {{7.,
+ 1.077614026885801},
+ Offset[{3, 0}, {7., 1.077614026885801}]}, {{7.,
+ 1.077614026885801},
+ Offset[{-3, 0}, {7., 1.077614026885801}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{8., 2.7485521444115397`},
+ Offset[{3, 0}, {8., 2.7485521444115397`}]}, {{8.,
+ 2.7485521444115397`},
+ Offset[{-3, 0}, {8., 2.7485521444115397`}]}, {{8.,
+ 2.747270914255491},
+ Offset[{3, 0}, {8., 2.747270914255491}]}, {{8.,
+ 2.747270914255491},
+ Offset[{-3, 0}, {8., 2.747270914255491}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{9., 4.572337028892852},
+ Offset[{3, 0}, {9., 4.572337028892852}]}, {{9.,
+ 4.572337028892852},
+ Offset[{-3, 0}, {9., 4.572337028892852}]}, {{9.,
+ 4.572130331909891},
+ Offset[{3, 0}, {9., 4.572130331909891}]}, {{9.,
+ 4.572130331909891},
+ Offset[{-3, 0}, {9., 4.572130331909891}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{10., 6.522092798170153},
+ Offset[{3, 0}, {10., 6.522092798170153}]}, {{10.,
+ 6.522092798170153},
+ Offset[{-3, 0}, {10., 6.522092798170153}]}, {{10.,
+ 6.519147287940395},
+ Offset[{3, 0}, {10., 6.519147287940395}]}, {{10.,
+ 6.519147287940395},
+ Offset[{-3, 0}, {10., 6.519147287940395}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{11., 8.584851839890053},
+ Offset[{3, 0}, {11., 8.584851839890053}]}, {{11.,
+ 8.584851839890053},
+ Offset[{-3, 0}, {11., 8.584851839890053}]}, {{11.,
+ 8.58110651715989},
+ Offset[{3, 0}, {11., 8.58110651715989}]}, {{11.,
+ 8.58110651715989},
+ Offset[{-3, 0}, {11., 8.58110651715989}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{12., 10.751499443656988`},
+ Offset[{3, 0}, {12., 10.751499443656988`}]}, {{12.,
+ 10.751499443656988`},
+ Offset[{-3, 0}, {12., 10.751499443656988`}]}, {{12.,
+ 10.747207591575448`},
+ Offset[{3, 0}, {12., 10.747207591575448`}]}, {{12.,
+ 10.747207591575448`},
+ Offset[{-3, 0}, {12., 10.747207591575448`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{13., 13.010313873595706`},
+ Offset[{3, 0}, {13., 13.010313873595706`}]}, {{13.,
+ 13.010313873595706`},
+ Offset[{-3, 0}, {13., 13.010313873595706`}]}, {{13.,
+ 13.005829561148378`},
+ Offset[{3, 0}, {13., 13.005829561148378`}]}, {{13.,
+ 13.005829561148378`},
+ Offset[{-3, 0}, {13., 13.005829561148378`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{14., 15.35666962964508},
+ Offset[{3, 0}, {14., 15.35666962964508}]}, {{14.,
+ 15.35666962964508},
+ Offset[{-3, 0}, {14., 15.35666962964508}]}, {{14.,
+ 15.35237777756354},
+ Offset[{3, 0}, {14., 15.35237777756354}]}, {{14.,
+ 15.35237777756354},
+ Offset[{-3, 0}, {14., 15.35237777756354}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}}}}, {{{
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ PointBox[{{1., 0.3058939805973386}, {2., -3.016888706538089}, {
+ 3., -3.247688656415082}, {4., -2.6829364235557143`}, {
+ 5., -1.6934517864279734`}, {6., -0.4167716872504016}, {7.,
+ 1.077615048105556}, {8., 2.7479117345273405`}, {9.,
+ 4.572233685741827}, {10., 6.520621127558696}, {11.,
+ 8.582980931954241}, {12., 10.749355820113736`}, {13.,
+ 13.008074231002201`}, {14., 15.354526006101828`}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ PointBox[{{1., 0.30589398059712153`}, {2., -3.0168887065353793`}, {
+ 3., -3.215068310215657}, {4., -2.5725384548275394`}, {
+ 5., -1.4892648280226084`}, {6., -0.13860489379333457`}, {7.,
+ 1.3936280651899522`}, {8., 3.0682292980253587`}, {9.,
+ 4.868772070631323}, {10., 6.787701993282296}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ PointBox[{{1., 0.3058939805973111}, {2., -3.016888706529401}, {
+ 3., -3.2476886917736394`}, {4., -2.6829364131573383`}, {
+ 5., -1.6934517950284986`}, {6., -0.4167716527892342}, {7.,
+ 1.077920988068182}, {8., 2.751072257647312}, {9.,
+ 4.580918298498121}, {10., 6.559514124245457}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ PointBox[{{1., 0.30713407270311166`}, {2., -3.067110308065294}, {
+ 3., -3.4304577212393763`}, {4., -3.0879090822971853`}, {
+ 5., -2.4123077494594973`}, {6., -1.5399609645024661`}, {
+ 7., -0.5375360276296015}, {8., 0.5571798344870343}, {9.,
+ 1.7206870273901242`}, {10., 2.937388810483148}, {11.,
+ 4.196416462160851}}]}}}, {{}, {}}}, {
+ DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction ->
+ Identity, DisplayFunction -> Identity, DisplayFunction -> Identity,
+ DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox["m", HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\
+\"-\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \
+\\\")\\\"}]]\\)(0)\"", HoldForm], TraditionalForm]},
+ AxesOrigin -> {0., -4.900657053954936}, DisplayFunction :> Identity,
+ Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ 15.954589770191003`, RotateLabel -> 0],
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], ImageSize -> 300, LabelStyle -> {
+ GrayLevel[0], FontSize -> 14, FontFamily -> Times},
+ Method -> {
+ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.647624, 0.37816, 0.614037],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.571589, 0.586483, 0.],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.915, 0.3325, 0.2125],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[
+ 0.9728288904374106, 0.621644452187053, 0.07336199581899142],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
+ AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02],
+ "PointSizeFunction" -> "SmallPointSize", "RangePadding" ->
+ Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" ->
+ True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& )}},
+ PlotRange -> {{0., 14.}, {-4.900657053954936, 15.35666962964508}},
+ PlotRangeClipping -> True, PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.02],
+ Scaled[0.05]}}, Ticks -> {Automatic,
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ 15.954589770191003`, RotateLabel -> 0]}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "\"True value\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\) acc. \
+(\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = 2)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-7\\)]\\) acc. \
+(\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = 6)\"",
+ "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\
+\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
+\"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\
+\\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #2}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #3}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"], Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Background ->
+ Automatic, StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"PointLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"Joined", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"False", ",", "False", ",", "False", ",", "False"}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"], ",",
+ RowBox[{"FontSize", "\[Rule]", "14"}], ",",
+ RowBox[{"FontFamily", "\[Rule]", "Times"}]}], "}"}]}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{
+ 3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, {
+ 3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9,
+ 3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, {
+ 3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9,
+ 3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, {
+ 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9,
+ 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9,
+ 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9,
+ 3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9,
+ 3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9},
+ 3.8871778469623938`*^9, 3.887182910688779*^9, 3.8886448295691757`*^9, {
+ 3.888646811017542*^9, 3.888646814560216*^9}, 3.888646910080586*^9,
+ 3.8886519498592653`*^9, 3.888651983555497*^9, 3.88865202351644*^9, {
+ 3.8886521263516397`*^9, 3.888652150779788*^9}, 3.893236723869225*^9},
+ CellLabel->"Out[8]=",ExpressionUUID->"7e2943f8-381c-42b0-8f9b-5bee0ef91468"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListLogPlot", "[",
+ RowBox[{
+ RowBox[{"Abs", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"Rest", "@", "\[CapitalPhi]s"}], ",", "\[IndentingNewLine]",
+ RowBox[{"Rest", "@",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptF0D\[Eta]List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[",
+ RowBox[{"10", ",", "1"}], "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{"Rest", "@",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptF0D\[Eta]List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[",
+ RowBox[{"10", ",", "1"}], "]"}]}]}], "\[IndentingNewLine]", "}"}]}],
+ ",", "\[IndentingNewLine]",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Numerics\>\"", ",",
+ "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",",
+ " ", "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = \
+6)\>\""}], "}"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "m", ",",
+ "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"0\"], \
+RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}],
+ "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input",
+ CellChangeTimes->{{3.887176095335842*^9, 3.887176195096656*^9}, {
+ 3.887177268477648*^9, 3.887177312454509*^9}, {3.88717809517518*^9,
+ 3.887178096950481*^9}},
+ CellLabel->"In[9]:=",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{{Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{2., -2.199250858729474}, {2., -2.1992508587114377`}}],
+ LineBox[{{2., -2.1992508587114377`}, {2., -2.199250858693401}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{3., -4.108835370883289}, {3., -4.108835369665774}}],
+ LineBox[{{3., -4.108835369665774}, {3., -4.108835368448258}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{4., -8.23957016697712}, {4., -8.239569788186014}}],
+ LineBox[{{4., -8.239569788186014}, {4., -8.23956940939505}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{5., -7.57318515764723}, {5., -7.573184963114589}}],
+ LineBox[{{5., -7.573184963114589}, {5., -7.573184768581987}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{6., -8.473827235511466}, {6., -8.473822447718424}}],
+ LineBox[{{6., -8.473822447718424}, {6., -8.473817659948304}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{7., -10.012900713523315`}, {7., -10.012878401308493`}}],
+
+ LineBox[{{7., -10.012878401308493`}, {
+ 7., -10.012856089591494`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{8., -14.970693198120777`}, {8., -14.967523623359499`}}],
+ LineBox[{{8., -14.967523623359499`}, {8., -14.96436406306913}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{9., -12.356895535264757`}, {9., -12.354572653848617`}}],
+
+ LineBox[{{9., -12.354572653848617`}, {
+ 9., -12.352255155708255`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{10., -13.13241371325783}, {10., -13.127375919227873`}}],
+
+ LineBox[{{10., -13.127375919227873`}, {
+ 10., -13.122363377404328`}}]}}}}, {{{Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{2., -2.199250858693401},
+ Offset[{3, 0}, {2., -2.199250858693401}]}, {{
+ 2., -2.199250858693401},
+ Offset[{-3, 0}, {2., -2.199250858693401}]}, {{
+ 2., -2.199250858729474},
+ Offset[{3, 0}, {2., -2.199250858729474}]}, {{
+ 2., -2.199250858729474},
+ Offset[{-3, 0}, {2., -2.199250858729474}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{3., -4.108835368448258},
+ Offset[{3, 0}, {3., -4.108835368448258}]}, {{
+ 3., -4.108835368448258},
+ Offset[{-3, 0}, {3., -4.108835368448258}]}, {{
+ 3., -4.108835370883289},
+ Offset[{3, 0}, {3., -4.108835370883289}]}, {{
+ 3., -4.108835370883289},
+ Offset[{-3, 0}, {3., -4.108835370883289}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{4., -8.23956940939505},
+ Offset[{3, 0}, {4., -8.23956940939505}]}, {{
+ 4., -8.23956940939505},
+ Offset[{-3, 0}, {4., -8.23956940939505}]}, {{
+ 4., -8.23957016697712},
+ Offset[{3, 0}, {4., -8.23957016697712}]}, {{
+ 4., -8.23957016697712},
+ Offset[{-3, 0}, {4., -8.23957016697712}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{5., -7.573184768581987},
+ Offset[{3, 0}, {5., -7.573184768581987}]}, {{
+ 5., -7.573184768581987},
+ Offset[{-3, 0}, {5., -7.573184768581987}]}, {{
+ 5., -7.57318515764723},
+ Offset[{3, 0}, {5., -7.57318515764723}]}, {{
+ 5., -7.57318515764723},
+ Offset[{-3, 0}, {5., -7.57318515764723}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{6., -8.473817659948304},
+ Offset[{3, 0}, {6., -8.473817659948304}]}, {{
+ 6., -8.473817659948304},
+ Offset[{-3, 0}, {6., -8.473817659948304}]}, {{
+ 6., -8.473827235511466},
+ Offset[{3, 0}, {6., -8.473827235511466}]}, {{
+ 6., -8.473827235511466},
+ Offset[{-3, 0}, {6., -8.473827235511466}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{7., -10.012856089591494`},
+ Offset[{3, 0}, {7., -10.012856089591494`}]}, {{
+ 7., -10.012856089591494`},
+ Offset[{-3, 0}, {7., -10.012856089591494`}]}, {{
+ 7., -10.012900713523315`},
+ Offset[{3, 0}, {7., -10.012900713523315`}]}, {{
+ 7., -10.012900713523315`},
+ Offset[{-3, 0}, {7., -10.012900713523315`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{8., -14.96436406306913},
+ Offset[{3, 0}, {8., -14.96436406306913}]}, {{
+ 8., -14.96436406306913},
+ Offset[{-3, 0}, {8., -14.96436406306913}]}, {{
+ 8., -14.970693198120777`},
+ Offset[{3, 0}, {8., -14.970693198120777`}]}, {{
+ 8., -14.970693198120777`},
+ Offset[{-3, 0}, {8., -14.970693198120777`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{9., -12.352255155708255`},
+ Offset[{3, 0}, {9., -12.352255155708255`}]}, {{
+ 9., -12.352255155708255`},
+ Offset[{-3, 0}, {9., -12.352255155708255`}]}, {{
+ 9., -12.356895535264757`},
+ Offset[{3, 0}, {9., -12.356895535264757`}]}, {{
+ 9., -12.356895535264757`},
+ Offset[{-3, 0}, {9., -12.356895535264757`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{10., -13.122363377404328`},
+ Offset[{3, 0}, {10., -13.122363377404328`}]}, {{
+ 10., -13.122363377404328`},
+ Offset[{-3, 0}, {10., -13.122363377404328`}]}, {{
+ 10., -13.13241371325783},
+ Offset[{3, 0}, {10., -13.13241371325783}]}, {{
+ 10., -13.13241371325783},
+ Offset[{-3, 0}, {10., -13.13241371325783}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}}}}, {{{
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ PointBox[{{1., -1.1431595731895612`}, {2., -2.1992508587114377`}, {
+ 3., -4.108835369665774}, {4., -8.239569788186014}, {
+ 5., -7.573184963114589}, {6., -8.473822447718424}, {
+ 7., -10.012878401308493`}, {8., -14.967523623359499`}, {
+ 9., -12.354572653848617`}, {10., -13.127375919227873`}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ PointBox[{{1., -1.142336471413771}, {2., -2.1989962191985897`}, {
+ 3., -4.103810189060422}, {4., -8.065760593479503}, {
+ 5., -7.572071121129541}, {6., -8.412217606083276}, {
+ 7., -9.901326241951773}, {8., -14.355261061061876`}, {
+ 9., -12.066885002703703`}, {10., -12.97499027628151}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ PointBox[{{1., -1.1431591915024921`}, {2., -2.199250198756966}, {
+ 3., -4.108834678398851}, {4., -8.239399371579477}, {
+ 5., -7.5732366791273495`}, {6., -8.47382080668392}, {
+ 7., -10.01266927712387}, {8., -14.940294452135808`}, {
+ 9., -12.353924318358052`}, {
+ 10., -13.127410732077774`}}]}}}, {{}, {}}}, {
+ DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction ->
+ Identity, DisplayFunction -> Identity, DisplayFunction -> Identity,
+ DisplayFunction -> Identity, AspectRatio ->
+ NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox["m", HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\
+\"0\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \
+\\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]},
+ AxesOrigin -> {0., -16.052840588323026`}, DisplayFunction :> Identity,
+ Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ 15.954589770191003`, RotateLabel -> 0],
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]],
+ Method -> {
+ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.647624, 0.37816, 0.614037],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.571589, 0.586483, 0.],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.915, 0.3325, 0.2125],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[
+ 0.9728288904374106, 0.621644452187053, 0.07336199581899142],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
+ AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02],
+ "PointSizeFunction" -> "SmallPointSize", "RangePadding" ->
+ Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" ->
+ True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& )}},
+ PlotRange -> {{0., 10.}, {-16.052840588323026`, -1.142336471413771}},
+ PlotRangeClipping -> True, PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.02],
+ Scaled[0.05]}}, Ticks -> {Automatic,
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ 15.954589770191003`, RotateLabel -> 0]}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "\"Numerics\"",
+ "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
+2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
+6)\""}, "PointLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"], Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
+ False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"PointLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"Joined", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"False", ",", "False", ",", "False"}], "}"}]}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ RowBox[{"{", "}"}]}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{3.8871762120034847`*^9, 3.8871773104168453`*^9,
+ 3.88717753344375*^9, 3.887178350360724*^9, 3.893236946450159*^9},
+ CellLabel->"Out[9]=",ExpressionUUID->"22fc8cc4-070f-4958-a56e-3747a3946f91"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListLogPlot", "[",
+ RowBox[{
+ RowBox[{"Abs", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"Rest", "@", "Ghs"}], ",", "\[IndentingNewLine]",
+ RowBox[{"Rest", "@",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "2", "]"}], "]"}]}], ")"}], "[",
+ RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{"Rest", "@",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptFPlusMinusD\[Xi]List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[",
+ RowBox[{"10", ",", "0"}], "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DScriptMCasD\[Xi]List", "[",
+ RowBox[{"9", ",", "0"}], "]"}],
+ RowBox[{"Table", "[",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"m", "-", "1"}], ")"}], "!"}],
+ RowBox[{"m", "!"}]], ",",
+ RowBox[{"{",
+ RowBox[{"m", ",", "1", ",", "10"}], "}"}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "}"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Numerics\>\"", ",",
+ "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = 2)\>\"", ",",
+ " ", "\"\<Ours (\!\(\*StyleBox[\"n\",FontSlant->\"Italic\"]\) = \
+6)\>\"", ",", " ",
+ "\"\<Casselle \
+\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
+\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "m", ",",
+ "\"\<\!\(\*SuperscriptBox[SubscriptBox[\"\[ScriptCapitalF]\", \"+\"], \
+RowBox[{\"(\", StyleBox[\"m\",FontSlant->\"Italic\"], \")\"}]]\)\>\""}],
+ "}"}]}]}], "\[IndentingNewLine]", "]"}]], "Input",
+ CellChangeTimes->{{3.857749647216098*^9, 3.8577496994157143`*^9}, {
+ 3.857749922049673*^9, 3.85774992576917*^9}, {3.8577499613439693`*^9,
+ 3.857749992122797*^9}, 3.85775012053415*^9, {3.857750706878583*^9,
+ 3.857750707403603*^9}, {3.857751644877963*^9, 3.857751657226074*^9}, {
+ 3.8577517214782124`*^9, 3.857751736522636*^9}, {3.857752278605008*^9,
+ 3.857752279401206*^9}, {3.857752310485083*^9, 3.857752324517762*^9}, {
+ 3.857752360898025*^9, 3.857752363157537*^9}, {3.857753041193503*^9,
+ 3.85775304373606*^9}, {3.857753117795965*^9, 3.8577531179827213`*^9}, {
+ 3.85775377848352*^9, 3.8577537891272383`*^9}, {3.8577539046194077`*^9,
+ 3.857753911831979*^9}, {3.8577541823791513`*^9, 3.857754190311756*^9}, {
+ 3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9,
+ 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, {
+ 3.857792220388947*^9, 3.857792221589129*^9}, {3.887175734000527*^9,
+ 3.887175745176688*^9}, {3.887175776777956*^9, 3.887175890987341*^9}, {
+ 3.887175927630155*^9, 3.887175941140204*^9}, {3.887175972652753*^9,
+ 3.887175999053248*^9}, {3.8871760552145844`*^9, 3.887176082574828*^9}, {
+ 3.8871762157611847`*^9, 3.8871762198011923`*^9}, {3.887177053185808*^9,
+ 3.887177056768643*^9}, {3.887177274797546*^9, 3.887177275893218*^9}, {
+ 3.8871780781341352`*^9, 3.8871780927035418`*^9}, 3.8871829559006443`*^9},
+ CellLabel->"In[10]:=",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "N", "meprec",
+ "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
+\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \
+\\\", SuperscriptBox[\\\"11429856398034503\\\", RowBox[{\\\"1\\\", \\\"/\\\", \
+\\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \
+RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\"-\\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\
+\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\
+\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"1\\\"}], \\\"+\\\", RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \
+FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
+\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \
+\\\"[\\\", RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\
+\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\
+\", \\\"\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"-\\\", \
+FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
+\\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
+SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
+\\\", \\\"\[Pi]\\\"}], RowBox[{\\\"107668955486287134775550584515499446643328\
+\\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\
+\[RightSkeleton]\\\"}]}]]}], \\\"]\\\"}]}], \
+RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \
+\\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\
+\"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\
+\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \
+RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
+SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
+\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \
+FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
+\\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
+RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \
+RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\
+\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
+FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}]}], \
+RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"8\\\", \\\"\[RightSkeleton]\\\"}], \
+RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \
+RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
+SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
+\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 10, 3,
+ 31977068536072594118, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9,
+ 3.893236947358164*^9},
+ CellLabel->
+ "During evaluation of \
+In[10]:=",ExpressionUUID->"0a6c061e-9d22-469f-9a77-bdafbf23ad0b"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "N", "meprec",
+ "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
+\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \
+\\\", SuperscriptBox[\\\"11429856398034503\\\", RowBox[{\\\"1\\\", \\\"/\\\", \
+\\\"8\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \
+RowBox[{RowBox[{\\\"-\\\", FractionBox[\\\"1\\\", \\\"8\\\"]}], \\\"-\\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\
+\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\
+\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"1\\\"}], \\\"+\\\", RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", \
+FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
+\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \
+\\\"[\\\", RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\
+\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\
+\", \\\"\[RightSkeleton]\\\"}]]}], \\\"]\\\"}]}], \\\"-\\\", \
+FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
+\\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
+SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
+\\\", \\\"\[Pi]\\\"}], RowBox[{\\\"107668955486287134775550584515499446643328\
+\\\", \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\
+\[RightSkeleton]\\\"}]}]]}], \\\"]\\\"}]}], \
+RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \
+\\\", SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"4\\\
+\"}]], \\\" \\\", SuperscriptBox[\\\"Glaisher\\\", RowBox[{\\\"3\\\", \\\"/\\\
+\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \
+RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
+SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
+\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \
+FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
+\\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
+RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", FractionBox[RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]], \\\" \\\", \
+RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\
+\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
+FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"4\\\", \\\"\[RightSkeleton]\\\"}]}], \
+RowBox[{\\\"107668955486287134775550584515499446643328\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"8\\\", \\\"\[RightSkeleton]\\\"}], \
+RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]]}]]}], \\\")\\\"}]}], \
+RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
+SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
+\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}]\\).\"", 2, 10, 4,
+ 31977068536072594118, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9,
+ 3.8932369473905067`*^9},
+ CellLabel->
+ "During evaluation of \
+In[10]:=",ExpressionUUID->"373d98dd-b1a2-4d6f-95ae-eed0eb8466ed"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "N", "meprec",
+ "\"Internal precision limit $MaxExtraPrecision = \\!\\(\\*RowBox[{\\\"50.`\
+\\\"}]\\) reached while evaluating \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"\
+46681463692889041973700532620906696296885587180818594561\\\", \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\
+\\\", \\\"\[RightSkeleton]\\\"}]}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\
+\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
+RowBox[{SuperscriptBox[\\\"\[ExponentialE]\\\", RowBox[{\\\"Times\\\", \
+\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \\\"\[RightSkeleton]\\\
+\"}], \\\"]\\\"}]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \\\"[\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"7\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"]\\\"}]}], \\\"-\\\", \
+FractionBox[RowBox[{\\\"114355882310899360521914666542829\\\", \\\" \\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\[RightSkeleton]\\\"}], \\\" \
+\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"13\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\")\\\"}]}], \
+RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
+SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
+\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \
+FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
+\\\"\[RightSkeleton]\\\"}], \
+RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
+SuperscriptBox[RowBox[{\\\"\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"9\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}]], \\\" \\\", SuperscriptBox[\\\"\[Pi]\\\
+\", \\\"2\\\"]}]]}], \\\")\\\"}]}], \
+\\\"383435814415399100830298627422256492275580379991986176\\\"]}], \\\"+\\\", \
+FractionBox[RowBox[{\\\"1995291215029551557786949\\\", \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"371382927287350339456845128427992\\\", \\\" \\\", \
+SuperscriptBox[\\\"2\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"12\\\"}]], \\\" \
+\\\", SuperscriptBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"17\\\", \\\"\
+\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", SuperscriptBox[\\\"Glaisher\
+\\\", RowBox[{\\\"3\\\", \\\"/\\\", \\\"2\\\"}]], \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\")\\\"}]}], \
+RowBox[{\\\"1075985451139697449885706090335689\\\", \\\" \\\", \
+SuperscriptBox[\\\"189336221\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"4\\\"}]], \
+\\\" \\\", SuperscriptBox[\\\"\[Pi]\\\", \\\"2\\\"]}]]}], \\\"-\\\", \
+FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
+\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]], \\\"+\\\", RowBox[{\\\"12\\\", \\\" \\\", RowBox[{\\\
+\"(\\\", RowBox[{RowBox[{\\\"-\\\", FractionBox[RowBox[{\\\"\[LeftSkeleton]\\\
+\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \\\"-\\\", FractionBox[RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]]}], \
+\\\")\\\"}]}]}], \\\")\\\"}]}], \\\"104122350499534957937152\\\"]}]\\).\"", 2,
+ 10, 5, 31977068536072594118, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9,
+ 3.893236947398655*^9},
+ CellLabel->
+ "During evaluation of \
+In[10]:=",ExpressionUUID->"dd61bf6b-294b-4bed-aba1-2e9c5e3c51b1"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "stop",
+ "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"N\\\", \\\"::\\\", \
+\\\"meprec\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
+calculation.\"", 2, 10, 6, 31977068536072594118, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.887178351227854*^9, 3.887182956896912*^9,
+ 3.893236947406246*^9},
+ CellLabel->
+ "During evaluation of \
+In[10]:=",ExpressionUUID->"e21c2683-2071-4eaf-8b43-f1a927c53e45"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{{Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{4., 2.1203089445691155`}, {4., 2.1203089451690884`}}],
+ LineBox[{{4., 2.1203089451690884`}, {4., 2.120308945769061}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{6., 4.555653733134874}, {6., 4.555653838211157}}],
+ LineBox[{{6., 4.555653838211157}, {6., 4.555653943287428}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{8., 7.284539665889405}, {8., 7.28456024759707}}],
+ LineBox[{{8., 7.28456024759707}, {8., 7.284580828881137}}]}}, {
+ Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{10., 10.161573447047902`}, {10., 10.161650696951378`}}],
+
+ LineBox[{{10., 10.161650696951378`}, {10.,
+ 10.161727940887767`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{12., 13.124361380067}, {12., 13.126355398673866`}}],
+
+ LineBox[{{12., 13.126355398673866`}, {12.,
+ 13.128345449081875`}}]}}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]], {}, {
+ LineBox[{{14., 16.147654453199863`}, {14., 16.1573163641116}}],
+
+ LineBox[{{14., 16.1573163641116}, {14.,
+ 16.166885815127753`}}]}}}}, {{{Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{4., 2.120308945769061},
+ Offset[{3, 0}, {4., 2.120308945769061}]}, {{4.,
+ 2.120308945769061},
+ Offset[{-3, 0}, {4., 2.120308945769061}]}, {{4.,
+ 2.1203089445691155`},
+ Offset[{3, 0}, {4., 2.1203089445691155`}]}, {{4.,
+ 2.1203089445691155`},
+ Offset[{-3, 0}, {4., 2.1203089445691155`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{6., 4.555653943287428},
+ Offset[{3, 0}, {6., 4.555653943287428}]}, {{6.,
+ 4.555653943287428},
+ Offset[{-3, 0}, {6., 4.555653943287428}]}, {{6.,
+ 4.555653733134874},
+ Offset[{3, 0}, {6., 4.555653733134874}]}, {{6.,
+ 4.555653733134874},
+ Offset[{-3, 0}, {6., 4.555653733134874}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{8., 7.284580828881137},
+ Offset[{3, 0}, {8., 7.284580828881137}]}, {{8.,
+ 7.284580828881137},
+ Offset[{-3, 0}, {8., 7.284580828881137}]}, {{8.,
+ 7.284539665889405},
+ Offset[{3, 0}, {8., 7.284539665889405}]}, {{8.,
+ 7.284539665889405},
+ Offset[{-3, 0}, {8., 7.284539665889405}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{10., 10.161727940887767`},
+ Offset[{3, 0}, {10., 10.161727940887767`}]}, {{10.,
+ 10.161727940887767`},
+ Offset[{-3, 0}, {10., 10.161727940887767`}]}, {{10.,
+ 10.161573447047902`},
+ Offset[{3, 0}, {10., 10.161573447047902`}]}, {{10.,
+ 10.161573447047902`},
+ Offset[{-3, 0}, {10., 10.161573447047902`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{12., 13.128345449081875`},
+ Offset[{3, 0}, {12., 13.128345449081875`}]}, {{12.,
+ 13.128345449081875`},
+ Offset[{-3, 0}, {12., 13.128345449081875`}]}, {{12.,
+ 13.124361380067},
+ Offset[{3, 0}, {12., 13.124361380067}]}, {{12., 13.124361380067},
+ Offset[{-3, 0}, {12., 13.124361380067}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}, {Antialiasing -> False,
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ GeometricTransformationBox[
+ LineBox[{}], {{{1., 0.}, {0., 1.}}, {0., 0.}}],
+ GeometricTransformationBox[
+ LineBox[{{{14., 16.166885815127753`},
+ Offset[{3, 0}, {14., 16.166885815127753`}]}, {{14.,
+ 16.166885815127753`},
+ Offset[{-3, 0}, {14., 16.166885815127753`}]}, {{14.,
+ 16.147654453199863`},
+ Offset[{3, 0}, {14., 16.147654453199863`}]}, {{14.,
+ 16.147654453199863`},
+ Offset[{-3, 0}, {14., 16.147654453199863`}]}}], {{{1., 0.}, {0.,
+ 1.}}, {0., 0.}}]}}}}, {{{
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ PointBox[{{2., 0.6126028894906074}, {4., 2.1203089451690884`}, {6.,
+ 4.555653838211157}, {8., 7.28456024759707}, {10.,
+ 10.161650696951378`}, {12., 13.126355398673866`}, {14.,
+ 16.1573163641116}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ PointBox[{{2., 0.6126028894906093}, {4., 2.125551226398849}, {6.,
+ 4.569765668638038}, {8., 7.309210808612832}, {10.,
+ 10.196845411019185`}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ PointBox[{{2., 0.6126028894906148}, {4., 2.1203089451602413`}, {6.,
+ 4.555653877221086}, {8., 7.284512472617333}, {10.,
+ 10.160831450583395`}}]}, {
+ Directive[
+ PointSize[0.012833333333333334`],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ PointBox[{{2., 0.6126028894906075}, {4., 2.1203076183853526`}, {6.,
+ 4.555652330600042}, {8., 7.284510465974837}, {10.,
+ 10.161378578451433`}}]}}}, {{}, {}}}, {
+ DisplayFunction -> Identity, GridLines -> {None, None}, DisplayFunction ->
+ Identity, DisplayFunction -> Identity, DisplayFunction -> Identity,
+ DisplayFunction -> Identity, AspectRatio ->
+ NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox["m", HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*SuperscriptBox[SubscriptBox[\\\"\[ScriptCapitalF]\\\", \\\
+\"+\\\"], RowBox[{\\\"(\\\", StyleBox[\\\"m\\\",FontSlant->\\\"Italic\\\"], \
+\\\")\\\"}]]\\)\"", HoldForm], TraditionalForm]},
+ AxesOrigin -> {0., -0.6046080204606854}, DisplayFunction :> Identity,
+ Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ 15.954589770191003`, RotateLabel -> 0],
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]],
+ Method -> {
+ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.647624, 0.37816, 0.614037],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.571589, 0.586483, 0.],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.915, 0.3325, 0.2125],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[
+ 0.9728288904374106, 0.621644452187053, 0.07336199581899142],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
+ AbsoluteThickness[1.6]],
+ Directive[
+ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
+ AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02],
+ "PointSizeFunction" -> "SmallPointSize", "RangePadding" ->
+ Scaled[0.05], "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" ->
+ True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& )}},
+ PlotRange -> {{0., 14.}, {-0.6046080204606854, 16.166885815127753`}},
+ PlotRangeClipping -> True, PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.02],
+ Scaled[0.05]}}, Ticks -> {Automatic,
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ 15.954589770191003`, RotateLabel -> 0]}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "\"Numerics\"",
+ "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
+2)\"", "\"Ours (\\!\\(\\*StyleBox[\\\"n\\\",FontSlant->\\\"Italic\\\"]\\) = \
+6)\"", "\"Casselle \\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\
+\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
+\"al\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\
+\\\"Italic\\\"]\\)\""}, "PointLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
+ GraphicsBox[{{}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ PointBox[
+ NCache[{
+ Scaled[{
+ Rational[1, 2],
+ Rational[1, 2]}]}, {
+ Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
+ ImageSize -> {10, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"], Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
+ False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"PointLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[", "0.012833333333333334`", "]"}],
+ ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"Joined", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"False", ",", "False", ",", "False", ",", "False"}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ RowBox[{"{", "}"}]}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{
+ 3.85775236362393*^9, {3.857753041693356*^9, 3.857753064352551*^9}, {
+ 3.857753109883153*^9, 3.8577531212700233`*^9}, {3.857753778726769*^9,
+ 3.857753797688981*^9}, {3.85775390996132*^9, 3.8577539129626293`*^9}, {
+ 3.857753956594308*^9, 3.857753978345298*^9}, {3.857754182953856*^9,
+ 3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, {
+ 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9,
+ 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9,
+ 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9,
+ 3.8871757582795773`*^9, 3.887175832439167*^9, 3.887175881031187*^9,
+ 3.8871759132706127`*^9, {3.887177050408825*^9, 3.887177079176489*^9},
+ 3.8871778469623938`*^9, 3.88717835171142*^9, 3.887182957347884*^9,
+ 3.893236947863029*^9},
+ CellLabel->"Out[10]=",ExpressionUUID->"ff6a7053-cfa6-438c-814c-b29d04a9cf5a"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"freeEnergyData", "=",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ut", "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}],
+ SuperscriptBox[
+ RowBox[{
+ RowBox[{"uh", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}],
+ ",",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<gs\>\"", "]"}]}],
+ "]"}], "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}],
+ RowBox[{
+ RowBox[{"-", "8"}], "/", "15"}]]}], ",",
+ RowBox[{"Re", "@",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptF0D\[Eta]List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[",
+ RowBox[{"0", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",",
+ RowBox[{"Evaluate", "@",
+ RowBox[{"N", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]], ",",
+ RowBox[{"1", "-",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "}"}], ",", "40"}], "]"}]}]}], "]"}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, {
+ 3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9,
+ 3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, {
+ 3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9,
+ 3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, {
+ 3.8871830446215487`*^9, 3.8871830462680683`*^9}, {3.888652445838126*^9,
+ 3.888652445910111*^9}},
+ CellLabel->"In[11]:=",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"freeEnergyDataInterpolation", "=",
+ RowBox[{"Interpolation", "/@", "freeEnergyData"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, {
+ 3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9,
+ 3.876370747760907*^9}, {3.8871830509234037`*^9, 3.887183054611264*^9}, {
+ 3.88718324727179*^9, 3.887183248687171*^9}},
+ CellLabel->"In[12]:=",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"pCovergence", "=",
+ RowBox[{"LogPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Abs", "[",
+ RowBox[{
+ RowBox[{"#", "[", "x", "]"}], "-",
+ RowBox[{
+ RowBox[{"Last", "[", "freeEnergyDataInterpolation", "]"}], "[",
+ "x", "]"}]}], "]"}], ")"}], "&"}], "/@",
+ RowBox[{"Most", "[", "freeEnergyDataInterpolation", "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"x", ",",
+ RowBox[{"-", "6"}], ",", "6"}], "}"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\
+Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \
+\", \"\[Delta]\"}]]\)\>\"", ",",
+ "\"\<| \[CapitalDelta]\[ScriptCapitalF] |\>\""}], "}"}]}], ",",
+ RowBox[{"LabelStyle", "->",
+ RowBox[{"{",
+ RowBox[{"Black", ",",
+ RowBox[{"FontSize", "->", "14"}], ",",
+ RowBox[{"FontFamily", "->", "Times"}]}], "}"}]}], ",",
+ RowBox[{"ImageSize", "->", "300"}], ",",
+ RowBox[{"AspectRatio", "->", "1"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, {
+ 3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9,
+ 3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, {
+ 3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.8763718721351347`*^9,
+ 3.876371879486059*^9}, {3.8871830602203217`*^9, 3.8871830720200863`*^9}, {
+ 3.887183263600458*^9, 3.887183269024135*^9}, {3.8886524322381153`*^9,
+ 3.888652436725748*^9}, {3.888652836485338*^9, 3.888652845517272*^9}, {
+ 3.88866054306837*^9, 3.8886605513076878`*^9}, {3.888660587340844*^9,
+ 3.8886606095808287`*^9}},
+ CellLabel->"In[13]:=",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt13k0Vfv7B/BDSJTC4WTa+zgcw066KUNFtkoZUhENt0Shay6SqTShkEyh
+DNdwSaYQZSo+z6VcpZIMRaHIMRzzkCl892+t3x977fVa+5/P3p/neX+eLX/u
+goUDL41G66Wu/7vbFUaNrawwgOXbTKysIYC+KK206zcD6O699YcFCXi1/9Fp
+7zkGJN79vDlNgAClroo3w+MM4Nutr0OuImBobW9G+w8GmGLpbgG/VeGis+aJ
+kloGxPOpbxseVYVr7A44f4cBn7wvdSQ2q0JikkLMexEGtAwmau1IVoXU7pAL
+5mskYeDswfoEpipIfjx6WFVCAoKb6RZR2SpQf+TovgY2HTJuSvw0U1cBI1W2
+lwJLHIRGV0YNM5VhZ8HprMYtYtDQPh7ExJRhIey8uIaqKLioGx4vva0EM7OZ
+cWeUN0Bn8COPRi4bXrFitle7icD7HIcH/1qxYRf/9ZJN9mvBtbMkjXyiCLGk
+trZBgBBs8oknmcKKYJd8om8oVRAslZ6PIEcFaHyMreFJFICznxxSX5SyAFtb
+tBWV8sGeSElUL8oCISancTCXF5L7zVG3vTy4WgY/zM6mQSR3bv/u/5iQvly5
+jUinQarsWwWx10xoyx7/kJdAg5k34ev7a5hALp3iLwyjQe7FbdKx1UygZ2l4
+Pnelgbe1msricyZUzXab1vxBA599YSHLmUyQ1bq8XOaxgjroQ659gUywre1u
+wGKWUKUnNnfXkAkH9OYcOm8uoe1REq/u7GWCetkGWrLHEjK1gX3BBkz4nWuw
+Xcp8Cb37p98lWI8JD2MyksU3LKGsUr07iZpM+Hj2LzfBiN9oQV4nWUqJCQa0
+MZHJ0EXU983X1FeQCSr+q3OK/BZRdEelRYEAEzZM43svOC2i+rkeYw4fE7r6
+j/gMGy2iJv8ekdM8TPBvLO7mrF5EM22kUfU0DsUp3kVfgxdQs0vKZGg7Diy9
+ZfPXN+cR/7hQqmYWDh9F9dQSPOfRePODoycycLjGuSLgZjeP8IvRNdfScOiI
+nK+kG84jy4327W2JONzvmVawF5xHZVd/qD2LxIEvhDvDGzmH0jS1Pdj+OHA+
+fUkgk2dR2uvaNxPmOMQ+ZnjR780iu601SlGHcdhz9dihgYBZNMCrF6hhhkMK
+u4U3ymYWHWQTewKNcDju2+jSzZpFso+8hK30caiXq9O7lvMLnUozPfliMw45
+jiU/XpTOIOb95eMp63BoOZeKm2bNoC1vTNkPhXGgWd+17oibQYdcrn2PX4PD
+MXO79jmvGbQisVE5gx8H3p3iTZrbZtBQzi752SUM/hS+BIWF02hUtlQ8YgyD
+YH6b5d2p06gpMMvr8wgGRSsmuh8ippFzwMUO9jAGAtOs8mG3aXRH73RF0wAG
+xd8+FaqqTSPNLUk/HXowECrQSM3InkIx22Q6brRhoJmNdWo8nELRTwWEZFox
+sP1HSKbmzhRyH2s8VNmMQWl8T/z381PoTaSgtGATBueux0TIsafQgeuct98b
+MLjnd+1dPn0KZfS8ep7xFoPyS85CunxTaGt5X6XLGwxEHPfc/rN3EnlzZSWF
+/8Og8shkwIP0STR4jIndqcGgz6TrhVI09byPZ9DzXww2GL6df35jEmkofGiy
+AwzO7/jncovNJBqO8Fm2rMZAjGXhJopNorTpmgavSgz0ZHfnpa2bRByj7nuh
+FRg4ShKDW5Ym0K3g1gsZ5RhUC/E6HPo2gXq9Xt/nlGLgPPX09N3ECVTa5W6d
+W4JBgtbErr/CJpD70YG/ucUY1Pv9IbPXfwKt3oE3bqXMphW2L5ycQENcx1Xv
+izCw3Dta3mY8gRbn9QRYlG/d3vyweMcEMl1lNX+lEIPva/OPOUtNoKd/hRbu
+LqDe/whXc/+aCfQ4XNvz8RNqvfcJCdb8ONqua6woQTlRKqe5/cs4cna/bLWS
+h4GVUtYR44fjSGZdQY9ILgZBTn1b2CHjyLTTlpGaQ+1nvuJ6Ht9xxLKN09lO
+ecO2jPflx8fRxGDqbrdsDPS9e/JjD4wjF63LLFHK7hXy4Re1x1HS27fjFY8x
+aNBPM1FhjKMWnmcm0pQXbnWr8q0eR1I3GK1NWRiYh+uJwcgYKudJOhBBuUDs
+5Uef92Mo8M2D9MOU1ybsjNzyZAzxGZztkaDshFeY9YePoTlewzU/HmFQ90h7
+barrGEr9FibxlLKiWunbYwfHkF+bl8BtyjeLt4eKqI2hlq36X20od+mUHKgT
+HkPqfsz7uynroq0C17ijSO6a8WYW5QTDoleaDaMo9lRfthDlXw3qgSO5o6gt
+WIp/LpPaD4snBo/CRlFdLb/BEOWnXzbRrJ1HkYbeq1M/KIvY5FbTTajnfk6W
+nZRd+1QC3qmOokYPPqKL8luXx7uC1owi9o2Ur72UlSfZC7sGR1DRlV2Oo5SD
+fDPLp+pHkERx+4clyj3LLJ+87BHUOughIkathwxO17QLGUFefrPsTZT/FmZO
+SzuOIA/tE3RjygvRKcWfDoygL5FXv7hQPrFRziNMeQQZBh7wuE+5NCVpy57V
+I8izIL4TURZnS4/Oc4bRO+M9shOUL+Y9zH9aN4zkDOTUlKnv/WErw8Upaxjx
+ys8In6O8qTxOVf72MCK2xFSmUw7ZTR/44jCMNrmVaXEo7zUVdTBiD6MfGuEx
+AdR+pzVFKtD4h1F/5OMLHykvHxfpKfvJRbLvWRIqVL2U2wvbKGdyUdiTzyV9
+lCW5oXLdgVwU3X8015Sqt0segt/i7bjoneZzu1LK6tf4TwoocBHTxUsqkapX
+6cqPDwb4uCi/ltYoRNUz/6+ktrecIdT91THzOuVvbhqWkblDKEl0JOdyPgZh
+1jaHN2oMoZdhHb9jqH7xTiAiFsSHULKpV4Qi1U9nW2fefZsZRD/xBs1Kyjpm
+4SbpFYOIY3IKJqj+69etMCQMBpHU2eGUaKqfP/kGBa1VGERpP9zL9z6j+v/Z
+4dpRvkF0Ji372zzleDUOWVI/gGSMr+p7UnmwT1ZcV/fIAAoYCzC8T+VH2qKr
+xiGbfvQxPm85lsqfcG0djz8M+lHYxNX1d6h88rm0qkhMoR8tXHIWC6Dy6xA3
+YfNnDgdZ7ucZ8HqFwVJHnYqtOweFG+/NuF9P5XclE/cM6EMWK9rtd6n83P+L
+a21p04cG6sP1X37CYKtGWbKWQR+qndxxdZzKW8FcM+lFvj4kFWzoYU/lc2mC
+v0RQ+E90iy4n6f+Vqg+/FuH4pF60zfZx+p8cDOZW5kXH/HvRdfDz4PRT/XQb
+32j0Zy86e6Yr1XsQg+xYZ8WFjb2ozVxJJJM6H3YX0fTOxPegE+A4oDFF9W+/
+mrtS9A9EcAP2YzzU+ZonlO62rhsp1R1J2MjEwbjC6gn+rguFpy8KbWLhQP8v
+raIprAtJGl8MNFCkzrserU+agl0otnP5qr8Kdd5J2a1a5u1EnS/kSNmtOBAh
+Lxwi5jqQ0WqOk+xeHD7buxKFvW3Iwk5rat4Jh+rOI9qlWW3oNJEzdsoVh6xj
+mvuqnNrQ3KkLUv+64+BltGzdMNaKhlPjhmIv4bBBLSq6f7EF1erY7TwXQK1v
+qmQOpzcjZZq4YXQ0DpdXzd6TD/2ANDZ/8VN/iYOPPxHxJq4arasS0exfy4RD
+o+NthVlVSP33XLSLCBOUzpXh8WUvqdmtjzWxngmtxvuenmuvRMOFsV9XxJiw
+TepMy6JsGXLmWR+0SYqaZy4oaJ42KkT9fOcjK9nUfJSPdVtanEf24jduFegz
+ITdSh8z8o0o/4Wba6CNvJkQ43WyzvfVZv2XU+KzFPBPWTR/clW/eq2+tn3RR
+LkAevnvVbfcO4uq3HTZsfEPNj6MVZjU+9RP6RoXRCegRC7LupNvah87oq7tu
+VvilrgDsX3nivknz+vWq3r7ToABdxXjVLsclfdcmr4wLhopg9eB7CDeKRk6s
+U/ORrFWElEfhVQfjeUlZibqgo/vZwHfKbYTfj48MpBFiHS/Y8ME257FFkABZ
+96AmaEhTCZ6vk7aedRUkY1ulxHkzlEApUX5g9UEhskh7gCdiDTVfewct5R1d
+S7LcazZKeikDd0FGJFtHhIwWNdSyalaGtL/utMgobCALX5dmGmipQJTBu3Ap
+tij539/aVab3VUDkQt6eWgkxki7fkVbAUYHqfeVVpdLipLaRmm28niosudlo
+HROhk6tKLOlxd1WBZ/WnhE1LdNIuK1fmRKsqaBl51pjQJMkYyRSrOBYBC9/y
+ByQmJUmzuyVFLEcC9rnWR5n9kiQ/HHI303ci4N5ir07wgiTJKfYeOeNMAFNa
+JnSal0EmPEvRynYl4MDxUNVmcQb5uWb1gqMHAbFNDs5RmgwyK+4rRr9CgHod
+NizkxyATJbS8e+4R4Gu1M3ZPAINs1hrWnYkg4N+fVrr+NxnkZrpItXAUAZar
+7oUPhjLI52ZiIftiCLhCLqrVJzLIkxfXeA3HE1Bf+dkt+CWDNGccLYtJI0DM
+ZEqiChjktOnpnSnpBJxuF6mefsUgY7rwsfx/CBibNRSxf88gZQ85DbRmEiCp
++axgTxeDNEkuHz2bQ4Dtq8Zj/j0Msv6u9UJ0LgE5R7nLTzkMcn1jTGddHgG6
+nqzD8mMMMsQ/ZpV+AQG3eXbPnphikNoHl8ZvFhLwMepkatQsgxRzifOoLyJA
+mnn5QP0ig2T6tayIFhPw//+H5MzXksQtJQT8D5MIPME=
+ "]]}, Annotation[#, "Charting`Private`Tag$3858825#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt13k0Vd37APDbDYncyHANIfuijLkkMh5FvIYMRUrSKymiDEkUpVSihLeU
+oTS9QqWkVJL99CYJoRIpGct0M917zeG3v2v9/jjrrM/aZ52z93Oe59lrq/ge
+dNtDp9FoQ+T63333w5Th+XkmOJ/4/uH7hBZIzcirm/5hQmJskpfOuBZUbPx3
+x+FJJmyptL0Wy9cC9bYX73+PMEH5WEDSilEtGFjSfbulkwnrM7cH/z2gBSGB
+hp7Fb5hQazL1trlVC2LVvoH/WSaYLRWTTH+tBZlZrLQPDCbY7x9b6JGoBTnt
+CQddF8uAs8qiHNGlWiDTsNlZQ1oazj+5Led3RROqXDZb16hJwYWAn1JXFTXB
+TkPtEAtJwiLHXj32JQ0wKdyRW796GaT7WuytZmjAdKK/pL6GBIwfe/At4Mgq
+GJu4c3nnSnGAnArplraVUIHS1pQHM4D2JT7wgP1KMBU8XqzltwS2q33d6nhH
+HS5RRkZWMSJwTdLRR0tQHXZne/4ayBEGG7fgx2/91aD+rtLiBZlCQA/VN3pZ
+qgpKSx6xcYkAnDWuWp2qqAoiK3rq+wvoMFTo6H3iGAtas4VrOm7RQbZQ6Z1q
+NAseyGlVNmfSobv3u1l1JAtcJEPK3ibSgdUaukU2nAXpQtN5NwPpoHmj9sDr
+ABagQbGT2zTpIBiQp/nXVhaYlhqueZ+/ACoj/D6bG7AgaMvpq3l5NIj8xvhl
+NIzg5lypgeZNGvRca/HfPIigKW+k7l4GDb731TmGcBBQs16CDxNp4C2e71jY
+i0AqVz/saRANKt9pu5h2IHg10e7wnx4NjitxhbI+Ili+NmLuWeg8vjJ8SC/2
+KYIziR1rXvrO44er7RreFyMYaXPYX755Hh+Ii1/KfIyg4iz6WmE4j+9+Swgv
+KUQQ3FJf9HFqDhff+yiwOA9B+THNPZy4OayKnnfNZSLY9aa9RiltFie5fJc0
+OYnA1nxyz4+4Weyuumoy+wQC3WfitOzQWbxrcLMw/TiCPwVWa+RcZ/HRQwJP
+Px1FcDXtdrak+Cwu+nHmWHIEgoa/9wYLJ//B3Q53bocGIHj2/fiidzF/8Npb
+fNvJvQiuu1+9eTr4Dy4RZJvE+SMI+uv9F7rTHxyTmyueuRuBMFvLYlb0D5aO
+vFDe643AijbM4J6bwdfXRbfx3RCsil6U/yhqBu95ydp80xWBOF95w8GAGRxs
+eszQxQVBW69L5G+7GeziVGf/1AlBdP3j9p5FM3hT1O7f2XYIHl8//Oj76WnM
+mRP+t9sCATKfc30bN4XntD5Ie+mQ+UuYa2eETWGHmuuNAdoIYnuOCgXvnsJf
+zmR0RGsh+HZxqlTKZgqLhXX+vK2B4J8uPstPeArrx81jCXUEAgmcMfrFSazx
+x+y1tzL53g7Nhqbjk3iFN+9HqhKJNzugoCBkEi906d5WpYig7FvPTje3Sfxm
+3YVws+UIInS63t2UnsTiVdr2VnIIej59zaCyJzB/XYFXuSSCS3eZh6QuTGDH
+RulOWeL1xzw29cVM4JiltY0Ry0h81RrpKT4TeIPJQREjCQRbj9Tvb0cT+KKw
++dsmBgIhJ8bGYskJzL4Dn62Jn6g4rTgrMIFN1/Z7PBUj8aypbtTtGcdmFnLl
+15YgqFKsNI/NH8eO9nWs8yIIDnMFZN0yx/HepgCOGLHquw1ctaRxvCDOUCdt
+MYITIa9zPwSNY5FzP1VuCSMwflO2VFFvHA+FZHe0C5H1XJnpH1kxjukt1YkR
+xJeCTCoqJMYxsu4qFiMekX5+JIg3hlc96I+3EUSQv6+482XJGA6yOaj3eSGC
+Rt8cZYdcMj5zojKCmOad5P3t8hgWebTNWYHYw3V3y+ShMRwwfMb0IB1BnIMz
+M8FvDHcf685RJL5vY+rO3DKGrUZkpuoWIKCbSH40NBjDhZ3tSSbEOmvmGW/R
+GNZK9Kzk0xB46nIctywbw5phByaKiAvRm6qwUT52ui9oaUjcsvyhEL2Tj1P9
+bDxm5lVAgJllndrAx5HKOXsqiLeLhsPDh3xc9nUg2If4tKDPnEUOHyecPbyX
+Tfxo3t6sLpmPbyc7bxci/j61Nto7lo9TvJ5tbJtTASE+ev47mI+bXg5ovyBm
+DzHGj3rzseOEitgV4h190waiTnysXZ7SG0l8tqsnNNOMj/vW+Zd5ET9u/fRQ
+Q5uPoxd/SFpP/KOpfPC5Ah/zzTju2sTCHwu07ET5WNWzS16O2KAmPaB5mocd
+dtV/Eybe+fbkXf8BHt75sfryzKwKnMMHfo218LBOQZ/DKPGTF9tZp9/z8BJf
+49l+4vbijX9LvSDPT1Tk/yIWKdTPuZ3Hw8mcS64/iQ3zlH7oX+VhzY0F/P+N
+77olovDfWR7efpH+zwBxUva4p2skDy/uT9fmEpekd6V3+PMwbdrr9R/izpS6
+xoMePPxgxspVhMxvSVLpsnkbHvZ4uaZVntjodK5LsiEPh19X8NUl9j2elqyo
+Rt5/o6XLmvhCVGztfSkeFtjmtHMn8fPwQBEzAR5WmHdpjCbuDvawq+Fx8arQ
+UutMYsa+9We2d3OxjbbXwzLidb66Ff2fuDjtb5pUF7HfDnl61H9cnNweFiZC
+/l+pCzfmyk0uNv7ng4If8S/7tpfqqVxcPMj2v0wsblM99fQEF/fyvfLfE/uv
+uxXR6MPFTiHVsqYkn1INkot3O3PxdUaA9RHiMp3oUa4FFwtmxO19TrwMuQVL
+KHExXMtNsyL5ar7c4t4NMS4WyedkJBLvk9HsXz07is26Fa40EZeL0Pdsah3F
+z0LiQiNJ/gfyinYkZY5i6YPuGa2kXjLWjpruTRzFwtwXUaYCpN6j9BQ2RI/i
+AVu+3jViNdrDlulto3jkZ41KAKnHjiX3PQLlRrFX6+5ZtAgBw4VjuHHxKLYf
+GYy/Smz+j6Y0mhrBFRNFbeKk/jPl8j+3fB3Bz6LchURIf3BXz3X56+oITqi1
+llQSRRAf8Gu1WsIIzmoelSsgfnxfdemCIyPYWWrboDHpP+IGtz883zqCpwe3
+TOwk/anG8ob9KuYIdsk0PVm7lNT34zXnGNrDmPPoZam2NOn/xsW2laLD+IG0
+gPYvYjPMForlDOGxU6d23JBBMF6je2qwYAirJW6dUJIl+8+vVTG1GkPYvW5q
+0kyB1LusYmjiykG8sSrTdkYFQcn1rNXrFw3izemVBu0IgaSa/NBUz298azat
+7i0LQR2buT8g9zcOb40XzVJDsMFBYo+d2m/8PSnq5B6yP+jGCm4TYnHw27KY
+bVFsBPKlDVf6BDg4WvJNYIQ+AsHxrKbqngHsMd4B4QYIWoP1t1wsGMA4PcIo
+0hBBorePs6z+ALYq+EsvYx2CXrMXNppW/Vja2sLbbj2CGzNB+pt8erEqZ+CJ
+gzuC80bGoXpWvfjfIieTZA8EkeELHy1j9eLMwaH2T1sRbOJk6DT39ODjfZNn
+fLcjmP1WuWrXgR78tMNIJcsHwfbSFcphMb9w1YMvgSGBZL1RjaLpWd14i+s1
+01txCCbnpySGo7txSqCNhO0pEu8zyrJ227vxZN1hw6F4BHmXAlWnZbtxi8NR
+3w0JCCwe0cx3pndhfd9xxcUXEQT0ah9QT+3EaVqFybRrZH+9J3IzWKwdq382
+fJdWiqDZL0jzYXcTtuz3+fpjhuTvDxejktwmHF4fbt49iyDXw9D6VUATXrFe
+y3JgHsEhuznvmuEv+M4m/2WzC1kgrp2S2jvTiH9YGX0wXMKCv3jFk8pSn3F1
+63Vz7nIWRCycuKByrg7P2XZtPW/JgshozeT3l8txydqg8JEEFhRcNKbu6L2y
+lPbSTkhVV4XkgLimXSebLZuky3WEO1VBjO9oet+12/LLu2MaR66qQcehyjWH
+4zmWZ0Ls39X6qcPQC6f/IqtGLSvZkh81V6+E3LM3d/mdG7O8FO61oWdgJaiN
+35M8kjVl2Vjkq+lavAraHiu/Mt03a5l2ra1MIVAD3K90JHBSaJTrSjHhCFlN
+uP7v+VeO6XTqtd/j9nv1miDgFTwoGCVAGb455VZ+SAvqduXfdYsXopK6DV7o
+q2jDUzF574kgYaquvyROt0wb1DNV+hY5ilCZ/HuWlzfpwPTh+Nl7m5dQFQZ9
+0r69OsCZVmDkGTMo45yRx5dCdOHG3rONCixx6uCmTfF35nUhxar2vJyaBDVd
+FSZadGY1MA7eW/9Gehnl7YZ7GDQ9KLd+/qpEXpIy7PfcddJSD2aDfdZ6MKSo
+jNmWwMIjerBg0acMrVkpyk1I7PtAoR6stQv7z54mQ+3sXragrVcPplvv90lz
+ZShRz6glcgpssA6qSnEal6G2rT3f8I74wky38elpGWq59XBS9XI2NCXOd5TN
+yVA+ep4/mhXZsEJe4RyfzqSe1zIym5XYEJi/lq29iEnRjwtlVyiz4YmxW8tu
+USb1oCGTmbqCDXPvguOyljKplwJJbxxV2GC79ZzGZ0kmxRTwtpghvvRxT2CK
+IZNS9Lz8z9AqNuhWKv0WiWJSTfv0Ti43YsMRd5NL62OYVOxJuirbmA2vf7qb
+Rccxqc7leX1q69ggcij0Z9FpJvU2yZA3R7xl4YXz/eeYVFwD2/6NCRuOUjPa
+VZlM6lDv7VSWBRuqSpuDT5cxKYlJVoqyDRuW2fOkXwGTuuN045vCRjbsaGGU
+8yuY1BWXLZ9otmzI3afpr/2eSQWV7F9QTzw8YcPw+8CkDH90ZsTZsUHG8Enh
++jYm5WnUsFPIkQ27Kuo9oruYlHxtdfgCJzbkb+bMFfUwKYa4SswvYm6X0N3+
+AbJe66jNRZvYYBaGnFWGmRQH/xvv7syGMwssJjx5TCrD0fZjG3FDyraclAkm
+ldD89WKKCxvkV0TYVs0wqf0d/Tk1rmz4//Ms5ZYxlt3pxob/AxlbfUM=
+ "]]}, Annotation[#, "Charting`Private`Tag$3858825#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt2Hk4Vd/XAPBLptD9ynRKyZThXDIfY3IQSRlDo8hQUUIklEohJEkqQ0mT
+TKUoU8NeRVKpkCEVQuZ5nsJvv8/z/nWfz3POvnfvs9de66wr5epj58HOYDCY
+bAzG/3265cUPLy0RMNAkcPHzaQqE58Xk9P8RkHaMxdQ5RUG52cN9gTMERCYf
+KmwPpkCupeTjwAgBqkxPy/lACvr4O+43tREgE8s03udHga8XtaugjABZdZX0
+cQ8Kzsj+hIMXCTjre3X5khUFKakyCV+YBEiK+6z3kaTgTmuUj+1yUVCevzgS
+VawJotU7rEkRERhuSfR8sEMTKm12bP4sKwwtmi+fdAxogDkpGyAjLQQXe62/
+dgdpgN6TfRnfVAShKLmapcmjAXMxB4XUyZXw0G0hkyNaHSanH1zfLy8ATn9W
+6I9wqUO5dILmG28mcJ48lTwTpQb6nGcLFN35oTTOsfvavCok0traRqG88Jnj
+8v7b/qrgdmtXZ98dHsh4yGgRaVSBb4/WLWdL4QKBkRdJ3I+VYR3/UzVUyAFs
+YnNTOskbgFey61tvNjv4CgsHJwUpwVH7iKTMTAbEvn90dclPEe4ulmqw7jLg
+vmkVm+sxRWjIHPmak8yAoLZcvQovRaAX9nLmxTDgQuULgUQ3RRDOUD/+4igD
+SudMr5s6KMLr6dZt71QZoPpDR49dVxHWap1YLPJbQsUR9c/H2RTBpaz187qE
+BWR8yi7SJIUFWwxmPJrDFlCI9Aqh3hssUC4SYNzyW0Dvef/6X73Ggn/ZRpqr
+bRdQSljl675YFiQl3L8lJLCADnqy3qOzLKg+cMibJ+4fkt1Hq0x5sMCIMcwc
+i55HeY1chpmaLFAI4c56GjyPjGV3Nz9WY4HAhISJj+c8qkduWYXKLGjptjk5
+YD6PLBvG6moUWBDyLb+1i3semWa7v1UWZ0F+WuDTXxFzKOLorHgEFwukDRZt
+34fNokBF3dDnv0ioXmmglHx8Fl3RW7nOpomEM12nuLzdZpFCQFH5UAMJP6/M
+lgqbzqK7TCaLqiXhWvuEjDvPLFpuHnq+q5IEjqj+SfYrM0jty5NPvwtJ6Kr9
+kUzfmkb5PuVDUtdJSHxEBAhfnkb8q3u0pK6RYHza0aondBpVd4Tmy1wlIU22
+jj3eeRrFmKWbq18mYWfQtyOt0tNoxMdTIDCChErxCoMzWVOIW5Z3ISmQhKzD
+BW0vCydRYalzu91eEupc70hsy5hEghnn4pJ2k8BwuuT08/okUlkxuK59JwmO
+tm5NMwGTqO7c9+Fz9iSw6wnVUBqTKHt/wcFBSxL28PlDXt4EMjNp1j9vREIE
+p/PipjsT6Jjv9rNcNAlPlyw2fo2bQEzP+adxm0jgmpAuHvCeQFoO8Cdbn4T8
+37V5pNIE6vPcflpQiwTeJ+p37meOowlOhY40RRKozHXN6knjSEpun6oriwSX
+e7xr3l0cR8ueVPuQJAmFN9pv/Dk4jmzR4/dlciS4nk2IE5cdRweDXL7IS5Nw
+OfhMVa7wOLJP6crllSKh2N+LdyPHOCJvnz0zKkEC87Bx5J6OMfT5i8f0J3ES
+Sm3GQm/eHUMHnmjpP15NQqdFy0u5q2OoWTw7I28VCQKmn2ZfnBtDDz4lsRcS
+JBzUvXeiznkMbTHMj/kqQoKgtJ33ynVjyGNGpVZZkASv8Wf7LqWMIscJn9Yc
+PhKStUb1D8WMou1W+tdGePH+BKuuMQkZRc+ZEvy62LKMvKa53aPIROyTRT0P
+CX/4cx29Vo+irSrNvXpceL42/ZTZ8lEUxfn6+W1OEgyusUSkZ0dQzT9vQw7s
+lNVZ35t+jKAP5VZXfy8jwUEuw2Zr0gj6Mi+7spSNhHDPThXZqBE0Wd9croed
+n7v+P7agEVS9cUENMfD6NO5/Kd45gk7d7NL8vqQAhoHtuYlbRpC6Y1ulK/ax
+EqlYX+0RNGF8X3BqUQE+G6ZbKBAjyELmSZk89tz5VpKDewRdleckKxYUwDbW
+QBAGh5EItyF9GJs/We+KyuNh1Glkca7onwJ4SpRYdscOo+u7eB65Y1c81Oa/
+c3QYNb8/f0oEOyxfM5qpNIzOSe8mz88rQItOwZYKvmE0sXCOsQl7I1LjOtM/
+hCK5Fs8tzClAsunTcurzELKKz8kC7KnPyhcGs4dQxxHX4IvY9naPjR7GDKGn
+N6eGbLGf/VBkOHkNoZ2ndZZLYjOds98IWwyhkx0TFaOzCnC0UyG0ihxCdccm
+5T5gfzrySD98+RDyMVuUT8eWH5Od0+8dREPCNZWnscODHhSPVw6ivilFHifs
+9kXpkzmZg8i658NfGpuOuEu5RQ2iRYN9TgrYt/kkJ8QOD6K7fKm+QthzV9Py
+a7cMol1JGuLs2LtWifvFyA8ij081ByZmFKAwLVXFmHsQWdmKG/RhC8mKDc12
+DSBxwdLHHdi+OUm5zyoG0GSjRf4f7K9qxBHPjAG0dOzI1jZsxeLrpFTkAIr5
+VejXiR21Sbjnh8cA2hZSTg5id5UnZMSbDiC9+3K+M9gm21Z6mMsOoHMN3ibc
+eD7pNVdkGJwDKNRJ/t5q7MWdzPaiv/3IZPB3jAr23pbYdJ/yflRQIfTPHLvY
+nc9Z/kE/kvljPeGBLdofLd56oR/dXxQ4Hont78fz+4ZbP6pMqfPPxq6ejkyx
+MulHUdOCMzXYymc4d3PJ9CM+5uaFf9hipdU3ezj6UZdDo5kC3i/OqdSGT119
+KFL7aIoj9m9vdfsr2X1IsOPMnlfYlVkLCX6xfaj7++HyceyCzsqaHcf6kN20
+koYyjp8YJ2frVep9yKqUUywXOzCZFTcn1Id6twdcGcY+UD9Z9XuyF/WZ+XNo
+4XjUsYy1uFvSi86eR92fsbs3lpiyjHpRbkyA9xoc/7VB4eH8Mr3oo4N9SSD2
+m+fWZUMcvejhu6rZOuwbSl10QWUP6o/tsEvB52nzWqGNG2160C+jXwbm+Dyq
+7moJWafegwY9C7leYq9JzCphCPcgl6kXxarsJIzx0drvG7vR9Ujz2vX4fKfP
+H1W3cu5GhjF2+Sr4/Mdq6/ipGnWjA87zKSXYJ/2XPRWU6Ub3GjtdzHD+sOpP
+3tDY1YX0vnqdOcxNwsLPCgWXY13o9KtD9V+Xk9AjmnDI2KYL3XxrG+qD81Gd
+nVPGevUudDhdbUoQ56/cT+MyvZOd6Fdpgr0rP87/pZISx0M7kbTS25vS/5Fg
+NtXvZO/ciWT4rFObsNXUi25pGXUinTOKbtcESODJthSb5+hEJzwP6f6H82Nh
+cohIeOxf1BaTWyuP86dQcB3fjdQOlGZz2+LXGhJmlmZXDod0IGLBmL1mLQkt
+kRKrzPd0IN3O6F8fcb7OTPRaP7eqA1Vf9ukrx/l801OGwf4b7ahMO9TgjwwJ
+nt1Kx+SutiFtG/Q9Swmv/5hdwFnfNiRVGHavegMJmpMnQ35Yt6HJMdJ3TpmE
+RfayyBhmG8qR3bnkqIbr77rdd4Yu/UEmL9fnaeD6dCaH9673ilZEZ9UeCMb1
+bWuJw2OJqhbU99Va+Buuf8If0ktqYlrQ5lcc9+RNcL1t16qleFpQlQ2fWZsp
+fp6r3ZYtsjcjk6l9foHbSGBFvfSIm/mJ+vcX7pbD9bbR/Sgrr6MBEc8fhsf6
+kvCm2Ua7MKMBSaq/L1h7nIQMR2rza88GVHTtn2SePwkB5otOn4frUW6uxZOf
+uL4LKMVf7Z6vQ7O6li7bQ/H8xgtmJIS/I8b+wbCkGBJOLJu+LBX9Ff0Ug7KK
+DBwfIay4j9ffIH9tlq9wJ34+QyMNeRmvkUM0pbemmwQ51yKJG0WvkMz1By9l
+ekmo37r5mWtTKfr3cL5Zd5AEjdX76+bXFiFeLbbjIZN4f3xkqH3meeiAXIz7
+Nvy+VJ27rtXe7iAyNlm/IEmyIPuKDv1A9bVhARwIMfJnQZxnWIPL+UbDm9bv
+ru2TVYQVE9v1c207DLWdBq27finCn4AKzcDwfkPt/E11Xx4rwVCJ5buTlaOG
+JTd3ible2AAZF++6uEdPGjZWjX6ZslQG2akcoaDUWUNnv52OkSwVaMmXeK1/
+eMGw/5PkMtNpFXC4+SeqP55B25YcEHu/XxXSHsa+3n6DnR5+Fql+tFIVOPZ6
+D3IGc9CCdrclGhTU4KtL1iO7cC5aTUc8uDRODV6sEHOaPspDF/JeW2ncrwZy
+KVI93Nt56UMSjF3HTdRhLjB8IWcHP61rqDtplK4O/XNrmJk6TPrzEFeY7oQ6
+pB+6WLdGRoB+q+FX4LBdA+KNqmJXy66kFVs/klzpGsD0yTEuExGkN3KpxyX2
+a8CbzcWvC8WEaP69Hzi36GvCgrezliNTmN5EX2ah85rAxl2brLggTFt/TgO9
+Ck3QMj/+zoIhSmuO5TRP81Mw9zu3R2RMlG5pdt3Ltp2CzUcr4y2nROmVe5hq
+my0puDzfoRMxJ0oXmDx4MWBLQUPM0p9Xi6L0na3hb9rsKJAUWxM9wU7QHWUS
+cQk2FHhlaakpcRN0Q1HZ6p/WFDzXsWty48NeVaKqbE/B4gfvsNT/CFpw1QfF
+U7sp2LIzmvwuRND+P2zUDRwpSKzx8IqnCDqzxjjhhzMFLS5hgpW6BD1nSRiJ
+ulMgP3KrdMmAoF+7fbe85IL7tbPFrtrGBP2t8u8/2/0UlDLreH3MCPo0dZJ/
+4AAFHGnD+RkWBP1yzw6OXwcpsNrAt7fFiqB3m3Je+HqIgqRXcstEdxD0mvXy
+rp/w97dtM86x3EnQNeDqEIT7P9Yvpx0RewlaL9Kg9gK+P8AreP6VM0Hv9/xQ
+VO1FwZvZxPsTbgSd7vtK19ObAp7op9uUDhN01Cv7u0JHKLBbVTXudpSgW294
+qjZ5UpD6qDs11ZegCwNzlh7j63+1lm3+HkDQKWVzSv7HKVCuWDfAG0zQ4X2T
+C0x/CoIc9BKNQwn6l+uG9GvHKHj712FjSBhBq8ht8prA5g3w+/ssgqB5fOZM
+nuHx9ssux/ZGE7Sspu6J9JMUpCVkakrFEbRH6oZWTdzv9kiV/96VgNd77Kfq
+TAAF6s9aw+NvELR55bos8RMUnKLnlSpTCHrTpqB9b/D95d9E65fSCNq5aji8
+DPfTTGf1UO37BN3X7x669gwFu4YsZX0eEXT+vEb8nRAK7oV6fsnIwfHQLst+
+PIiCAf6IEy15BK1cUPL+HR5P3UoXF31O0J6n6zWiz+P+WvHVe8tivH86O3Tv
+XqCgsrTRO+IVQS+WjZ5+EUqBoMW4yGsg6Kvf9oQX4d/b18R8M1FO0Eo6plcq
+wijIOMw6qPSRoFe9de/Sj6RgeNqU6f6FoPnN6o+sj6JA5+KBwtQagm5xz4rM
+iaDgvGjo/u/1BP2qgn1FcDgFVQ+TuPh+EvQU2xa2XmxR6vkT4xaCXr3x/L+Z
+aApcyr85hrQT9MbiSqfReAqydvQvPusiaJHtlx7mX6JgrJ3rUW8fQf/+2fQo
+6yIFG49LW0sNE3SiUif3Dzw+km3T9K5xgo4slJptvUJBdfzuO/HTBG0qZdnG
+eZMCMckTWyrnCXpteOPyMHz9///PoJc3DDQeiKPgf1Ddh4M=
+ "]]}, Annotation[#, "Charting`Private`Tag$3858825#3"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmXk0ld/3x5Hpo0h4nouSkOFe83gfU06izIWSBiUqQ6T6lEqlKIUKTSr6
+GFIyFEpJprOTSikapEhpMs/XTPie31q/v+56rXPO3vvs8977nGddJZ8Qtx0C
+fHx8Mfx8fP/365uf0D87y4JZF2O+TC1jkJmSVzP/ywIh5eaYDZrGULXy9ubQ
+cRY06lql/2Abg9r3J696BlgwdPSLjby6MXTN+53R+JMFdSrzM7cpGcOeQGPP
+wmdkXCTn5nzaGMJVm2DnGRbAPNMpjVkjSEpWufhWggVLVMx7K98ZQWpLdIjr
+PzQovU8OWRlgBPQ799VsigK0nLfhj6ARVK9xt6lRlYGZ2FJRnGIIdmzV/SrK
+0nB9bcqHBE1DMMvbnFmnKwUmi5pf1pYawGTsTmkD9gL4z+eyS6+lAYyM3bqy
+RV0SlH8tU4oo14cq5YtGFcES4O2x1StmuT6YCx0v1Nw+D+b3+ipPFenBZcTl
+Lj8mBiqNS56cMtAD3xuerV2ponBu1jayy0sX6u4s/oc/SRiWJF7e3Yl0YPG8
+An1cJAj7OyJ4Gy21QWxJW11njgB0V/fnqxtpQfMN0ZofNwUgYbW01io9Lbgn
+p/nic5IA7Ile4++vpQVrpPeUPY8VAFkxWZ2CpVqQKDyZlR4oAFT8Cod1lBYo
+94pHbuAIQLwGO3N8VBPMS4yNXmXzA3z9ZVZaqglBa6OuZWXxQRHvxb5eR01I
+nykx5KTzgYmERd07O01oyBqozb3OB9kl2sFFtpqApjcJ5cfywVDI7UPRVpog
+k2mw71EQH1B35i+0M9SE8rEWx0o9PsigWke4CzVhkcmBmcd7Z7HSrgOyvT0c
+OB37w6jUZxZfs3ozqNDFgYHvjrsq3GfxJoUIX9d2DlSdUf5SZTyLww9fkIef
+HAhurLv/fmIGF1/8tKS8gQMVRzk7uiNm8IfNYfXcpxzwftZSs/jiNP5R0JG1
+/BoHVlmO7/gWMY0vHVtge+UKB3QeS/Ld2DuNW9rFXXoucuBvznIjOddpfML2
+9oNb5zlw7WLGDWnJadzcskne6iQH3m3zCxaN+4u/XakcWxTCgeV8/RK8mCls
+32Cen2DPAY0wkeyCw1N4pdzdw+tXcUByWHFFSMAU1gwXF1O25cD39jUHe+ym
+8Lhc7OlKxIGwugctbSJT+GtFvYE+w4EHKaEFX6MmsXyjQuBLdQ4oW864Po+Y
+wArFR8rb/iH+F1hqXd83gddgq6V2ohwIbzsiHOw7ge+7H5S8J8yBpviJEhnb
+CTzHRPh4xBwOXPo1rLJddAKnreR9XTvNBsHo7hGB+HG8dtEEzhxkw4PNnHcN
+x8fxiwBppeUDbPDWD8jJ2TOOI4POLGrpY0NZU9sWN7dxnPRXqF21hw0HtH+9
+TKfG8QUN087vbWxo+/DlOroxhrfzpUbPNrPh8h3WfpnzY9jB5p54/Vc2WB/1
+cOk4NoYDrs+1vNvEhhTVeoGErWP4IiOS4veFDesP1e1qUR7DX//tDRerZ4Ow
+s8TKQukxvEXtv6C/H9jwUMl5yRnBMZwW80CM954NkjWv63XaRvHo60cbO+rY
+UK3wwjI8exS/E7qzif8NG0J5grJuSaNYpU/ju2QNG5a+XMFTPTuKZ6abqaWv
+2XBiz9PMt0GjWHfHr8x11WxgnpXNV9AbxdpzAze3VrEh27/wZ2nRCC4IKwh6
+XMGGep9URcfMEdzz9uXxoXI28Hmd9Wq6MoKfdikNGxL2cPVtHN8/gjMOn+Ov
+LGWDgJn0e2PDEXyPbfhQ6gkbtI1mJZ4rj+Di5piGvcVs8NTpdlorNYJ3+Tls
++vSYDXnKz6r3DQ7jIrkF57KL2LBx7r+Qnz+Mu1IzY04/ZEOU0NaZZanDuKPa
+s0KUcMGsg0Vt3DAun/y2Nr6Q5GtYubgneBijd4mZ2Q/YoN8nMXrEaxg3nHDf
+Zkl4c8ek4VznYZxqMXL0031y3s0f8tlawzi88/4nKcLfGip6ixcOY/2RJVLF
+BWwQfZ+jaTd3GLc5LMzbRtiwJjHg8+QQzrW3yJ5PeMvzyDs7u4bwuLbMnMp8
+NsTg3a0jjUO4q1av9BDhh082qkS9GsI3K6j3hoTF8gxSM7KG8EJffZnHeWww
+zlr8zeDaED7o5YaOE/a+Kbaw8swQLrOVrHYkfPbGqKfrwSG8behdziLCRYm/
+En/sHMLS1FD74D02/EyorQ/xGMLbDWvDawjPO1siNWs7hBWMH+3OJsyNylwT
+ZzyEw57zis4S9jl+MU5BdQhTaW899hE+fzj8zV2ZIfxL/aSzF+HifwPFLASH
+8KlKpyQnwr+DPexqhng4R2CLBSIs4W99euNvHg4S+mnAEDb10anq/MDDHn3T
+R40Ib98sL3C4kodDy+vljAnHewgj0Qc8PAXHRc0Il6zhHbuazsODwVJ2Kwi3
+OnwvVbvAw25bkj6vISxp+3ri0QkeNs9eUuRD2NyqiGu7h4e9uzJ/HSK80/Tm
+gfqtPMzOYW++RPiCYVyh72oe/hSdqvSAcJl22CBvGQ/H+o3rfyLcrr5TN1KH
+h91DFM/9JSyl7Ba8YDEPZyhP6GiQfFouWpabJs7D/YI75DwJ+9OcTt3pQbzb
+28LhHOFLkrQ67hnETgbuUEW4Qkxgh0vzIC6wOxjGT86zU7Dv5reaQaz+Z+9B
+a8Iys40/gkoH8YptQkVnCAcO3d98NmkQR0l08BYTvVw3GTT3ix3E3idrd4YQ
+rj6st3BF2CBOzRUZeEZYlS+/cXLDILZSWW95mOhx7Yq+4gb7QXwnq36mkXDk
+ae1rD0wH8f6bIe+WET3/mHfXI1BuEHPLrqfIEP1LrOk2XvnPIH4ssfNaFGHL
+SxxKeWIAS919d2OScJJc9sfGLwN49YUqPEDqZ51a5hr7awPYVUfPVpzU36mA
+Vl3V6AFsNCKyK4Xwg7tL5/MfGsDBO67GG5J6lTTMeFu8fgCvKrheG0DqucYq
+zUGDNYBX2q8aEypjw2RkC1tQZADL2iq0FRF2PWcpBb39OMQy78Uu0h/mXTeL
+173Xj6+91PX4SfpJxAOjGAmtftzprBI+9ZQN35nCVS/m9uPUkk2vayrZYIH1
+hcO7+/Cf0VWTqc/YMFqjc7I3pw+78Q9Muz9nQ1CrxrE37D5898pZ7y7Svzxl
+FfbGqvdimzm57bXvSL2kJOtai/Ti4u7Yc82kX0qryvdNtPXgJn/H0V7ST2v1
+WbsCMnvw2wZzyUWf2LDCccEOO9UeHL5jztLbjWzQCRfaIKzSjX9rbuf5/2aD
+fMm7qx2C3bhOUbUk+Q8bhEaTG163deE6MfW771vZ0BxssDY+pwvfeVgssqqD
+DbFeW1fLGnRh59V6get7iR4tnthylnfiouhgK/FxNqRNBRm4bG3HmjcX9eD5
+HDjHZfbqLW/HTxQcvdYu4MDBf+cUSKm0Y4HoH6XdUhxw6b6u/bmtDTeZuJiq
+0ByYbnqh4b27DWvWK04/XMSBjSVLFPcda8UwK9q6jcMB6cP1cxOTf+Ml7ke6
+PpD7d3x2YkF/2G9sxOlp6CL38/fTirJ2G3/jgnKVdiEnDmRdDlw6KfsbX51Z
+5m+7hgPLCvgstyT+wumO4Tc7PTkQ0K61W+3CTyxtZp5WFUju21yx9GDxFuxz
+pHLifgIHPm8P4uT/bsDVEd0jH/+Q98e3NdyizAbc02Omt4e8VzI9jG3KAxqw
+W2roRQnyntlvN+NV0/8Jf81SeeHaT94HWgkX2qfqsXb6UN7gBAfshwrHFWU+
+YrtHCXevzNeEA3PGzivF1OKtz5YXbLXQhINhnLhXVyrwilO6a2OSNSEnnkG3
+9MqtSvXja0/4a0FcQESDd+RnK02l07J/N2mD+LCT+V3X31aLzCS2dDjpwI/9
+L4xCT3VbLd77WnjHJl3oe+JcebB60KpEK2P7jJEeZJ5J994eM2K1I+2kVluh
+HqiO5kofSp6wQrVNc4Qs9eH7A8Vyc/9pq8ur/TZkl+rDuqs/orsT+NDzbac2
+9hgbQMrtc+VOiQLoDYi+/fvYAAQ3BfcKHRZEsr3Hay/rGEKtd/Ydt1PC6POt
+bbfacw3hkbi811iQKPrE8O94qWAEaklKHSJOYsj1RygVHGsEk6GnpnPd56GH
+p2X5O/8aQffkQoksRgIdl1V7mbTdGNL8ztQvVJFEcXHI/fN7Y0hY/uacnOoC
+lMK8dlQ1MwGJkFzrZ5QUOpnbYBN+1QQqbIrLi+SlkdZoa9uSaROYDt5q4iEh
+g6Y7WtdWe3KBX+TDdc1pGdS7QHj36YdcEI7eTzP8FIpYdtSng7DYP6xLNkIU
+EtyxuEkrjwvzY5/Md/2HQs5dVXETj7kgM3fzOS9xCmlZmTHvK7ggd25GNHAB
+WR/o6eGcz4XF4ulRoRSFNh69KR9XzAWVuBUCJ+Uo9F9l6i/vF1zQmN8WHq9A
+oUCPV53LS7mgnRA9laxEodbzB9+pFXHBYIHmoSxVClH3C+vvv+aCycW3ww/Z
+FFp18+7Ej+dcMJfes/epNoVq9q2ZYEi86LJU31t9CmmrNJcsqeGCDfUosMmY
+QiZKNuyBt1ywT1zf3mZKIc1lhbrHnnLBhTXpO2RJISONqbsXXnLB/dqNH7PL
+KRRbv8ht7QcueMpZec1bSaF5Gqa7eG+44JX0s1HWgUJzx1P5v1VxwWfhKQ9V
+Fwo9zVa4tYXM97uh9lHfjUILI/TNBT9xIUjh1eplHhTaZuPnv+EjF/ak7Hrj
+sJFC7fS1VJFaLhxQlLBfv4VCQX/3PtnwhQthaQXPfX0otGG6yUKuhQvhSu7W
+e3ZS6MYp2uVSHRdO3hypOBpI5l+g79s2cCFa5Zp5zG4KpYrU7afauHD+llnx
+lX0UUpPe45X5gwsXVb8Z3QylkLD1LzkVsv5q5vH7eWEUkr968Gk1mX9DXVmn
+NJxC07cVn0b2cSE9qyrnZSSF+FbjCZvPXMhk+6nXn6bQ29XKf+uIvZycf279
+iCX7eZwu9GiUC/mad5f0xlFIOq7ua0w7Fx7edflv4iKF1qYveLacxFesPSgn
+fJVC+lZ9vv+NcaE871KiVDKFVurHi9XyuFCpayKtmEoh65htkVs6uPCy4Eu8
+ZgaFjIcWHNDs58Ib/SPzmDsUij5+xPUy8ff+gUKMTS6FNuelPjEl3GAIQq75
+FBoayfGSGuTC14c+kV6FFIoZDFWfJfzDWGg24DHRS1RseuhfLvwpunMktJRC
+T17euvyKn4FOrsN4JKaQZNpGvxjiv6+4Z3/8MwplBu8WNpzgAs80fjD5JYm/
+pJFXIcbAWIn+7qwaCoW3tFlpCTDw17y+62Ed0VuPeopGL6mn8lC/px8ppDwl
+XflOlAHhZXJ/3n4m+ZGc4/mRZmAuLvVu+kqhn2nLou+Nc0ESbfnW1kKhxlq7
+4P4pLlBP+TYO/abQ+53O/SlLGJC3zmiYbadQ/KX6x2clGFj8zNZ9Xg+F+M/9
+Tgol+VSx6aiTHSD+lka/WyTNgMbzWCfVYQr1bT/i+kueAa2V2q/0xylU9ihx
+75Q4A/ov62yX/aWQwegkfXKG1JPdvkoHPhqdD1lqPyjHQIzB3P4FgjQ6k/Os
+Zc1CBpoX3VrYKEKjddceH58m8euKWNqlzaXRjpHuozxiL3Lw036/+TRy4YiH
+9ZLxT193p+tI0+hIjqKllxKJ54VI7QhNo6+ZAvPYagwcKUibLJMn602TVfLI
++tokU/VTi2kUUPPvazWyXinqg7ujMo3UMprFsjgM7A/ZdUJKjUbnjuRbjzEM
+vNwgeK+RTcbLlHrXS5L82PzXmKZNo8jleWa7WAwE65gI++vTaFu8RWKOCQMg
+W2ega0wjVw0Nq1YzBmTm+G8dZWik/uIYz4H48+vlO1duQSPktrnakeSr5PP1
+4lOIRiGesbbXbRiQqDRodbShkWKj2uPj5gxsu1uzQNqORlJFuuFJigw8TNy+
+rMmRRnnPU08sXcyASMR0YPpqGmnlJq2psWNg467Eq/7uNFooWfd3ypKBe+t0
+q3TX0yj10LbLGloM8KHqgdGNNPLWbNqkp8yAO2ebQsUWGlVa71FwWc5Apsyk
+fZQPjXbOBh0eJzwxczHUaSeNaoRx2w0Sj1OnZoZ0II3wDv8NbnoMpH6sqmsK
+plGj89x9b0wZ4JV7/U3fSyMrdofi+5UM2GaNagQcoBFHzpYd4syQ7/34dXqH
+aSRT1rP6M7HXfVQjcuwojfrEc2rnGDCwzO9pXsUJGs2x5JPMd2TgguvGr1Gn
+aLRfeZPEc28G/pgPiThH02jw56jIEMmXXqtHScBVGj0bP3DDaTUDJ+v62/SS
+yf7T/VbIqzDQ8CRaejyFRtWWL2RVXRlg31JC+CaNrq8PPXwsjIGjcSVBpzNp
+dNlysEJmIwN1h9yvO+fQaEGc19Bjcp7Kvj3PZfJoRJ2un7lN7Ic6R/G+3qfR
+VbdJ/fr9DLziLlbMeEQj3z1qkfO3M7BI+bFj4BMaaXivbjrlxMCeeWsO6ZfT
+KJ2lrr7FgYFnox23xoFG+YXdDk67GKB/RrzHVWQ/G5DgFcIBNfIzp6uJHkaU
+kk19GSh7VMhxeUMjL32v/tdrGZif5rSeekejPUfH0qK9GPCJbT3Z/JFGSdvb
+y+t2M/Bof3hBxmeiL9a3jIZDDIhuZX0L/Eojybpf6c77GNhkX/CPQQuNWhTs
+jpeS/OYZ2ptM/KKR8e5PRVJBDPAv/uUDbTQyenYsPSqWgbWiR+LPdNFILERu
+QOoMA3d40mUufUSfncOBC6wZmGy+20HxaNTQYb1zuw8DNkHVCc6jNDp78Vxi
+bhID56d+M1GTNKKp3ZIHib2G2NkfZTM0Gi495vTXnoEl8gtjhgVY6MGq0KM3
+QhgIzDbR1xJhoT2rH086FhK9M26NvnNZ6L1/TPfHUwzMvAyOSJ7PQjzGL7DK
+nYFV62PYH6VZaPWM5GzYSQYS2m69F5NlIcZ2yxf7DAaaDsBh60UsdKAvIds4
+moGlQs1KYUtYqMZi/ZmmnQzsvjz26v5SFto3nt/5MYGBYhXpfZ0aLDRln6eo
+TuLnL9SRV9JmoRcdb27cvcyAg7VDpac+C/0++WUil/i7/H5HYIIxC/m8umAx
+eISB794RUtWmLGRdmSh69ioD6gM3SmYtWchr35zW+TlED8eLfbjWLGS+Z6FX
+5G1S/xL1YiErWWjc7ZagODl/wZT+B5kOLDT0/XrLceLfRXvupu8uLFT2bxnH
+oprUT5naHNqdhfg2evCfvcnAT0frXOf1LGSz6I/TPaIHzlcv96hNLHTo0YnF
+t9JJPws8PFW2lYXywncHPOtjoGLicsawLwtNJzd8YIh/0ZgCRy1/FnJI1fGD
+DQy4yb4Z8g1ioVg4dF48l4HkO+3JyXtYqGGX0PrwblJ/JnNsPu4n9u4HDoTc
+Y0DnxeIescMsZJp2bvbRXgYOrTO7bH2MhV5PF44dfsjA0z/rLMIiWGj91WEq
+o4kBsf17/9yPIvmtsFh6oIToa875c50xLLRETu/nuwsMpFzMMlKKYyF7ya1O
+/MUMdChVNXteZKGk81fWHnrNgMH9llMJiSxk52ko+JXwETSlVZ3EQuJlr/4t
+Jfaq6uhPsykspHQt23+c2JPYanCMm0H0sVO698oTBjz7nFVD7hB9mUnyfJsZ
+uHks4G1mLgt1bPvPU6CXgZ55UQe+57NQVcSotNpZBoxvpCnQD0m8C5VrzmYy
+EK5Z9ty5mIXYOLoji+SjuuRzcFQZC8mamX0P0zAFKYchqhxYaPTZbx87or/N
+jRIVw1UstMqMr3A70VemP2en1iuy/tCOEL9hBvrHbCW2v2WhlLgR23wjU2DO
+bCtKfs9C35QO8V3C5L6jj235+ImFnjQ+YgkdZODN7WvCc5tYKEoqOD+IR/qH
+8cM86+8s1E3f7LPXMQXvqjqPsF8s9JO3WSz0GwPZ7t0z99tY6Ez9wcwuol/e
+L+E7nV0sdPkNvq70mwGLfcqrlfpZKLLmdkmVvCmc5l825jnEQu1/e/hMxhl4
+l7AhNWGMhXI8Ew/KE/3JLzmwqnqKhV4J7xXXfcnA////gEAjZdXpCQb+B2Kp
+/2E=
+ "]]}, Annotation[#, "Charting`Private`Tag$3858825#4"]& ]}}, {}}, {
+ DisplayFunction -> Identity,
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
+ None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
+ Ticks -> {Automatic,
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ MachinePrecision, RotateLabel -> 0]},
+ AxesOrigin -> {0, -25.205799457979587`}, FrameTicks -> {{
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ MachinePrecision, RotateLabel -> 0],
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
+ GridLines -> {None, None}, DisplayFunction -> Identity,
+ PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity,
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "ClippingRange" -> {{{-5.999999755102041,
+ 5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}, \
+{{-5.999999755102041,
+ 5.999999755102041}, {-25.205799457979644`, -7.661000555932736}}}},
+ DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
+StyleBox[\\\" \
+\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\
+FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \
+\\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm],
+ TraditionalForm],
+ FormBox[
+ TagBox["\"| \[CapitalDelta]\[ScriptCapitalF] |\"", HoldForm],
+ TraditionalForm]}, AxesOrigin -> {0, -25.205799457979644`},
+ CoordinatesToolOptions -> {"DisplayFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& )}, DisplayFunction :> Identity,
+ Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], ImageSize -> 300, LabelStyle -> {
+ GrayLevel[0], FontSize -> 14, FontFamily -> Times},
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
+ None}, PlotRange -> {{-6,
+ 6}, {-25.205799457979644`, -7.661000555932736}}, PlotRangeClipping ->
+ True, PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.02],
+ Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{"2", "3", "4", "5"}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\"n\"", {
+ GrayLevel[0], FontSize -> 14, FontFamily -> Times},
+ Background -> Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontSize -> 14, FontFamily -> Times}, Background ->
+ Automatic, StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"], ",",
+ RowBox[{"FontSize", "\[Rule]", "14"}], ",",
+ RowBox[{"FontFamily", "\[Rule]", "Times"}]}], "}"}]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9},
+ 3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, {
+ 3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9,
+ 3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, {
+ 3.87637134045012*^9, 3.8763713522979193`*^9}, 3.876371879846971*^9,
+ 3.884692135165325*^9, {3.887183224363449*^9, 3.887183269387279*^9},
+ 3.888652370069249*^9, 3.888652437166812*^9, 3.888652624199464*^9,
+ 3.888652845863263*^9, 3.888660610541423*^9, 3.893237180256803*^9},
+ CellLabel->"Out[13]=",ExpressionUUID->"fd2b4eb1-d3d0-47e3-9856-c74924a73143"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"magnetizationData", "=",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ut", "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}],
+ SuperscriptBox[
+ RowBox[{
+ RowBox[{"uh", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}],
+ ",",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<gs\>\"", "]"}]}],
+ "]"}], "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}],
+ RowBox[{
+ RowBox[{"-", "8"}], "/", "15"}]]}], ",",
+ RowBox[{"Re", "@",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"DScriptF0D\[Eta]List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "n", "]"}], "]"}]}], ")"}], "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "n", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}], "[",
+ RowBox[{"[",
+ RowBox[{"-", "1"}], "]"}], "]"}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"n", ",", "2", ",", "6"}], "}"}], ",",
+ RowBox[{"Evaluate", "@",
+ RowBox[{"N", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]], ",",
+ RowBox[{"1", "-",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "}"}], ",", "30"}], "]"}]}]}], "]"}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.8763698032393303`*^9, 3.876369884026998*^9}, {
+ 3.876369997688293*^9, 3.876370007596018*^9}, {3.876370093855591*^9,
+ 3.876370097827559*^9}, {3.876370373799559*^9, 3.87637037853475*^9}, {
+ 3.876370465791544*^9, 3.876370497109497*^9}, {3.8763705296866293`*^9,
+ 3.8763705300592623`*^9}, {3.87637087516536*^9, 3.876370917886569*^9}, {
+ 3.87637139299862*^9, 3.8763714209705677`*^9}, {3.887183678121203*^9,
+ 3.887183686457292*^9}},
+ CellLabel->"In[14]:=",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"magnetizationDataInterpolation", "=",
+ RowBox[{"Interpolation", "/@", "magnetizationData"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.876369897948588*^9, 3.876369916907255*^9}, {
+ 3.876370456614004*^9, 3.87637045960681*^9}, {3.8763707444350023`*^9,
+ 3.876370747760907*^9}, {3.8763714277972183`*^9, 3.876371431900972*^9}, {
+ 3.887183690448813*^9, 3.887183699080945*^9}},
+ CellLabel->"In[15]:=",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LogPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Abs", "[",
+ RowBox[{
+ RowBox[{"#", "[", "x", "]"}], "-",
+ RowBox[{
+ RowBox[{"Last", "[", "magnetizationDataInterpolation", "]"}], "[",
+ "x", "]"}]}], "]"}], ")"}], "&"}], "/@",
+ RowBox[{"Most", "[", "magnetizationDataInterpolation", "]"}]}], "]"}],
+ ",",
+ RowBox[{"{",
+ RowBox[{"x", ",",
+ RowBox[{"-", "6"}], ",", "6"}], "}"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"h\",FontSlant->\"\
+Italic\"], RowBox[{RowBox[{RowBox[{\"-\", \"1\"}], \"/\", \"\[Beta]\"}], \" \
+\", \"\[Delta]\"}]]\)\>\"", ",",
+ "\"\<| \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \
+\(0\)]\)\!\(\*SuperscriptBox[\"'\", StyleBox[RowBox[{\"[\", \"n\", \
+\"]\"}],FontSlant->\"Italic\"]]\) - \!\(\*SubscriptBox[\(\[ScriptCapitalF]\), \
+\(0\)]\)\!\(\*SuperscriptBox[\('\), \([6]\)]\) |\>\""}], "}"}]}], ",",
+ RowBox[{"LabelStyle", "->",
+ RowBox[{"{",
+ RowBox[{"Black", ",",
+ RowBox[{"FontSize", "->", "12"}]}], "}"}]}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.876369918582409*^9, 3.876369955823151*^9}, {
+ 3.8763704278400583`*^9, 3.876370441157851*^9}, {3.876370738463645*^9,
+ 3.876370807838629*^9}, {3.876371122391995*^9, 3.876371134526176*^9}, {
+ 3.8763711865989513`*^9, 3.8763713519982843`*^9}, {3.87637143608066*^9,
+ 3.876371440221603*^9}, {3.887183707042214*^9, 3.88718373222613*^9}},
+ CellLabel->"In[16]:=",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt2Xc81f8XB3CzJNkhFZ97r33TMCvq3lBRVlFpoNKgkCRKWkKEjBANo5CV
+kbKScxAZZSVSRsiWvefv8308fn/dx/Px4T4+j8/nnNf7HChnrxw+z8bCwpLP
+ysLy36dVWuDw8rIoun/ip1hqK6DwvLiMxoIovlBfLL2wRwE/74s75Twjiq/S
+t9PtGQoo05pbPjgiis/rsgg3DQXs5+l83dQuipqT5+pDlBXQ4ZKqWWaxKG4/
+Ps7IpSngHelfeOGhKCoW3G38xq6Az57Tgr/xiuL92/v7qcXyGNXmfeXQKhE8
+a91xnV1ZHkVqTIzk167Fxo9aRpffyGGZsYlOpbQw2ijzZiesk0NdeWknGlUI
+V1+N8d7uKos7U0/FV28RxAgln16OPzI49+iCkJK8AGoU8p3iU5bByenYUAtZ
+fgwZP3vt5QNp/EwNVimw48XWy+9u3v4thRqcdzPp53gw/NGZGmeKFIYw1dX3
+3ObGBLOYhg2ONLR6YdbVH8WFnOX1Xwy+ULH6jcQq1mcrMH9Fo36JEBUleNK3
+QRYH7j0g9XvUhYL2f+WaA1I5sIo3/LfjdQoW5Md4nY7nQEPeAcNJRwqa2z35
+zRrGgVsKop4t2VHwRZWzp851Dry+YpcE7RwF1wXtaipX5sAvq2+9zjKmoLBI
+5b36dHa08rnWL0Gn4LkhbXpcAjvqbPV+Xi9Hwfel+T+uR7Pj1NUJBT8ZCpq4
+pCqIBrLjuodW4yxUCgb/DKo/foUd5096BLGuoyDfczO5NkV2DJUd1j27koLc
+RHd1XxIbGhvrluV3Edj8gqvyzys2vCEhQ4FOAt+uo5c2PmPDjOfZUNxOoLGQ
+Q37JIzaUosy0fG8hMGzFXELMJTZ8vZKLn7+BQOq/Ne7HFdiwaV15x3wpgRp5
+qirliayY24QrIYlAHnWzLRjDig8XvygLJhLYmumqkB3BiopN45ut3xDo/haI
+OB9WDD2jE7chlsCyaL01921YMaqiUjjhJYGmD827t8uzolizsYJBEIG2pp7h
+CQksaJNXi2OuBMYs5SkrxLBgXNoPU7hJYEPCSFVyBAvuPzb39/ENApmLJznT
+HrFgL+xcre5MoHC8kuMHWxZ8cLVjIPkqgZ+m2w4WbWVBHOseo9sQOBaztkdb
+ngW1kpXOKVgTKKt/0L2EwoJXDwaKb7pIYFB0Vk6ZIAu+7wm22XGewMpg8YOR
+fcsA7jGibmcI3KB2fSn76jKc2hfHGn+CQK9Hf1Q+nl2Gl5Y03t/HCRxpPXi5
+wGQZfGzE0oRIf35I/flZdRniqvYUBxwj0K6pOqN2dgken9UvyzQl8KeiRm99
+/xJ0vVrBs4K0lnu8xM/fS+AWgrynTAgUod/2bf20BI/OiV0UOkxggZvC+YH7
+SxBlELCUZkSgXG3o8yHHJVB9qfWDIB0szVo3arUEX4RTnoYaEnihqnH3zN4l
+CIhIn3pkQGANVfv6vNoSXKAMRq4mvdMlNXlJdgmkJSUPBOoTyEd4inFyL8Ea
+/42FcQcJdHUaMeSaX4Rgj+ZwNdJ/y056rh5chDOnXH0rDxCYc1VpTKBqEfg5
+3zWxkqaWvpRbC4swWPx0z2s9Av3EV1mKpS+CRdBEsy7p08VtlRLBi5BsSf8S
+rUvg/l0z51vuL0J0tFOxPunN2fwsL64ugkfK4erF/QSu3Sb/7MSZRVByYh/P
+JL2QtEdl3aFFaH7ZoHaFdKfUiapG5iKY9iq+3kK6ItLROmzrIrhcuc2c3Edg
+hpgv2xFiEXYI6Isi6fDg1y+E+Mn7K1LeGkj6Lk++Wt3yApR3tT85T/qCV31N
+4PAC+H4QPcgkbcDy75JR2wLAsyQLgrSKKycnb/UCfAzwaOQkvX5iY9TXggUo
+CYgtGNlLIJu92g7f1AW4Ny2xsZ10X4/hd73IBVj4t3GhgXTNmYt2XI8XIPZX
++7k60tm/7678cnsBlKoKT38nHXkkPMbTbgGeLtJnm0h7Vqdr6JgvQMPWePVu
+0rZ65T/YDBage3eV9Axpk+L2K4WaC7AccOIbH3k/O3fNrbq3aQEOPRXfrkia
+ki0Yu3vDAuw3mb5iTJprG3334uoFeNs+fucm6eEk7Z8f5+fBcUHxSgLpBqlT
+jq4D8zDl13qghfSnSCeeHb/noWjXiQ1i5PONFfOPn66YBzsBwSEz0r7Bccys
+vHmwmn9SEUXakafgl1PSPJi6+eYPkt7DMsw75jMPvxsJngjy/cq5rkxMv0le
+35N2d4Y0/4Sk9hWbeXiYH6piQdZHa4+xy6DuPARPpwdokvVUcsZGIHn7PFwL
+aNH/QDrl9/1kG7l5WH/B5KbKf/VZ/a6te+U8lPMGGu0j6/eMXuXNuOk5eEyz
+F2girVvcKXSuZw50EkocHcl6F8kW1m0vnYNrbrl7c8n+eBfpnP7bcw4MzSKD
+ww8RGCEWcODZ9Tlos5b5cIbst3vBb/6anZ+DPwa0tm1kPxp6/RRr0JkD68Hq
+ez1kv/bb7bxfwz4HUi7iPolmBNb2HF4fMD4L06DolEL2f86Zyx8MOmfBfLPf
+r6z/8uLIi76KolkwK5U81nGK7JddS4dK7s/CC32PqlAyX2oEdm2KcJwly80o
+G88SeKf71go7q1ngySVCx6wI/BUwmye8dxYM5VKsL18g8EnHBO0c1yw0Hnqw
+KvMymR/ZykvqszNQorRZWdSOzCNfx5+r+2dgX+jZcnd7AvVVR/wyK2fA937W
+LQcyHzm8BybZAmaA/cua8jcu5PM4pVDTcHcG0hiHZPTIvD29zSYpyWEG6rMb
+Xf7L4/xf3RaHD8+An+GGPeZ3CLyu2PElZu0MbJirvRfqSWB33c8I5otp2Gt0
+3/1VKIEhb0SdhP2nYXzthhtfn5L353bUsPf2NNilt2csR5D1Ll3PFmg5Da8h
+0dQ9ksBjN6ovt1GngdO0QWaePD9WGPDuyxSahpZjytyO5HnznmJAPOSYhjUJ
+vRzjKWT9VFbUb+6egj18Ve+F3pHny8bSXXcSp+Dpr7ZD3/MJdB7jEDv8bArO
+lWsxIoFAqS/aY9K+U/A6+NhupyLy/ToUxn+znYKt1gkLe8oI3F6cz7dx6xQY
+mW10tq4nMNE6s/1j1iQ0lusf5BgmsP5slOTB+EkojKFuaxsjkMXc1/xX6CT8
+dLdRqJgi8Oghq6YZp0mIplRY1i6RebBTqFZVeRI27GF/kMJHQUWVZd4S6iR4
+vpCP4xOmoNnmAX1TwUko99pC8xSjYCq1uMxxdAI63tl5JFAoeGL1NUxLm4BR
+J6GsXyoU9OS0XNodNQGZAY73fu2gYPryAc2qxxMg6dbxdHg3BVdMUHMG7SYg
+fHrNxZN6FHzXXJcmv2kCdnfYuu2zJOeDVKWo1wnj0Bdewt8RQEHVBIkWpfBx
+6E3s4nUKo+DpV9zrix6Ow8VnMT5SLymYFdYR9ucCef0l96a/SRQ8ezf48Ubp
+cXh041nR1BcK+t+88zVFeBwoiZxrQqspmHPtErcmxzhIDyobH2+kIK+1lteJ
+zjFI2uJsbdZDwTzjsdtPY8ZA7bvspOkqKnYdaP0oEzQGt0Vmi/YJUpF/b8Xs
+h3tjQAufeGGznooXdry6Xm85Bl7RXQF6m6koSD1sJyAxBgn7tl1MOkrFXRt2
+J0evGYPFIZg+eYaK1iIKfVsWR4FhpTJvZEvFAm6284bNo6CdWD7H/YCKl8Yz
+Tvk+GwXO09l3FN5TMUJtVOPio1EIzJjaxFtIxbKbW9dru47C6KkX1oZVVJRm
+SWuaOz4KHVvqD8/0UdFUeyinQW8UUnd6TtnOUNHdSzH83Y5ROO1xj266koZ/
+eFKOXlo3CgY6yB0mQ0Ne4wHVfatGIXefmA6LOg13PVFYS50dAZ/KoRML+2n4
+bF3i96afIzDmzfhcd5mGR2TijfXCR6B2r9WTE/k09LDp2iLtPQKZLFaBGXU0
+fJcixcd6YwRMVhxYEuynIb/y6285x0bgvvlzisUGKWQ4d6SE7B8BgYw1773U
+pdA+l+LnoD4CWuXt+jtMpbCSEX1ATnQEWqrN9ZeDpXDOvU2eY+UI2JWcvev3
+QQoP+e0SxH/DwFfwe+zFLylMFcyvcfk2DApp8UEhbNLIE7EzYMvbYTA+Lp0y
+oiiNNpK5Bj1+wzDAqX7mkLk0lsap80TZDsPfhr8/HgZJo9SmrIqj+sMQvTjv
+kVIpjfffqfjwbhoGtcWpLu01Mti6PXN/6ephKGP1pd4xk0FN2LbizsAQxNYY
+rU5Nl8GIvemfVSuH4KXjsuiu9bI4Vbn5wb+kIVBVSzToipFF08Nv98Q9GgKh
+lzGKrMflMOMnncX80hCs7NjR5XVDHnktkwqEDwzBDlYON0OdTWjbJXf7q/wQ
+GG/XsORrUMCKy280PFYNwa6Hc52X2eVRdkx6TqPvH3AUhfOGCMmhx43YnPGy
+fyA7rKO18qosdixRXZIT/kHGn+eV45MyyPSMUbXy/gczeb7be4Jl8OVqYkLc
++h8E37eVW8Uk95egyHd1+//BoGJ8cM2MNJqJbbz6SPYflFCXzc/kSWNW5PMt
+Wiv/wRaLPoEad2kUkhYfmu0eBBZv35wiY2l0SA5PySgdhIuK9/w1adJYtU30
+sk38IEif8NO6OyuF9JxQeYrXIJj3vJudrpNC793CvT/PDwIXV9mcUpoUah8U
+OK8rPQjvbcM7/e2lMLo2gMbCOQivctZ10g5J4dIx3o7svwPAJvDI9oyqFOac
+W20pGzsAXXb2axXYpFBkwGdj24MBWO2RWH6FrLdrV7maw6wG4GK7MkvNdxpu
+vsN5fAVtABauxdq7J9JQPK/maS/HADis1hGZD6Mh59Tzhoruftg/0RUk5UnD
+Zjsl04CkfvC3uSt00oqGZYmLwVf9+mHb0UduJiY0zOwqqzWx7weHUim179o0
+fGRuaSSm1A9ioz2iemQ/OUcoPJ4T6ofqAOVt28RoeObH5NfmyT5I2XvvqAc3
+Dbcb+B2Iye0DxlrfiCMjVOzRzN2rsKcPtNqZlyWRinU3PDx4aH1gv8E8tZHs
+/4L3RsVDHH0wVMLP+zORimGbupmZZb2Q1Bw0GRtCRZ0NQpqaxr3AOffCW8qO
+ilvNWl0llHoh4djD7bVWVFwfkpjLItwL6j+y+N6doOLYaqZ6SWMP2P9QqOLS
+o2L0vK2SoWUPKDSzbmmWpaKf+varW/f0QOGH0IE5SSq6XGNPF6T1wIgn37E9
+YlQ0HIhQbOzuBh6/7AtMMh8Xf5XKnbbvhrhStazeQQr2igRf1DLuBse/e4qk
+uylYf9g8XkqpG+zV0je5t1EwpWKc1jfZBVFmO8pD68jzI4+QdLzdBW6HDAoE
+8yi4b2rA3NSyCwZtdgurvqfgNqXsF2p7uqD8/O1Jh1QKciUZiM9zdEHIKrYp
+pddk/ke4rvXw+wtfd+TY1fhTUOhm/eqw552Q0J3XyXGRgjPLswLDrp2wafCE
+GvUsBVu9JMV0T3TC+oGvFabmFEwIuSQ1J9YJboVTy9MmFNydzrLLIqwDWi0U
+j9C1KCilLqOdfb0DdOqDTXp2UXBVwUE9/iMdIBb73PUDeb7VV4YdKRLqANlD
+DcNe2yho07PJXiaoHSo8zQsnyfPR0P6w012HdhgrcNDYKUFBlUkX159G7cDl
+5eDyWJyCS2zFXo9420H937TCeSEKhkgcjxry/QP73udGfuak4J1k7hi7NW1w
++1r14rp/BOrlHnkr+bUVtHOxaXc/uU9+ic6tfdQK/MEWKx16yHmgQ61OlasV
+gvvsEqfI/bl+nRX7ElsLvGyNuBPYSGCUbCpfemEzLJz7eUToB4GXVGfXn73X
+DKoifRoxdQQuGweolC7+huhD8rEt3whU8P54/vHMLxBZSJH48ZnAydAVjszs
+X8CjuCI6hZxP8PWhO2PXfwH7KiXaYyTwCPSEHR1vghNd8MGenG/uTQmVSQz9
+BFZfjZZX7wlsPGerkNbZAITXyacQT+6LLcbqWfEN8MIuoVYnjsD4o6o6n2wa
+QGL96WO1rwl00l0yrxz+AazuOQvL0eQ8tSkwqGe+HqyHTpZkPCdwOtYpcqig
+HgIj+K9ceUbO5xuPJ0/er4e3f7h/K5PzWwoftYSdqx72qF7Iqwkjn9945oyk
+8Hewvfe41yyYwK224ZyyjXWw3sdh4gC534t1uQluflYHSaxzetqB5LzYsHeT
+JlEHb72mI/Y9JtA9r9HSbFMtRNa8Nw57RKCNcr6t5XANDL4+R8/1IdA4Jfrm
+hXc1cL+w6m+7N4ESkTZPnLbXAIdrX6HOQ3IeZZ/2p/hUwfqvtrWGHgTqTMKb
+LXxV4JvToh/1gEDBHu/CXaHfQCnPb/+kO4GpFeKTx2O+whW5v/4Z9wl0y+/k
+tZb9CnpXfYpFSR9ITZFzflsJz7jO6z+4R95v0O5TwbkVoHdcW/HSXXIefbDS
+OZpRAUICFg5d5Dzsfr0mILWkHOQ/tzSfJy15/GxxRW0ZiOS/WeV8m8ChA/SW
+n8fKwGgDXxYn6XzNianuli/A4yh87pkbgWaElwJ7fyl8+uceWXeLQBlBIx0B
+h1J4eXxO1Jn0BLuYheRUCVyRpdtJkC6a/OOi6FYC2fs6QyrJ+TyoJzFIg60E
+Wll5vG6TPt3kmKzn/Rlu3EhUVyG9uVKj5BjvZyiQ/BU9TM73FanfZq6JF4Nl
+4LCzE+nw6DBB9+giaPQPrNtF+kKw5aZAmSLgVtcsXk1axUNuX2RKIdzy9Ge2
+3iCQ3XnUMkWpEIqW1bQ+kK69mHczLwfhjR4bBpKOOv7gSdluBI386gwH0r/C
+wk+89QGQWAjlO0LaxVXhcXloARwLPVO7i7Th0EhDWvwn6HsSqE0nLXM2WzIs
+Ox/Wscq3bSC99OO2tVvZR2jb2PtCkPQPPZ2Ms0158Fss8joP6ZRP3HO6/blA
+fat4lpu0x7ZarS3zOdD/0ffkf9dPxT31XcuTAzbr4cR/v6+8zqJ+fkM2EPv/
+mP33/dz+Uhs7FLPg/pKYkQLpDpaB82W7P8DbFbFqmqTznDJSU43eQ+7yV67D
+pIN6XaZDTmfCwd/DBZdJW5/azbx19R1ID9w47PPf36dqOHzOuGdApu7f/CTS
+YjqVtfufpENI26fpatKtV2iqp3TTYGwoemGGtP+x9FK5S2+hYla9RJp83pqM
+XWaTvslw8azmwaOkB2Qq+grfJsIWE2fvR6Sf8R679bj6Dew7ku9cRFpvqpPn
+5Ggc9JqM8y2RnmlxiJQVigXqWl7DXeT7P/r2USEejQZ+i+XoUtLcClvixUdf
+gB0uJ/KT9WQ9q1ueqRIBL83VmRakaeFufN0fg4Aht3WRnazPmhSJNtPDF+Dk
+hr3iN8n65ThzkPDWNmREckb/ayWduPmVC0+eI+NjhwZFl6z/liabtBhDb0aV
++csnUmS/uKQZHBwUe87oH9Ll5yT7S/yPspzJj0hGXc1zY0/SFlz+bC26MYyL
+B9Z/4SL7k2XHtTZtzjjGqgULrXVk/+o8Y0QI3ElhZEmc6bYk983Qd+9W7j2V
+yhgrVNefJX2tS1BDc2M6o9YqB0O9CPy86Jl4ZT6DwdBPKmok8+HCZluvhuwP
+DCK5N/4umS9JAduZsVs/MWpL8kdPkHnE8Tkqf6VKAePGuJCqCplXljMrdlxW
+B8YW5ZmP/GSePUrvF1sXhQz50tw7358QuHtdrsCfuCLG949PtO6S+218/xF2
++8xShkfkrNrlKAK/e/gUSqp+YYDfvKYzma8skp/u1mZ9YaywVFTxiCHwhInU
+gkpeGeMrx+eOBDKP+fLHJuaxgvEgkP2jcAKBN/wDun2qqhjXoyV1HDMIjJMt
+jtUwrmZsM+qVSyL33brCqbP/aqsZqxQ4PvzNJFBkPvVKwqUahgtnccaZLAId
+togMrravZWjbw2fXjwRKh//9W+f0nXFyJiNGupTAxzb3G067NzL+dTiu0moh
+0LuS9cPfgkZGzIfY+pRWMs8U3Z9Yzzcy0jtD7q37Q76/UXdjB6efjPy4EfuZ
+DjJfbnpU3L3QxHj8ZZvp114Ct/k8LIg88JsRtVu2qHyCPB8T/OObBdsYPS81
+J1byUnDNhL5GyqFORhNzcwvbXgry/1KycnHsZKReSsqc3kdBYRTz1XrSyQie
+m2QZ0qWguN/fXz/rOxkn7ghMtupTUE7KzZXT7C8jLOjjdK0pBbVMk3MtLLoY
+0fNWa+fOUdD5/artApd7GIa6g41MLwr+cSpVcfYYYHxqblkr9ZWCQ7kGRS5l
+owy97h8z7RZUjH8Yc/qczyRj54bgppAhct+bSha68XyWsfFWoIq9Pw1b30l+
+0rBeZAhlzKpkUqTwyNM/3gOBLEzpKzf378yQwsg4v0/6YWzMRYvSBy/1pJHj
+pN0/zpscTAkD07ft38l5/XTim8MeK5g9uQJF7Odl8MMacfNpWy5mWtafgd89
+MijzjNK7Up+bmfIp7fx7K1mcc/ZYTDbhYcq2cYhQu2RxYG49b8J2Xmb8xcNr
+rpL7TfTFh/XrafzM2uZS1891chi456vfOmkBpsFUdNyhveS+cyVZq3itIHOY
+I7naIEUeC3RyPmWJCzFDHDdfGRNVwEU7S7WjvMJMbyUPqYYbCsi6si6CvijM
+NHjVdPBNvQKq6ToWHWARYdI+u38YUaHjXHNK79oxEeYh71K3r7501LEtCzSY
+EmHeexCszPCno/9853bPORHm/j+dpzIf05EQX+8zwSbKvGCUERAdRMf9x3zk
+vwuJMkvoIjlBT+kYUnv+UqCqKNNbU8XL4zUdN5dKDHLfFGVeyvkiyvORjjeO
+7AzRuk3+/IWZluv5dCz8e0TT9b4o89bOUZf2T3Q0Zff36/MRZbLMurkWIB1v
+Mec3lT0TZQYLWkc9KaVjWV6jnWe+KPOkUgbjQh0dBQ+Mr/2EoswU5RsWFd/p
+eKqJt2DisyhTea3cqq0/6Dg8vZf33DdRZgPvWz7Wn3QUUX2fqtUqyvwVEKuK
+LXQ8/bn6qGuHKDM+MOSJWhsdE00GljK6RZmW/FNn0/7QUdORakQZFmVGDEfo
+JHTS0Yt197TZuCiz/9w1ulwXHWsCj0cFTosyhbsLfyd201GcuL6/bF6Ueb30
+KZ9iLx3///86JvPVKu6IPjr+D05eNpg=
+ "]]}, Annotation[#, "Charting`Private`Tag$4159201#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt2Xk01N//B/AZO0X2QQvNe8YylhAqwhSKtEgl+pClKEVJpBRR2StLUqhs
+hRBKJcJ9FUlZkiT7vivr2Lfv/Z3z+8t5nOPc98x93/t6vZ5nNjtcNHdkI5FI
+WWQS6f/+nsqJGFtdpcBQ1CvFw+pKILooJauzRIGMlT2OJ1SVoGzPC+srcxSI
+qCMfPqWiBLLtBd/+jlPAJuqMhwdDCYbX9qQ0dVEg3EfC+wFVCdzOaVrmlVIg
+dy6svkxYCXzpzeAURAHy9Koaa1IR4uKJqGoBCmzM66q+9UYREjqCLx7mFQfr
+M6NW01RFEK89ckhBTAwaBL/Ocj5mQIXZEcNKuiicseMzElzDAGMFugdBFYFv
+SZaHPrgogHa2deqPLcKg+S0+pO6XPCyEOomoKwjBL68nxBt5eZieff7wpJwg
+DCmq0lOuy0EZNUqjxFUAdELfvb/WIAs6nDfzFE+vhVdkz+u1MrIQzdy2bZcP
+H+x+t8d9vRcdTj2x7BtO4AH+Myo1pHoa/EjbxEuO44IsSh7pphIN7P4B2SOK
+C4Lsm9sZDBpMqp9a6A/lAsMGzbI/cjQQLUkbqbrOBWNcja80CBpY1qvWPLbh
+AofveXqLkjToJhk8UN3MBS8eZ14q5qbBjNWZjXbpnBC52/2NXC8BQQm84r8S
+OcEgZnHnfBcBEn2ZAntiOeEhZYNMVQcBOm7jq4qhnEC6YLbo2UKAX+C17tnz
+nNDt+eJocx0BfHlhaeFbOGGfa4zk4CcCNq3NVUPvOaDOppqsnETAhV751vBs
+DpCMeJPEkUBASVFSoF0qB7i9dzNpf0KAjeuDFnIMB9h/Dvj06DEBT2quBBh6
+csDBTyNVRAQBkpG6Td+2ckDnxlrl5zcJEBWv9KvPZYfWff88newIOD1qoPgi
+nR2efj77J+gkAW/Li357JrLD2ZR3DZnWBBzxymZQIthBOsC/dNGSgKjGyHqr
+i+ww1N07+PEwAeviLeU7lNmBQWsX/2yAv49M/4+hDDYQ8Hf35GcQ0PqEp7Iz
+mQ3K1XV2RcsT8EpSsfxPHBuUCdTt3iRHgJmIW9GXUDaQOXR9VYdGQAzXQnrS
+OTZIY13gTdhEAPUf/y0rBhvMru37wyNKAMtZ1ceMygYbfioOfhEm4Eu/+dW9
+UmxQX2X2IFCIgLOdjy5o8rGBfiD5t/A6ArJ/bf5PaJgMEsmqZcf58Pso1NT4
+9pIMLhJOLrFkAtZus9wCSWTYPip+9gGJgPY8b0Z+LBkukMMuRq5S4dYrJPMi
+hAy6p6tQ7DIVKhJN+P2dyfBtwUqndZ4KcRtdeK7ak0Ek1Onc7BwVzsfdZ79o
+RYb2w03d4tgC0b/mrU3IUPhj8IfDDBWOBtn0b1cgQ24bm++WKSrIcvh1bdlM
+Bllz+RbXSSrM+iW3ykqSwVHbvDR3Aq/vPVAnyksGs8rvFobjVHCZ5a1ZQybD
+53JzkYdjVND1UPrGNk8C5TvmPsOjVOh0vYTGB0nwk7JwI+UfFd4MPygc6CSB
+tvhlGjf27TPv37U3kkDTmuvpxb/4+faLmVUVJGCsztMPjeD1jwY8Tk8ngZO+
+eLzJEBWSVgq3MpJI8O1i653WQSo0pI/XZMaS4NXASMdlbObyf5w5oSRgvc/m
+zR2ggmdaZKLqbRLkKbgPHsXOOPxV5811EvhtSLRc6aeCaKq6+zsXEuwepwvY
+YpuYneXf5kiC7enU0+LYvgtP0z/YkECHp96lro8Kec9/GWhbkCDKo1j1Afbg
+Qd6OjwdJEOJz5YMl9sZ5PW/dvST4LJO5lsA2T/EQQ/okUN+9QWuylwrBBzJy
+mdtJMLYpUbccu3i2w/SzKglyoqlKCdiTSWIDBgp4//Re8Plgy+03vfVlMwlK
+/mN222Jbz/ht3CtFAvtmatFe7MjE9x8qhEkgxPkgSQO7fN/fI/vWkGDuxmi8
+LPYia/NYJTt+nnTm243Ydno5ovFzq8jO6Pi0JHZllJTps6FVxMeIO7MeW2sg
+wD+peRWFh2qIUbETdSbyn1euoqJlEo8KNl+E9Wha0SoaOMky0cf26P1Ky3y1
+ilIebuo7ht2+fet/2c9WUXVpRs8lbON7zyJfh6+iPEbnoQfYb7p4K976rSJO
+e6pGIfYGLc+V/Eur6PXYRFw/dmBop8ZHh1XEte3ffQm8f+PtpudLjqyiZ7dq
+pcywT2zNT/pkuIqCubxM7mGXBVEbyzRXEbdDC70WW6X1nkCFLH4eIfFRAr+/
+x6rzhpUU7NtnRc9guzb9eP1zfgWdn2pkiuHz0KisM1g/vILKFyQUPbF330rd
+1NiygnLVs7lbsMUVfcLai1fQN/+krx/w+fK7OfipK3sFHTffVaqKz+PwryNz
+vQkriM3/Y1c2dskNhuOI/wqSULhQUDxMBfmfD+NH3VeQQSpx9yA+z1F0ct3E
+qRWUbpHztg/bqeaP3pzRCmo/JrZTDt+HWqqB56LWCqK4lb37ia3tlZ25IreC
+rqpOF97C92mdTIAEJ98KOsV5K2EO3zdvj/GDPIvLSO8kI74Y38feiv8C1vxd
+RjfoYydC8H39cEl9UqhmGd3JfmCvie+3XWlH5aaoZfQl44p6F77/e3XnHNv8
+l1Hb0JasqVm8f/mCpCeX8P/bc2UL4HqylLFLQ/LwMkpaOfXs5CLez6iUJyKC
+y+g5VSH6LK5PN9cWadWtLqHUqarsT7h+OQXW10aMLaHXmZ/ZaewEaHhzcgr8
+WELTXduLObgIqLU/48pzfwkFjIgq7lhLQH7LTe6vPkuI4a9T185PwLNjj5MC
+XJeQM7nA7z6uly4m336zHVhCvdOPTq0VIYBHTVFvec0Sco/bcDFAioBdpDGB
+yZBFpJ/fJRSsSIC8N/fL3GuLaFE6L7hVmQBBlrTBRedFJFOwZZ2uKq6nA2Ze
+f40X0bjIrgGqJgHeP9509HMvIh2+UZ1AfQLsTSqvvZhdQFmuvsn6uwkwLu0R
+OT2wgBL9fzpzGREgni9q3FW+gPqa9/wp2kfAm2dXclsCFlDetGxsnQUBsRLh
+++I8F9BO53nnJSvcX6PSei0dF5Ds3RhNTRsCDgY2SjQYLqDu+F/P608RMOyq
+7V/LvoA0lKyjf17C/UV35fAX/3mUb/zdahX3y1ohXaVY93mU3CsjNxZNgG//
+dS7XU/MoQSO8bwz31+bw+UJRo3kk7BTjQMf9+UE3izjNM49WTdM3Or8hYHf+
+1pVt83NI+/Y9+tB7AsbD3BvXDM8h0d7mghsfCdivOX43r3IOce/ftqazjACO
+4JFptvA59DflZHpyI/5+1ozahptzaMIryuJ7GwF2as4ZGW5zyLG4dZqnh4Ci
+5v6T5uZzaCtPK3f1PwI8lbu/JonNoXmXkqibHDTor2uMZT6ZRZ+lLUKkttEg
+Oo3iIXpvFgWmaarO69Jg9w2Lg4M+s+j51r74eUMaPKPXs0XYzqItZQNPTh2h
+wfGrP853UGdRx3ur6flLNOA6ILAnT2QW/VUQV+HwpsHbzQdkgjhm0Q3dPTt3
+3KKBYOX3epX+GVThbRSh8IAGFRvLdX1fzqDTNaX5h/JpcGWSQ8I8bgY9s7tU
+1Qo0oH01mKSHzSAujvW+yd9p4Of2KbXaZQYtavz80NlOg+2lRes2qs4g7Skb
+RTc+OvQ/Whwal5lBtVIJZF5xOkS7aJeVCc2gnNfxQ+Ob6TAu9uGqy9Q0cko+
+bl6sTYeXZ/O6Pr6fRmCgvKfcjQ71DgnSpqnTSPi13rMIPzqQbMJsmh9OI601
+wo0DEXSwOHyqac5jGh1/8FT6VB4d/E0PUYJPT6MPKUutT77QIctI5xjl6DQS
+fBGhGN5IBzZtkZ+aW6eR+5QzeyNJFpQ1VgW+UKeRmd9DLzNxWbBUGdl/VHga
+2fhwLX1RkoVsammF+wQLTX07Hs5jIwtNG3K42LpYyJyZzrnOSxY4KPGGkbUs
+FKnmMBUYJQsn1lyGnBwWunc5NNi7RhYCOG1X9BJYaK/x9VmHMVnIXd23s+Y+
+Cy0MjYnGC8tBy7yWt40vC8VPPbH13i4HXCzqh7+uLCSXFODpai8HaqMCM9dt
+WEh7lst7+Z4cWA8ubF1zgIXkja/wtpTIQVB3/6W4nSw0mZm/MsqSgzetdTkK
+Siyk1aa91VNNHtoaSv59WM9CMfaXzBWuyAPPzwxF4zUsFBXCVhTzRR62VsY4
+/1mYQn6L6pFvCAU4+eVWmtPwFDpBsqmnP1KAEHShb7ppCpn9yvl5S4kBbwtO
+EAHfppDMbRkLS5IidOTtsRctmEJXPLw37HJTAr5s9YSU9Cm0WTcpa1VFDTTT
+N7WpP8brdX1D87pKYJfMt/5z0BRa5Q6W2jHAgLAnM5aHvaaQ0e/0i2XrGfA+
+pjum02kK5TkW1D4KVYCuiJr6ixZT6HL3Ff50SQVYG1YovGqE13vpeGBHsTxs
+C0g1u685hR55aLmvXJAHh5tR9zfSp1CXuYapqqI83LvmW5UlOoV85Z4vW4/J
+wYfL5/h2ckwhW6qtcmOBHPS4WhhXTk2i1LbckoshciBwdnfgiZ5J9Fan7+gu
+GznY4aBSNlQ3iVC/TF2ihhyctpZiu/Z5Ev34fc+YZ50cFJpN+jxKmkQl845x
+JyploW9f+0fZyEmk9Uo6/GWWLAgafZ9/54fXo3goQLgsOO1I9qy3nUTvEldq
+g0/IQuTW+3mnDk2i86Un7Ed3yUKRsvfEpN4k2ttiz+vHkAVhqrmr0KZJpH4y
+6/enFTrobtDLTOSfRCEmLYN7hulwVpwxtGV5Aune155ObKBDCR+b48HWCZRW
+LJ4e85oO56ZeW4fFTSCkH8RSuUiHWK0JnTOhE4gdDX3dYUeHimuq6w28J9DZ
+iffqRYfpQCflNC1YTaD9UcXT/Fp06FybZXFOcgK9ndD9ZcpOBwGzEc09vBNo
+6c66e56zNNB9wBCjzo+jr+H1D0dHaBAn+fJXU+M4oqzj/gq/aXBMNtXM5PE4
+WpK4axCZRYM7zn1b6MHjyMZ0TL4jmQZvsmjryFfHkfpI/rBjLK5HW1OqPxwf
+R+JbnL6LBdGgUj9xnzxlHIltjEiuPE0D/zcaIQJKY2jjU/H1+vI0PD/l7S1f
+M4bmuWOlLTbTYCdS4/IdGUWqL7cS4VI471Wq3P6XMYoEdmeGneKngUufvE+V
+wigK1EQffFkEfD+fpnOHdxT5vAjXuz9KgNwkfUFn6B/ybDtwpWCQgO4Vqldm
++j/0uuvhWTtczy0lNl4KlfuHJNc3ZnZ8JeD9s/gtu7n/obu5Mj0fPxMgQpca
+ne//izoELXRzigmoUaOcd079i+7etLzclEeAgamQozH9L9LRe3RtC+4/Kr6c
+VlzECGqLmdEIxflOqrD20SDHCOKf1Ts9dJ0Azpn4hu/9w0jQK8T7+FWcx1zV
+j4ZnDKNjV5XdbHH/C7WxPSShPoxUmDMOEqcJuBLLuL8gMoyEOIOSBnE+tP89
+XdU6PYSUGKNi5bifbj9wd19SwRDKyLDqSjtOwMDOAiPGriEUwLq0hm0/AXVX
+79xZSwyh/QP35rRMcF59e6h0lGMIpbd9KfTag/OdUj8zr2IQrXkdsXnDLgIM
+N4js3Gk2iBx1HW3/ahGQuOiiftB2AJ0NDL18F+fBu9u2X1LdNYCOlzLJF6gE
+eF1mzxUmBpCDT4GplQzu7yOxyn/6+1Ee0yR9/wYClpvL5e0u9CM2+YePUnBe
+HBSPOrPbrB9FKs9uqsV5sd7cJpWm3o/ePTr/gBPnxazvU8TQdB9aZzreG4rn
+oROFMtLuPn3odKhd1hKen/bMjNgcte1DaUs86y9wEqCmnv9Ea1cf2pPvUTaA
+5y2ejANSixx9yJ1o8pzC89n7WG+xO3d70X5VfcY5PL8l/zY66nShF5Etvhms
+X6DCPSGhB8ZmvYh91G35F86Hp0PSBPlFe1G/bRWvNZ4PRa7Vr4mJ70EnrzxJ
+KcPz5NzqvNCYdw9iheROxuJ5sz1QWsL4RA968rjykReeR9Ojz9EWJHpQ6N5D
+0aZ4fr2/PoJxZK4bBT9LLduF893l5HeqWX+6URVX+5I+nn/1ckm6J2O6EV+g
+jvZRPD/Ttska5Ht2IxgslzqH523eElMTwWPdKDBsviAIz+P1lTHHPot0I9ux
+naNNeN53HlC6IBvZhUia180bu6lw8IK5x023LmRn7b+Pga0x7eXdeKgLPeYv
+vH67iworbKWBoQJdqPpKqqlpJ56XQwbv9vzrRBK1zZUFHVT4JijwYGd1J4Kj
+TOMt2NGbrBJGwzrRRP/8gko7nrdf+L7Ye74TzS77iBa0UcFW6Xlm4r5OlL0U
+MW6CbZj37fW8QidSvWrs39VKBYb2WL45byfK2Dj84Sb2plsKN47/7EAZPcMh
+NOyhcI9g3ogOVD31r/9HCxXePkXRHw92oIvRpZ/9sX0z+ZJc+TtQtMNZQW1s
+k4Jjr6Sr2tE1U47SuWacX78mFvwMbUfbY4aqi7Hb60e+3DZpR3pENC0E+2W3
+Vp0mTzsC//TCE9ge4/7tA+VtKGRp8rY6tt5K1XBsQBtqXnHyEMTmXSsxa2rY
+hsx3bfJjNeH9ljzFvsLWhlq+H49vx06Qy16X+6kVSbp4FdZgn9OcX+/g14qq
+JjjqyrA1DAzlRfVbUfy1zAbAXjUL1yhfbkE+iduLP2N/P9nMvFrUggTm472/
+Y0e70A8wrregGL1+9kZsW283q9YdLainxfjgCDYj+KPj/blmJLdD7BAH/nzT
+D7ncmfnNyIi7aJGKDSmHfSc9m1HVhyqTvdihr5+EPtdoRk2c0yqXsI+hgRiL
+qSY0Lk9KSsSWqVZP4XnThOzvNDz8jT3c7JNT6NaEzs/eYBfE+/tusOKjy5Ym
+lHRCtPMQtt+MSMWm0UY0Kda0+SG2KYdtfW1WI0pxo6IObHHhjM5b5xuR8UGH
+7C34fWYpM+f7B/8gRzcBmw5sL50wzti0P+hofDuvPj4fu00ahEyd/qANyi49
+Kdh/Trswcnoa0Fxh9NwNfL5K2sy2vU9tQGwhyUZD2KkWmobFzg3Inqdrxgqf
+Rw/jFZvKsd/IO+G5szE+v4JKEZEDi/UoTKqp2hKf99nnHs9GS+pRanLAtQHs
+9o1WmdP+9YjxwsPcuwd/vnXUL+w89WjyVdWlLJy3Taby5qRFf6HDOTde40QE
+qi6POeX+1KHZlCGhCWyJvhvCKnF1yMzI0+U5vo/9DUZKO2Xq0PYNJ2fFcb69
+VfjH1lLpJ/qlGPCRge+7J/vsvc0hNSg83L2dm4XvwzRK27KuBq1Q4qRY2MID
+wZ90H1YjnQcHWD3TVMj+LjVtlVSFwhhl52pw/uyP1LOOKviOFh0YP6pxvbKU
+CWSwD5cjDumz45c4CJAVPmQo5FaOgp7+inqI6x+LXeKk9MwXZBQ961eE62Pk
+wMtIHbYvaPHxNmVRXtwPs6vnLkuVorgOiV3DuJ56eTPuf3tYgn5HyR5QlsD1
+enS8ISe1GFF9XxfdkMTrO+RLx+QXIc7Ls4I/cL78bWL42qGpEFlPex6/sZGA
+rZIn6xc35KNY2uTIHK7/7RcJTWvjHKTOteHLFRWc17I2dRw1d0KzCXwr5/bi
+PGVvKhNscFA/zEMrdh3uPy9Vkr3WFrrrO5meTX6P82Nbk3NO0sFg/TnkPLHm
+IP58OQdM/0rE6xvwI9qvo7gfxenHCvlm6X+aucr104GAjPDtzOeqxfrrnr8p
+9/DD65clFHFrlOj7Pd5aHXqLANs5rh3ntyF9O1aQdsod3E9zhyUkE0D/NBA6
+LcEE6EkWCHW++Kwf3BV88UwkAanDx9gv5JXrH6O0hv9LJuDqvfD+kJoa/SSR
+fdOP8Txw39m/we7WH3369kCNInEa8LP262Qd7tH/lR66jfSRBp0e5RpX7ozo
+95Z+sJb3pcNowYHPXhUT+tLktqWtxrKQGpRkdzpkWn+T+JSOPa8c0GcyRa7G
+z+u/MI/670irHLS/kS7WObusn9t48+PmRHk49qgzeCSCxDQwfmTkaKMAz17c
+Ld4fw8Z0FBzi8JNlAMd/rv84r3EwlQxrtP9rY0CN3cs08ztczAxX/o+NTxXh
+Hb+UzawLD/N7CNl/0lQJZOM2D3Lv52OmPs35s3tCCRau3FnOPLKWmdN4KyHm
+mTKMLKwXSN8uwHzZm/n2t7YKJJ4Jql9PCDLrpNdVH2pXgYhdVXcl6ULMgw0u
+R9df2wICFzN3l4oJM8U3r24zY1OFEsMPxe+lRJgqJbbpTqaqsOxqq2UhIMpU
+FI11tLmnCmTuuljFZVHmffOPvWxVqqBl7P55H0mcWVGW0/abXw0WWrMGxSbF
+mb62eYSBiRoYulREHJgRZzJqE25o7VODe4s92wMWxJnLO/Ie7jVVAxmp9SEs
+NgqT5Da40+WAGuw9HqLwS4TCZFENGq0Pq0H0T8dzEZoU5icX5ZQrVmqgUr7p
+L981ClPPXbL8tbMaXD2mHb3bh8L0ybZ2KD+nBp96j+309qcw3YcsYn6cV4Oj
+7PfuDoVQmJ3SgWnlrmpwnbmoVBFHYXr8J9MGl9SgovCPa0ARXv+Vsmr5NTUQ
+3jclVgwUJh+57k2ttxpYNwmUsMoozMIgakPddTUYmzUSOF1NYe5b/ltb5KMG
+4ppvs3e3U5hCDc9USvzVwK7sh4V3N4X5jfk07OstNXh5ZGTldT+Fqc2/klRx
+Ww12ulMPbR6jMA3PDGllBqhBIFlv1nKKwuyq25wXFqgGtRFWCRGzFGbx2rXu
+3kFqICXjubdikcJ8WyvNHhesBv//exXzxWjFwawQNfgfSt7a1g==
+ "]]}, Annotation[#, "Charting`Private`Tag$4159201#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt2XlUjP/3APBW0kbrSCpF8TzTriGKmZIlpUKUJdGC0q6FiEqRiErShvJR
+KqGFFi33UpJCi7RYivY97dP+e77n/P6a8zrznDPP+/2+977vPSNv43rAnouD
+gyObk4Pjf5+2r8KHFxdpyBHxyNJFnIHis6uUdOZoWHyi9tNXUQaW7Uo+7s2m
+4dF6DoM9IgxUain4NPCPht27MgkFYQb2Cbb/1/yXhqylu9O7lzLQzZFhmVNK
+wzd8TYNHZ7XwiuIPPH2DhpoiPcuk2rQwLn5t5BdhGn7XFFvW81ILH7eGuO5f
+Jok2EQrGH3S1ULLmoCkhIYGXBKbJNV83YoXZQYMqRXGUSPb1ema1EfcQip5r
+FcRQZUMCcrRq4taXx1Oq1UQx2bV31MxOE2dCT4tpEiI4sXGT/LkfGjgx9fT+
+ifUrcC6Gv2qdiQaWKURqlTgLo7HTz1Gdj+qow3s1h24niOfKfgRu0lDHKNbm
+zXp+/LioG60ev1MNbRMsO/se8+EXu6wLXiqqWP1Mdhln3BKM1E+1C+BSQVnB
+TA3I5cHGRx99Itl0dOnY8OvuSx4c9It+oztOx5KipOsnU3jQICImq2eYjlbO
+935yRvNgbPv78Z3ddEz46h1s4MWD7R/GVkk20FEqYlvzp408mGB6+d6K13QU
+l6zyr8/kRmkpj8Tb7nTkX9NV3ZvOhVwBGSrJYyT+SuCr+vOEC3U5bXvHhkl8
+IUUvb4zjwsZ9el47B0g0E3Mr+hDKhReM/4iMdJAYvWQmNcmRC70dswcdG0hU
+GBQKPEJy4b2s9PzBAhJ13jK0PqVx4umE853m10gU3GyphkmcuK5eoWmpP4kt
+Ob5kXiwnFvBn7yq5TGLgC1iTfJMTy7/sfsnwJrEi0VAowIET361N2W3qQKL5
+DasubYITN9fdzdM0I9HJPDgmNZUD57amMjvWkJi08HYjmcSB4p8/PNaXJbEh
+9d/X57EceMNiz8un0iSy5o/xvgrlQHaJQP95SRLFUzQ93jhx4P7GQU+mIInF
+U61G79Wp56+229xlEziaJNG9g+BAmnfjavokgeuNjQI/yHOg3+qXzZVjBEYk
+5uZXiHKgZuF7d8lhAqsiVxk96l2Emv+mX7d0Erh6k9dCnvsiyP92stWuJ/B6
+6B+tQptF+D2CbZJ1BP5rMTpXcnARzlQcKJmuJrDshkJTGWMRWvduS/pcRaBz
+c3VW7fQCWMVO5D8rJZDaI/v+gAXoH3h9RPs1gRtq78cPeSyA4BEDK+tsAiMV
+OetGbBegPFJi9a1MAk9/bdzO3rkANPf1Hf8yCFy+JnglL/8CCITPGU0mE3iy
+tLVKNnIeTFOnuYZiCNy9jW3/O2Ae+Lusb+s/IFA1bwVHgvs8yBux5B7eJ3Au
+XU9Lav88+D84c80uksCYyP8SxFbMQ2FABWPbbQKvChZtqlucA1EWffZ9KPX7
+1+trwofngCdDb7npTQK1fHl5havn4FM4udv3OoE1p844892ZA4cs21GZAALz
+fl5d+tFvDj5bBhONVwl8dCgmKdh5DsLFpdnRVwh0Mvz0nWvfHNjOrQsgLxPI
+p0HfPi8wBwqntux74kPgcPqOpsLZWQCtOcMIbwIb1h338O2fBcN3/PQbXgQ+
+XRmWMlU5C74C39/dOE+gHsew8OjNWeDRkrH67Urtp+/StMyLs7CSOzuah/KK
+cbkdrg6zcDtpx5KNLgS2dJv5DOyZBb+Ub1nJTgR+OOUg8lx7FuReGHL3nSMw
+42fAc4cNs5DFk/GGQdm3Oru1a+ks1LZrObQ7EHjKsOpi8tQMeD6M899JeU9p
+u5hd9wxkbXFVfHWWQLVtcy8UGmdghlvcdg1lyTzxPX/LZyDhKP/O2DMEzqur
+tD3OnYGcusEGKcod6Tsvn0iZAcbqC+uenCYw+5F35s/gGbjYwKFQaU9g7Mq7
+e+O8ZuA3KdDnQNk/8lmHpf0MFN5oeihC+YwgXqEdmgHH/Wj4zo5Ak+tNKxsM
+ZuBa/taZC5QZHCPZUVozkJ7SWahNebXvsn0H182A7zP/eA7K3OPy3SLiM7BC
+dDi5xpbAPuetATXcM2BZptOTSrm2+4D03bFpsPwS5XqTcv6pc2/2tU9DzOAB
+Qw/Kj39eMxX8Ng3b5cYCbSlfP5TQW/l+Gs6ekCOtKDtXv752M3saXvimGVtT
+Njf8IrPnyTSUsO6yHSjrlHbmLYmcBhuOGR0/ygrbFvZ/CJgGvg6WYizlGpFt
+yrEe02Ct8E2wkPKVrktLnG2nQeJ89v0OysqFb/+wzKch+j67SoJaz4+702/F
+d05DvE9XoQnlEDvt+z2MaSjc3OZ+l/KmLT6uRUrTcPXNpZlGyh1CuYbhtGkg
+5h1sNlD7ea9tfK0d3zSkPrmT609ZP2/jwuZpNjDGJ7n/Uv53y6NJoI8Nx7J/
+WBhS5/XoZFZ26w823JJOhALKxox/t3Oq2GB/4sceTep8Z5apnblRxIYd74w5
+cyintjjrHXvBBgmz/kkdKj54QvonuO6yYV2jV91pKp6yj5M1DVfZ4LN813c+
+Ryq/NRzS093YwGmy3DSHctGPrhMHDrCBvf95uzwVv46vFLco7WDDJwdpmS7K
+K4PsxGY2smGN/3v+HGcCvVTaPiZJsMHVP1j/DJUP67jkn3gtYYNFpdILEzcC
+6xqsLxtOTcHu5cJCTHeqXvj/Vh9pmgJV7/v/tlL51VXXFMtKmAIFlYsaSVR+
+Rj2jeYqHTcFEsata3QVqfy4fNunxm4L59sksQV9qPxTrucKtp6D5zbbIR1R+
+W1yoPteqMAVHPpaNbA4kcMk+4V05YlNQK7DGIO8aga/l9625wTMFfl4OwAqm
+8rWqsl61axJMVY1DPUIIrJAp33YlbRJalA/NHbxLoPcoz8oDcZPQ32gluz6C
+Ws/HHaOKtybBSUhsA+89Kj/c3qV8cZoEfZl1x9qiCdQuLVouoz4JhQnSOuse
+E5h2NudvYe4E1Ep/L2zNIrDe5rGcUcoEcPmY0VOoesxhdcvqx/0J+KN0L+NS
+HoGH99s2sz0nwLlP64l5MYFcW8VqGRsnIHvHeG3pJwJVtBaFPyhMgLpEFZPv
+C4GWqv3G5qIT4OhfYGVVQ+BLhdIKj5Fx+HJ07f2tjQQeFTiPr16Nw9YIs/cf
+qfslmNd6YfvjcTgucsI7ppfAzMW9ul/vjENX34k/lwap/RpXyB9wHof2PQWL
+lyao+PhV94pQHoc3l9nijktI5H+p+fi/1DE4UmA8b6RMIiNV9rdmzBh48t8J
+cNMg8eQTfun3N8agZWRl5otNJOZGt0X/OT0GbM3t/J56JNpcjbwjozgGhMsY
+Mi1JDLt45XOG+BiccBEO0T5BYv55R35dnjHoZt0KMLEjUfis/vWj7aPgpOb3
+od6NxLdmo34PkkZhfkeIhfUtEjv3thQqRYxC27o4o8ORJK7YWTn9xn8Uine5
+FbvFknh6yxOveutR0MtZMS2WSqKowgFnEdlReDZolqTxkcRtq7c/TxQahR5h
+h+U21SSelSR71eZH4N7uezRoJLGEn8ve5NcIhGQ8zePpJdFxLOv4rbgREAo7
+qNkvRMfYTSM6Z0JHoKcIZq/Q6FhxUV16h+8I2J/9IWskT0dFjlfNM0dG4IZ7
+5rL7DDr+Ecw47Cg1Aty/LuVsPEVHYbN+xq5lI9Dk41DzxYmO2+6REgrT/0Dd
+gi/lzQU6xkmlfWtu+gfWXeEr/CLoeEgpxcww5h+YViiXnPpIxyCHTjXFkH9w
+OLNcqvU7HbMz1i3nvPAPUuwyN9V00HHFxv++5Fv8g883/ZwJHmVkerdlRO3+
+B56X2kWSxJXRpUD+ttvmf7B1c8bb54rKWMVM3LuB9g/izeyznhgq40xgK8Gz
+9B883XZMNuW4Mu6/vU0UB4ehs0Vg/Tk3ZRSM3XpX7cUwfOg70X4hThkd5Ar2
+dd8ehpxgGcWuTGUsT94s+NhpGIzZ5S0nKpQxIFvrprDyMHDUhEX+nFHGFu2c
+3eUCw9Be6GEpK6mCuqCx5Er/EDBrvfgGNFUwdmdmGaNqCNRyJZef36+Ck1Wq
+1wbTh8A32vVZn7sKmh94oZccOgQuUZa696NUMKuJzmHlOAQMuerk0gIVFLZO
+LxHfOwRbojLTm/+qoFPnBr/PxBCMsPnOmQupYuW5ZzpBy4agMl+x9JuuKq4f
+VZzR6R2EQaeQixvcVTHowtP8sYpB4De56Of4XBXbFhR8nqcOQuFsrqvMoCqy
+gpMYtiGDoPts/Wo3bTV8KLBmfNXZQWCnSf3LDlfDmYhH2XW7B2H/+mef986q
+oeVKGffQ9YNwzz+peoyljrmP4tX0lw6CedhrPbsEdRRTXDU03TUAGolmM2/p
+Guj2PCYjq3wAjlsb6dHuaOJXDdo5h5QBkBONObKnRQPp+fcJ+esDIGiX2ZM4
+po4h28V7muwHwLZMeNjjkjp2lUWmhO8cgGFu77UypDruMBKx36M4AO4+QT3K
+zWqYWHt3LQfvAEwuellqe6vhgoVwW15HP/ywLH94ea0aHmu5neha1g9JVhpC
+zr9UMd9OwHr90364djDtAf2RKkr235RpvdYP3+JbHladVsXz7ny/om37wePC
+IfdRLVWsmboeZ7KjH+LDXnx7slQVVa/wHlmyth9YLL61si0quOptzYMenn5I
+kS/4bvRWBXkn4xsqu/rgl86Da90xKvjLWdP8bnof7G7WM9E/roIVafOR7rf7
+4OCxG0vCWCqY01lRe9ClD7JKygsslFQw1MradKVmH4T9Vi37MaGM3rHknRmx
+PnhlKnHpcKsynvo+8fnXRC+E796l0vhJGbX33d6bVNAL3pq2F6OSlLFbt2An
+qdcLj2348rSOKmPdhaAgwbXU9ydeJ7KpfCh5bVo6xNMLlx+ePGC8VRmjlbtY
+ORU98N2jvs5/tTIarBbT1TXrAQXB/1iHu+iobtniK6vZA3Mquj8/NdNROiqt
+gEO8B+aH/3LHfqHjqABr84fGbuB6bpOtnUvHxFknTRPrbkjNN60Qv0XH25u1
+3dX1uuFbZ07AtD8dfc5zZ4qu7QbvQWtBWR86mvTHqjR2dcFDHEhebUfH+R/l
+G066dMHK4/5m2Sw69khGntE36wLBgQ2lh7XpWH/AKmWdZhc4bIoIJdXpmFE5
+trZ3ohP+Dn3+dWQNHY++XSPn4dcJCTytOzK56Lhrst/K3LoTCrQdnZ7Nkqih
+mZewSa8T7Lqem5aOk8iXvm/VLE8nPOKRX23fTdX7WF+JoNsdEGo7orrpK4li
+F+sFouPbQSGwd8AyiUT24rTIsG87uFwRFyiPp+a563Ir9xxth0IXu7em0SSm
+Rjmum1nZDrmOlrRcqr5vz+TYdiK6DTKMIwyKfUhct1lpR55XG6TTDTTmPUhc
+VmJkuOJQGxxcXNFp7kJifVX0ofdibSD6dvGJoT2JDt3KLkoRfyFxWN5Dx5xE
+E5cDnlfd/oJ+1HpXZWoe1Jrw8W0y/QtuPqaJGsYkLnCVXg8V/gsX9oWv8jEg
+MUr2yOOhW3+AVyrDp4NB4pXn/EnOQq0gk/Egm3M1iYYFh17IfW6B8S2egsJS
+1Hz4MbGgNrQFrrrI5xDUvJjWtqmOwdcCYRlXJsJWUO8nZcu9wPUbXjTyCfJQ
+9+nj9S+XZ777BQdipv2CuKn7hTEtbeP/C5pyev1FOUlcNLurVT7/E+ydi70O
+zxFIhhTa32H/gDweP46L1Dw5cX+JByvvB1iw0xpOjhCI/+2/Mur1A8pC+b+Z
+U/PlIeiOPjzWDDbatxJO9lP9yqRYhexQE1w5+nIzdweBRjzW9TUZTeBnUzy/
+u42aH0TT/wSeawKftUVFD/5Q84kKa7qrpxE+tw8+tPhNYKOdE/mqvQF0FsWs
+D1H9Rclvs825KQ1QfCnjB28DgSmHGQbFDg0Q0e4mANT86rlnwapq+DvYHkhR
+NaLm12Pv2hzrsr9D0futYzK1VD+39aNPs9d3kN2wXeR/8+wK5fCI7tl6UC43
+4aqg+pupp56PhkrqoYvMTC/8TM1TMkeeTwTUA6+NvEUeNe9mLFf4wM1XD5am
+rY7lVH9kOJbDlhP/BlY+Fy30yglUd4rhXd9YB2z0n/L4QPWrnZdFVePq4JLJ
+Tc6MMqrfbNiprLumDmZ9nAW1qHn5iym5ZUd7LZSnnOsLfE/1ixXCu/am1ILQ
+yoyBpncEBr5ttLZUrgUNeVI6Dgl02FjkZD1cA9ZXXijxUjbLSLx4OrsGHiVP
+ivsAgbKPHO55ateAxheZY64lBPKrJrCmJquBS0Q9aoLq75rk7I/y+lUDxwEP
+j0DKXtxTYfI3v8KIhWP7qyICDSbgmdryr3BJX+aIGWXR7pB32+5/gWebJrZM
+FRL4p2n/TyPpL5DbNe7zlPLLylUTR5I+w82i/byWlC8XtQufXf8ZXue61YtQ
+3vsyY4P3iypY0djTWPuW2o9EL/2gjVWwxyuQK4ZyV8T245EFleB5W3O3HeXX
+15Z6JzIrwWerdOwmyoFeNXdffvgEld23+oUpm52JTSsy+gTJyhyagwUEyh2x
+Ka2srYCJvXInaykP7aX/brKogC71fIdCykW645Ndvz/CsFmZ/nPKoarFKyZs
+P8LBFXatiZQt11wnufvKQdLv78YEykqipgYibuUwZJ+u9ZDyOPfKE3KTH6Bq
+/6GG/yi/n/jjo3L5AwwPJghlUo7oTovQ4foAWf3W1e8on2z2eG4YUgZbOxJX
+NFNWrdL5YCFcBkafgsonKM8V8bTaR5XC1n3mXTRqPZUvv7DPryoFqbwL9kzK
+MYnRooGJ76FS4PIWJ8qnI62Vw5XeQ7LuMstHlLWCNux6lPEOjrf15X6nzO09
+Yp2h+Q7u1wsYi1L7XXvm7cW3+Qg/JT2FzCk/PnLtXsV2hDub9o7EUfbxJe98
+ul8CWnrnpjdT52sy9K/hVUoxfO54sO82ZSWbPLnovCJ4m+3r1En5u6FBlk3z
+W5hmnutOpuIlo5h/Zk9fAbzL3q4pRMVXkEatvtpsPvyYMVO8SHmj1In62dV5
+0PmpuO0EFY/8Yetk2lRywXB9fEIT5TaOfvuK7W/gjE7e78NU/Eb0+ExFncwB
+xYvPvp+k4r3FdS3j+J5XkB/TgGlUfoRZZJZvcHwBIV+CmnZR+aPL3GY5ces5
+xJ8P2NJDOU7Y4tKd6meglNhTsJnKv8MvQt/h4UQwJKX7+Kj8rMmQbTU/cBo8
+r10edqbyneeU0ZqQHSZMha0xxsbU/JKm+sRH8K0HM24lb7AqVR9+Nzu8SjIJ
+YbZsD3NZoOqHz6t9RgMr45lVCn7eVVS9MYhjxopcyWB2/VGQkmgl8H529tKd
+x18yw/TH96tS9et8p6iOrkwm86Se1lKjvwSWzQenuc5mMavFl9XeaafOU9Xp
+ekPeG2bEbPFeZg+B6Xe1WU/Vi5kSb5JZzFHq/coeFy3VKmGGooZxOlVvrdlL
+tpzbDMyAap4VUtR8FJrZt1LqMTJ9pRqecbIJ3C5VIPIn+T1T2eehy8I8VQ/7
+DnG75JQzT3L3aiXxk3gh7G7Xza9fmfvGF//aKZGYvL70qY5ZNdN5VqhPZwOJ
+de8mbQZrKZ89MytBkig5+9I11bGGuVGgTOmbColuapIDAi61TGGOYGl36j5S
+jOnoqPP8xkxYV3p+804S7zgENJwMbGQK2G7QqD5NYkgV55uOkkZmqJjEluaz
+JAaqBN47O9vILJ+2ce50JNFnJNDMzbOJmS5/zYTHlZrfLgZVXj3dzDx9qiz+
+GHXfaty8UfJo70/mhV1n8p1DqPsrNSzll2grs6yDL1wgg0ShcWOdjP3tTJaV
+kdkDNol/PMu1vIP6mTzH1wrwZdNxqGDfe5+KEabHjZuSL32VMeVG0km7mxNM
+zSC7ADeqf1OcfC52IX6aaVNqUJQso4ot2XLFOmfnmZaf5W5sGFbFQw/+hPSH
+c7CS4z8sChar4aPk28XG0VyswLQ6ofB96shzzHmQ9yIPCyIGC/7mqOPXk2nP
+DgQtYY3/Nt3UtkYD3witsppy4mNZr/VWuhmkgUpx8j1LjflZdoWcS/k6NHDG
+O2j++UFB1r+nZnu5DTWxf0ZaOFVbmFUXZTUITzUx8cyNeum1K1i0e25H7Hg3
+Yrje59tSiiIswwyH+CunNqKw63P9UglR1umlJQ9HX2/EEoP84txVYiw+rtst
+g4JaOO9svemwsDjrJNeGe8HHtZBzaV0sfV6cFfzfhpP6qVq4aY/H+70ckqy4
+zoFD/GwtnPmV0SMxKskqe1f5QZbFQAOnivB9k5Ks3+HD02f1GBg2264dPCPJ
+ynnHIZu6g4ENoYt/ihYkWdev/Ln9y4CBa1ZJ3xznorHWq75sWbeTgbstbhLf
+xGgsNwurnAt7GRhVa+8YzqCxJNy9Ljw0Z6BquewA/0Ua68nZooG6swy8cGhr
+lL4fjRV7fbWeL+V3HYd0fQNorPDvhw/7OzCQ39O9IyuYxvrkKCR96RwDzbnD
+bvfepLFskoqeVDoz8FFkqpb8HRrrUHWqopkLA3vky35ZRtJY6lstjP5S1sxq
+DQqPprGW5Iusa3Bl4CXWrHJFHI01zH2mb5M7AyveNjoHF9FY1sK8uf6+DBTd
+OyZRjDRWSFq+Us4lBh5vFi4ZL6OxOt49YV7yY2DKWfK08ica65z2zf5nVxk4
+PLVT2O4Ltf7zZ+9KBzBQ+8ap3PhaGitireuJA5QDJf1OfPtOY1UGTb1qp/w5
+OWaJwA8aq3nHtZz+QAZKMl6/1G+hsfiD0wYNghl4sqz6sG8bjRVwrDVnbQgD
+0w72L2R10VgewgNaUTcYONq25FlvH411J/Cg1iHKuh4KpvLDNJZK76vAX9Tz
+1zm3T1mO0VjnX51uv3SLgTXhRx6HT1Hvnzulf/oOA1et8dpdMUtjOZi/aNQI
+Y+D//x/Gerq6f/lHyv8HHOr1Jw==
+ "]]}, Annotation[#, "Charting`Private`Tag$4159201#3"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmXk0Vd//xpHMyXxQyRznXvN0hRyhDJGU0qikMitR8YkQKioSomSoyJRC
+RcJ+l4qigYQo86xkni+//V3r95f1WsvZd9+9n/dznmddGWcf+xNsLCws1aws
+LP/7e/xp7L+VFQL+9Oyr0nuvDSKLkooGSwQM6z9SfFmlDe+2ZR46N0dAyON0
+U9m32qDY/urjnzEC5uXfsfIhbRjm63n4s4sA3yjZqdpSbTjtruNYXEVArvhG
+e/t8bQhWaIWTVwhI7D5SRN7Whrv35OI+8xPQtmj8V/eoNqR1XPXZxS0G5zZy
+/ykY1QKxb7t3KouKghkqUkYhWlBjt9usVkEEWE5RUdKCWmChrOAnJysMuyLk
+96fd1oTNBYeyvqoJAd+sAN1SUhMWok4KayoLgk9HrP7WOA2Ynn2UcGSTAPxV
+IWKcuDTgnWycdqUXPzh1dOkcDlcHg9WXimkufPBoKF+a2asG8ZSenkkQD/js
+sA+50qAKx1Mc+4bTuGBok5bpWLUKfH0sxc16lwOeyCRLcxfSQYrvmQZ6yQ6P
+xWsSe4AG3r1Kv2IK2GETt2SmQAUNKsszIo9mscOn08xN1CsaHPa63caaiNl9
+Ni2rkAYpX85FmPmzg/OP8pFbD2ggccvo50ctdrC1dEzrD6eBiFhtSOOzVVCe
+77T3qTUNXEZNaZnZq+CVV+AVHQsaPP9Q/sM/fRUIni7rrDSjwe7zBSQRuwou
+qxHybUY0iGu51bjfBz+f+uvuZnUarL3nqNShsgrkb22puStKAx7p/q9DuWxg
+1cf+bU0PCb9SuGo7H7BBxqriFOFOEp5I0D4032UDnuVE4w2/SbATPl3+PooN
+IlVk5AybSUjkWMjOcGcD04Fh6ZxaEmT/rgnbT7LBt+oNIttekDDlph5kJ8sG
+VVXR4deLSHjfb39huyQbNLvXGzQ/JcG18463Dg8baK+xTwnIJaHgu8xBwWFW
+GPrkMj2RRoJBmY72xxxWqPYuzauMJoFPz1ENMlgh9kG7oM01EtqLA8mSZFZo
+2b9LvzOShLAnSDrzGisEuPL/EQkjoSbdck2oGyugwF3vSi+QsOfK4X6GMiuU
+jcuHjJ8kQZE9pEtNhhUispp+fHUhYTbkwS9FCVY4qZ/qW+xMwt3AgQYRbla4
+Y571KOoICZ1eZ9DYIAtwcyn3BuwlwXNPRFJ2Ngu8aSA+H99OQsZymRaZwQI+
+Jvt9XpmT0JQ99iUvmQWKuM4piZiRQDEPrn4axQJyQn+WWygSRLI0fV94ssAx
+M50NGZtJsLRzXaN3ggXO+vntldYnIXjhfnbpYRZQitUfeKRHwqAtd8drWxb4
+2YDUK7VJqJjtsH6rzgI6BTF2mmokTGSIDpgqs4A8x23N3yokbNphHfZehgXs
+H7k9u0En4Vb6y9IaIRZofzfyYEWZhNo4SevUoRUUSDc4oqRAgu5ARGhG6wpq
+cAiQYJUnId1gvORR7Qqa2DpX2iFLgl9vtXzekxVUX2X+qUCahPW6/sslZ1YQ
+y5i1ScJ6EiKjOrVfO6+gf9f1lVPXkTDWbu1RuRuv9z166xNJEt5dkW15p7OC
+5s9c1GgXJ0H11w3+GsUVNCDsso4Fc5L6vFktsYKQj4mTEkGC18+vhfXzyygs
+xUPquigJLSoGg43Dy+hHUkVBtQgJW8OypFralpHyBr4qbsxitKDo9opl5GJV
++SBDiISQS4NvugqWkfjL8cuzgiQMf98915u2jNZmvxXZg7nyInliJHQZHdNg
+85URIEGpPuHeqO8yKuBc7xC3loQ4BdaG8ePLqPABKcqDeSnAk2t6zzJS2lhX
+cZWfhJNfmrfMmS+j339fH+DH/E3W1H9RdxlFMVpn764hYfP5grzlTcvId0Im
+QxXzWukI8dU8y8jSqczCg4+EQL8xW65FJgrIzHMSwdxbczCC9w8TcUatFL/j
+JcF2Q/Vr/t9MdMjXyf4i5tIzmhOCX5jI8/Dt7QaYZT/cVxJFTJRteSWdFfN1
+SW4n8WdMZDe4y/0rDwkz3n4J6zKYSJOpXvQI89GqjlqpOCZayxsaEYp5u9Hc
+id+hTNTUpj1zHLNqiQBLyhkm2rvBx3UnZlEN5bsHjjHR+muDf00xL+WaaEvs
+YqLRuYQkE8w98ge+NFNMNN2fE2iB+VOqr2uiOhOdMLuT5Yi5UDyazUGaiWwd
++NV8MSfFPUwRFmAiL8bqTQmYL/GV6zasLKF6r+cZbzCfjGz8FvtvCUmX3y2a
+xWzD8td9Z8cSGrsR7KWHv5924OrV/F+X0Pdjvv0hmNdNbUirq1xCu7K/aTRi
+ZvPW1Y8uWELFVaYuGvg8hwZsv1umLqFQm6q4JMzfjp3y4rq5hEKyUhq48X2U
+tF3irA5aQuN/fPQjMKc6JGVEeC0hX36t3zz4PiO+PjMwO7yEHq3RbryL2dPy
+4w82myVkKLZBRwfrYXdVl88bwyV0o3pWrBXzZqMF7hD6EjrIoN+6hvXEpUHb
+wuRdQtnW+gVcWI//ck1bXi8uotDKztAWzE3yh3wDRxYR4XR5Z7EwCY/Eb2TN
+flpEudJ8xlFY79FxmdTLskXE6a6fEClGgi9fZatf7iJy6FmwuYnnw4TlH//E
+tUV0Y1TEASSwfgM5c54FLCJ547S2YTxvAlMbTX3cFlERQdORwfPZPmB3/o/F
+IloTnNJcKIX9+JibYB5jETnu2HCYD89zfltonpvSItr1pkP1rAzW59eijn7O
+RfS6QVzvJPaDY5a1AZmzC6j6uNLTCewXFlU9wi4DC0hR8MVM9CY8fyUiFl0f
+FlBcgMSlPpKEotRzz9oiFtAaByEPhiYJyeIxVnf9F1Aj2mOnhv0rJO5xr+OJ
+BeR0RFZNWxfrPbJFvMlsAQ09LA12xX447LU59NuqBfRCJUk2xJSE+gH7dTGT
+84g+/y1qBPtr6TGPFzY98yhcc439SQvsPw4pQ5/eziOT9e3vo2zwfBgt73of
+Oo9egBtHgiO+f0EjerLvPJr5faDK9iD21/7/OLyOz6Nz5qsPE9jfW2Pmy0TM
+59H838+jP46TcLt7Ss6Fax4t7nDdxX8a+02J1rLe/Byqvry20Ows9rdo3xbe
+4Tl0JjT6QfQ5EnbojF0vrp1DHbJKWjuCSGC/OjLNFjOHZpytN6fh91fRIfJb
+06U5dPkE7DgWg+dRwy039/QcojWQwrq3SShv7T9ibz+HrmomT4vfI8Ffpbs6
+Q3QOZWhs0/qcR0J/Q0sylTKL3u0t27a1noT4x4SfyI1ZlLkgaHqgCe/v4l7b
+waBZxJZhZhjdhvWs0MgW6zSLxPyvU5v7Sdh34atHh+wsSvgaGfRriQQOG/5t
+xcKzaIs2v2odG84TMjbSV9hn0f2TOo9/ctFAoPZTo2r/DApzsmq2w3mhZsMH
+o+CcGWTnoWDwQY0G5ybYxe3vzqDogf41Zbo0kK82nVCInkFTiUzHBpw/Qk6/
+yfrsOYO4D/md99tBA0ZV+doN6jNIJHR3ZqoHDfrvLA6NSc8gZDmIfpylQbzn
+5nfvBGfQtnhzfoOLNBgTLb3gOTmNZs8N+CbeoEGOa3HX65fTSM/qdQkU0aDR
+OW2jddY0Cr0d+Nwb5y2Ww9GHWxOmkVNZMXKpocHeXcd/zvlNo/vN3rk6HTQI
+td5JXHWZRpu+X/UlRmiQb27gQOyZRpwHNRV3ztKAbbNwvY7WNHqT5KxbL0AH
+Fe0V/vey06is2KBLXooOjqojO/YITaPaew2bumh0KJCtqvEdn0L3Ptyqy7Wg
+wwHes/D06RSq7G20Mr9Kh4jVTstb0qbQ0Q5129RkOjxbsTL8cnMKpfv8+5KW
+RweOKdnSP15TyN+0ftuXejpojPLP/Hd4CtH5E5lEPx0ODS5o8dpMId0eDw2z
+RToU/Wp4qkyfQkpn5aTjlVTgd1Pl39J1U8h5KIlngFIBrvpcmgXvFGoTcJv9
+74AKaNUmujUvTCLzyIVLfv4qcOR92OOTw5OIs1K5d/aWClxD3n3TPyeRj+D4
+Me1nKvD81QG5iI+T6M2xkvmj31SAp0Az7WH2JPr2TMA6g1AFnWyp35pJk+jx
+r/FKV2NVOPqAZ93bK5PIQ28pIc5dFaJTZhx3nZ9EMawnSyqSVeFlYndi58lJ
+xEvaRL/6rApdsV8affZOohy9gIV7nGrAF10mtGI+iaJ/Hw/vs1ADvYgsu5s6
+kyjrs3oruq0Gzpfibm5QmET23voXfUfU4EZAcF2+yCTSsc+7nU2qQ+lZdx5D
+9knUGqwlfNZLHXq89lrUTk4g2RIll9U16sDvujXyQM8E2niE5eF+Bw3Qd1Z9
+N9QwgZ7w5bhm5mqCyyFJtoC3E+hyvuBVf1FNiNnLQXEVTaAKyejXUgoaUGY3
+EXQnYwKNbikMDshThz6r9teKtyZQUCQHj/d+dRAw/zT/ImQCHc++8vXcOtwn
+jF/qmZ+eQBKbCp33f1fDOfKBf6PTBAp99eOgbIga3NK6WXx85wRq3ZHNVsBQ
+g3KVwPGJLfj/mwe/iy2owsCmk2phqhMoppf1u8dbVRCStfcSlJpAAytFd3bG
+qoLR+i156WsmUO/9EokqZ1VwFSOH1JjjiOPJQBCHvircFhDbhP6Mo68VNp8j
+hFShkofthO2vcRQron+5blQFhthHH/yuHUd1Dzk3B31WAZGVn52er8eRdMuL
+v9YFKuA+WXgo+u44SnL42m2P9ZKsO25wKmociZbyn844qAI1AerrTAPHUbHb
+/BkjUxVQYHn6c2H/OFrqmwkdEFWBPaajpU2W46j0+cvhKhYVCItUSSrSH0fW
+vdFG1/7QoZMvf6+7xDjyGzjCfe0DHfjtRnS2cY8j7vZ7FzOf08HoNikqOz+G
+gm7GmXk/pMNdiZzvP1vG0LaA3PMtYXRwUMyys0waQxIu4TQBPG/hbn1qClfH
+UGx7cGXkZjwf+fJrWS+MoX9BOc6nVOggoPXwc+m+MbS2mjVzlwgdao3TrZSI
+McSIud5o1U+DhbAOZXbOMZT80NEqpo0Gu64bCcHff6iiot5kfT0N+JI3x6g9
++YeCo6UmVmF/CS3SvsZP/4c8zjzve3OHBu2M4u0feP+hfVkD3iwxNDBEGhzB
+I6Nof/esvF8kDWZqVS//zR1FQp5BfZP+NPDsUwqqUx5FDLPq65v20eCTx2OD
+cO5RVPAf7VrXThpsmlBYMBj6i3h3PLv2Dve77mXZ83nZf9GI+4HfLAY0cBTf
+cCZq01/kHnWgVFuGBi9T76lt5fyLptYJ24qvo4GwguTofP8fxNnDCuuxX3/R
+IDzcsv4g4XPKE+HcNDC1FjxhofAHtb7gD6yYxHkvePV+DrkRdL9p4Z7RZxIk
+y77dGWQfQXaZRvcUP5KweuZe06f+YcTj+zBG7j3uh16ae2Jyh5GlEdW/r4KE
+qMNOO8U1h1HavPzn9AISziWTNxeEh5FmLnRtxO+rYz+m635NDyHJZk7bZ49J
+YNhct8p4NYR4ZU7wsWeQMGCIW5LJEBpUSMz2iSeh4UJ4OJ/cELp8VXLyzC2c
+z5/vrBplH0JxbFPhl2/ivknvp4prBpFYu/ed71dJMFsvbGhoN4g86hbPywST
+oO7YHiilOYgi49dP3PkP58P4nFcsIoNo6T3Bsz4A9yNeSu998wBqlrbZt8MP
+95tFT01bpwGkwKpwycID52c9xhl1kwGUn9E4q+hGwvmzq54JyQ0g4/TUQsFT
+OJ+MJKs09/ejRL/SHbw4HzBbPygd9e5HXNTgmmicJwbF4k5ttetHxRk9/tX7
+SWi0P5wlr9mPTM4+WeLH+SP/06Tc0HQfcj3c0VO5h4QDZdIbfYP60LP05ZxU
+WxK2zYwc3uPUh66slMSr4/yioVmSomvShyRVTHLqrHGezLWRXGTvQ0Gjfp2y
+lrhf94nv/93fizhZvtX9wv2zQ6b3DqrpRWMT+86lbyPhZXKgaPj1XiRyrD7Z
+DPfPBz/M95z07kXv73t0yeM8dUNQ8LaFXS8yee0fyr+VBJdrjwXWiPSi6GpF
+D6YxCcIBjbyJ93pQsKvOke2GJMytzAv+C+xBYfdtNx4xwHkycqO4xYEeZNK6
+iuMSzmvZ8e7yC+I9iD3odGs7g4Sb62LJ3XPdaNsz7/gNmM8+eKGe39yNHE/d
+5DuJ++yWZyxGRxK7UY5XaaMwzn/yeoqmJf7d6HFz7NQFHRK4K60tBRy60V4V
+Jd8BnBdHzc7sdNPuRn/entJ1wtxYm+jwVrgbrTmSQXZqkfDKvvzguskutDYw
+guGOOfVn1zG/hi40f0vKionzZ/hRTtfPhV3IV/SnZTJmtwG6t+KtLpTH9Jfd
+gtnW297v0ukuVHdXGI1o4L4xfT6wZWcX2q24nvcBZomL90M01LrQXPieiaOY
+l9mqIqP4u5Bc99ejSph7rw1e7/nbifLbxrbOqZPwUYD/tuHnTlS/83jEN8wF
+d7SSE/I70XfXTaKFmOOl9qeNRneiVUMBHcmYAzODM7d7dKLnMX/qozA70R/l
+pVvh9ZJsWi9jNiv+WDiv3ImSiKL+cMzk5n8l9tydiN3Yv+8GZqkw5Yv76jtQ
+nJbq+1TMQzF+V7ljO5DIo1d+JZif30fxr207kPxJlZ5mzMF5PBleazqQ9tLv
+lRXMlq8cnmysa0duSUfK1PD3EalOf1Uf1Y5Ytp5jO4W5vXHk/WXLdrRhF60m
+E3NOt26DDlc7MskvXfzfefmNhbYPfPiN4pxibujj89yyXDecHPEbmSjv9b6J
+uVHi+Kpltt9o9MTBTht8P2mbCtY+e/MLvQnp3V2K2V1nfp1zyC80E7zYqozv
+d8UuRvsDsw2NNV0elsF6+HSklbpQ3oYSTrzbm4053lPBhvyvDXlPK6fqYP2Q
+V1+fuDnXiuz/m7nigvU1ncDhS5W0oonUqLUcWH/wcFfwhH8rsv3w0LAAswMa
+SNw7+RNVPIjcLYT1GzIjXCM12oL8ZRIElYxIsGZ3avyW34JY0guPMTGLCeV2
+hnm0oIsKFydbtuB5VqHm+webkcTRvvwHFAnNLp7k054m5Ov5TusSnrfK33Z6
+L7OaUIKN+euzuK9k7dUxq3BrQgV/tFy98Hz6WSwfrv33AynkKK09jfuLAD32
+1sBiI/q9+X5a4Q58H5PFcxtFviOf0SOhUnuxv3kmrd7U3IDOGjHdj+0jQbzv
+opDq3QbEXnBjJhv7S3+TOd1QugE5yZn9MMd+FFbW7ORIr0eSzJXOF0dxn1g1
+e0Pm2hd0fyc54OqJ9TSNHqut/YJeWiZGTniRIDRw9Y1Rwme00dFmb4gP1usn
+yen9GXVI7oqRZ7YvXv/WlkNxrz4hRl9puTL2U0fpSHLV8AdU2CzoMxKJ/TKQ
+vPkxoRK9Vyy6bpKJ52l0rOlpVgWKFC/VMcD+r+hcsjGxpBx9+iSpwcgh4Yel
+WaHzzzJ0QCKM1/AJCVoSRxoX15cg1dPONe4vsN585HQOWTxFDv/FWx79gPtb
+vlTHHvuTqPRotO71YRJyYxjUI/UKYxupWVd2/H5kf5dWzqldaRyTtiAzgvuH
+0xyHvoceMi74KpnQSNEg6tmwuEQaGIfrTSQ93UaDLRKvBDsz3xpfnOJ/GGFP
+g6xhh1XexR+MDeK9dQvcaXDhRkz/tS9fjIvaTA2aUmhw0y206WhYs/FILjpS
+xkmHNVM7DPJ39RiDXHfx+m6cb/w+aJ8LHzGmMzo/PO9WgdFXNm/P14wbK9lG
+vjkzogpZVzKOulybNpbcNRw0N6gGCjN5whfuzRtvSfwWlXBJHdqLNlYYuDKN
+nSNSLtxl1QCHO51XR2JZqAvHq5bNQzQgNfN6xY5ENsrgnCvPWi5NYD/o9Xd1
+ADvlHPov5XG4Jnw5mvPYPpyD+pb9oI2dWwterJE8POvJRQ07EqfqQ7VA8a7M
+IOcOHur5XFn8hWktWDgXzszbzUdV86ZPvvDRhpGFdfzZDH7KbJmjpKJdG9JP
+XWlcJydACeVattfs1oFYk7rrEgqClHp9g7RvlQ7w++RtrRIVomgX2Za8lXSh
+0qy04qWkMNXzvPPl7du6wPRy0t3LL0Idzuy7lDKlC6ycDck0pgi1mFl3iMte
+D3QtfN9asYhR3vZhX4+90IOFX/mDohNiVGFdVJAhLwPMPGtibWbEqOp8ssaZ
+YMCNxR5GxIIYNbfI6fRMlAFNUSud5ctilPvNmoqz3AyQllx3bYqNoDRaHr1u
+EWKAe46uBp2ToJ6Gm99+Ks2A5wz7n8d5CUq1YNzlpgQDlqu9Qu+tJahPOqJS
+3gIM2L7vmvJ3YYLKq17NU7GOAbH9j+p5xAlqxx+u1TOyDGj1h4Ct6wmq6L6x
+oexGBsiv/iUTKE1QFo+GfM7g9bzjZz8WyhPUhb5ea0qOAaVywr5DSgRlJeWl
+a6LIANZiVUkZFYJatXjmvC9mq61Wbx01CCre8VagnTwD4utPuMfqENRJp55/
+f/Hz7UdDhWr0CerXf9WhT0gGbBpLKVsxIijvT6cfHlNjwOlLpc56Wwlq1rLj
++ifMZfyNPD7b8H6WPW4IKjCAPfVfUZYVQZ09sTpfQZ0Btiq8B9ttCSqSeaLi
+sT4DksoVV4ntJqhsaduHitoM6LLemmezj6DuPDF6lY/3R7Yd3h1xkKD4ffm+
+ntJlgJ97wGK5E0EdmqZ9+WnGgMr5+IdTxwlqYJIz/wZej+vaM2u6Kz4fX1bX
+w3i/9uJ1k8c9CWq72GikuBED7j0euHfvNEGx3doX4WvJgF7dVWbf/QjKc+dU
+JivFANUPUn94AghqqnxZIwfv54LD5vitQQTVxBM58caUAW96HQwDQwlq2D8A
+3lozgMfvTG9hBEHVys+5O2xnwJ5VN64PXSOoE/WWsefwev9Ri/Sau/i84lwK
+/rNhwLuvYj9WUgmK2bz5kus2BvA7aQbpPSSoy2cMd+bvZIDjqI2Cz2OCGoUN
+Dwz3MeBBkNvnrDyCal/wOm95kAF/+CL8258SVMKlxatJeP86KekbxJ4T1PlO
+r4t5dgwIppW/tyklqPdFDcY1RxhQU9bsFVFOUPkzJ/ZYujFAyGpStAIIapu/
+1NzN3Qw49JO/cuodQTnJsRxKxM9nuZIn6R8JSu+laKrGCQb8mzXnd/lMUC9v
+6xgKnGYA48qxl/fqCapySlFXAq8fJhZ05PsPgjJhdvPQ8f7rMpM4eFsJSrko
+vK8Of56YzvOCre0EFaWro7XdjwFH333dG9hNUK5X91kluDIgZ/fIcmE/QRU+
+3eHTdoABE90cj4eGsX6LmF6rPBlg6Cu7U+YfQfnk8H387xwDIlm3zDpOEhSL
+1br1Kr4M+Ba7Py12lqD8rxxKD3FngKS0//aaRXy/qZWlwR4M+P/fF6k1sEVS
+AD//f6I0RVc=
+ "]]}, Annotation[#, "Charting`Private`Tag$4159201#4"]& ]}}, {}}, {
+ DisplayFunction -> Identity,
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
+ None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
+ Ticks -> {Automatic,
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ MachinePrecision, RotateLabel -> 0]},
+ AxesOrigin -> {0, -24.4628263145363}, FrameTicks -> {{
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ MachinePrecision, RotateLabel -> 0],
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
+ GridLines -> {None, None}, DisplayFunction -> Identity,
+ PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity,
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "ClippingRange" -> {{{-5.999999755102041,
+ 5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}, \
+{{-5.999999755102041,
+ 5.999999755102041}, {-24.462826314536354`, -8.136370804376675}}}},
+ DisplayFunction -> Identity, AspectRatio ->
+ NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
+StyleBox[\\\" \
+\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"h\\\",\
+FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \
+\\\"/\\\", \\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm],
+ TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"| \\!\\(\\*SubscriptBox[\\(\[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\
+\\*SuperscriptBox[\\\"'\\\", StyleBox[RowBox[{\\\"[\\\", \\\"n\\\", \
+\\\"]\\\"}],FontSlant->\\\"Italic\\\"]]\\) - \\!\\(\\*SubscriptBox[\\(\
+\[ScriptCapitalF]\\), \\(0\\)]\\)\\!\\(\\*SuperscriptBox[\\('\\), \
+\\([6]\\)]\\) |\"", HoldForm], TraditionalForm]},
+ AxesOrigin -> {0, -24.462826314536354`},
+ CoordinatesToolOptions -> {"DisplayFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& )}, DisplayFunction :> Identity,
+ Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> {
+ GrayLevel[0], FontSize -> 12},
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
+ None}, PlotRange -> {{-6,
+ 6}, {-24.462826314536354`, -8.136370804376675}}, PlotRangeClipping ->
+ True, PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.02],
+ Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{"2", "3", "4", "5"}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\"n\"", {
+ GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"},
+ Background -> Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.038000000000000006`] ->
+ Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.038000000000000006`] ->
+ Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.038000000000000006`] ->
+ Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.038000000000000006`] ->
+ Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontSize -> 12, FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"], ",",
+ RowBox[{"FontSize", "\[Rule]", "12"}]}], "}"}]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{{3.8763699506493063`*^9, 3.8763699619208803`*^9},
+ 3.876370068782353*^9, {3.87637043091245*^9, 3.87637044257585*^9}, {
+ 3.876370721301976*^9, 3.876370808099616*^9}, {3.876371116142165*^9,
+ 3.8763711352371187`*^9}, {3.87637122695619*^9, 3.8763712464846573`*^9}, {
+ 3.87637134045012*^9, 3.8763713522979193`*^9}, 3.8763718090898647`*^9,
+ 3.887183948573832*^9, 3.893237432392331*^9},
+ CellLabel->"Out[16]=",ExpressionUUID->"e027c86a-5f73-49af-9682-15a84fa4ac67"]
+}, Open ]]
+}, Closed]],
+
+Cell[CellGroupData[{
+
+Cell["Plotting as functions of scaling invariants", "Section",
+ CellChangeTimes->{{3.887175601990197*^9, 3.887175605174004*^9}, {
+ 3.887175638310907*^9, 3.887175648462943*^9}, {3.893240667249942*^9,
+ 3.893240669191936*^9}},ExpressionUUID->"af69f70f-b3b9-4794-8398-\
+01134650a149"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"\[Eta]2", "=",
+ RowBox[{"\[Eta]", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"\[Xi]2", "=",
+ RowBox[{"\[Xi]", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DScriptF0D\[Eta]2", "=",
+ RowBox[{"DScriptF0D\[Eta]", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "2", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DufDuh2", "=",
+ RowBox[{"DufDuh", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "2", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"\[Eta]6", "=",
+ RowBox[{"\[Eta]", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"\[Xi]6", "=",
+ RowBox[{"\[Xi]", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DScriptF0D\[Eta]6", "=",
+ RowBox[{"DScriptF0D\[Eta]", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DufDuh6", "=",
+ RowBox[{"DufDuh", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}]}], "Input",
+ CellChangeTimes->{{3.887184974652775*^9, 3.8871849902010813`*^9}, {
+ 3.8871853260317287`*^9, 3.887185348663872*^9}, {3.887185471338563*^9,
+ 3.887185487738577*^9}, {3.8932376555040216`*^9, 3.893237683200816*^9}},
+ CellLabel->"In[37]:=",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ParametricPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Eta]2", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{"DScriptF0D\[Eta]2", "[",
+ RowBox[{"0", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Eta]6", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{"DScriptF0D\[Eta]6", "[",
+ RowBox[{"0", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",",
+
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{"\[Eta]", ",",
+ RowBox[{
+ SubscriptBox["\[ScriptCapitalF]", "0"], "[", "\[Eta]", "]"}]}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "->", "Black"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "6"}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]], "Input",
+ CellChangeTimes->{{3.876369742606814*^9, 3.876369749518669*^9}, {
+ 3.88717511572079*^9, 3.887175133863171*^9}, {3.88718492600924*^9,
+ 3.887184941792713*^9}, {3.8871849972905684`*^9, 3.88718515068447*^9}, {
+ 3.8871852002698402`*^9, 3.887185200333082*^9}, {3.8871852346862307`*^9,
+ 3.887185259919454*^9}, {3.8871853538970222`*^9, 3.887185366488626*^9}},
+ CellLabel->"In[23]:=",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ LineBox[CompressedData["
+1:eJwVlnc81d8fx+2tjOwtZctexTkhKyJCviolQiKjkhClhZKVPRpSMoqshs4n
+UYokREb2uNbljs+1+d3fX+fxPH+9x+v1fr/lvC46+TAxMDAIMjIw/P/l7Uoi
+iyjcxPoSxerV/7AcdOq6byV+6iT2myvPpz2kGg7PtKlW2B7D7E77cfQwPoUW
+3xYvxBx3xNLUzI+YG2ZAif7r1AwuO0zo/ECbYMxD6CbEuUNh0hobPNbAdVrk
+HrT/V1eTnWGJOZxLCuFwi4OvyWbHddstsEFg6F/HGwtJKVZRgqfNsXaLFm9B
+x0jYBwX0BLXNsINXxhbzy8KhaLiqQoLOQUw2JbSitOsSnDoo7bGpD7C3Bxip
+lWXBsMMzTZttxgT72VtREmASBFv/e3raEjuAsbKYRLbkB8A730f57b8aY702
+0VyyIb7QM7I6VW/eCBsVDUmkfvaBya2xrSQFI+y1k0S/p5U3PNMhr6PRbIDp
+Rt2VfdR+Bsp6ttubpehhpfdYFCUDTsCqd3O8LuJ62JP+EonnzB5Q9bNsUuQr
+XSxiLMWx6r07PPUxICPgnw42K1sWHHrFDbrXtU82xWhjQvurzFMGnaGx3n3t
+Em1t7KdBy2qupDNs6iHX8M5oYSYdoetK/k6wXkMy9binFubWyDThtvsoXAiK
+IJhc0MR0E//e6WU7Ai8GhoivtaljMnyVzzgHrKBk+5ZfdIQ6ZuSQIFxuYgXf
+CbMOpCqpY67zf02cX1jCguA8ZsoDNayhK859/sEh+M3+bnlYqCp2KYfTh7nA
+HFZ+ZSxlfqiMmW7ckYlLhFAw8NSTrGPKWNVqLO2qFoQl/DYexRLKmJHHkxNX
+agAs12pQXyxXwhhtlcKXLpjCtEczuu9GFTHhZ2+N/KUOwNKoh5z+UXsxqZ4k
+FRNHQzh52nl3gJUCFumcouc1pw3D2u9JaigrYEZ4f0x/sTY8C4+XBXMrYO8H
+Tv1ZO6sNC4OCps793o155eyaWR3TgrOUdAbktRtrLHnIH0vWhNPW0slvsuSx
+i12+hOJcDRjw13841EwOc1Bzvj9+WRnWVjI9faQphx14Lx7bpKsMl7Mel85L
+y2ELb1rff6IqQemGzBKdDVls5U277ES4EtQfDbXjfieLjakN9x5MUIRtm3/+
+7d4vi9WO/dfr3r8HrrtdesdXL41pfNHNl+HYDb9aiNUKEySwKzH8R8f6pOAv
+sM0+1i2B/XjSZJH9XAp2Njv5dn6WwMZ18i5PhUjBHKdnl2TzJLDf1lVLRjxS
+8HREvZWPkwTWdIrw/paVJNzubJzXaRbHuBRfKrb2iEOZfu0Zu89iGLpf265z
+WBSePep/fo5JFFM/d9+VdmAXPH/qAOd+XAQrvi7rUye9C4oGGRk9nhbBCNO+
+C4hhF0xMV/J/1SaCyQ07PH3WLAhHlHZu1mWKYKBcni3PSRCaU3GBBC0RLF9r
+IC35qgB08ZBJ/xQqjJlIScUZLfLBrg6d2iF5IYyNfYilrJUHapM8GNWVBbEX
+54SzW0iskPCo1DHjOj9msU8y6ugwA1w1ddqVpc6HcUjx2jjkrAEJ4ZtMKvY7
+MHuxk7dexOMgOxaPnfbmwbQ9+j64GJDAFNt6RHMvF1a27VZ+eHYO+EcGNTlE
+c2ITtm5Z0hlTwFGoqeaRKgfmenviHl45CsKPPdIO4GXH8g3eiwcmDoDPjXrt
+U0usmI77jyNtMt1AJ3THOJnIgs0WWsoP+7WC5ik5qsYOFqx7VCgVL8VAhp96
+8jclZuzvBrPU0/CXoCIwLXzzJBMmG7fxemZvJlK0JZen3GfErEucOg/9qkN3
+54wuvfrGgHVMzNryyDShhomrOQHCDFht26tzOUdbUXiAWQVH/Raqjvyjaen+
+G1UQu5XqvTeRWmwun9/jbrQulFV9W3oD2VS1Pqmq6UWFyyq5OxrX0CeVN3CN
+2I++RO/45Ba7ioaHIucO9P1DMqcmiqr3rKB9w9FJ6VdGUMLK5nL9bxoq6PS9
+JkkaRXURc/wuaThyiXv7t8ZuHCnbSTON6FNRTn2jY/7nCRRdMJA6ME9GQXVF
+DekSU0i65vCm+DMSuilr0WIaNI06G/eH8uouoTQORZv+IQLqRzFHlosW0M/A
+ZRZfo1lUM+iZ8/ruLLLY36/3vWYObbL9rReJnEZ21kY1qjILKM+9h/+K8wTi
+X0/34o4novFMsYCu0hHEmC0sIrRjCfkWc0RyLfch80IhzLhjCVUUGw6ma/xG
+dyw5t31fkdDX4qHKvysN6D+VaZ60eDI66ZEzpDlaDFwi6qu1vCiI6HzwbqL3
+S8BFIPgQfSjIaEiNDyeUgJCC7oJSfwr6e/92zTq1DHgfLC5SDKEgrlzuAJYH
+lWB3cSBhTywFnc467zDUVgfm/W5fNy6goLubiirOno0gq46D+KGfgkoC5oaz
+VTqAyMuIc1+OUZHZ0WnukjMdYNBc76fLcSr6PtjpMZXVAewUvc0IHlR0tLyh
+YZ79N/CWy7DjPUtFFy3mRbQJv8EOJ7f7biFUdEqM5yWxsguQtbknZx5Qkfq3
+2vGRC73AS8yqcO4rFZ14KzR+4VUvuBpcvnb1BxXBVNNSHUIvePg0b5K1nYpC
+urSvhXn/BYTxo8ek/1ARyede4XfPPrCT+wbNepyKMmv2Hz7oNQCKDiviMdtU
+xD9USDbJGQapHaeIZgY4KvSEkT+GhoGzSNTCM2McuUc33+rgHwHJjgbZzKY4
+MoosDBBxGwHzz51+fbLA0cXP9ziCx0cAZ5p21m4nHDUf/1mUyzwGwsb9qXkX
+cOTw1P+nh9IYsLQ8XzV+EUeMQyufLO3HACn74DmlMBwR497kFGSOgfv4/NXS
+CBxltml2n9EYB2HhrB8z7tDZhNc4y3sCqFYbmlALceRduxxjeH8CjGycdBB8
+hiP9vaCWq3oCcN/85ravGEcHH3uuWLJMggLe8q2TZTi6IOp6Qv3FJIjySwpL
+q8fR92PUeLXlKRDnfYBwuANHKYE1V9Xkp0F3LClQswtHR+wfuvraTwPKvvEY
+vh4c7RWMCEoumgbNRuT+xgG6T8p07jW6EEC42ZjtwhSOKvfzGJo3zQDWO1i5
+yQaOqmx3ThxangEvSuJ4WLZxNDLLnZSrMgtIDMZNjYw0xEq7I2yROgv0GIND
+ldhpdJ23lr30mQPkCT1CEj8N8bvbDJzJnQMipAQ9gV00dFlAhTn89xxIKIqQ
+vi9MQ2UMgXvem84D2RPzX70kaKjmvarLN6kF4FvfpJyuQENntTJb4lwXAG90
+mXDzXhpyY9woKn64AJJbxcJnlWjI4k63wx5mIpAYSjjOr05D42lKPLdMiEBb
+dENfYB8N7b2WxetwlQhq/7wwZ9OiIfkVOz7NRSKw43G991WXhq5mypraqC6C
+x2ePcKXq09CIfj7XH99FYNECjzgY0tCxvT/1D48tAqdoodT8/TTkYOB+S5Jv
+CRwKqmxWN6Ghonz+fY77lkA0+135ClMa0ojyDw4JWgLXHwjkRx+kod8vZ6ZO
+Jy2Bluecf1rN6Pm4GQ0nVyyBOJXY8xwWNLRYFOfK9GsJ1Lx9O6p9iIZmqXEO
+tYtLAPaLfrC1pKHNtxWd5XwkwG5vGOZgRUNXEj2IM1okoBOYcBNa09CRXaTa
+AGcSiPA8elLKhob0xQWsdC+TQGpMSNgknRdj2pBFJgnkyVprZtnSkELPd+uC
+dyTw8Xbsmu5hevz1N/jMBklAdWNK5wOddVmC7LS2ScBqy8hIxY6GNNehUaA8
+GaRbrp65Qee6QCmJ5UNkMF2nzYDROWWjw6TDnwwObNmdnqQz10M+fPUBGTz9
+8atlic68QnV5l6vI4Fe88rVROme+Zsu26CUDpUuhFbV0Fjwx7+q3QQbRXWrZ
+F+ksBC3txuQoYK87ky83nf2q1VbeWlFAocd1k3h6fGKapuNDgRQQ29lkTKDn
+o6dPLPROp4Dc0UOXFekcfr73h+UHCnj6NXD9ED3/Mgof990xCkikOHaZ0esV
+73xXQJGLCgrkjq1J0uu5b+R4gZI2FQju7vDuote/kks//MF/VCBlULnpTe8P
+S1FziFscFWAF/MUd9P6RjvJevFdGBZXqv3SF6P395Wulr8iAg8vzbKoKdD08
+tGOjfFLEAcOghLcgXS9cAdGwzgEHE285jAfpevJ6F5bU8RgHl6oIOjQdGjq3
+J1wN/44Dzm27NQu6PoWiWDJvUHAwNpv6xE+DhlT7fR71WdGAYRfxlDJd78y+
+9moloTSQamnR8IXuD0/FrgxCPg2QQiiJ6nJ0PVR4xyOcBuZNdKP8xWjIbHkN
+4y1dBoTsibsudH/COfbg3L5lIP7q8mNTJhr6cE13uJRjBZAWzApn6H7XEpT/
+7um3ApyYe8yiSTja53NtkCN7BQRlDFScmcNRvHvVGPixAspINQ+2J3CUOPRk
+9qzGKqhfSQOneul8RNHI7cwqaFhr3C1On0eaxjzCk+mrwOIkyrndQp9n4vUa
+Q5urwP2ftulp+vyaSOxkLOtdA2+03Z530Pf2o/iL+/t2rgP/T0elauNxdDZr
+/BKyXgdVF7r+acXgSKpAKK/l4zpQDkrqGfTDEW3Q56xTxQZoSXrImqiPo7E9
+O51b5zdAj7iXcoUSjjRYyhcV1DZB9w3bCXNxHM01zCeklG8CcluEeOU6FV0/
+5GnL8HELqOxJWSPU0vfbI70j6kzboELx8eDKMyr69EB18KLNNnj+u7bAKpmK
+dGyt97oMbINP4ozON85R0TtR8eVvdxhgp69gkT8HFd0y4PUtrWCAHTmDSuFE
+CnKJb/ts0ssAay1vm13poiAddrLybRVGmCVf+Fkkh4IcHG6XWfYzwuux5zS8
+RSko3cta7g0vEzQTkZ4xXCKj3HYzY10zJlj/bF+EwlcyMhUabaivYIJKRhH+
+vwPISE+p0XtHJjMsTbKSYssloWuXiB1F3cyw6g53icxpErKhXDP+LMgC26q1
+pvTkSWipqNOuM4MF8pXadqfmLaEAy+ATt6pYYe2T7NLz34iItdj2ZtgWK4wS
+m3Ab3kVEgbeDSzLt2OB/Xq0ThscXUNg1QXvaIhv8hJfq5DbMob8lipKhh9hh
+S/R+A9q/WWQc+4S1OJ8dfhWRM+hZmkHJk6qLPa4c8ErgjYXWmWmk2NZXoVbP
+AWWJF3dc+DmFXP3nv8xLcsIM0Y/uBQWTyPDSYnUCiRPyqYpl6zCPI82hlLH4
+dm5omGqQ8c+gD3FgDjK+TjzwquPdOU/fP+jMTNwPgUEeyFH6Y1vyMP2+pOjo
+VjHtgB31wyuvJTDUTQllr3u8A2JDuTxJLcXIz8YTvbHcCWM7o+peRRYDwWiG
+6/WufDBZMlT6xIVfYEByAaPV8cHYexCvEekFKc6EjRlpfiirMnOoXncYuKyM
+1p5jEIAKjpOEafYZcCnla9D5KAEY62SPrsQTQepTsrk8oyAUz0+/l+VGBiX/
+0guMlXdBC9WtHs6KVdDh6CIT9GsXrH5sJFclsgVeB/acFrslBN/46N6cSWaE
+L0hzLtdthKEhW/wiTzgLPLEZFe0jLwJDI5ZX1rrYYVhV8Iq1gChUwc21lJu4
+oc7WmcYUKTFY/Pz4ixZ9Pmh74ErIRIEElK3tvPLBVxh2jbfcuLNXCn7yExge
+zxWH2dGs0b1EafjHdOvR8TkZ+Cy5Jxi/LQs7+CW2rp3bDXfKfW8Y/SkH7zz/
+eYbIoAS/9SS49ND/GTKCB7QuaMBIc868xqt74JaTWaw3SQfWt+xNaLdXgk07
+SY8lru+HVttf3OEtNUhw4VcKu28B/wctisaw
+ "]]}, Annotation[#, "Charting`Private`Tag$4160507#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]],
+ LineBox[CompressedData["
+1:eJwV13c4lt8bAHB7Zovs1yZ7l9Q59kwh3xQlI1pWKSqySyQaopBKRpGokJHz
+kJCkrOw9sl/eZWT8nt9fz/W5nnE99zn3fe5zpD0DHM8y0NHRnaOno/v/tbSh
+6U3Z+VuY+Ffhta5rmzDknbsSNcsFY9l8dKf0bSHMv+R++QyDA1boWuEvbZMO
++3o03+n62mLdoQXN2jNJsCDRJ9gtyhK7nJc7qaEcB/f7JxXrDJthZYunbBqU
+I2F3vGOnBtEEaxEZ1POcvw6HRwk9WYHG2Mizt/3E8KsQZLw9VH4QYjQLv28d
+ppdh8VTfAamoQ1jOxwq7168CoPCKhfTZP0bY+9NcLz+0XYSWccaT9nsNsfO5
+R/SWDH2gW9OGjRv/fkyTWFj3S84bcswodGSI7MPMSOKYi6cnfH559WFokD52
+Sr+eV1XVHVoKlmznVelho+oS4PGcG6wTLgnKEtDDtP4Jk3OIJ2ECi9/DLws6
+mNkxkdamF8ehs0+ZD6OgNrakGHw1qN0R3o9OMXQo0cJy+p88dRtzgKVA4WOS
+oxamjcRfVzE7QBfPxdbcPE3shcC/djLTERhRVqXCxaiBnSj96hdkYAONu1Vm
+vkapYxdPhwk/M7CGN+El3hMs6liK+au1cCsryKqDQq5IqWF7rW7vRD2xgPRM
+Gt867qhgDQbKDyPqTeFd4gV10w0l7FuKfmnpUQAZcxl/mHxSwiY6eQbfRRyC
+tgdS2S4EKmFaXUIExs8H4b/kQPmvS4pYg1yh+zkTI0gXS/3GQa+IBRbPsrqU
+7IddEiT3VxflsWD7I9Wvs/RgQdqTo68N5bGHqYUvXBX0YM60Gss4hzwWdPNi
+0dWPuvCnT+D7oWI5jMfykeRinw4k5wUmPGGUw75/eyR+3lEbUn5znx3qkcGu
+eH2UycrSgLmU+MnOMhnsOENIBDe/BhQTjx4PeSyD7VNxt3mcoA5ZKFPbpU4y
+mEJmP7f2HTVIb340z71PGvt0yd8h+q0KLLuVN/J7i4AV6nKrvw1XgtFKTOGB
+kwRsK42+01BWCWpLhjPe/EHAyFNxGlstitBg/rTLt2cEjHOs2rWFoAgHh45X
+Tx4kYAb36QMzJuShxZOAs4lKUtivSKv7TJWysCbMpqB6Vhy7NVZVKeFMgE5X
+U659/iGOLR1kGQR7CfCDlHn/rmJxjC89pVSMjgAzHnS0l10Rx3KVum2HXKXg
+0ciiqUEGcWzhmaisiKwkzGJStzXREMOO+QmKNs+JwbHJRFPCZxHMdG0n/Y/u
+Hnir+yWr6UlhbJpnaU9PGz8UjI3yF7IRxiSrqiyuF/FDeC2tl81QGGv2jlG7
+lcAPB0oilK1FhbHMEs62N5b8UGe1xURtUAi7zMj37VQjH7wYzJyne1YIY4t0
+5Njq5IU9tKw4gYTdWHBnwqj6EW54MoH5kBGfILZY3dbKt84GtwRX/7xlFsSw
+vpoPh9rZYLBsZojKhgB2I59X6/sbNti425XPc0IAc9PS21pxZYMnKn6lZpcL
+YEGvC9SDGlihqSQlUO+MAHazhHpROZcFsrLONpfX8mP8Ke+d7zxngjr0Xsdn
+XvJh6dH5ChVm9JB0IdxiZpoHM//ht3sjaB0c0s9n1d7Fha15l75hKSCBQp+E
+yaJGDmxbW53j3et5ILny7o3iFhvWfP103cfSSTD03PZq7lFWzND3sO+myxBI
+Ya0Ie77MjDXPlUS5i3cBf0hqOVLFhJm4yh8c6WkG/S4R553iGbGjjM/zYic/
+gY3MF+ztUQxYpMC89mpsHDr8p1Tc+To9NhqbFz4bVolKPfOi2W/TYUe5C/cc
+/9OIoh7tVe06tYMcfzj5MF//hfYnRH8fyt5CkWTnz+aCXeiMbxRQ49lExMju
+h0UjPehsSfoV0wsbyMWZR76rbgDV9TlVafWsoReCTUE0jxEkUZzzuvTsKqoY
+fCaWdnQMJe+uZM/voyL6tnP664wTyJ3jImH7PAWxBCbWMCRPoilTjc2H9GRE
+eBjY1sI+jUS83hgGh64gxgFf4eNZf9Ef5sKTT5iX0Zq9g3QV7yySTaCz7etb
+QB23zvQZZM+hwJqkh/2vZ5FJReNinewCSv3NXvXmwTQqzr7o2XhvEZWb8Hxu
+kpxAj2lmlDQBIprZcyppX8IIeqVmmyEBl5F0m28fKupFmrlhDD9Jy+hpFNoX
+3PkbVfE9TvP/tIJs/cTDpkXr0QeBgV1Hz5GQR6abfYkBQKxup+Vslcno6PDe
+wij5ejDsVl5Y2UdGQS8M9zs3dQBJv++GVpEUhBkv2p4ld4Dmc7qbLDEUxMOy
+anZHqhNYV78jN8RRUBk/UZU+tBOcOJ8XfiiRgrzuiL5rU+4CbycGWhSfUJB1
+QOz1kZRuoJ4hmd9eSEHCyZZKzn69IKs6KTT4DwXtn2JnbsjoBbfPaB8Q6qOg
+vTdPsVu29IKLj5nJ5QMUxD8u0nNXsQ+kspL2UUcpyHGXfinTRB8QD/s74D1P
+QcGhC2xjpwaAow12ipuOitaWorSbvIbB+qSqTqgSFWWl+rVlPBgGYMfJ6/te
+KuIUU7WMRcNgc7HCQ0SNinaVB4g+EBsBy9ueqEyLinpTE9wyu0bAHxffzyOG
+VJRqd1rGPHcUZFi7edDsqIhlNfmYkuw4YL21cEUskIrcSt9neR0YB7y7r5kb
+X6aiu95GYm+dxsHTosP3zgZTEe8bllGX2HFwnsvQ700oFRU8TWs5ND0Ovuwe
+kJaMoqL69yFK+kUT4E/RTf/PD6gIDK1FKxhPAZUs1cG0Uvx/V6KjWU5NAea8
+ypnij1TUnx8URA2dAjxWcs+/llGRmWb3GbrSKaB6/9HSVCUV3SRPe7ZKT4OI
+Va0Urnoq0rXu1Ldj+QtUsZCdiXYqytjqtpKV/QtKvKfYOzupqFH2nxcHxF12
+zgt14/E+padjv/EXWOCjm4znvUH136HvS39BfjX1Jc8YFZ2WH+a6ODADhqws
+uWOJVCSf8Dzfdn0GSF07xW++QkUzkotRB4VnAXNZ5BYDGY//bLSNs9MsyO2v
+vnSVRkUOknpXjrfOAhrLyJTOFhVVvpDr+lw3B8yRBuLloKFw4Y/eFaNzYFE3
+pS6Tk4aME5WSm3fmgDHi1ZbnoqGSPwZcsofmAWNippEKLw35C2ToV1fPg1zm
+e1ycQjS0M/6IPalqAez2u8rCL01D/93j7VXuXwC5idLdJ2VoqObXRZb+9QXg
+80ipMFuWhp7TaU0E718EYesbVhIKNESZP22dVrkIyK1ZVn/30tCh93vq2/sW
+gRZjwREeVRriohLdCRuLQKpXTEBHjYYY+3oCNwyXAMGVscBPA/+ed0HV6y9L
+oNqndOWdDg0lvtVRjxleAlPtKQ0fdGno5SWbtGs7S0DzQhvDRz0aOuPaXpZp
+TAQGpKUnuQY01JG0SZhtJAK9lNQlhwM09FDI3ujyDBGU2hIXNY1oqF7u92M2
+5mXQJrlAx3mQht4PyVxrVlgGQKhDp+QQDd0/fi/r54VloJ/XGfvFmIau2Vmw
+zt9cBl0iqX1XTGhokqOsTSBpGQjEz4zLmdLQ0yH+j3feL4Pced+xa2Y0FJt3
+fakDWwY1Vk5fhM1piEEtrkG5Yxl8y7MX+4g7bbb81gZlGYwfj1Hus6Ch4i6j
+6GCWFeBT64e8LGmoO1TRfUN4BYiGfn81g9v6p86U8oEVsMLzSWzMioacbPOK
+O+1WgIhHb+oxaxryLZd6ePf0CsjlSFeox11yXmpWJHoFXFW45ZRoQ0NN0ivh
+lEcr4OVJ3s5p3PUWHgEDuSuAFiaoaWRLQ8fcfdraKlbAdNmIayJu0Ctc1PZ9
+BXi+zLbswj1zvFhkYAB/v/3EpJAdDbXyxypRFlfAuaPzMk64dwi750ToSIAs
+wUaJx13etRNgx08CfsWGVp9xb/IxtybKkUD22QmeMdze+Wy8vfokIM277wDj
+YTz+fD57LWsS2D5pWiWJe77BJj3NlQS8rSfDdHAfL2Kg5/QnAaWCn5eNced4
+FT1LjCQBvoi4RCvcxvkjISKPSMA+0rv8//5rfaLwUy4J9F9NHf//87t5l9nE
+K0ggym9IQQ/318AA6eRmEvDxVN0ng3tJw4eJu58E3IrOs7HjnrWIrEufJ4EW
+GZe7s/j/MqveOaexRQJJ71KLvuJWFfNk7+AmA7muZ15puHXchT5FEsiA07Yq
+2xu3RmZT6AFtMmiOIDiq4LYV/ezLYEYGzrKdF+fx8dzDb/2g25kMPn0oGXqN
+23l9g7nMlwyWtwLSj+Nu+u3358V1MnB8l32PETf9FQ+Bp4lkYPAt920BPn8M
+k2U/s7LIIF4RjVvgdljN2W6tI4P+XHsPf3z+5e1epq12kgG7w6U7q3i+yN1s
+IqlPk8Eb1/nb13FbszfpNXBQgEhaxC9fPL9m/uM3lpGggNbXw7ROPB+lOS46
+J2lQwK8PWp/24e7ILBhLOEYBkfGOhfN4fh9M3nNLwpcClhc26vbjdmgouvTl
+OgU0e9gqReL1wD7wN0E+mwIMPRIzqHj99BS5DqfPUQDjAUvhKLy+KP45Eulb
+FPDzhVF+Ml5/J5c0rXJ5qSAmkWclFa/POPnk4ll9KmBtuO911xBfn0wdqOKx
+VOBn+TWFXZ+Gtva/q09KowI1k6kvnfh6ALjdJLkKqSB0+it9Kr5e/NA90W3Q
+QQUhdRMhm5o0NOFBlwmkaaBUK7/CTYWGVqXXdBX1aOCHONAfUqYhU+puDklr
+GsiuLBY5pkRDhU8Evu4PooEhwvlSOXk8P7/UkFTqaWBHYCrOXpKGXNjC6Xh9
+V4FQ3PfZYm4aYsuNlqsKXwXVE1Qf1114flPaV0MerwJn6kzFBjsNlTUza2rU
+rwLmWmYLPma8/kN4HiZLrgG/n1y8zzao6EtiRl+/3ho4yOKr0reK75NWGUYN
+D6+BsCj3ZXYqFRENjlbsD1sDn5LY+gDeLxLPeMXqD6yB4Ij6srVxKtqkbH9S
+IeP3Y+g/YCNUVPTA/Ls+5zoYGpTlvj5IRcPN9PrJB9bBSfN1/Sq8P/nFhp89
+nLUO+KyFPK43UVHkS8NkmbMboOo8e1tdPhWNSRhVx9/aAETKXdYbOVQUsOh1
+ijV9A+ib/c6Sysb750pyhf2PDRBjXcqm/YSKPnLyfePQ+QfAq4RGvxgq+rXr
+77QH6ybgER3+wXWSikworqFnZTZBv9L2XOQxKkoK34yLPbgJmmOrC4fsqUhk
+5u7s7uBNIDFkwOxkSkUbnudrEsc3wWvzzHh5FTx+T+ogpWELCBaV0e2lURDt
+hRFhZGQLfGLw67pPpKDcLaXgyY0tkIZ6xAdnKMhCdFjUWGsblNw6sK6O73/M
+a0vFrbK3Qan3T6XiWgryn3mfVhO5A7Tl7Y634/uzCNl0gaCsHdAozbI/I5SC
+ZDXDhcyqdkDRdEWbVSAFEQfDXltQdoDu3+Law+4UFNYgcHxclw6KTfuwUg9Q
+UFVn6zP/d3QwSu95qi+RjKqnTHa11tDBx249DcZTZPTt9/V2w1Y6WG47V7ze
+T0YFrIMzdvN0kDs7n56+kYz4VnzdLffSQ5mNeB+PZ2S0tb18u6KQHt4xNUmg
+NyKjlgudDe+/MMAgn4+VIu4kpLwqYqz2iwGekLY9xXiUhIIb0DtslAE6CmLe
+1ZCEvB29ZfcyMcL7n96sP5ImIUWHWh0uO0b42st9d9foCuJV7fptOsoIwx7Y
+kReOraCbS8UP9pMZIQtnzyFfkxVU9Lu7zoqFCWoPuJBzNFbQ1RPDFz6pMsFa
+j9sED/YV1CTjv9B0gwnGn+kMaK9cRoJHxPaIiTNDVn0h1Y9cyyi+a1ywSZMZ
+im7dZW5aJCIf3se9KebMsLY/duEeIqLDzRlLtwKY4dlmLU3gQUTc1BaVtgZm
+qPb2XcZG5hK6xjRbHHOVBX6ts2a5T17A+yN73NwKK/R/Nmh9jG0WDUeuU2W5
+2GB/yxuOmeoZFHzqgW6yEht8CCHN3n8GWTKJlGy5s8Hnt7kVIn/9RXE1OV6H
+8XPfpOWlkJ/R02gjl7nDpZYdhj4mn76TP4H+IwoHMA6xQ7YcZqcL5hNInauj
+av4fO3y2z622fGwc2Tm8Hg415IB/wuTvXNw9jv7FyA8+r+KAx5zBqvO5UfSq
+wRzSmjih0tEW4Rn8KJGfsoeeOMcJWzdPczuc60XVuov1ety7YI3zZwVH7x7k
+dmVY9YPzLgjFd1lW2Xcjd3P+0wkzu+BRrie/red+I24HbI4oyQ1H/2wRje/V
+IMeXd75K+vHCSBh2WcarHey7+oDOM4YXlpRrjhrydQKaUbXI6FNeSLjy2+NW
+Uxe4shyj+6CJF8Zr1HCeONwLSuvNaNPyfBCLGqqMaBgBciKyvDeJfNAsxHpI
+2G4G3L3h+HSbnR8+3qcu3nF5FmgHjCp0yPHDAvEFrtrsOaBwrHInwBW31U2W
+kV2LgLG72/lzKz9sDiTIN4uvgO3yD0H76wSgxdXcf7Usq0BpXK0qZ0wATj4l
+1Wr0roJQUuOHCAZBGF8pLplevAZiU36WpZkLQp+e0UTqhQ0QzFkS8axdEDbq
+6Fe0K2wDhyctT4YYhSA1V9m/5RIjrP3ovTqtKgRj2aOUpdjxvCTS52T8JwSN
+bfr9at8wwW/+hvGiRUKw3MHsRNwaM9xXgyYYzwhDUd49+/4/7/rzPAd2lvdA
+EieQ8nzJA1lGH7NS1ESgWww29cCNF6YJz1pZXhKBXoUfG58u8sLx27nFcFEE
+ugg7R+oS+OHWiWdpWgxicJFnKsTmtyAMenRYp9lWDPZE5cVtJ+2Gx8yNMk3T
+xOD55iexaU5CMOJa2TDUFYeUr+HPT68Jw4mqvgy+uxJw8bCDyY8KMdgYoOsT
+MykBX73jH9j5Kg6Nvaa9y0wkodhORy7/kAR0udpYQWSVgpbScXSfxQmQwTiy
+HJwiQFqztdmHQRmoElIs6JROgN1tgSdgriz8UHahMb6bAO1Pu0XrXZeDtf/J
+K/79TxraW5M/q1sqQMayqhiWGzKw3kZHaylzL0zZUvb/1CIDg3/4eXSPqUBV
++iNFzFKy0LqFphN1UA2Ol9+3r+2UhSx8/yZ8pDXhtxhQ2K4rB4WmhTl51jWh
+eoYU08QzOVhvN8PdN6YFL/1Sd+4NkYc2q5RRRaIOfO497P6bKA9vhToEfdij
+B21lyCYUfwV4R47eNfmUPtzDlT87EKcIjf50D/dY7YdF4oeDunT2wm3XfAOF
+VxDKSf4Ie8SgAm3+PfJWIxvD61UMA0kTKrCPUFkTGGQKS9Xqv1jOqMHzMU90
+bCQsodFp6allAQ24fDE7wdTHGv5q9HYR0tKEjg9fuFfstoP79hxSrKjXgkXH
+3s97P3CAl45IKrh+1oaX5MOUPIlOsFWSb2L4jw40q63oa5j+D0ZqNIuu7tWD
+JjemWNLLT0JvP12LnCZ9yM3KhWoa3KEfX8Ht7pZ9MNzPj2h2xgtyGzrZyPoe
+gFrtpstjoefgfxujhMiNQ/BGlUJOlXEgpG+ckkYKJjDmRuIt0fMh8H+wBV26
+
+ "]]}, Annotation[#, "Charting`Private`Tag$4160507#2"]& ]}}, {}}, {
+ DisplayFunction -> Identity, PlotRangePadding -> {{
+ Scaled[0.05],
+ Scaled[0.05]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox["\[Eta]", HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ RowBox[{
+ SubscriptBox["\[ScriptCapitalF]", "0"], "(", "\[Eta]", ")"}],
+ HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :>
+ Identity, FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0],
+ Method -> {
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "ScalingFunctions" -> None},
+ PlotRange -> {{-9.122028587832348,
+ 5.702485161797756}, {-1.3938681721411004`, 4.730885255577823}},
+ PlotRangeClipping -> True, PlotRangePadding -> {
+ Scaled[0.02],
+ Scaled[0.02]}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\"n\"", {
+ GrayLevel[0], FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{
+ 3.887174570806945*^9, {3.8871751231427803`*^9, 3.8871751344236307`*^9}, {
+ 3.887184932693384*^9, 3.887184942173463*^9}, 3.887185280438054*^9,
+ 3.887185367237939*^9, 3.8932376045625467`*^9},
+ CellLabel->"Out[23]=",ExpressionUUID->"9917cd53-ba22-4159-9239-28c8a5b2c68a"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ParametricPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Eta]2", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{"DScriptF0D\[Eta]2", "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Eta]6", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{"DScriptF0D\[Eta]6", "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}], ",",
+
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{"\[Eta]", ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[ScriptCapitalF]", "0"], "'"}], "[", "\[Eta]", "]"}]}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "->", "Black"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "6"}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]], "Input",
+ CellChangeTimes->{{3.87595272795855*^9, 3.8759527743037024`*^9}, {
+ 3.875953429388359*^9, 3.875953486484068*^9}, {3.875953717122241*^9,
+ 3.875953824002554*^9}, {3.887174580406206*^9, 3.887174580749688*^9}, {
+ 3.887174986510387*^9, 3.88717510283072*^9}, {3.887184947721171*^9,
+ 3.887184948225855*^9}, {3.887185289392242*^9, 3.8871852985195312`*^9}, {
+ 3.887185371553924*^9, 3.887185377032762*^9}},
+ CellLabel->"In[24]:=",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ LineBox[CompressedData["
+1:eJwV0Hk8FOgfwPExRY6MhhyVlFhGIhlXbJ6n6WAtEVFWGNHB0OmVWgZJKis3
+uaJTiaaLaKPnm0Q6NNK60jDuo8YRQ4P2t78/Pq/3/x/tfUdc91MpFErof/1f
+xabECXXdGMid8dZzazwLrk0Jdst9vOEKt9TY6soe6Bx6Z8hz2AVTw2Eo7Koz
+bK0bDY7a4wI3atf7TXraw4r2yMlMeUdwjfPKHGduhd2qcjTdPnv4lCsuE53c
+DE5fysuyM7dDoqeRyO2nLYyn2EWosLdAfqGeT8yNjdCGlc1VTFkwOSrvT55Y
+gkaYoW48czOw8csplqYF9G/W8pq3QPCXJXVEM50JcfVCulOtNUzfVBrn65iA
+b3hpqvnXjXASuypw5owh+W3023HdjUBf75Pz5oMR+PHXMI1fWYLrEFVb9MIQ
+Vvs2OLFSzMFRdJSXG8sAz/KGvpooUwi9MLo5abUuWJsnmBaZmsIdkbOsV6kO
+1DRPlCkObYBbSQVNx5x0oMJYM3WP7wbwT4xdNnppDXw7fHpwU7AJrAuwcjND
+2nAk5NhyyTsjuLhHOL+GrQUPa6WKFyQZgMWDa55PGzRAJcTnWtYuA1DN+1CV
+d1YDiui/eRWuMIDpdb5hidYacG9DldHoPQbc5XR1beGpQ1rGkNlToT7EmdXn
+vr2rBsURSXKBEXoQ4a79fO3wUuhju+lw7HRBur+wAZjKwGkN7DzO0gbX2sdf
+PG0VoXbrsidqgytAfLv/+KdGafDfGRg0QtWA9aToiEapFDTxmU8Ea1Qht2WX
+RHRznpiOe0kZGajAwjPGtbldP8hgRrFLZiQdtjmFMnzaxOSHrevSLKMlcCxm
+bHVJ6iRZoRZDXetEA57IyoAjnCDZ0VPRAwGLIag1MO7TvnHSLzN7+lWLPGis
+FJ4MthkjgeGHa5y5clDuuJm55ZKIuKjWlGUYyoLf0dCvUfVfSdiuDFOO4iLI
+eqQ3IM0eIS+qzRv6x6TB77dikz2Kw4R5nNYzIVoI19MD3ejfBsmrfu1JY9pC
+yF4bdHWGMkgyDxkl1zEWgFncteS3WgOEF5IWNu9NBVvrgku+/v1E32HiXkqC
+FNyf/GOlLK+PnB/ZGHq3jgIhngZBSbQ+UtV7KoejRoGSu7S82vO9JIzD4slW
+/CTDfMqGMGov4Yk+MSoC5olg0+8fVZN7yKxqVuk5rTlSuTHlRp1+DymYXptL
+q5aQlVzmC6jqJi+5tOe7o3+QBPy3rQa7m6zy6b1Z+ssM4R0SmXf+FJL4mfnp
+ikYxCTP1b/W4LiTlp0fo7mlTRFImWH7ASUgMHLWoXRaT5HRrmnfIeBfh5n9O
+/fx1gjzLrZsJzukiWmW/zy+/MU6ENPvvb1hd5GO1zXFFszGi/q7pxGLSSdpJ
+1I7pm9/I8Jt0yUOJgJR1+ObcPz9M2NPcqmBVAZmXaa1QDx8gqWJpFYbhF5Ln
+2Uw/6dZLRlvzbRYZdZCey8s4TcVdxOGwbaSsuJ0cLJQNl59uI5vs1U/dudNG
+eIVWHenGjST12PvnrymtpLZQ8LB1popkJsxnKMo3E2+vHIGJsBBJFPrGbtc1
+kSLOSGf2Wj5SuPzAZdd1PqELCiY25XSiik1DbKZzPXlos9hqS80Q0kh7m3RW
+rZJ8OGhnoU+ZQs46mF8iLEJJjjLfn+tPIQsLh7xD8cVInsPF5c5TqLvvQjTd
+6h7a9/REIv/qFBqNLUzdvvMBMmzfn9FmJ0YbmkssYj4/RqxpCSgWT6Puvf/E
+FoQ/Q71/fZQqaZEgObnHT2+V1qKMi0ds2pRmUYpzSBbbow75Z/WEEvtZpNyo
+NJQhqUMr81XzXlfOIpOJGeZDh3ok7tjv78qbQ80tj5IyFN6hyG2+DpTKn8g7
+iMEWLGlEzs7nSra3S2Ha7Vfb2++3ovR99toPFKl49cBFkcfONpTbwLI2Y1Fx
+Al/IEojbkK2qsKqCR8WnZtM8nu34jMwZ1QG0ywuwb2Xhv/KWAsTZfnRv7CNp
+3FRzqE43uRtJFzrEnPgpjT9ULZ8Q0npQyLmjRZcdZfAfbF+fjpQedOJPFSfx
+qAy2co0OjrzVi5L7DEebPWTxxPuP910UBpCJIKX7YoMCPqiTfZzJ+IZkwXnV
+QdfF2Gf3E4tFaiLkN3T2jXLHYtwyFRVAlEYR7zvT7BGVhtu2tWueyhhDKlxK
+ZIXHEhzBWHSGpfwdfdb8BuLyJdjVb1/4lTffUYrb4NyQFh0rvagON0yaRO4z
+wicHKMq4yG4uIpolRkVf0vOtDZbiHS6lyf4XJIjv4r7q8Iel+EAKgl9bZ9H9
+kGb2slhVLPxqv+O9/TzaOx/B3b9GHRvxE6MSd1Kww68nj/Xmr8BL/cxttHX+
++9Lz+kyc3ko8F6+iY/OPDM7mSnNbRFr4VrZpwVizLFbSrq8SvtfGs3I39CsR
+Ddc1x7s3H9DBhkus/S0X0XH4Frm86lO/YN+BHePrE1VwxWu9+AYnBnZn6VtO
+a6pju39feuLYdThIFHB78LIm/h+D2LN3
+ "]]}, Annotation[#, "Charting`Private`Tag$4160616#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]],
+ LineBox[CompressedData["
+1:eJwVxXk81OkfAPAxjsG2mYlyD3IkFjlWSL4PU1RabLJF2XJHjiaKIhpCtCps
+pCTlLBJpqEk9H/exiAhTznEksSYUEe3v98f79VZxDzrgRSaRSMz/+f9ldY0P
+2L6RsK9604Kj3kUIfXRM88udw5AkOpPB5ztCgf+x08fJv0NO3glr/at7gdu7
+7ZGRjy1cJ3lWxuUyoPCKd8hRlg1MiVmsHrRGYBqYVGI4uAtsS763HZE3h7eX
+D3TpzVqB6JH0O7enTIC4/dCiYieCP/wz+hh/G0HJOHeHEssCQhOCtYOEDUH6
+s7WKV485XFc5Nuj0XB9sYi3H7LTMwIoTeDbKRQ+yTi+mhDGNITj+bPfO1q1g
+I1W6ls/5FRy8/9QfAU2oli5l3pH8FZR2qQXtbt8CiSIBKS+nDUFhJaV+nYYG
+OHmzvQWlDGDjSo7S2QRViGJztH8W1AMXoccMW5IyWL7Vnqxl6cJ+77ZzoQeU
+IBz5U51FdGEpRLlptJgOFEMcGqykA02ttOS3YYogIKRX/yZeG+qoGj/l/SkP
+CbN+uoxlTchfl9feKiED3Ypzx+6fVIfwI+6NsTcloTA9zSHXTB22c3ldh45K
+Qs6EjghPXB2iTfknOlUkoc371OOBEjUY1cM+wWUbYD7/VGKaoBqM3TweVj5C
+g4WO9V4DvZuhTWSbLj5PBXZk/lDHqjKkLUIZ3F0HVRH7Cl98VIBu5Z7Lr6ZE
+IPLtPQrDRRpExlKUMUUAXBKFLcxpUpC8YBecemMFGwp4HJq8R4NMeVqTnMwi
+nvO7YD05IQGOiYq9lvoL2MK4gGKw7mcIt2HmNo1+xkXeiWPFDeLwUCSve48e
+H9M/P3qwZVUUVsUjb3kOzeCBLNszeQ4U8Cqnli6Vf8LXKZURWXxhUJV40iC3
+fgoHorkWe44QTCe4n+lkT+J3h6N8HS8LgkPXtZKqiA94OTNbrJNFBgdGqIF/
+7AT+radMwemcAITVj19buzuOy9zzo8XiSKBn7/tobGAMs1K1ful2/YHfzMTH
+U4gxbJoY3TxwdxWPzOJvC3mj+LgPi9CR+I5dg93bPdVHsVfpzWCG3zL2bHJa
+1czn4WquI0e/dwkXb3JvCTLgYcWSnNwyr0XcVrJX0bl1BF/b+FysgPsFi9tB
+ULvbCD4mflJ5zXcBv9p7tOkgaQSPM/S+pwjM45avsz2r2cNY1uOBWUjYZ6xg
+Hl8objKMe4SLXNKE+bhfvyV2Y/4QVk0k2XK50ziVK6oAMIhPVSWlvMv9iNPL
+m/tVOgfwjQ4xzoPkCczbxrw5M9yPK6wknjXSRzHzU8F4bv17PCnjmmSSOIR3
+tL3ZL5TzDqu0+3BxcR++71N4z+0EF2ewsElIVwe27TueVTfVi20DFCIm5Gqw
+b22NpoZzD3bLPGpXup3ANX+Zq9B9u7HDoFYRS72G8PswsCh78A1mZpuZOjW+
+IVjJz7aM81/jpX9ZBo0eg4QPu2hFdrYZEwNL0RqW44SE5kBGrmUt/sFLFUvi
+TBPSAc4y9fNP8Ye9zkVP8+aIrbX3hzTr3YjDohdIVJ9FYuZFqUYthUPMun/p
+X6hbJWJZj9Y1Wb0mWvy66h6/JCOacfaV55HviZJusdipzxR06fzkw3zXCeLA
+vfhaegAVVRWcT842nydMziST3GOoqPSf8jvN3vPEV/MXssMZVFSWQE4JTp4n
+gvkxRsmNVJT9l+eeg5PzRFnNrq8T6jT0Q8nqVGrmAqEmq0oNn6UhYvvhjiyV
+r8RaxROmabUkSl3hd3ZXfiM0eTqcnBFJ9O8lz8DypW9E2FzDkyiyFIoOk3a4
+YbZMXLrexk7fLYVm9CdjL1QvEyE/lUbd6pRCQu1NkwX9K8TvaS1pA4Kb0PH5
+vlM37NcI408SO37wZVDO4/CeNTMyEhn+m7KgI4u+3SEPWkaQUbr0xz02/rLI
+dXOcsRYmI15cXgmakUWZHhsi9fcJolXnW+n6ZHlUZUhm7w4VQqMc7m1agiLa
+FLly5SyDghqCjLxjxhRR2+CGebmHFGTpMeHJtqIjM+d+Nz0pUXT4TEPlLEUJ
+SapLkAPnRRHZ8mIF4aqMLguVC6SOiSNBNidG5PxmVJphfe9IrwS6vro18GnL
+ZqTJpIcP2VLRLwL2xcJKqkjHrurku1Iq4lVctXvVpYpOP1BJaE2kIf/Xuk59
+oeqom3rUbn2SJCpW+I3ZbaiFUg0tUOxVWaRG/ycilayN2NU2SDhTDp3jkN8n
+jWojwbg8fKFWHpXp1Ly0mdRBPGmjwpDTdGQiY7GlskYfRfV1XPOkqiJ/e7rG
+kWcGyNE1b7+QrxpqpdNGB3sM0TSTd4hE0kCeAUbWOY3GaGfmlNfiLi0UQCuM
+e9tigprv778iyNBB680c96n67EC6JRtctDO3oT+Wh5UvLlugW2EFRa7uhkig
+YVwFa1ghfm1xTOj97eg/eLmEcg==
+ "]]}, Annotation[#, "Charting`Private`Tag$4160616#2"]& ]}}, {}}, {
+ DisplayFunction -> Identity, PlotRangePadding -> {{
+ Scaled[0.05],
+ Scaled[0.05]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox["\[Eta]", HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]",
+ MultilineFunction -> None], "(", "\[Eta]", ")"}], HoldForm],
+ TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0],
+ Method -> {
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "ScalingFunctions" -> None},
+ PlotRange -> {{-8.985689911395795,
+ 5.4752540344034974`}, {-2.2687538849550464`, 0.8696374890668941}},
+ PlotRangeClipping -> True, PlotRangePadding -> {
+ Scaled[0.02],
+ Scaled[0.02]}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\"n\"", {
+ GrayLevel[0], FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{{3.875952731520175*^9, 3.87595277495057*^9}, {
+ 3.875953449526909*^9, 3.87595348700035*^9}, {3.875953781918692*^9,
+ 3.8759538242573233`*^9}, 3.875956884814212*^9, 3.884691471720155*^9, {
+ 3.887174577531348*^9, 3.887174584665642*^9}, {3.887175035431831*^9,
+ 3.8871750787266607`*^9}, 3.887184948578662*^9, {3.887185295337936*^9,
+ 3.887185299115622*^9}, 3.887185377502866*^9, 3.893237607053919*^9},
+ CellLabel->"Out[24]=",ExpressionUUID->"9950232b-1eb6-4bf2-a1cb-424ab941d88b"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ParametricPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Eta]2", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{"-",
+ RowBox[{"DScriptF0D\[Eta]2", "[",
+ RowBox[{"2", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Eta]6", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{"-",
+ RowBox[{"DScriptF0D\[Eta]6", "[",
+ RowBox[{"2", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}]}], "}"}]}], "\[IndentingNewLine]", "}"}]}],
+ "\[IndentingNewLine]", ",",
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{"\[Eta]", ",",
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[ScriptCapitalF]", "0"], "''"}], "[", "\[Eta]",
+ "]"}]}]}], "}"}]}], ",",
+ RowBox[{"LabelStyle", "->", "Black"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"2", ",", "6"}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]], "Input",
+ CellChangeTimes->{{3.875953835258749*^9, 3.8759538464750853`*^9}, {
+ 3.887174587589929*^9, 3.887174689823798*^9}, {3.887174745816722*^9,
+ 3.887174892235113*^9}, {3.887174930671193*^9, 3.8871749732205553`*^9}, {
+ 3.887175095902635*^9, 3.887175104950508*^9}, {3.8871849509534283`*^9,
+ 3.8871849518418016`*^9}, {3.887185308184392*^9, 3.8871853124795923`*^9}, {
+ 3.8871853818416777`*^9, 3.887185394801072*^9}},
+ CellLabel->"In[25]:=",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ LineBox[CompressedData["
+1:eJwV1nc8Vf8fB3AjipCZvUo2lUgo9xrhV0RGlMyMpIQUZSSphKzISCpKMu+9
+mYX3ITPrmtmjjGzusvmd71/n8Xycx7nnfD73/X6/PpLOd81dGejo6G7T09H9
+d2XvjiHxS4UhFF+3qQDmSTDvjjYUsrdDHHHHmnpnx2BstlWh8IIl4jjL5ti/
+fxT0G5dvP7YxQ9bt5XmnFodBeDCE8obVGGmdsxv+fWwYrPlYOKSmjJBPhv/i
+cyOHwGSkrCT1jQGiwvDMeezgEBSRdG1U2/UR7JMpndwPg7AabxjE46iH2DDf
+nPulNwgDWG41HhVdZNCvzWB0dQAE/BWkIk/pIK28ZiaJOQMwrSNmu3Mag6iG
+MVZUyQ0A0eG1CvPsOWRJ8mUUG6kfWq5lOhogZ5GQP1jJwOp+eN48wWXSoIn4
+sjzARjv1g0NgcYLaggZSp09Hs1Hvh7iW0JZVKQ0kp/M+fcyhfnAiHjmlXK+O
+BIzFXDvR8BskHNpNdOPVEMs2RE3R8DcQKubZrYTUkFqr4cfl8r9BoUYiJjBX
+FYk5fuOY06HfYF/p+cZz5BTCLf2u4dtQH1wta5+qe6yCbNdENj0P6QNNtWiV
+ryoqSGmudSarRx/U9ZFK2GdPInHsr61OWvZBubJIgo3DSXQFgTK6in2w6PXw
+37nbJxCi7r6hpD+9cPeOj9BmqxJSXOmSPeTcCyLtuzeDHyohfibvKm5Y9kLF
+YaahBFklJFq/Rl/NoBcyvNMZya8UEUdmzuNf5Xuh0eRFwT1fBUQR56IYTesB
+fAN9HmOsHLJ0j6zuntIDPHfsP6ZYyiEhabNjEdE98JXrf7bZwnLIlcfPxIdC
+e6DgZJXScoEs0r9zm/3grR54nTSrWjEhg2h+KDb01u6BvKBYFo8gaYT1fokX
+ZqkbphwtjnoaSiFdI/XK2Te64V57hIiynBRy+klS5E/bbriBtcn3PiiFiHRm
+ilEtuuG9l9e0W+dRxNFUS+a1fjfMkRPpwPkoYnZ8dV+RdDfMGInF4VKOICLq
+yvbcS13g2e8x5qsriYT/WUu59aILSvEMmUknJJHW+BGR1iddsJbyIW9BTBIZ
+Ny9lVQ/qArGq5K+ntiUQ5S/uUbI+XXB6wtf4YIUEEjlvKfnAtgtad3pHjmpJ
+IJZ+teIZJ7tgy9qvgrNcDFlYD9u+8rcTpCrlQm5kiCF+TWrLOaOd0FS9XUEK
+F0O82ZTq6AY7wZGva6HWXAyR6lioqyF2QsS29heuVVHktn0W04vqTnC3DjYi
+qIsiXRwFZRxvO6FBX7D08D9hhNXnxdMs607owOzt/9MjjPjOrGp9tuiErnpz
+964aYSRdGanKNe2ENPMsP4l0YWRh2WUVMUTf97Dc0NVcGJH6Tl4QONMJe121
+C6fqhRDNzPIrXoKdID6oMmtcI4hon5iQvTtKhBuXPW7NMwggrS6yedLeRLhl
+f5ZFi8qPNKV0ZMXdJoKAl4bGhxl+ZFOmZHL7JhGiEmU9clv5kZxxWZlhJyKM
+yx7aKUvmR/xCb7KWWBBBj0LljjzJjwTpcrq0qBPBylY8sdr3MOLtH5ruRk+E
+buKp0tEjfEg14zBnm0oHzOwZm4wI8iG3a78yTCt2gHJpudE0Jx/ibaV6mF6m
+A/Lfswjz7/EiUunjseeEO+BGuPDe6hAvQrzWatLB2AHPKyN3ApN5EVZoFTLv
+bYdI9YanLny8yG6/wLXyh+2gsmpLryTHg7Qe98jDNrZBpTxtPV+SB2FmyZO8
+VNMGok63vqkK8SAiVjtcdj/aYLHFV8P2IA8iy7Jp8bioDVjCPdkZl7iRCG05
+pt7kNiCGydgSirmRcdtav9qbbSDldpWsYciNHNBhbI8/2Ab/kvLM3oRwIQfs
+bGYeWrbCrjPL08YALmR9fdlz/lIr5N1Qy97x5UJGbVSa7f7XCj1Oth8D3LmQ
+a9kG+89rt4Jr1UxGjhkXIvb5oauobCu0XHd9MXeUCwkK0bGibLWAj7GvS2Mb
+JxLwvFvs5KcW2NA2501R4kRumliczqT9AuHDYQzyJhyIy5EYkdDyZkgNpYbO
+uLAhhcMXWfjdmmCaeeth/W9WRMXf70fY8UbwCPSqMw1mQdis9h4K7WsAM766
+kiSFA4hU+7Gnr+vrwN8yScWTfT8i/cFd2CjrJ9TUqrVPrzAhfTjQCvWphVO+
+HH9JS/sQScV5qVbTGqiflqQoc+xD7vq0S1w1RuDNTaW4RllGxPJqhg42tBoK
+77z237FjQHx97lqPZ1eCzAVSQXw0PXLlZC+3V8N3eDGv4ZfbSIfoVmr+4uau
+gKrJgDTPw3TIcbrYxrD0MvD31C08UL4LVh11piNKpVC41CNb7rIDPaed+Le3
+i2GLL6X4mdg2LLk+vqxP+wa83Z4rLILb0O6i90aC9A18JcOfx/Bsw7amzqu9
+xW9QoJ4CKQe2QQrfllA/9Q2WORat8aQtmHa7zODb+w3SB9NLSQ1bYDNhl2Vc
+8g1CtPWGCXe3IKzQ2JnV/xu8X5N/y1G7CWeRgHcEhm+weGdWjaFqEz4QOwQC
+9ghwnsuQiVa2CbvvO9Yw2wQ4J+KCHS3YhAv5xhN9VAIIFdaL4lM3YTG2yVVy
+lgDuvZePOPpsQoprrJkckQDLdOrV4xKbwPVFIYzpAwGOWderDQpvwsusykL+
+dwS4Yynf1314ExYw5bqKaQQoa6aPa2TbBJsu24/XEwmA580bwa1vAFlC9+xg
+BAHmYqViI4kb0CDpuWfkS4CfwRzV1qEb4Mp504NqQIAwJqL03KMNSGL97SWi
+T4CD3zvxQfc3wPfJrwsGOgSoXa5UzLy1AQbMhc8ztQigW2DwdclyA/4ddeUK
+PkEAB7t+q1dyG1Aa3fryuxABzQdNvdGudfDWUS6xXsUDF+nKIb+2dXhjvlE5
+sISH/kPUJZamdbiBu5Zhv4CHspWRabWqdfj+W3XJewYPhJXg/Jgv65ATElVX
+NoIHvEiHjF7QOjDr6Nu1/8KDuP3kp+Jj62AssYmIf8FDXkSznqvEOpx6SOXd
+/xkPgYbnZ/iE18F+xUJ+NRMPCvFYTX/OdfD7ei+1LQMPdmeZ9mlurUGWbmPk
+lzd48An/XAfENWhoCK0fe44H9Tt3ZpoC16BGX3zVyQMP05CAefhgDUYdrkR+
+dMdDZLp2jJzPGlzl8Z7+64oH/6Ou7JFua1B0zmfG2xkPVf0Rzy9cXgPLj/ns
++bZ4SDUcoGuWXgNMWRYp+xL6/PrOWnknDeoE7loWncbD8GXNP7WtNEhZfhvo
+oIaHbI7fZa2NNChajWXlVsXD8s8fR8eraOj+jDqEnMTD+BUqmSmXBg/6ov/d
+U8TD6AdOKZMwGtxOfXa/6wgeDn93SrEKpsHM7p7QV0k8sD1WJdkF0ODwdpBs
+mAQeTktPWXp50aAzOzJQSwz9vX7B1lfXaMD3Vo+hRRAPmbttyo0qNGgpcUy0
+48KDmk1re5sSDX7NY35c48TDw4Lrl3pkaVCpZ3Th2iE8RBOL58bF0O+/MvTB
+kR3d/4vNr9ZZafBpWf1EJAsemHnuyUn+pUKlwVq/GQP6fSxJScdGqVA8z/vU
+jx4P0HV+SG6ACj/i7ial0eEhRpm4erKDCqVBo6TFXRwk6M5isT+oYIHg4/Bb
+OCh7OM9l9ZoKO5U+NvlUHEylFlDnXlHh9I9+wxkKDt6Z7fscGkGF27Stg8dQ
+Xwp86JIXTIWjmfe5v5JwgOwgNrvuVLgkLCPQvYyDU+tuUQnOVODodyqQQu21
+gH8mbUcF3IwF/8MlHKxePNthYk6FWJVrHvKLOMhO1clJPUuFMOFOpqI5HDhy
+HWdVVKfCg7gcLD9qo46m49UnqaCwX9ksbBYHrmT6uglpKvQLn1t0/IeDRfkI
+BmkuKnzyx4hjp3GQr9R3r/QgFcr3ru1VT+Gg+Uj7JwNmKgwY8BdjUZshZXpu
+WxSg2d16azyJA+vGi+6ZUxRo79dxev4HB9UP6hpPjFPg/R/5aWHUhOTBv9WD
+FLiylIUpnsCBTXOv8WAHBSKqz3ovjuNA/kdJivsvCvwEa8MY1NrjshmUOgo4
+nN0gnfzPWZXd7N8p0PW5vvHJGA5u1/QxpBVToP7B/IoS6hZu/9ljRRTgiX61
+NDyK7reD1tDZTxTQHdJy10Mt4mM91ZhBAWKO7p/NERyYTsx+Mk+lAPbP95Ml
+qCfYHHXdYyhge41iooL6/S1N8dUICgz+LRKiDuPguGdA0aOnFDC72/njO2qr
+WNZ/0QEU8G7UDLyEmq7fIpbvHvr+jKBUEdQH2edn3t2hgEaUQPTiEA4WvOZz
+C5zR9dwxX0pG3a5hxKtmR4GEU3N2PqhjFQcVK60pcOxbx0cT1AmpQhRdcwqs
+1e1VKKKu/xDm0WxMAaWz/tkcqO2PR0WbGlKAbVrFnTyIg5i9/Ou9OhQoijy+
+PYhaNMVx4NpZCiguerjWo5YzFmMYP00BXMtoJgH1dfdkpdqTFJjStijIQj1c
+Tn/okyIF/E8MKCejNri59PmZDAVGlu/IvELNf39p1e0I+v82cyQ/Q21VmkAy
+FKXA8QMVwaGobw96fpEVoMBTksdQMOpZN1ZOFh4KjLeJ4f4zpnxXYZYdrZfh
+nq3HqGPpBzabDlCA3ulldThqD2O5oBxGCiykaKxHoU4KeFz0YpcM1rV/cpJQ
+d2t5JrptkMFcMIz4EXWGZJD8eQoZKP28d3GoSZE6PkeXyTCgmRJeg5qn8MJN
++jkyKAewcPWiNnkjfWhskgwCza6886jxR11cK8fIUOKaG8OI7uc/1oRbqYNk
+cHjW81gM9XiPttiDXjLkO0zMaKHOGl1/bE4kg4Zie4Mtararl2KVW8hQeyRF
+JAR1hFHbRdYGMvQFnp3NRM1REfIL+UGGWQ2WGTLqSufWqLelZFjiURSQQOvD
+rOvh+n08Gdw1xZD/6kfdUbZL7gsZpl1c/b6hFtDU02bMJIP4bHHoLOpws1WL
+4XQyMP5oYjyC1uff3DOPXiWQ4aODilca6utqcy9dX5HBrS7MahD1aISDzrkI
+MiS+jf4mgtZ/PXvd5/lgMuhM1XTnoH6dWqSu70GGjic3P42i/ZNc+yNA0IUM
+/AyaOipov9m3/7VbsidD71CRZQRqLLWIO9mSDPH2IWNaaP/yWBoJTmLIIHvI
+MRxB+1uwRt+rVJMMx3LZ+2T+4qCqMudGhBoZ9AsuZsSjbnBvVlJQIEOd092E
+2+i8uHrJTOX2YTJMnuBl+W/eBGcMJQwtkCDw37iSHTqvEo2yV2tmSOC4NcI1
+i9o512zxyx8SvHhBsPCfR/s3+n6Fbz8JNiiDK2kL6Dxhv5jCWEcC+viNuF10
+PpZsdbBwvyVBRhmXuzo6b3N3JvdWk0jgs1EvM4v6jemzqM44EgT80zB4h85r
+U/0op9jnJFB1vJ7OtobW/5fkLSZfEpT63C3Yv4mDy06XQkaNSJB1hN/5LpoH
+tJiGxDI9ElD1ru8aoHmRdvGcRpw2CcydrNYl0DwJEtOSx6qi60l3ZhpmxEP6
+7a2MNHESLP2deuq1Hw9emUNuGrRV8IjJ52ZC80qs5OKOUNYq3H/dHrgujgfp
+/+ma33u3Cq/Kj5aqonkZSLvA0ZK8ChN5DRX30DwVcKGUB0SvQhsPveimFJr3
+CtoNrfdXQSk+3UJWHg+yuXyK1karcKk5NJwVze9u27RbKwsrcEhpjHfaGA8H
+nF9bqc6swBX2gdBANP9dlKbi/SdW4JFSVSmPGR5+kaq3tnpXIIHfOdTYAg/t
+MS6h29UroJC/ETV2FQ/yTRX5Q3Er8CCgPSoKPX901Wr5squuQLzvzXtb4XjY
+DBg+mKG8Anc/faQ0oecX3+zddSW5FXh1wm8yJQIPivWGLRfFVuACPzcnNhoP
+Fmk22o8PrEA1nV9K3ms8sDBPfnhZsQxnzgQGrKHnpdLlbK1olmVoH0/rcf6J
+h0F4fGnt0yIoOxtlRB0kgKB6NFKfsghuUa/15DgIIGxTcTohehEi3uY0N3MS
+wIA2InPMbxGqCUUBPIcJML2vZ0ZFbxGYRWpcmyUIsGVrq7QwvgA5Z76kwmkC
+eLQyrzQKLUD22M9bfS4EKBl2SCt6MQcu1sfky5oJsMPcX84fOANmea8Fwz6j
+5/OrfVwPLCbBbMgwIO5zMfxNFvTszhsH5iNWfS/nSsA9+0Ag69oAtH7kX+k1
+KoPC7DPDicqdwPlskmq6XQ4N2aP4/vUq+ECru4TMfAc727TRExPZmAmLY4Sv
+1Er46jk/lipPxGgbeu6aRgNwjb4nnUsbwwhdvBS0q1YDeC22M3p1s5hh72ph
+zEotEC4cmjy/NovBWIVX4ddrYXzuYMxb+TnM9fIUQWX6n8BEe35YP2EOc2TD
+wk2f+yfQp7bk57jOY2ZYR0/Mqf6Eku8KVo2iixhOge9UlaCfoBzk4e3jtYL5
+rNThmcxTB505s9OOMSsYXc0PuYGidXDDWmMsrnAFo28GLXdk6mCO8tS0dBm9
+Xz3lGqRVB6eFuA1V769iJsQN6Y1c6oA1lpO68YqEefsjU7quvA463A1Py9BR
+MVc/n74y5VUPscbM5GoZKqZBJNpf4lE9sHoGY8tMqRjkSt81r2f14FxxL4b4
+gYoheAk/0UuvB4VB16QBQxqmWtTcduhXPeiubSLseWuYN09X4vYrNsBkVBd9
+/u9NzKfKdRcaXSMkvbyrNXBoC1P08jjXmUONcCPlrx8YbWGe8T15miraCKIZ
+fOlNlVuY7x5xytWajWhuud4wL9zGNLH1dn940Agh5x0u0FXuYqoFx/K9qI1g
+avos32CQHkvAbz/6ztcMic5Gkjh2Buw+bFnlqkIzvG3X1VTVZcAy2t/CPdJt
+Bm2+iaryQgbsk5k5cpR3M6jJ1rpwJDNi501oTFvEZvA08L4eTmDCUn4bb7Jk
+/wKm7Ath93aZsBdfenybqP0Fd555f002ZsaKj57ZMBz/Bfce8ZjQlpmxFwp+
+i/eLtEDclMJy35UDWIGl7Ov171rgxGj8n5ftB7EPGFUeJDa0wgHEVNzdnA0b
+yuP+/sxKKzjNPv3FPcyG3T7z9C+XcBsUkk+pEhg4sF0maqt4vzbgCaYLKb/C
+iU0/4+OF1WyHIZFFhFbGic1PPZct6t0O8Rb/tmfFuLBB57uL2HLawWp9otSN
+jhvbnsme1i3WAV9HEjM05Xix0wmRWSf5iUA0sxL36uDFStZ/14s5R4SiO32O
+guF82Isil+f53IhwfSco2PUIP/aja7F9bTUR7hG81424BbD7Iz4OpC4T4dSu
+U228qCBW6P24F6tUJ1w4+8BnMkMYuzT4/suJtE7o/tv05Lm0KDYzU/9I4kgn
+pAYzBf9eEsPeLr+Zzi3bBVlxfd7UZxLYYf/WdrvALjgk2Vw10SaJPdF3puX3
+QBc09kVa9bkdxV4ykm2lN+yGQD2W9NqAY9ji6Tvx5k3dUN4kHdluIost/MhX
+zOjeA4Z7P69iwxWxjvhPSKJqL/wfXweqsg==
+ "]]}, Annotation[#, "Charting`Private`Tag$4160705#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]],
+ LineBox[CompressedData["
+1:eJwV1nc8Vf8fB3B7z+xCZvYIRRHHiNCQBopkloyIQl+7CFFIJCqSFdU9F2XV
++5DsuPbWkFLJ5Q7jon7n99d5PB/ncc7j/Vmvz1ve87KjDwsTE1MUMxPT/59o
+a3tFrV8MVud62Cbk3iyEv3BXpT9yxiLslI3bWD9BWYD7lfMsxzGl+3yf2+Wn
+YXxU94XBBXusgEPj3wDnFJTf9g1zjbfBVj54ZLw3m4R9Qekv9WessG0e1IB7
+zyZgONlxUIdsgYm/fdTSqjwBM5/lRh8Fm2NVsmKJtxvGwSz/uenrAwiWod4Y
+VOY2Di/nxo13xptiTVUnL9XyjoPEsrW8z4gJdvKsXJBPyxjYJJp/O6q+H3NW
+q1+MsxwD13aGneu2fdhY5vexdt4x4JnfNZAvZYTpsV75pjU2Co+vrGZFhOzF
+Dv1e5Nb8bxRsRAl/Sxv2YNmjm8cWHUahWYIQ8khkD9Zram4nqTYKqRyBWW8X
+9LGea3/zn34agVO+tb6sonpYVTRx2Pf8CNxJyNh/nLAbs7JvL561HAHUbFd1
+uuNurIrrl0aU6gg4e/7pKSnVxVoMI19W0YYhtrZBg59VBzPQ3DGnnzsM5sMa
+8+/jtTHHnqR9xfHD8B8SIOTCoY0dVo1qqwkYBk59CA/dqYWNvAn2y7MaBmY2
+nQ8DtzSwozcjDNMZQ5BCvqRtyVDFjsb6aNAjh4C1hLXbokYVmzDaX3POfwjs
+je9zXQpWxTw/+4kJuw3Bxt1g5feLKhipIPGjlfkQMN2kf+BhVsEwG6OlJ3xD
+MCRDcX/qr4yVxlQmHXkxCOW5OQ7P9itjkkZTtpZFg1D8XYvjK48ytqB1+vfF
++4Pw0Tf41fRLJUzBJDPkQMwgUEuDU3NYlbBz6qA/e3wQaCQBn+lRBcyucmxJ
+iGkQamNKP5G25LBnO1DvqpABSFBliw7+JoeJLv0SuuU3AHqy0az/dcthFy81
+Wlz1GADD3+ecPzyUwyiL85dTjw/A1LRT47cDcljPvIVFmt4AWOdc9rmtuhNr
+CCQFPVzth6You/LGn9KYw/FDGx9u98OJqxnX6rqlMYVioR9Dif1A3Hlwgu+l
+NCZQoFGxENsP+ZkD/bWh0ljw1H3JvWH94BBXNTfFIo1xyEZWabr1wyM2bXsL
+nR2Y3J21C7d1++HLt9uWcnVS2EkL+qD1FAnY9k0dTn4qhfE4VdgajJJA5ND6
+qkK6FBbESJNQGSDBE44z8n88pbABbE+gdAcJst1NlTAhKYz0x+yPZQ0JJMJ1
+LDvCJDGWHa5wLZ0EMcNFnJZnJLAHAm3Nfy1IIHozPkjcTgJ71zOJppuSALmW
+O8a1XwJLDQxY3rmfBJOEWDXb7RIYh4ONwdHdJNBf7bLQmhLHrikLl5F2ksA/
+jL3UwEccm3r95UInow9GVx4liqSKYXdS0sMlr/bB+eI92xWjxTDZu5+cvwf0
+geaDoTWbYDGsjppVW+fdByyWkeWk02LYQDZP1aWTfXD1nmvGqJIYxhBkUmIx
+6IMoRyONtFZRrKE4OplG7YUzqeymJsKiWEzJAiHvWi9sia6OPGcXxQZehDCM
+gnohTLEgXIMhgrFpiy5P+vRCm9hZYc9ZEcyxlFaveaoXXN703X/yWgRb6kjP
+WNPvBUtZWvCe8yLYTOCnGF3KR+Dk/Nnx+t02rOqBb+uX4I+gz+zlNF8kjLE9
+87d+frUHKCyEjxYPhbErgZ6514J6YHlq+1JJljBmkhyQaHWhB6R62OiJN4Qx
+IRs59TnnHljqPKZR6SOMPdsK0ttn0gPqoRbGURrCWE/bho0aaw8YZT1vJTUJ
+YWOl+lyiWd1AuRRtPf9dEAu6Gd+dVN0FVgpfP0lNCGInI3/fEarqAt1NHV/n
+j4JYW4BqTP6zLii7UjG1US2IBXTnjtXc74IUz8vU8XhBLIE9xo4e3gW/qbZ3
+Pu0UxJ5+nympNOmCpkxVgXhvAUzaV2Jitq0TTPeWcerx8WPJri/9rGY6YHhV
+//UeFn5sJDvUT3e0AzQXyh+Yr/Fh1xpSD8mQOkBZ5GV7yDc+7MFLw+L15g7o
+DfOJ0HvLhyVn7mxuKukAGbJiu3owH7apOOoeENgB2goHf5VP8mIJ/2pmL2+1
+Q6Vv6reqNh7M1DpqmFOuHWSXX1SobHFhuh+cUhPTPsD0Y/urJQ6cGCH+RELj
+9/eQwfkm6vESO/aXNYjFOagFghBK17EGNqw75HGXvVAzTDjH+p1IZsW8y/e+
+kHUBYBQUcvfHs2BMZj8u7aY2wZERVPpUJDPm6nXxc0Z2A6CepQncSUxYFv/N
+mIXYOoi/p6455PYPGHHiZac7X8O+1ITO6Sdb8MOStdBKuxb+KhuOxuZtQYHo
+5/EPqrVwpDR8QOHeFpxLutdsp1gLcz62d/yTtiBf6PhDd8lakCNwsnEFbsHI
+ZuvlWpZaUOE/rhuwfwtkvrk8Eh6rgQ/Oz+YnhzdBDFLCbyfWwPkL8WZagpsw
+q09ujPldDWF7HhDjuDaBw5n+Jfl7Nfg5ObMMM2/CcFyNQ+6XavAYVTeIo21A
+VZorZ/NoNVzkymr/PL4BDrY7B2xaq4E2/f1r57MNSLY9VqTwuBrOj3IQ9xhv
+ADX+kCzvqWpwfFi79dRgA/69eUB65FANRu213MLaG9C2oNFicLgayiPM3Mly
+G3A3pMnjsmU1XNcrma/h2ADMoD1ZQq8a3CZz3ngOMIDh57hLX6gafAgPQi0v
+MeB9dTsju48ISUGaXnNeDLjjHcbc3E2Eizz3KbfcGPCk2F10uZ0IOcTJP70O
++Pedp93cMCL8rdpm7m3IAJtPl4J9UdyGi2glGwNuPw4w3Z9NhKNx0enlT9bB
+N1YvfM6VCJshHexueevw46iKQZYL7uaDHNvurYOqbzjZ4jQRLGbWCqKT8Pcz
+tu6EY0QwqTXmPxu4DqL6seKNFkQYsmc7o228DnxqHeF31YjQPH6iYffoGjjm
+5WbqMlAoSBn7db5/Ddqp9OK0VRTkDINjMrrXoJhuq7BAQ8FvX1HPEqyB+C4Z
+j1oyCpTITHpt+RowzvtMBs+h4MWV/Pf49TV4aCDhcbsfhRfSvjIfZdag4Ijj
+ffsqFLZFcxdxSq6BScrJw6LPUai77n7NYtsaLFWweXwuQyFjmUW0nmMNwrIy
+ixKKUYi8cJTvOXkV0qgWV8gPUXAvJF5/2LwKdmvm836pKMi8LH6G+qzCucSI
+rhl/FIrIj+si3VdhL+Pe899+KAgvkiUtXFbh15tLgZsXUOCZoDcOHl4Frm3w
+QM0bBcXJo5EM/VUYnFQMI7qioGNcb3aKZRVmtAZeRB9F4cItlm75zRUQYaoK
+6DiMj8fL/MEifQXYUTKrhD0KCSP8K8k/V2DeQ6webFAI1fpThZFWIFwmSMPM
+HAXlSxURxk9WYODQv3y6AQrGv5JGePNWYKNQJytaH4XK90oBU1kr4FSnfppb
+D4VbeVImMUkr4H+9z0pTB4VPBUZurYH4/9LmK56o4fNfYytxxmQFeJyVN4x3
+oiBufrtEa+8KKKkXRzHJovD2R7QHs+4KqBRwNHdIoyARuOpeobgCmqZNd723
+o3BiqsNng2cFgsWSdneKoXBXrJ67bJwOfwt//zrIjwL5++zA3CAdbokd3unE
+h4/nplWjUi8dgjO9Mv15UchSK/nxtIUOgiKBmo+5USj7MVFYWEmHcy6jWuoc
+KKwffn7qcwkd9h+ZMTvFjsKeyhfKcoV02MfOevsGG75efxzECrPpkKZ0uusn
+CwqGPNuUi6LpwHTyz9TUPwJoa6WUfAmnwzrxRZk87uqrhgcUrtDBizhf6veX
+AEahJoRiXzpYGVxHWLcIcIPClFt2jA63G2r6XBkE+Jdp+37elg6/c2lajesE
+8JPuZ1G3okPvK5YmadxfdzytrzLC63+n6/NzlQA/40LXiPJ0UNJxnyynE+BY
+0wSBtoMOcy8LyuRw906kRewVp0OUK/VxPo0ATt/H9Bt46MBhf5cvn0qAa9cP
+Hm6h0gDpJQ/AMgGelhiFsC3S4M66zw8H3PTIpCLreRrMGxkpzC0RIJTPWKF7
+igaNihlcErjzrWxzhj7QIDHL41bhIgHa3jtySWA0WJDif2eHe3NHV7xLAw1k
+lB3E1/7g45nmS5l5SYP6C0Zqrrjly6bF5Cto8EWj8us23Ck8KuVexTR4lO7Q
+2LNAgIBp7cn5XBo47fzYbot7Gxf1ukYWDZa4Qhh8uL0tjGWD0miwzPrFdvA3
+Ad7fTG0lJNEgXutGbQHuxX6vQGocDb6mvDXxwz2x105y7380uMy2MmOEO6IL
+a424io8/OCufF7c7j7/cXz8ajJHTPRp+EYDJb0+FmzcNHhB+iufiPv3j6e63
+52jQ+vfqh2u4U/8dqJd2wevfVRTggntNP9Ms6gRe//lxXjPc6wIqrZNHaFDd
+m/ZUBTemkGptfIgGUbFquiK41bkPtj20oAFboEwNM+4Mr68WDBMa+EePaFF/
+EuDxxEKjiyEN/iW0FPzArS5L1q3fTYMUk2NMn3CzzIUWSWrS4PmpX07juN8t
+sPNH7MLn35e5eAR30bpO6KgcDQRWmL/83+dGogb37qDB7WsuwhO4106Ea+WI
+0eCA7VX9z7gzbZ/H0QVpYPS2xfon7v3ZhT0neWjQI/jKjo57QHxOqIaNBqUB
+ZaZseL0D9SxHRP5RQXdRUkEct4L/zbgr61ToexRMU8e9JEN/3k+lgnrYjloL
+3Eldn7p1F6lg4JLk5YZbMqjv6915KjQqyf67jvsxzzHy4lcqBDw+disfd0Xp
+z6Uj01TYGXNr4x1u3SPqP6pGqcAWoHd2Dncgf0E/7wAVOJnflgjg61fF6Hx1
+qYcKTO33JvbjVtE0i+9sw+sxUlz///p/bEo6qNpMhfKWUab/74/tkfXP5mqp
+EJns0cmF76eh3w2mVgQqDJ8STLHEnWLf2Pn0ORXWzt3Tice9HjdHcH9ChSBi
+rzY7vl8Xa5T53uVRoUrhXJI97p+Zmaels6mgsyOsJRv3rLTUm7FkKpz2nZ3T
+wc9D3377nr03qDB1XbQnHrfRl+He7Ggq2BX8lz2CO7Ze/qHDFSr84MrvTCYT
+wCqi16T9LBUO7Z6rEcTPY+/Lf6+UTlPhbll6QQTuVv9ZvgQHfH4lOj2+4fZM
+IMebHKRCTk5pQiuFAHVnTx0maFPBb6Oevww//ymbp5j41ajw4EJd/y48HzK1
+vB76KVJh0+5ZUAVupr2kGAVJKghKLOu+WSHAnKXOZhYzFY5Hi7XT1ghgE299
+KGyDAvv6HVUf4HnUMP1fyCk6BeRf/5g2xfPL4uSCs8RPCpD+yFrmbBBAnJHl
+n0eiwGr00ucAPP8Eue0yIrsoMPlPgqSO5yNX8tV0l1YKrLUX8y/gfvNkSECq
+jgLK3IvBEcwoVF1wk8l5QgE9i6vv6/D8PXrEkx6WR4HzIj+EMvF8LsnULTpx
+jwKESx2lAXh+R6sOhgjdooA+06dyLS4ULC4Ofb8VRIEzKXHLI3j+X/zYURB4
+gAJp87V/Pojg9/eqsb+tIQVErJsuDoii4KItzaa8mwKqU9ZyX/H7xcqsO2tS
+iQJt83/MeSVREHh7VcSajwKFyeX7b+L3U8Gyu6zQ5DJ0aLCeFdqFgpRXxf6w
+iGXoebMpn2aMwp/m0Bb0yjLUPTr+Zc4EheooHV5ywDKIxEa5WZiiYJ2aNn3R
+YxnchH+nsOL3rZTZyQgXu2V4dv3I01JrFG5yPZHSll4GfT0nu8uOKMh6QXER
+LMFFYyNLjgAU9j2lO4/UL4GbhkLo60AUupKTgadmCTLLXhz2u4zCdGXP4yvl
+SxAkZc0YuYLCbi22B6aZS9DO36U9EInCq9M5HO2eSyD5rjHcJhmFEfbKMzns
+S/C3hOihhvczC8FZgkl/ybCg3cnsUoFCYG727ZllMiz+2lN1uxLvn651zKaN
+kSH8qogM4xXeb71bXpopIUNmBtllow6FIOvzbk4IGRSmRfPudKPg6ObgmxG2
+CE7jswwKBe9fUpnsx8cXQPmnhnaqHREKD12X1vq4APe3XGYvHiGCNjdrWyy2
+AEdlM1zsHIjg0M1TIF+2AAmxnklieL/Y8eKsjlPYAuTMdvX2eBChXXKwJ1lg
+AW4VZtx8F0mEAkZu3qb5b3AwRaYqKokQ3JSeNfHsJ4wHHsr7T6Ia7pO4Gyoy
+v8POv2dcd2xWw2sLwbp22VkwUPnFyNteC/OSbulGqZ/gi+H9bJdDr0G+98I4
+VI3hORhf0HnnDeTFg1HYIAmojXUFFOF6sA+Ujvq+vQV4bn3M0M5rAI8C16ME
+QzMQnecWjPdoAocZ9cp45RYz36Yroctq7yCkcP++U+0DZqZkjwPHWDFYW4zX
+a/eaMetesb4oLNEMZtNrCbvM58zs+EMMBdRb4N/Xe9zpDQtm7D++aY35vYcf
+ti6VNSUUM6Kn0zXa21Zw5opmErqwauap0YsdkmwDsid9ita6ZXap1t+loL4d
+ui4Ntr56y4Jc3spPvnCtE9RWpcy1+lgQ7Zb0+eboTghrhRfYZxbkTKm+tHxi
+J3g7eiuqs7Ei3wyDFBbvdYLK8Xf6/IdZEau1bZXv0U4Q0hwiWX5mRei54Tw+
+i50gemyH5A5pduTgQqpkl38XvBziTvy1zIlU6Tg4forshpm4dboiPxdS/jbm
+aNqNbghzyzS4q8qF6L/XIlukd4MNmxRhy50LMZHRTfxY2A2JTcVeR/q5kBs+
+PH/OdHQDo4R9wPkdN/LJvz/gslQPPG09iKy08yKvdgjJnG/tgbIMSWbyL15k
+Js3wbVRfDzQa/GnZI8CHjLuW7y2b6AHX0BlN4ik+pKdU8eKu5R5wP7jtXOo8
+H+J6xWl8QPYjCBzHfpFlBZAhWmKVYPRHcCy69V42UAh5lmmfh1r3gtHVTCbP
+G0LI9svbWIVO9MKKSaPU5zwhZGkx3iDevRdCl24YZLYLIRZhm9yPInoBbbFa
++a4sjGze1M5vqewFJSlFof/IwghP7Agvn3gf/H1NDNnXLIJUuZopIVt9oPpV
+q6H4iwjSff6Y1wkOEkRQ2oixLKKIyvDMU3EBEtzM+Fibe1AU0YsIUe2VIUEY
+LyH2Yb8osonYhfCYkuB4TlfONKs4cqtwgcydQIK9vwWN/y1JIi7sUlZBO/qB
+43M2J01LClGM5erWUemHXImfh2wCpJCqPjXb7fr98DWp5CXyRwrB2NmPX7bv
+hy2Xh7m7WXYghJWa3eYx/TDbMJ4vnCKDvDUNM2db7Ie2ywa+N77JIFtbb2wk
+t/rB3Ou7d62FLPJ0xggL5RsA56ttb8icO5HrMqkc/JoDwGIe99rMTQ5JelRw
+SPXyALDWNtzguK6AEOuSZWe5BiFjSy2opksBwWS5S8/LDoIm87Eq9p2KCIV9
+mBFhMAhfX985+m5QEVHi/aVZ5DkIAX3ap8bClRFCGzendMcgPPaecSeRlZHe
+aCeLutlBsFegWtCCdiEPFzhr3JiGQJK/7OdkogqymGFIlTkwBFXSR0KG9NWR
+gfd05+L2IVCS7Y66x6KBeLJJmhIWhyCygWUyfVYDwRLPpsxLDAOq1fLWZl4L
+YVo5cGk1ZBhMzsnPLYnoIBej1Wviioehr83bWXy3LvL8eVx88dgwGEmaqrxp
+2Y20zHGE6DiMQMAx2V1n6/SQiBLzYOvsEeiRFZ6dGdFHDhO/zEZ8GoE4nY7t
+q+p7kODSqVsR+qPgHWhgXdy+F2HzPhJSljUKgcLlScNdRkjSMdmZJKYxENh/
+wk7xgjFiN41mpieMwWnGZ7k4hinybdRkG11+HJjb5uRhlwXyTDL2RfvyOPwP
+XQ72hQ==
+ "]]}, Annotation[#, "Charting`Private`Tag$4160705#2"]& ]}}, {}}, {
+ DisplayFunction -> Identity, PlotRangePadding -> {{
+ Scaled[0.05],
+ Scaled[0.05]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox["\[Eta]", HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ RowBox[{"-",
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[ScriptCapitalF]", "0"], "\[Prime]\[Prime]",
+ MultilineFunction -> None], "(", "\[Eta]", ")"}]}], HoldForm],
+ TraditionalForm]}, AxesOrigin -> {0, -0.4306807289133189},
+ DisplayFunction :> Identity, FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0],
+ Method -> {
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "ScalingFunctions" -> None},
+ PlotRange -> {{-8.955815089046379,
+ 5.4573291409938625`}, {-0.4306807289133189, -0.06583390760243146}},
+ PlotRangeClipping -> True, PlotRangePadding -> {
+ Scaled[0.02],
+ Scaled[0.02]}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{"2", "6"}, "LineLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\"n\"", {
+ GrayLevel[0], FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{
+ 3.887174806703617*^9, 3.887174840687421*^9, {3.887174885053684*^9,
+ 3.887174892708169*^9}, {3.8871749475866947`*^9, 3.887174977753584*^9},
+ 3.887184952567544*^9, {3.8871853867115717`*^9, 3.8871853957260027`*^9},
+ 3.893237607785204*^9},
+ CellLabel->"Out[25]=",ExpressionUUID->"4fd8761c-1544-4b9d-b5b4-9faa986a6608"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ParametricPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Xi]2", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{"DufDuh2", "[", "1", "]"}], "[",
+ RowBox[{"3", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}],
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"ut", "[",
+ RowBox[{"3", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}], "]"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Xi]6", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "1", "]"}], "[",
+ RowBox[{"3", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}],
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"ut", "[",
+ RowBox[{"3", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}], "]"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "8"}]]}]}], "}"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Xi]", "[",
+ RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[",
+ RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",",
+ RowBox[{
+ RowBox[{"DScriptMCasD\[Xi]List", "[",
+ RowBox[{"0", ",",
+ RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[",
+ RowBox[{"[",
+ RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]",
+ "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",",
+ RowBox[{"PlotRange", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "3.3"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "1.6"}], "}"}]}], "}"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"PlotPoints", "->", "50"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\
+StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\
+SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \
+\"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",",
+ "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)|\!\(\*StyleBox[\" \",FontSlant->\"Italic\"]\)\!\(\
+\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[StyleBox[\"|\",\
+FontSlant->\"Italic\"], RowBox[{\"-\", \"\[Beta]\"}]]\)\>\""}], "}"}]}], ",",
+
+ RowBox[{"LabelStyle", "->",
+ RowBox[{"{",
+ RowBox[{"Black", ",",
+ RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "2", ",", "6", ",",
+ "\"\<Caselle \
+\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
+\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]], "Input",
+ CellChangeTimes->{{3.875952981547227*^9, 3.875953205695381*^9}, {
+ 3.875953297097693*^9, 3.875953297193099*^9}, {3.875957011270492*^9,
+ 3.875957047134419*^9}, {3.875957125424335*^9, 3.875957151767858*^9}, {
+ 3.8759571836897497`*^9, 3.87595718748908*^9}, {3.875957237810454*^9,
+ 3.8759572647954397`*^9}, {3.8759573310521803`*^9, 3.875957359900523*^9}, {
+ 3.876209125582448*^9, 3.876209130718493*^9}, {3.876209246657913*^9,
+ 3.876209255553268*^9}, {3.884690546688959*^9, 3.884690577225401*^9}, {
+ 3.8846907201244907`*^9, 3.884690753852927*^9}, {3.884690875959548*^9,
+ 3.884690937551785*^9}, {3.88717520576867*^9, 3.8871752589375753`*^9}, {
+ 3.887175361564186*^9, 3.8871753678913107`*^9}, {3.88717542408533*^9,
+ 3.887175425325357*^9}, {3.887185406738522*^9, 3.887185422722349*^9}, {
+ 3.8871854939327173`*^9, 3.8871854996999493`*^9}, {3.887186514007268*^9,
+ 3.887186516174284*^9}, 3.893237649954227*^9, {3.8932376911772757`*^9,
+ 3.8932377173060226`*^9}},
+ CellLabel->"In[46]:=",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ LineBox[CompressedData["
+1:eJxdlnk0FVzXwK8pZB5SkjEkMkTIQ/aJVHhKxmRIZCjKEJIImWeSylAhlSYZ
+HuWaQsbkypWpaFBEiju6E5f3fv9+Z62zzvrttfc6e5199qDsE+Lgx43BYIic
+/X/n/18CgUqibFNlCBCYqlHEAWhGTMSzTfdCvNT5VEWcHfye+u/whulBiDtZ
+8V0B5wVGwbt9NpnZw9vPSdY7cCEgvGQ+rGLmDZN71JYkcPFgEZCeXWgWBhId
+CtcWBvMgy4PQ6m5+HZqsjo5aDJZBo+ceG1tMAXClbFh/yKuF6WeSAwx8CfR6
+yAg/uoOFrR5TQfjeCihSEZovM+mA80jxNRQ+BlN1i/+Gorvh1qySf9fO51AT
+5/lZIrgfdCs9J0S21QKXx83xyfpBYFHuli4/qIchCZma8yHDYDejYRQr9QoO
+DRoclfMagb3DGB3iUCOEdYWJ9kaOgs+Tw1ZCEc3gYz/kJO0/DqNeh85OqrWB
+5R5P20nrSUiQt2mekO0A+bM2PumOn+FuwfsPGUWd0OXoP2RpPA0nktRcR451
+wa7tG8626CtsWrXFG27pAbZ9ejUofAdfkZTyhsle2FCdCR8SnAGXmK47W2f7
+4XOlZ/AY/w+IzhBckyYNQAHwvKum/IDtP9/1arvioFtvBPGTf8L5SIl7bYsf
+IGN9f3jr4iwolIypm1nhQU632WTLyBx4EETSPcZHwM77ZOXVwV+AvWVLVLg8
+Ch/SNnr2vp6Hf91EklZNx0HGVr+5vHQBfEq30in+k3BZXyfN69ZvaL1zb9ft
+hs9gfFX49Lv4RXjeKH2DVfgFtpU9+iWd8AfOb6KTtS99B7xNf9tc3F8ovmks
+9vLQD7CnG4hHhi4B/6uHyzEPZ8HiZdWQeOwyFDx7FW77chY+9pqf4UtYBmHn
+kBoV7Cykn230ZCUtQ2K2fcjCew67St2fy1qGt4dlpEYos/Cmm4U6S5dBh867
+R91qDh4r6kTmtHD0m316ZZbnIC7P+kvs6jI0KzkoR7vPc94jKv1jLAE8GO8l
+bQPmoXzhrf1IAgGU45Jld4XPQ7RPfwU+mQD7PRaK2Znz0GOuN4nPJsDlbWV4
+tZZ5sAjGV0/eJQBm/4m2YPkFmLh2KBrTRoCLpbymhxYXILBet7iVTQC36Ijy
+008WYbM6uzkZEWHyMKX6AnYR9i1VXe22IIKICBzN6l8EFuNgBa8VEeReraWx
+FhaBR1teLdWaCMJ6ZpiHmn+gfy1ROteBCP96e301qfsDYxbP1up8idA6J/F9
+3+BfsDu++/yxDCLsVbxZbYcIkPxNAEv8SIQIkas/ME4EOCg581JtnAjuH6SK
++wIIMErrl3ef5NzfOiV9O48AWIU5v75pIsj8ebfN9DsBQgIPvXw0RwRnheTA
+Hxw/ZbOxxdF0IjjQel6EkYjgcfzXaKIcCfCaTxN614iQZGD0o0+eBN6fTqRq
+CJAguJAZLaJEAofhpARpRRJEWHvZlqiSYHLk3MvcYySI2xWd1qzNkW8aTFOq
+JkGKSi5tCyJB5YGrGoFRZDjszh12wI8EGcPxN2pTyDCsyk7pCyBBMtcHy82F
+ZJA8d++kQyAJ6myxcoxaMkglPt8XGEIC35fz+M4/ZM7/8SU9iCYBzbUqSM+P
+AnI0hrNJLgl+sXwtnp6jgujWOG0uLAmqO7cvP42mglBj/fjDZhK4KhIvdmVS
+4X7n8GnrNhJcefil5WA1FbIcborfeksC/+mii2EUKvQv6u8wxpGA4hbPxiWv
+QM3Anj+Pf5Cg9aexgGobDeI74u+bi5JhC/8ptXUOi4bfn3PnsHl+aklgJw1u
+siuz8BwWtHRWdhymwecAq0m8OBm22xc9vP+TBsz3VUw/KTLsKN07nbWZDs1r
+Woz8bWQg72eN95yiQ/+/YvxkFTJUKH2PJLLpgLnemDljTAa1+BAfIS8m2Oed
+vRfvQ4aE9DNTNpeZsEXvpqu+Hxmu4MQ7anKYMChwYtevADJEnWpR/9PKhAPD
+D/nsL5Lh9KOIbfryLNBGOJLBFTI82jGUbD/HArsWDEU3lwyzE43epbfX4FG3
+V7lwCxnKe2TeNNSvQTSXZOd4Gxk+XHp1Z31oDTBcgUoPOjhxqMdWqAmw4WZp
+/gOzXjKwc+XjhmLZQOX5ZzEBT4babzsJqyHrUGB7AR1dIENqxuqHEYRBvZLS
+Td9lKLCYJy0S5IBBXU6bK8dlKWDBDq1W9cUg/2pV8aEdFFDWjbrOTsMgw1Nl
+1zpVKKBU9+m+HR6Dvl+Z/tOsQ4HK64Fm7wO50M5OHTfWYQqEgjhhWys3En/Q
+RnhzhaPfHLOnYJQbGXVaW+vGUkA85La95RI3irXMG6uIp4D62bu7TyjyoJuZ
+BndyUimgkn60SCOVB1UnzRsnFFLgVS9OM8mLF70x2vZtrJYCruElt8ZjeNGJ
+zOUrQQ0U8DV43RJcxIueFnbl8mApkK9+Zil0hBdppWRZmLZT4ER9bOOENR/i
+rqh3e4ejgKxUPpf0kU1oNKIH4/eHAp/0TpponduEWlyIY6oEClzFveErytiE
+mnmfxc2TKcBVO2kZhduEPJNWfSJZFIg0e0MMOcWP9vpnqjYIUsH3r1NOTJIA
+OhqUYdylQQXDAi48n5YQyun9GnXqPBW2K7e35rkIobOff1BNLlLhwvwF/4JE
+IXTxS2aDfBjH/kLRScFpIfRqSl+WcIUKKfMusZRCYWSxW9W2OZ0KT8MF0tKV
+RFHfvVRgPqHC81tHWvOdRJF2Sk+OBCdvOk4HEA0yRFH+a+ly7ToqlGS4JTpT
+RZHwfmXDsCYq+IdcvWk3Iobive6p7Rqgwk78uWL8hDja7fi8weUvFfa/Vnvu
+TBdHP6Xc+2uIVMiv2iwNWyWQQWEZElmhgqWK+1ZrVwkUZWGcPcamQsLAi3PB
+3yTQjlzz8btiK1DWqW/bzyOFrAW4uCT2rcDZmlDHmVdbUOU1sSZiwgrc6Z/C
+3lrcgs5qJFu6p67ArZhQc1UlGeT0e+9WXNYKdEloXP+ZI4PqvN8we2+vwKX2
+JwJxEVtRYm+Ht0z1CgiK3TA/Ei6LPs4cEDGdWoHuOlLoYawsiq8kearPrEC6
+aO/3xHVZdGrcsXb7/ArsNtCL/5i7HaWfip5WoKyA/7JG49t2ObSl3lCwWIgG
+jdZJuGNBCmjAGTMXYU4D+rO/47H9Cqj0YaAClxUNNhU7Hc7ZpYgOhO9rLbKl
+Qaqeznz6H0XkncD9ZdGVBpvfX+u36FVC5sVRTMUIGmCpW7O12EooGDtTKBxD
+gwLaeqqFoTKS6D6psimRBlWRG/cVnyqjn4wnJKV8GlB2JPE/K1dBQs/tu1df
+0IBmaLdZ5ocKGph5be3SQINH5bL6PGo7EUv+QWV7Cw2eZvs/L6jZiQTLK2bb
+Bzh1rIuHG/NJFX3MNgqJ+83xv1xVYjlzFxpcbRcw0aRD06nr2Mbfu5C8Qq/7
+NX06WGXPf1qz0UDDhs/WRv+hQ4uGF9Nly25ExKVi223p4Hz0vvu2QU1kF/wA
+mxtMB3qFNzP5oBbSu9HGHx1Fh4MPLhYcadZC0v91yF5NoEOViBTL5fUeFD+e
+l/K2gA5BQecL2qZ10PPbWn4xWDpEBdXilkN1UcFGdInmWzrYVk1lTfPqIcWa
+Cb6V93SY3u4pRnmoh8xKKrZ9/UaHPVZErnA+feTa/AUrLciAxTufqwT99NHv
+wv9466QY8KUfpzvbp49SmjA+wQoM6ChtL+ArMkD5o/sH7PYxwGQ79QDB3xCp
+YN4V9Xlz+EJ1Y/acIWoedktKvciAZqMiPuY5I/TXMjwwOJoBjkZmN6zijdFj
+pciVthsMsFozefqXZIIYx/sjE7oZoBoYn69e9g+6K11x4TmeAZJKDZ96HU3R
+LyNq8OZvDFhwMcfzjJkhsoN5QBCLAYnlp6PXVRBqvWbRtmTAhM5SsQnf+wh1
+hqlrLVkwYcUv8eiw4kFU+Y9Gk54DE6oKJB6dMbJAGfZHfHPDmNDAKHK7NGiB
+jimoU6uvM6GJX3PAN9AS1Y5q5u0oYIKEeF2YVcch1NE+fpfyHxO0hZrSkqOt
+UOFq4pxPDxOQkUCs9YHDaN9dnyWdCSZcSshmDM4fQVmXF04vrXL60sXoUNKc
+LXKbbPFLtmFBzmDO/ezVf5El/3rpsicLlLzPhb1QOY4uZXDG/zAWYHEKBr+c
+T6CVORs9RgkLPJ4RX78SsEdNekYPHGpZIKxbbbzUZ4+Ci6cI+3tZoBjl/D0l
+1BGZkIifeyksqD5p2Nbj4YSGMuLH4oRW4eVb7w1jd2dk5BWV9nPnKlC1dEUH
+b59EgQX/zE65rAL9SXt1w6QrUtE8aZEatgpqLdMSV4zcUNFIN31zzipMRMjp
+FDp6Iied0fgvvatQxYOzPy3nhRYxl4X/nVsFSXF1mnj6GRRjNj84zrsGkdOe
+8iJ3vZEIjdxXoLYGEZJaXfY4H2Tw8+vZO0fWQPSAk4+5ki+aKXPrXg9cg/PV
+/S9FSvxQhLKe6a+8NUhLYxpM7TiPxvOfzLd9XQOtTu/Mj0ZByNaoXGid02fx
+GLGm6JKL6AN31YKXIRvkEqm6Ulqh6GOaeaqcLxvO/Uq4SmkLQyUDa/iwW2wQ
+vaDNdLsRjkJGmLdfvmPDi1kDPdmGSBRR78KvxbUOWsdtuLNMrqAfEcUi9mbr
+YH+l71GAaQyqNhdvKItZB6b2mN+l6TikTY6SqWtfh+qrCrXHH19Hmg9Gcy0E
+N2CFyNB7F5CMZsWU9dGpDdBy5K2r+ZmGan/j3cZqN+DZgdV0m7PZ6P1fSuFb
+AQwn7z6clt9zA13nF+N/Yo5Bu8oKx+wP3EIrbuZ9UTEYlJwkfKibuxSV5LLl
+5DsxSN6dxIgcqkD5PIt+gZJcqM2Y8iL18RMk2TN3+W04F9LYjb5et6lHFy4v
+csf95UKZ2Z+d6ozfoHH07cWxTG7UQZf9prZjCL2uiJR2COJBLSIH37u0/0KX
+Q8e/Zf3mRQanv6rr5xLQ4ZndMXxn+ND/AI4HVkY=
+ "]],
+ LineBox[CompressedData["
+1:eJwVj3k0lYsaxrddZMhWpkKReRNRZg7va0chVA5CXYkkkp2ciogGYylkFx2R
+kg5xVBIdhYrM0iAU0VEuShK+79uD4bp/POtZv7V+61nrUfVnuwXSaTRa+mL+
+343qNhkfDv7EhO3aai7+wjhW6V0zq9OAydIVojcn6ajO3LgwmlSJmZHyVJkF
+HY1Swlv7v5SiWpvMD+GHQigfrHQhm3kbN7KNI5iOQkiTTfDZ3JaLM1Gimzyn
+aGg6cXW//fRV/Hrx2gFaMQ0z+D71sjaXMcCmIv9BMA1XufbnyP5zEdk5jGzl
+TTQ8fYQnUVGejHl3+o+X0Wg45iJR8bMvHvNfndGPKFqAo32jHx/0ncGVab8E
+jbsWoPI4U3FwIhbNbFpWLGMswI6H1fiMEY2fUwL+Xd86D1khDKv9gycw6KjY
+04AL86DVF8scNz+G9mWNmsI756FzgCiweHsUlSr/yJSXX/RPDqxufXUEWScT
+96kPzgE98qVGuHEYBtgKyz0smYPmxgJrdDqEgyF9wvui5+BgBjER1HQQQ9te
+bO11mYMBxZPrM64dQM0HPZdfq83B6Vcze9VEAvDSmE2R+7tZ2OPzknp3YR+m
+vqzaHFM2Cz13/2ANW/mh9bXeSe8Ls9CrLGobss4Xz5JXXrcEL7JwdWTIsj1o
+12GxvtRxFooivMz2a/jgd5mKd191Z6FbtE15xxEv9LTKveMjOQsNsy63rGI9
+sP6o/3zhewGkOiWXzJi64yMTowX3JwIY1xJRbJb4HUn/ldnTNwXwstqdkzu3
+A92NfHobwgXgu9c5I01uB6qW2nl+8hFAieWM5uNYVxRrnOm8byeAgf6RL1rn
+tqHiKr+svYoCeG495Sa7wQmTQku9mSICKD42Hd086YCbOOY9iVN8kFtXwVN8
+tAXvnU7RGmnnw41tN375iW/GcSxjnU7iQ73kfE0ki4UhHd+yrU/wwSFHzNs1
+0RYLH003+wXxIb/OVuxvfUTZmAhOkwMfoso2RLmqACZvcLZbYsmHKg2T/qgZ
+azRRDBjnrOfDmo50dlGHFcpl5j0pleKDj84j+aROS1zJVr2jR+cDL5Ht4Dpg
+gccLCkXJGR4Y3J22slAxR6cThxJ8+niw86zl6RRFE0wvC5LSLuHBbc/29eps
+Y1R6znQuu8GD2vKuseA2I2Q8zegP5fAg5qA9aXFtE9b5hHxOjuWBv3pRsGGc
+Iaqo6JtLefBAcqzQ+jcRQ0zLMjVU38aDV4SPOkvDABfeBpr52/Jgxn+I+Bam
+j0r7Y87t2cCD4ZKlTXb7dXE8595WNXEefC+sixqp1cH08Fp/IToPujumIrVV
+dFAL7iXM87iwM7fF8dxPbRzdOszd/o0LbceNv59q0UQyQy/9t3YuRCdq7q93
+0sT3xNGH3AYuXDc3ujrXqYHlvUN3Omq40C55ubN0WB1PPJ1vqrvHhYAJob0/
+LNSwNrmZXcnhgoiYtX1dtyoSHWphupe4oOydyGAfV8WobC2bh0lc6F/DquDX
+rMPlTj05QtFciLuolynVrYy3p6XmEvy5UG/glrfcQxGXMAOl+425cMpBIt/s
+vQKe25H/mG3AhRTHXU05XgrY9ljoirQuF9yL1Zi3D67GEC/hD/EqXNBtnQmi
+lchjuXSyq6wEFypcFMpN78jgVoYH8+5XCmLOv83cuV0GCyPNPsp8piA2ZlOb
+L18a4x4+UUzpo8BlyYFqeU9pPFvZeuHKWwrYn36XT1RbiYHTvfYbn1NwbNKz
+1EqcgWnp32e351Nw/jS9LylDEpf1pvgevU7B/K7UTjMlSdwutSUiN5uCv4tv
+tcabLEfru3EWkhkUBErkyVnGi+ODI+bT289SsO7XGo97scvwWciKFscDFHCS
+Owe6NJfhezFpYsyfgi/hpwqvvBLB0YvZahl7KVhxzPLNCw0RXNs7oDXjRcFl
+Gmekc2gpKueOHRJ3pkBH/1e04NBSDNsT5j2/hYLVJj8i8vPoyPJv+BJoREGp
+361LCbvpaBjqbBtqSEHx9Q/9yQp0dBE97xupT0HZh4vVb7KFsGrQOfOmNgVd
+LNE3rQU0pE72ypiuWWRTj7+TO+ZgPIdf4y1CwY+wQe37S7mgYcR21h0goZDd
+VH2ulIK2z4w72X0ksKbYcv94UFBztfu5xAcSnMzzVuiXkvBxbaY4rYsE45/R
+K+IOElCeK3lCpZUEleGrdyMUpuGaiiLDoIqEkdQPf3qHT8C7Y+55dhwSbn2k
+4/UlE9AesuG18WUSwvp19/pn/QBGutphZjoJauE8lm/9OFg/aW1USCXBp+U1
+10/vOxgl75bViCfh9oic7T7rURC79Nrx9R8k2Jybrc0x+wLerqYZHl4kiCt7
+nQyYGQLPP9NuPPckoahY2GHqwRBYl2T918CDhIq4zfe9DYZgWXDAchk3EhSS
+azLoRv/CM/Mwi+ltJGg9O3x/pnIAHMyOu6/Cxf/CJRI6rF7I9c66+VaHhCg3
+8SMyX3uAoxpWc4pJQtquR+VziT1Q1ePI0dUmgbM2I76hsxvMol8FpmiQUP2p
+eN3z0PfQVUH+tluFhAL7usKON28h5dZ5gbMcCQGnrFdEhbQD96Ojsjt9cd/q
+VHP0uzYocdg1yhAiITlH2oxp0wbik3igbYEAkeHca0GrW+GLUBHbcY6AcDsl
+w5HBJigL2uflzSVAr6Sr8kBlPdi5Jl55OUFAIxk9nvbiMejZOvz1Tz8BY1JP
+p1THqyBfZOjm7T4CcmVc9UZXVcFhpZ3j6R8JcExMrCWOPQLLhajAw70EmEZf
+v+6zrRwgC3NMuggopSq2pJQUgYpQwX1aOwFJa/QKmPAXMD7d9V1oJeAFe7dL
+SHchGBTOGy60EOAySdCKpQrAK+GnGb2ZgEPp/9ncsysHWHGT8XINBDQ9SJQb
+rcwGW7utEmvrCRiPr1bKWnMVQn825mu+IMBtwUFwRpAOHEb5hMUzAhwaVM0N
+xlLBPrjrpn0dAc1JNMHcSBJwqFRvt9pFPyfUfdv0WUgMMJbxqyFgyUBa5bBc
+DGx+qtoe9pSA/wG+jFnf
+ "]]}, Annotation[#, "Charting`Private`Tag$4175432#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]],
+ LineBox[CompressedData["
+1:eJxdVXc4Fvz7NXrMbLJHMovMyHrvT2ZpWqFsopfMl4ykVHorpYxesiIricgK
+GVFWiwhJVmY8PHsYz/Pz/fd3X9e57r/OH+e+r3POXp9Q+wtsLCws1B38b///
+qQoIHlNlqMK4h9m5EUVrKFIzHFNjGIJNKYb8XfEsEDk8RzUYNiBmquo1rOgP
+2mq7h00ZzhAtWr/7i+JleKmV0xPPCADxJL/2OsXb4Kh7vSieGQ0/Kp+lnlb8
+DwYKB7Hx7Hdg99UE+xaFUnA5KveiWuIJcJhelq3kbARN3MjcjeZnYFPC8txA
+5B20HbRtI80+B+GS4tyzV7vB3yw1v6DxFVBSLyhGnP4E26Pn/cT31UJMCLdb
+2OgA+O1/EuA10AD2onP9Oo1DsKDbdqw9vRnkSqpNfiWMQLkolvs/1Aao9fiB
+K7t/wOpJjM200TuI+nC5L/XDT5BRky87dqoLqglLp+WtJiGoKWSZM+4DOAXX
+veg6Ow3Jgb8b6lh7IepAOMHh6Qy4sK69yXvYD3Gp7JD5aRZ+nt4v+SvjM1hR
+r9wo5puDyuMvnmCCByD2NcakxGIebnzujjov+w2yHVTT07wW4PstlqZe9WG4
+ahIcmZ+6CBf+fKn7bD8CuCkBKeOKJZg3G82YZY5BHEcq3+cfy3DnuIzeTb4J
+KA59YfoX6wrc322/cs9nCtZn7s6EiK7CA/Wf7/UjpuC6NpVXUnIVGqM3J5YT
+p2AOT7bokl2FDD/PjajCKcjW0p0UV10FD3MhG/GZKVAcTuh+Z7QKnOn5pZY6
+04C7dbBNwnMVTtytZ7FsnIa5BBuJkfJVyFz4sL57dAbcPIW2SwALKc8/Zk5N
+zYDrorAcpyUW8mtPdL5ZmoGkYxk+F49iISc6vyVhYwY6BvOdD9hhYZtrkPec
+3CwoRuRtvfbBgjI+qMwxYBaaH2bd7UvCQpVcje4jxizcK6HH7fmEBciv59+0
+mINT4fJ6Nq5rUKO8HBZzag7OvTc9kO++BmJ2l9QZLnPwlHzPk+y9Bo5xZe8V
+Q+bAizsxoThwDfrNpJsHs+bgsdr5Z5j4NdBTNr71dX0OfPHHFofy1+ACvy8x
+o3geJAx9y4rm1kB04Na1oQOLcIbRvvPideCJnTw+arQIJptOcuSodZDJU7i0
+ZLMIiwRjvfa4dfgznE/Q9VsE5u+PxY631mFM9KFKUN4iRJ/Z33Ircx1iny8I
+xwovQe95L5eN1nXokZZ+8YRzGU68czhZgMHBul1T/KLiCjgifYVaBxzc0WUv
+q9dbgepI4+sMJxwUqP64lWG5Aq/UVFVsXXCQe+NEyy3/FchpNLGadcPBaCKm
+TadiBQJW5H6K+ePAtayeY9hwFQIwZa33YnDgE/SCQPDAwt+CJ/Sr8nCQ1KmR
+wx2Bhc9fTMXZC3DwlOs/R/2du6/yHDzp8gwH7b5v/umuwIJ75fda9jIcODEi
+uqbpWChvq47xqMZBsw4ugjt7Dbo4BK2VunBwmm+oYs/KOlxYvnaYtIQDwcLF
+iz6sOOBcprv/u4KDq5fr+234cBCoNEyRWsOBFwMzaaaMgyYhmyQLIg6uZdzi
+GN/RqeZYrpq9jYPWtxl6y004SImLlvQQxsOVPfKHVVLw4L+anGtliofnvwWf
+bubgoUrY6tbSX3h4WoH/PVuOh3NuipTkI3hIa/s7efEDHhQnA64MW+PhX7P2
+7U8MPIzF6ytessOD4HGNKZVIAvQoeD1u8MdD8u5OinQIEaJkfKmtqXh4KeJf
+oZJAhMJP4UIBGXjoULHSsUkhgp0yqV8wEw8p7nmu/VVEELadk/fPxcMfQdlv
+v3BE8DtaGyhRhoe1At9Ir1gShCa32ee+xYNFSM9h5TwydLROaast4cGSK+Gk
+ZTUZdJY4BBb/4EEzyev8tS4yTJ5kfVmKxUObaLut7R8y3P7Rp6JGxEOqhT/B
+yIgCkdG3/9Lf0fHBwux4wwQFTIKaieGiBIhYOKJDMaHB44WGD8lHCGBdZKN1
+w44GFvnMCj1LAqgTduE0A2hQ2PnRdcKaAGkYpc75NBqstpwS1D5BgF9jaryT
+KzTww3JzzZwlQEdSxtODxXTAKywpBF7a4XNUnfHT3gRZt/yze7MIYKBvybhs
+uwnmGTLhc9kEqNmL1ar124T3LrTY53kEwIZ+Si9/sgmvKg676RUR4NvHn91Z
+mC0wy42561hFAMt22bej81swqwfvP7wnQPFcT+PnfgZoBerphxAIMBNjGJ2G
+ZcCV1jeRj8gEcJJ+GZklyITNCVbOOhoBRG6n/Ah0ZkKu1HN1JoMA5m+Csk2X
+mODyp6+khJcIqpPa+3OSWdDYfPnVQ8pEiC8JKBAcY0UiUyK/w12JkKMQcN1q
+jRXxttRvd7oRIUIy7djzXWxI7WFos5gXEdR5rSroOmxI/2y3coc/EQxca4rG
+U9hQa3fHHvVIIggmDE2L2LMjjouRAqceEiHdbX7yKxsGiWzVeG52E0ErM5a5
+IYtBK4034m37idCkIu7nZYRByiQT35zPRPA0ia2dCMMgGR7THPNhIij0xIm+
+mt3ha9EFy2aI8C+XtYP3Nw7E8zKd5+MWEWbJ5XNDi1wIDPBdWfqknZwfmh7k
+5UaJs1SK6mESjJ5eXlPW5kYzrclBTSYkUFiXejscy43EuVgP/DYnweNn/P8G
+C/GgSCG7RHu7Hf45IbkCe15U9SuptDiEtNPrKHhShR8JP6LcMK4ggVnr4MBh
+Z370hMV+nPMVCcJ0ViVE7vCjk1U126OvSVAu5VB9aoUf+W2adFxvJgETuTqL
+vxFAaet5k6Q+EshIpwu4NQii1fuFAsHLJPjzpFObZUgQfWox2BOIJYHT8Ft5
+8rogwu8LPxOIJ8E7Jue5kf1CKJf5OD6SToJSvLdFdrEQunmEnFjNTYavW5K6
+HuXCqPwZy64v+8ngbCwXVPNRGAW/TfzOqkUGT92B85fWhFHvuVkXIz0y5AaU
+aSscEkFMWlJWrQkZ6sw3zGt6RFAldpz2/QQZroV3v1JhF0OPZl6nj4eSgZzS
+JWv4WxxFYt1PaTbt+NDchHuXtASSXzx5zb6NDNwammqlDhLoiCdX+dUdnwqc
+0Ki40iOBFj2YmgufyfCUYLVnrUkSKfGssrD9JoOyJb00/Is0MmuikKL4KfDQ
+yZ1vSUwGRTzjrWUXpYAYVX77rocM+ubFXpklSYGRs5o1QUQZ1JaR/HpMiQKM
+SwmGYRpyyNXAqKrWhAJXIh3LLMMV0OTdONvVQArws/ypP1iggOy/Wbyjh+3k
+wFHnQMJXBRTfLqgkGE2Brdb45zK6e1HseWNNl5sU6GkJa3vKqoiuzCSuu+RS
+IOTBYSfloX1IUkes0HSAAiWTLBFFwkoo0OvVkeURCozbbu8NclBCoS4iioW/
+KGAcJe64NaaEkthMnfRWKBAjd/eDKVkZpbhHFy9wUAEXNCljEK+GpHF3yuoR
+FfZcHrf0/6qGqGpS/JU2VAixaGjyUFJHReoyijWnqDCnOdwzOaSOyM6FKtNu
+VHDaGK+ssz2AArC0xqlYKoh847dtrTyALIblsswTqeCpb63GLaKBDvJZ42vv
+UEGhcY9C3ZwGOuoTIdiVSYXS9lfEm6UHkbwwLji7gQrNkd18X2W1kFnfoeiY
+NioQ/pS4Y7K0UIDoxv6AbipEmD5O/2SrjW4GRn+NHqHCw83Ofh03HdR577lh
+KJUKjTNRqo8m9JD+4v59XGY0+POFQ+WngT7qnqDISlvT4Mzw1+o36fqoI9R9
+wfI0DRwEv35OdzqEsG0xY5PeNGA7LxOB3zJAF/W/kY3v0MD9pbI3LsQQrYmr
+0IR3cjfcYXQuZs4Q/ZDL2c+RSwOJr5mGXeOHUeOB4CpUTQPmLvM6Nroxun5s
+0EtynAa8i5DEed8EDewTwf2ao0GX99RxfiVTNIHVCelap8HN3kV/MT8zhO8s
+ziVh6MCpzSR+EENookv2Erc+HTz/CRzniEboZabz8hrQIZOoa0P8iZBhdSf/
+9nE6RGpeZGbUHEHyYVLUTD86tEhYl2ukWSD7gKr8lUw6rDwLmzqjaImeBEvz
+nSulA3aiaECsyRL5jK+yYerp8PBk/bfDW1aI/bYYSWKIDmKsgyJ3y63Rb6k7
+wbdn6WAeo3/My9MGxQvdCzEi0AGF5SqxLh5FI0cF/OOEN4DawG0i3XwM2d34
+vMS3bwOK5Al7vLJskcRrNSGC3gb0USUZHbEnEM8hVoumsxugMXAtjevyGWTW
+KH+ovGADrH2bS9Wl7BDrusykSt0GzEQ+K0zstUPbhapY0d4N8Jxci4y0cUDD
+5ItXnfEbcKRA1l1ByhFZ0ARTGzk2Yd6X2aix6YjG+LzMn8psQqjpaibb2lnk
+GvWteO9Oz+WUt/7hYXdBD7DY/o/em/CiccCFqeGKJiNb/5OJ24T69JG+d73n
+kejNZ7FjL//Xk2f8FsAd+Sl5f3fp2YRc4v1XHSMeyIjGkf5idhP2SWXJPjDy
+Rh0+0xY06S24OCj+goB8UAKHZqqw8RZUctEx+d6+KJv067SJ6xYUlecVEvP9
+UPY/HuNJsVsw5dXBidu6gFSjrMs4c7bgo5e71rHrAaguifhkrHULOP1SKrMO
+/o1EvYt8RGa34HpYF91KLRg90rdiN9fahgrMnYOJSaHI316096rLNpSdXvOR
+lwxHYhFcDXU3t+HZf1t2xfkRSDF2112Jmm0IMBbYddstEmUhxs3Z6W3wfd9q
+6OFxGdmZf8c4iTCgfzjDm/g6Bhn8uPug9SgDZg01GhyDryCpsXuO0YkMUHbV
+ehNemoCMFC82rLUy4OeR5rhGSESXGZENJQwGRF0YXEhNu4m4LqlLG1sygYGN
+m28JvI2+H+79HvyQCQOj/mnrxLtIYB4/pDvDBHMpGb784BR07m+RXR6yLGh/
+4wEBD+k05JPPdPp4igURC2L9vfCPkdaxqKtLSSxI7Qzt5T3tHPRLsIQh/Z4F
+bcZ4p/A5FKKCAvcET15WdGJx4H7ifCm6mdv0MseDFSU5D2ar9b9CPD6bl106
+WVFR8T2bvspG1N6ZcF73Lza03+XCI8mKLlSv9Ho1YJoNsR/VquzrG0IsPHKe
+yb3s6EyqguaXvDVUeP+0j+NZDPLq9RSEp1T0pMVgk5OKQf8Hv++MCg==
+ "]],
+ LineBox[CompressedData["
+1:eJwV1nk41AsXB/AxtqIkRiZL1lwqSciSnINsuTLShkJCKWvpVVFETZcspVDS
+kOVeZc8WkVDhcgtRoXSzpBKhd36zGu+8f5znPJ/n+zznnD+Phl/YngAyiUTK
+Fdb/+6zhpau5N1jYeK1v71mOOC784sf3qfyDh60cIw2CRDHkB8fDaP8zDNSM
+wq5yMrqd/lb7nVyLtwf4f/mtJ6P3tB810L8MnXPn5ewbRDBfMKjT0F6El3z5
+ZWm+Iuj68L5VQXceijXXPrujIIJ3ZcwaHj7NRlUpUe9PAyQ0iv99MLw/AwN8
+FXylckgo304/NaebjsETTJnzQSTc0dOZIqhPxQf0vM8kSxI6MRpnKfuTsDhY
+bLRZjoTJewwcDN/R0TKu4PHy4SUoVby1JkXkMm5mON9m3FqCiMNSdY2ll9C/
+ZkbHf+8SHHuxkHM2KhYvhiiZl1GXwDdJueDB1hjkDS1OTP8rgEeqmgXuJ89h
+kAU/6mGpAMTkKWGBy6Pwsf3DXfRoAUQkzlE8uJH4Mm1obKOLAA5siemvNjiN
+e9c9Et2rIQCOYi1vm2U4Rht2S0HvInRoBN9oFw/Fb7FtDxgPFyHPLmRY4f1J
+fFX+tLWevgiHzGcPp04GYXC01b1A/0VwLDogK6VzHO0S3uRcs12ErVezmlrT
+A5HR3syQ0l6EF+fEvSV0ArB4zcZLf4svwo8eikZbmR8empUR1PTwoXb07bKK
+7COYlXeA+7iKDxbpMzDE8EWHtRLylVl8eB2gqcZ9cRjTmr+mWgbywab3iXzB
+jkMY7Lf5Xv1uPgjKlN2W+j2xd92dwTlTPryyKnY55nwQUxejd0Wu4MNbB9KV
+DL0D2J6081UJiweM2VxegfJ+DF2I+hw9zoMKZUe7EOO92LTBJr6jiQdXavb8
+/WS1G6pLj+XsO8ODMa8tQ7RAGkZXRitk+vOAU1VUlJXoig6S1xlWe3mg7Hxd
+V9LcBa3TlS7UGfMgqkztwKSzExL1l+4Mcrjwx4pPj0zDHbGkpjr/6zQXZCdN
+fGJzHTCgz3jcfpQLnhUeb5RV7FFCRVF3uJ0L9gbWSS0xtvjE0MtAMZ0L1trp
+ifu/26BFwdH15+hcOCqwq7f0tsGLA2tKVkdzoddNOinlgDU63L9+/ZM/Fyi7
+BbmHVwG6xRFK7RZcyORPU37tsEIlbr1T2RYu/HCJkbkXuQNvx9Tpt+lw4WYr
+LSKNvR0j5Nx2HZPnwontNzfM0szRcrnLt9hZDoTQVsf/qjVD+cuukXmTHNht
+8nXVUXUzfKYzv3P8Awdys+IDL4uZIudVmkVPNwc2vj/BKhY1wfnnbT2UEg78
+PrDjh2etIZpWsco+h3Igh25yMNHDEIe7VFp6jnFgcsJT5iTJEM/u+bz5tS8H
+RpofqY3u24Lx2xz0qO7C/Tcbn7eYb0Z1moxXmRkHvOV06fryG5CfNBtMl+SA
+XWEUO+GeHvrWRGY+EuHAztKhqXcb9LC7YmXuTx4bbIOkz8jt1sWEANmVd+fY
+kBxxmmdTo4PO0z0yFcNskLc6mMSc0cKMarWAtCo25BiW/udklhbmU9SNrUrZ
+UJN0MZtro4WdHoU/eX+yQdJgdYh6niamfyxSLchhwwq/MdH+cA0sPMl3ufMH
+GybbOsU7WtZh2uqDLfN+bGi7yVaiOa7DsTixj6e82XCkY6TuxBtVzP8c7Lnk
+wQa9pZ4MqXkVrOgMaDZ3Y4OzVkmTnKMythw74mWAbMjuMRgmH6Ti8CazRq4a
+G0olpXv1yFRcM5S+b50KG3psQy5wyhQRE1eN7qKyQSauWeG4lCIqVv5m8lSW
+DYYOT12PDyqggci3TCkyG7alUK2VS+XRwStlQf0LC9JrP3q+05PFEsFdzq1q
+FuxccSVairMKnRkfNg5UskA+ws2vPXcVbna9EkMtZ8GaVm1Nw3kZPFykD5XF
+LKCvJ1LsClbim07bViUGC6ifi53WgjQm913W7k0U5rTkbMetkqjtw0wN8mfB
+u+RI/l22BI7MVuw09mNB+OifyypbJLA27GMR2ZcFvs5UiZU0CWR3xdg/9GJB
+6YftVTbnxNGtRFxa250Fa0P0Y+SmRVGr3cC90YYFTt31m7osRNAuv/+dpTYL
+Qm1/bG+UFcFMMe0Ze00W6Iu0fzKcImFd2AvzveosOLRxWK80g4Tjz7I9z6qw
+oCMqWVd7fgmUwyKmJynC3Ku3YbR4Eb4H266jSbCgPnuZhWMVB7I3PO42miZg
+2/SztOdRHLC6Pdac9Y2A+mbm+wkrDvTsPq8qmCKA8s+WQcnXbCh8GynbP0HA
+udKEmiyCBQ+DwswzRwkYlnhZLnKEAJPNY/7X+gmYGY8/8injF0gbi5tKNREQ
+H69vXRfyC9oOVuk2NBLg28R5tGD3C/QKL0wHNRBw+0isZhZrAZYor9/21hHQ
+m2Ome9JnAb6cL/lSXUWAO3Ug1BTn4Whm5tqevwhYb8AoIl+cBZx78NYgg4CQ
+hm7/EtGvwLkf/GNrJAE3KV60j0NT8IfRJgPaaQLKc2PK/Sqn4IZuX1ToKQIi
+bj2O8PeeAo/ZMkp5OAEVSkFh+k+/wPizG3vMQ4TzVh4y1U2ehLyYxqyLgQR8
+by0ffHVoHPxOi+Q1ehCgLqIkpuTzCTrIhqnVNsL7cc/ZCJ1PsIqeHMuxJmB5
+fHG/8ewoGBUqO6HQP+P/NeBdHIXYEJ5PLxBQbeQ8c6LoIyRM0qK5lgQEBY+1
+ksU/QNR6Nf8zpgQod6//LFg2BPobZnYJNhGQOKMh6OC+gQjmCFdbiQDpvJU7
+js53wcS2ba06i0zw43WN/K76EjLbdxVb/pcJcz2J/kN+z2BO5wblyxcmVNEo
+IpUqj2CfqC6TPMCEtzWTzcMpeTB5lckyfsmE3xIUjCRs82DXmatHBS+YMLDU
+sFZ/PhekEjcv6xS61mT32o4uBvz06eN5CR28oMWwvJwDfAUZOv05E5ab9v2t
+r3obBsWC/zvZxoSxd28rtCvSgAUjdT0tTLD43prIrEoFz8qw9zlCk5O2hSvU
+pcC0585NIUJnUms6LdquwUjwRJCM0PeSvm+c+nYVVP6lm7o/ZYK5x6Fo/TNx
+0LfWdX6yiQm3tkjd16LGwnl+rVqD0MYZUnE0xwuQf9/1QrLQPAWN7V0V54R/
+gs8LI6F9XyrS32efApNlHxIuP2HCfafIZP+RcNCobdXxELr6qrFZpGUovHY6
+ztIXWnzKZaHk5QlQPZ/PJAvdVB4zHLTvGIzo22q8b2TCejlS2l9fj8JYnOr5
+MqHvBbEfe8f5QnqbGClBaLX0fKqcuSeEqi2vPCh04d0DaXjeHfJ/Y/O9hf4f
+PjPanQ==
+ "]]}, Annotation[#, "Charting`Private`Tag$4175432#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.560181, 0.691569, 0.194885]],
+ LineBox[CompressedData["
+1:eJxdVWk0FfzXRVxDRcicZKqoVIRS7B8NlDJ7CpVHCEWkMiQJCRUyJdIkFSrx
+CClJEjIkFBqIhEzXnV1TXv+v71nrrLP2l70/7L32UT7ia+POx8PD0ze//7v/
+f0a3pZRdKpKBVOFloZkuXTzLFFKJLlqFa84PZGa6dmLLnm/vYor0oa64xG6m
+yx5lg6rmCUWmWG3xaudslzsq2oI8c4v2Y/3r44t4u8/gzFRRj/hzDxhpeq5a
+0h2FoJuKtKLiQNA3C6Tt7U6F6uxd/ZTyGGSo2ud11j/ECZdbQpJeSTjHSR58
+MV4A+k/IFTvfQFHDy8pc5xKsdUk8umzwNgzvpC6uNS3Hz/Dih1kxWQifdWj5
+MFCJZwVHSgRHH0AmYeu6GwPvcPVzYr+fRS5WXEnICfhWA63acoGNl55A+avP
+zSe3PmC726VviQsL0Hlr1HnznUbk12oM2VYWws2fuTDYrxkqFnZRXwKLoK2Z
++NREoQX5yw27l7kWY/jhIXPb261YdJwt17qtFNrM434+wp/B6+FVtdm6DHHF
+EUyn1C+wtc9+l3TyFZZa/Yh5vKwDSuEKGmsiX4MTfNR6w9VOBBQ7xBf8eAOT
+txT7AcVv2OHVvylU6i3y1XP4F974jmsf5Bw3e1TBZ/p75l3dLnzRKU6JrX0H
+naMCJzjN3djV654YqP4efyJXzIRq9KD3QEF70qsaHNcX+9A+2wOvsJ57L2zr
+8Obrbvfyml4M3t844LGgHtTylcHe8b9wTkd2TIC3ESQrm3X6WB/cw6J+G4l8
+RCPliZDD1t8obdytssfwE4K4QvfkVPpxLkBVRyClBbNWhlqZwgPgcXHu15xu
+Rfq5XP+UgQHYVB572l78GdbPCr3O/RjEGe+cq76J7WhKC7/cVPcHzpJqA61P
+O7HiyOCCT6VDSMheolbs+h1hqnIijdXDSJPTcb3v141lyqHGIfUjeM04ELY5
+rBsCG13LFzSPYCLE7/i3uG4Maa5XjmsbQXFSz+SOx924+CDkcdaPEcRKveor
+GejGtIJWZyd1BHP0jROK//7Ed2lL+EuOolTXxqpSqwcBCmO/Dh8ahf5+P+m8
+7b3wfhzCsWSNgiT4LNm+txcXjNfsqeOOwjnCWvS3XS8e/OZmGM+OwmRH/3aj
+o704K2Olr08ZQ2/Wky672F4UWnb4a8mO4ceMibVUSy8O1G56sW/bGNaf9TTf
+5vELEf56n+yjxmDtV+C/vbAPfsk7uVXyVBw/UJm8pLwPCbcyVh9TouJJdjj7
+T00fDkWmxUqoUaGeFlX16kcfSp//7T26jooh/YrzI0K/IeAruWg5oeL3Dqme
+SNffUE1WNa11p0LAXbhM9X8+2Ve8WfwfFU+/5Z87r9WP1ffN9nWVUKGlOCgy
+aNCPinXO2vmvqLAxtPnda9sPj/fRQnbvqQiwM1ENv9SPvnPXRQo65/WN0reH
+UPsxZf0zI2+OCkXrez5S9QOIZtRTnluMQ1z4qmDi1wEcZf2IVLQbx+U8/6YV
+QwNQ7HNpjHEYRwIjISRUaBBG2ZQ6N7dxUAxnG9abDUKXYputfXYcQo6GzMyG
+QQTTPrSsejiOaFOJova+P0hJe9gWPTeOrH2KZWs5f9BwKiAyjY+GViP5l5lC
+Q0g/kbzKW4AGt5MesQ3rhsCv65oiu5AGzAVeOhY8nyv3abXz0jQ0r2mx7ZUa
+hvxXY8vQdTR8Wb2K4+c+gvGc1HL7gzSUVnQt5T87Ar4KVpa8Mw1brkmynseP
+IH9NfnqPCw3yW6RYfi9GoJcc+drXgwZ3nxoVh8WjKJ+I47/pT4PZHGVE/fUo
+LPWtalfG0mAneHf2hd68r3a8xxRLaQhgR/+Mt6Si+p/PKoIvabggELroqicV
+7bt7FRjlNJzUuFM6m0GFnuipLw1VNPgW6N+r4x3HT9k31+M/0jBTvpvftmMc
+An5iPTYDNKTP1F9Ma6WhfIVdXZ80HUUh9wXV+mjIv9Kss1WeDjsLsdZmJg2/
+U9jOKYp0GJnNpV+SosOr9qLAXjU68iXvVZ11pEMzVKD900Y6eLV3rvs0TIeO
+/82VOvvo+M5Xe0FiNRMue6NH/KLo4NkhqmduyER89nkfSiwd7GDFwQIbJqRC
+GLK3r9IhMGt2XOA8E3715dNtyXTUn4l/86udCbN7y50ds+hQNKgMZSWykCbf
+q/3lDR2uHqrJG7Q5+FfRf13WDB1WkR/r3u3jgH+LmOApHgaqeCWUbnhx4PZ+
+OGIXPwNhielPBbM4kKRJB7AXMhB9qLFQQXoCXKfS7lMKDLy5G7eFtpALy7+9
+iRMGDHT166oJruXiucc/y9lGDMgb/lX13ctFU8TBR2wTBtycTgvrx3PhsVCl
+bm4PA5yYIp06qUm4cwW4m50Y2NyYKSGhN4VkByf6jnMMUD0rlrc6TSE4adW/
+Zy4w8NHfMYsbPgWlSM0tuRcZ0NBmOIU1T0Hj2VEzhTgGbnf9PHXPdxpaNi6l
+GrcZkHktz3r3fgZOIvGiE5UMPAsPEfnbMYeCjT8fJAszoXM3ydZGgIdwSyLz
+6IuZ2JPu8pi2nIc8CVn8zFaCCWXN40GStjzkqk1It6oCE6yIQhnpNzyEnbty
+jL2WiaApR9beR7yEUmnC9bJmIm5FUAjnPS8ZrplsXvQPE79ib6fx9fMSiysX
+bZ87MnFlpvvJbjU+cj+mI17cjQmfmOqg2kd8ZB326VECmWiLE+veXb2AtE4p
+0vpuMfH6xpVtIsMLiI/Xx+yOLCa6Q16oWi7hJ2IdlJ5Pj5gIX+bL9TvMT4Qa
+Xqz+XMjEBLUuwIVXgISvCalTqmHCqUBiQ4YbhcjpJjl8G5/X+2PixZdCIWEx
+4y5abCY+3EOJcjWF3Cr/sCh2iokCU0WH1JWCRCzXPNNGgIVmL27Oe5YgeX5S
+jrtZgQVjuU1dji+FSfAvz0dHzVjwT9VPOj8jTBr/iF58YsHC12VhvO0QIYOD
+AaPTdizkDGwSIvUiZNFsJrXUhYUKg5K+cepCsqS6pCYnhAWXv28CcUGU3O3e
+I5ZYyIKJDTV17qsomf0QIhrxgoVrKW2MG7piZPap9uawNyxQU8sEExhixLfV
+oON2Ewumn1OVr1ctITNl/ygFD7Nwc/3Z/WvjJYjCV4ODTSvZMHbWOPyySYJo
+WzxouKnFxpmrj1AvKknSHfONzuqxkeToX3I/VZLs2CPt6rmLDfET/hsaSpcS
+VXXNWAkPNvp9fh9m8EsRHdGGES9fNqZjrPsk7aTI25wJVlsgG/d2OnxN4EqR
+Xk/mud4YNko1bAzuH5Qhy0Uo6WOP2XCO4slvfiVDihbDtv/5PPaYsbqvKEse
+utwRZr5mQyUod+zxkCwRdzU4YPOJDZMlyn8vPpQnZWmn+rQ4bJiHF9xc07ac
++AXtzfm1iwNzCAdePaJEqk22O9ZZcRC97X2rD0eJaK91//bBkQPfWeEuXF9B
++lA8p+LLwSWKnL70qDLxvPzsmEk6B7KZT60HzFRIJBllyGdz4O608ed4jgpp
+dis5LfWMgy3Mt542p1TJ+i0ikqffc6BwV+D7ET11gsHOh0wmB22dch2zhepE
+den6/Ik5znyfFtHctVeSvzituHLRBD6ZROx7arKKxFVcsxVUnwDvwJmv2bka
+xCTn1kE+hwnknZKVUbDTJNSqkMsXjk6Akue9R5yyhuTdsBbTPT0BYZFf3s4R
+a4nYgPhls2sTuFzy7x3GyHoS5x34waZhArLxYRfb/DaQPYn6ueXfJsDeqqwy
+SN9AZq2rL50YnkBrQFpkjJA2UTbLii0W4SLtqpOB7B1tEkBZ89ZKgQs94czy
+QUMd0rqwWpnM95SuELnVdX0TuTK29ZGGJRet9pI1wTa6pDKaP3KNCxeOkkpR
+O+X0yIlNLXPXTnFhY5QRYtyoT8TmhE3S07k4axpmJD+0ldDrnV9oj3ChYVq/
+X0zJkBSaH6nq45nEfwmzP72PG5EouTKVVTKTWNn4wuJIDiGHMrY/ido5iSaL
+3Ta3A41J5wpTzn+HJjHVdGllxn4TYm8cypsWMInOpf16xdY7yBm7c6sK8+b5
+lPZ/i/bbSWrES/p4aiaRHF334HbuLjI1Njhq8GsSFBth9UM8ZuTI8eFQ37lJ
+OLSoGZUF7SbLVHRiChSnAJ4SKUcZc1K9Q5UpbjgFZsXSnoreveT6kPxg7qEp
+fFI7LHDnshXZIvonpC9rCjvNX3ZseGtNHqdlP+WrnYKs6ZGeJEVbcqB8aGfF
+6BRi6M2hlg/tiOH9W6u2LZ0GmzHT4uv6D7ELn0l8ZDgNnh7ptOHDB4jpIeN1
+2l7TqF9aF2rwwJHofx93kkqbhkh4ovK6XYdIy2TTQHLtNJTOLtLmW/MveRhn
+rTIzNY3RKP5FsRMuJCF1RVnexhkEMk/GUeTdyJ/L9xxFvWdwOIKt+i73KCkY
+9M57kjeDJLXDy1NqvAj/xpiZ1dQZREjf2M/K9CEpMVUl+/RnYfFXLt1C7yS5
+z0x5Jhc9i66D+o/f7z5N0j7ibVv3LNQf+5TesAoid1c7Oq6eT7Uc9QeltTyU
+FLr/atn/9C+eS5VtjXwYQUR3ZJtFaMwhPSy9XUQzhthM7urSLJuDf+W53vT9
+18h/5oXGqRt5SJ1G+w/xoDQiInf4wr70+T/iqb6vwDuLbAjxW3FTkZc0/bda
+3LKqgMQz3a0zWnnJNYm/q3Vdq0nr7uCpJaN85JKpfZaYdwe5IG2fIcnHT/4P
+ohvibg==
+ "]],
+ LineBox[CompressedData["
+1:eJwVkHk41Psex8foaoo2e7bIUkN6JjWZiM+3HKayjlu2Ials6Roq4yhqKluy
+RIe599JF6rR4GBdDIbJk63BslRnFsUQkW+Y3G+O6f7yf91+v5/163gbnGe6B
+eBwOx1jP/3umSs3zrOUndHdg0/D5v21AD4qiCPRDlSiEsYFzeScefVgLrNZp
+fILqbhPda93lUIua1+V9fv9CFcuWJvhWHNoySRv1M8lE+Zx65WlvHDpopeWZ
+1J6Mekvc9j/G41BDWMBFn5Y7KCRxlX3z6hrUEH5h5YTHoUjqYYsGTAZby+rU
+B7nRqK5Z0XHtngyGFGbr9eKvIpJ3I6+bKAO55FCOkncEyrlce6mmfxUsbTm3
+9nSGIc1Pxld+JqzCJefEp1eng1GZad0dbVgFewcKfaHzImKv0OQMZSsQf0SB
+NWJ7HqX0u7kebFoBFtvqg7/hOTQ/cBRXkLICmgojuMoGX9SnbZ762WMF9MOe
+91u0eKNr462CayYr0MwPlnVRPFEJqz6cIJbC+dz+R8mEM4ha/NzPvlsKoV98
+pqpv0BCribTIuSWFjVfGqiwJbuhRYWxNOF0K5edeMkdZzohVc04Fo0ghfume
+U6q1I+qY/7mgpymFY88uxRWQTyJGyICsVSSBV+zmD+QgKjqTrDP5J18CAh6p
+YeqdPQox8qjSq5fA0Bv1K5OS40j1YMkNUrIEKCd05fNaj6FJnIjdGS4BIt/l
+5GwJQvrWbGcvDwlcM3D13Jpog9rvaPO275XABzM2KeSTNTI/PuOmryyBYofp
+UWtHK7RcQjg9uyIGlZ+ZH6NTLZGXxiOnjAExHDp6ZH+q1WFUuI/7vrpBDDHZ
+ZBsleTIqzWra/KBYDObW1SVLgxYIfzUAR0wQw/Rd3bTF0QNIPWyb9eAVMVww
+ra1grpCQxCpUXTVADH89+bijqGE/mmNy7quBGPLaNlhPOZqj10sfz3TvF4NG
+uLvUfcEMyfsEbZLoieHem6FgbgwROYr1jLJxYsigkvLYAcbrvoX23u0iOLl5
+ZsKFZYRCkncUGNeK4Guv9OTDYkM06d2ZfbxUBOq1C4eOGO1GT0uJ1QHZIjhA
+zH4RrbwL0XDOSpNBIgh9UgbzP3TRw7gCpSm6CESaAV//+0kHERiutw1pIiDd
+CvNM79NCu7/dfe5wdJ3f8M44wk0DRR4LuoZXEwE3hzoam6yOnO6u9b5UFIG/
+BUeAOtRQ9puxVyy8CFZd/k7HX1BFgSZNeZwFIZx+a1db+n0HiljY5IV1CyFq
+oNSG6bcDKfXcMphqFcLy7XHx4MB2hHPqGJDWC0ElPqSi6Pdt6Lq3ztY0jhDI
+fyxOuG1XQmXcrmhylhBoLT9mroMiIpE15s3uC2EoMvGFGXMzOtBDD4R4IRgx
+d1c2iQgoUbiHUcMUgm3UdxrllAJKV5DAnK8Q+nJV1b0m5dBaiAelw1wI+WnP
+LI9EySFV/RStor1CYLN6xs5ulENvjQcvpBuu79X1XJQdwiHZg0vd7J1CUFiW
+42wOXAVl88DVywpCKD6XI2/wiwgK7Nofj4xh8CxLSugqF8KJ1F35xcMYnJZu
+eW5hLASKSd+deD4G36TyA2WqGLQFv9L17cOg76Vf2UXtZRiT/VaX14SBTMF9
+kVa+AFOZ2imUpxhoOGyqjHZbgAScq0ptIQaSjEpc8+g8oPDbSdT/YHAjr6op
+LmIOzPS358SxMcDhj5n+Vf8d/kmYtfVJwcBn0mMtbeMU/Mh05ldHYiCyJcvm
+bk5CU1lUWns4BjX7QmiHxV/BR7FeYzQMA7XqNnkzbAKSzjDtiEEYGI0xj1Zs
+G4dRCUFZhY7B6KmtameDRuC0QfLaYQcMMoi/mWbeH4bqpYh4hh0GTJ0gbib3
+C5gN181yEAb+lv3UGI3PkOGuKaRaY5Di8l4nfRsPOpm6a70kDGIDqbD7dT/Y
+hfBmLHUxyP1R9XpUtx8Y7pA+poUBnrpL2pXQB4Oa/LSHmhgsUN1Nhs/2wmyj
+gyth/UfGv19MFAd3w81CXqmVIgYUh4BII24rGHSU55dLBJDW6sZf6n8HvJgY
+jRqRAIg3S7iawhawfq/X0YoJwCYl22njqWZozJrOnV8SQFkSj/V511twqFKk
+x30XQNOirU3sYiXI5++ZiP0igH+0xI7ZPK0AFTPywd4hAfB+5YVq+ZfDjKHi
+CJEvAOetho/tOjig37ZX99tHAWjQxm23BP8O+/oU5nJ6BOApDG0IIz4BFzL/
+s9KfAuCLxqV6WCEU1Tl0JXYJgC2jZvnSc0H2a1JyYqcAGIUFjfYkNqhDuq1S
+hwBMb1D8rTQfQtCbzD+y2wRgydfdWW6cDjHk1L2GrQLg0q/HJEAirPo+OlHZ
+IoD/AZPoZSQ=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$4175432#3"]& ], {}}}, {}}, {
+ DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {0, 0}},
+ PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction ->
+ Identity, AspectRatio -> 1, Axes -> {True, True}, AxesLabel -> {
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
+StyleBox[\\\" \
+\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\
+Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\
+\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\
+StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \
+\\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm],
+ TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
+StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)|\\!\\(\\*StyleBox[\\\" \
+\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"\
+Italic\\\"]\\)\\!\\(\\*SuperscriptBox[StyleBox[\\\"|\\\",FontSlant->\\\"\
+Italic\\\"], RowBox[{\\\"-\\\", \\\"\[Beta]\\\"}]]\\)\"", HoldForm],
+ TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> {
+ GrayLevel[0], FontSize -> 14},
+ Method -> {
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "ScalingFunctions" -> None}, PlotRange -> {{0, 3.3}, {0, 1.6}},
+ PlotRangeClipping -> True, PlotRangePadding -> {Automatic, Automatic},
+ Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "2", "6",
+ "\"Caselle \
+\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
+\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\
+\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\
+"}, "LineLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\"n\"", {
+ GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"},
+ Background -> Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.560181, 0.691569, 0.194885]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.560181, 0.691569, 0.194885]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #3}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"], ",",
+ RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{{3.893237708747595*^9, 3.893237717793868*^9}},
+ CellLabel->"Out[46]=",ExpressionUUID->"f0d6a512-a16b-45e4-a62c-27480dbdbe2d"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ParametricPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "@",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Xi]2", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{"DufDuh2", "[", "2", "]"}], "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}],
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"ut", "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}], "]"}],
+ RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Xi]6", "[",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "]"}], ",",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "2", "]"}], "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}]}],
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"ut", "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"",
+ "]"}]}]}], "]"}], "]"}],
+ RowBox[{"7", "/", "4"}]]}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Xi]", "[",
+ RowBox[{"\[Theta]0Cas", ",", "gsCas"}], "]"}], "[",
+ RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}], "]"}], ",",
+ RowBox[{
+ RowBox[{"DScriptMCasD\[Xi]List", "[",
+ RowBox[{"1", ",",
+ RowBox[{"\[Gamma]", " ", "\[Theta]0Cas"}]}], "]"}], "[",
+ RowBox[{"[",
+ RowBox[{"-", "1"}], "]"}], "]"}]}], "}"}]}], "\[IndentingNewLine]",
+ "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",", "0", ",", "0.999"}], "}"}], ",",
+ RowBox[{"PlotRange", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "3.3"}], "}"}], ",", "Automatic"}], "}"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"WorkingPrecision", "->", "20"}], ",",
+ RowBox[{"PlotPoints", "->", "50"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*StyleBox[\"h\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"|\",FontSlant->\"Italic\"]\)\!\(\*\
+StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*\
+SuperscriptBox[StyleBox[\"|\",FontSlant->\"Italic\"], RowBox[{RowBox[{\"-\", \
+\"\[Beta]\"}], \" \", \"\[Delta]\"}]]\)\>\"", ",",
+ "\"\<\[Chi] | \
+\!\(\*StyleBox[\"t\",FontSlant->\"Italic\"]\)\!\(\*SuperscriptBox[\(|\), \(\
+\[Gamma]\)]\)\>\""}], "}"}]}], ",",
+ RowBox[{"LabelStyle", "->",
+ RowBox[{"{",
+ RowBox[{"Black", ",",
+ RowBox[{"FontSize", "->", "14"}]}], "}"}]}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "2", ",", "6", ",",
+ "\"\<Caselle \
+\!\(\*StyleBox[\"et\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\" \
+\",FontSlant->\"Italic\"]\)\!\(\*StyleBox[\"al\",FontSlant->\"Italic\"]\)\!\(\
+\*StyleBox[\".\",FontSlant->\"Italic\"]\)\>\""}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "\"\<n\>\""}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]], "Input",
+ CellChangeTimes->{{3.875952981547227*^9, 3.875953315769273*^9}, {
+ 3.875957061887289*^9, 3.875957104302837*^9}, {3.875957134472674*^9,
+ 3.8759571357521*^9}, {3.8759571703214827`*^9, 3.875957176129848*^9}, {
+ 3.875957284251436*^9, 3.875957289963092*^9}, {3.875957366732642*^9,
+ 3.875957382812718*^9}, {3.8762091878796577`*^9, 3.876209192631675*^9}, {
+ 3.8871754989267273`*^9, 3.887175499101399*^9}, 3.8871842906781693`*^9, {
+ 3.887186114918988*^9, 3.887186135551132*^9}, {3.887186188946741*^9,
+ 3.8871862078981543`*^9}, {3.887186291595374*^9, 3.887186300211134*^9}, {
+ 3.887186502030856*^9, 3.887186541775611*^9}, {3.887186589650141*^9,
+ 3.887186636184795*^9}, {3.893237725683463*^9, 3.8932377363942547`*^9}},
+ CellLabel->"In[48]:=",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "ParametricPlot", "precw",
+ "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
+RowBox[{FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
+RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \
+\\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\
+\"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\
+\\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \
+\\\"3\\\"]}], \\\"-\\\", RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", \
+SuperscriptBox[\\\"\[Gamma]\\\", \\\"5\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.0069902635549525935`\\\", \\\" \\\", \
+SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
+\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
+\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
+RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\
+\", \\\"2\\\"]}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \
+\\\"8\\\"}]]], \\\",\\\", RowBox[{RowBox[{\\\"0.`\\\", \\\"\[VeryThinSpace]\\\
+\"}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"0.29442726651162515`\\\", \\\" \\\", \
+SuperscriptBox[\\\"\[Gamma]\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
+RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", RowBox[{\\\"Power\\\", \
+\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
+\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
+\\\"[\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"]\\\"}], \
+RowBox[{\\\"17\\\", \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", \
+FractionBox[\\\"1.007010684856479`\\\", \
+SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{\\\"Plus\\\", \
+\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
+\"}], \\\"]\\\"}], \\\"]\\\"}], RowBox[{\\\"1\\\", \\\"/\\\", \
+\\\"8\\\"}]]]}], RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\" \\\", \\\"\[Gamma]\\\", \
+\\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\
+\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\
+\"(\\\", RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
+\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \
+\\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\
+\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}], \
+SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
+\\\"}], RowBox[{\\\"31\\\", \\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", \
+FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\
+\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}], \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\")\\\"}]}], \
+SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
+\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \
+FractionBox[RowBox[{\\\"1.849387959639662`\\\", \\\" \\\", \\\"\[Gamma]\\\", \
+\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"Times\\\", \\\"[\\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\
+\\\"}], \\\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"3\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\
+\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
+\\\"]\\\"}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\
+\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \
+\\\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]]}]]}]}], \\\"}\\\"}]\
+\\)) is less than WorkingPrecision (\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"",
+ 2, 48, 12, 31977068536072594118, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, {
+ 3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9,
+ 3.887186542059218*^9}, {3.8871866239697943`*^9, 3.887186644812742*^9},
+ 3.8932376097362757`*^9, {3.893237730015683*^9, 3.893237736870389*^9}},
+ CellLabel->
+ "During evaluation of \
+In[48]:=",ExpressionUUID->"50c6b3be-692b-4bb3-b631-dd6ed0112f44"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "ParametricPlot", "precw",
+ "\"The precision of the argument function (\\!\\(\\*RowBox[{\\\"{\\\", \
+RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"4.055395711271589`\\\", \\\" \\\", \\\"\[Gamma]\\\", \
+\\\" \\\", RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\
+\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \
+\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\
+\", RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\
+\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\" \\\", \\\"\[Gamma]\\\"}], \
+\\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \\\" \\\", SuperscriptBox[\\\
+\"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.017576083976367313`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
+\\\", \\\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0069902635549525935`\\\", \\\" \
+\\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
+\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
+\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"31\\\", \
+\\\"/\\\", \\\"8\\\"}]]]}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{\\\"1\\\", \\\"-\\\", RowBox[{\\\"1.`\\\", \\\" \\\", SuperscriptBox[\
+\\\"\[Gamma]\\\", \\\"2\\\"]}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"0.27286889266851116`\\\", \\\"\[VeryThinSpace]\\\"}], \
+\\\"-\\\", RowBox[{\\\"0.21290826693346554`\\\", \\\" \\\", SuperscriptBox[\\\
+\"\[Gamma]\\\", \\\"2\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.08126249520877327`\\\", \\\" \\\", \
+SuperscriptBox[\\\"\[Gamma]\\\", \\\"4\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.04524698238633043`\\\", \\\" \\\", \
+SuperscriptBox[\\\"\[Gamma]\\\", \\\"6\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.03293140750785288`\\\", \\\" \\\", \
+SuperscriptBox[\\\"\[Gamma]\\\", \\\"8\\\"]}]}], \\\")\\\"}]}], \
+SuperscriptBox[RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"1\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\
+\"]\\\"}], RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]], \\\"-\\\", \
+FractionBox[RowBox[{\\\"1.849387959639662`\\\", \\\" \\\", \\\"\[Gamma]\\\", \
+\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"0.2950910232179487`\\\", \\\
+\" \\\", \\\"\[Gamma]\\\"}], \\\"-\\\", RowBox[{\\\"0.07674909089922159`\\\", \
+\\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\"3\\\"]}], \\\"-\\\", RowBox[{\
+\\\"0.017576083976367313`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\", \\\
+\"5\\\"]}], \\\"-\\\", RowBox[{\\\"0.0069902635549525935`\\\", \\\" \\\", \
+SuperscriptBox[\\\"\[Gamma]\\\", \\\"7\\\"]}], \\\"-\\\", \
+RowBox[{\\\"0.003957033741436551`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\
+\\\", \\\"9\\\"]}]}], \\\")\\\"}]}], SuperscriptBox[RowBox[{\\\"RealAbs\\\", \
+\\\"[\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"]\\\"}], RowBox[{\\\"15\\\", \
+\\\"/\\\", \\\"8\\\"}]]]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \
+RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1\\\"}], \\\"+\\\", \
+RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\
+\", \\\"2\\\"]}]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}], \\\",\\\", \
+RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"-\\\", \
+RowBox[{\\\"1.1695099999999998`\\\", \\\" \\\", SuperscriptBox[\\\"\[Gamma]\\\
+\", \\\"2\\\"]}]}], \\\")\\\"}], \\\"-\\\", \\\"0\\\"}]}], \\\"}\\\"}]\\)) is \
+less than WorkingPrecision (\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\)).\"", 2, 48,
+ 13, 31977068536072594118, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.88718611635929*^9, 3.887186135777404*^9}, {
+ 3.887186197166917*^9, 3.887186208279335*^9}, {3.887186530190947*^9,
+ 3.887186542059218*^9}, {3.8871866239697943`*^9, 3.887186644812742*^9},
+ 3.8932376097362757`*^9, {3.893237730015683*^9, 3.89323773779261*^9}},
+ CellLabel->
+ "During evaluation of \
+In[48]:=",ExpressionUUID->"1390bb82-7e0c-4a82-8be7-3aa0578e2c3d"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]],
+ LineBox[CompressedData["
+1:eJw113c8l9/7B3CbeL8zM5JNyV4ZGdcxC8nehMieoYQkJCshK2RFklHIB1lJ
+RlkZ2ZvsGVmh3/v7x+/+5zyef5z73I/rfj3OuQ7HbQ+9OwR4eHgN+Hh4/xv/
+/zGrS5vGhmMRmTP72RNZDqC+o7+PwZnfZ+jRiawoPIh6KEuOc8E4xuJkRAZM
+SplKiHFeHqtQ+yerCEdveW/8e4JFF9p6vuBFq4JQYRHjPs6GrJLmhKPqoC6R
+R7OOczFR83XSyzeB7SLd1RmcJd0v3yaR0wVM2UlsP87dvDaEUbb6sGxpS/0V
+Z3Wx+3lnow2BBnO9qRxn6aujNonlxmC3XZqZhfMY96Ex86gpyKSlF0bhfJtK
++fVrfAtwWqae9f7f+80uWQtevgXXGemvm+OMXVf4wSlnA9/fjWZw46zA7Ci0
+on0bfEXzo0lwFshTCCq3tYWxCeq3C2FY1Nb6k18t+g5s5S075eA8M0L6hjrL
+HpSTbSgDcZ6C7xqT5Q6QbJY0a4BzrOqvGwGjTsD3WYsGH2d9prJWzQ1nsFud
+cR8IxSKnkp3XLASuEH2ic5iP8yxqbWq57A7N2bMpyjgrO0TEJMp5gb/W6LFj
+CBZ91w1mDW31gpN69W+COAdHs6ff1bkLLu6zzVuPscjcsd/TwM4bpLjqlb1w
+ple2MuSO8YWVVicPi2AsYvi7S8hMfw+EWu6W0uB8t5dvkCb7Hhitk11oe4RF
+FLF7+CQf70PEuXOhfDjL56Qq/B17ANw0GiFjD7FI7kp17987/sClaywVivOQ
+7MOmk01/QAIuzJdxfjgT1E9MFAiX+5Y9PQKxSBHLGXlJIAgqHPj1F/yxKMpi
+s85c4THcrmMhfngfi4KGSMOkIh+Dsn1548k9LPLhfWRON/AYnu1cMQ3EGWPW
+rNXrFAIi3/0ve/ti0dlOhUaTpFBoqhZQuuaNmx9S15+z9gRGacAj0h2LCMX3
+muOkwkEP7V1ccsMi6tA47OOQcKgkTG5UwXmTWbTxDuNT8O1iSdx3waLoUZkL
+SCUCqNK1upWdsKi8SLhRLiMK5N4UvL1ni0Ues23OyotRcL/lWXDFbSxaPMbW
+aIpFA92TDtkNGyxiJCfUsWmPhoH0QwtLaywalYel7N0YGI1bvclpiUV/+yra
+fbWeA/OTU8ZrRlhUZSmgoYmXAPK1uhknarj85+R0uHMlQMGn7FIynEdyppRf
+qCUAFcvRBrUqrn5KauxTMQlAGBp+xKqMRW4+tfUhTC9gikBMiQtw9U7vE/8r
+lgimrDoNA5JY1MdQbN5gnwytMxw949xYlCv8y5YoKhkIHBwIS7mwSMqhM0uz
+JBkSEoRcH3Li8m+r82liJxm+EV0ap2fHIq3V5fdUj1Pgbj+9nAQzLk9Y0hsV
+6anQy1IjzESNRRPvaL4f9KZBybFR0rO/GMSuT0hetZsGk1cJZgWOMOh9GFXJ
+PYZ0EBYNCfx+gEGROiNcRxbp8FDiXzreHgbhNWeT0iylA2PUXrTJFgYZ/2xT
+eXqaAXafGZyq5jHItWUmMlEgC0xua22LdWIQvcWYS29rDmBtyXZEkjHoVDUj
+fWYkB8ZzQsYVEjGIY2R69vdaDjAqhY1rJGBQ+bWhOkbaXDhIauSwjMUgLEPV
+Zy+rXBA8Se10Dsegu0v4zGYHuTCjyInPfw+DJKQF6zH8efACT2JO0QCDnBDb
+f5D4BsjvKb+ZJcegpHl2+2auIrhIO5c34U6BhF9bDmEZP8DeYaKofxE5+ruT
+kb6RWw7Ma6dYq/4zSGeGVzKQthIigzqdbPbIkOgPPKGt7iqoMKUsldolRTZv
+1VQpfD4Bh7dflPEuCeq3UrEd5qmHZ8l2MsfrxOgRi8anIabPYETe58HTRoQy
+Ejp6IlObIPzmI+fTYkKkE8pj0qfVDAZ6HXYy9wgQ6V/N3ivnWqAECNV7lfCR
+HfZJ9sfhVtC/1VeqxY2HjAOaUxjm24G0nrqLfPoE/CLPHNNtf4eLVmwcVIV/
+gWHuW6ugSRc4l+m/XdI+BBdf6lf1Kz0Q1b2klEazDxfSfl6UU+0FI16q9izs
+H7DYxEZYDPZB8HSMId/Ob6hO0txivTcAtn0i6uy027BM86poMHAAZoUvVe9Q
+bMO6pIJKfOgA8BAJxrcTbYOGwstzlPEDoBZdGnJvbwvU0uGuYPEAKFS4us6N
+bMEY7+9fe7MDEK5wkI2fswX3DULLO/R+gtGlwfe6Iltwwwwb+ld2EG4xr/3J
+frMB4zQq+Gwqg1CIX9owkrIBQ35G0Wo3BmHhwkMS+sgNUFKX/5FjMQika+3n
+XrpsQIAWq3/kw0GI4UtS+SayAQ71F5TYPw8CdY69a1/tOiiUt+GHXR8CDb6P
+pDEDa3A7nWF/x34Y5OwHiGupVkEk9p9YqscwWIgvuLUQrkLMXlEr8hsGg3Db
+f317K7BHZEaYFTkM2zPU2fvjK/CDnOpKXPEwuM1KztoXrsCYzs3M6zu4+Vr5
+VRNKK9CAlnz5w0bgy5fZIyG/ZahNeXUp+eMohN/ZbPZcW4SiWos1xcZRSPVs
+uq48tQhyV98e7HwbhRjKjDSmvkVw3Vb75zw1CsFzSW96qxbhSumsUz75GHTL
+5jh4hC5CGJ3Cns7tMVD7h9dpw7wIWhLbj0vpx4EiNnqZ6+YCPDOhZRDmHAd1
+kxsvPBUXICz5fP1/guPAMMxO0ySxAM13mYzHVMYBmzHy3I15AdRfPgr19x6H
+MlLJ+N2lX0BY0D5F3zcOpvKDg5/CfkFxFV38UeIEOD9qzr/cOA+p+5bLIjkT
+4F0obs1XMQ8Clk077iUT4HPBq1eoYB5YtCjlCVonQH66Z1jp+Txw6dy9H74/
+Ad+brYNSrOaBaZTUFGMxCZVilPI7ePOw7KFnrMY/BXk5mwK+anMQsZ5oECI9
+BR62Vr/Xrs7BuC2caVOdgoVKRy9H4Tm4Va9f52w9BZ2+gRnOjHPgQ/dV5ULy
+FKRuHBSkr8yCv7LOVgr+NCgIkrz68HwWnEj2fwvenYZt+5jLb8ZnQNVdx3Te
+bxp+mAYW6/fN4M4ZYqqsR9Pg2B/vRtQ+A8Ic0Y84nk3DvhfHO4+KGThQjp4y
+ezsNHfecMW5RM6Cc+PXB66lpyHBl9iKUmQGTtxeOi3RnwODar5DM1GlI+KDE
+/MdkBkimEusrYqfBzkiCVdl6Bq7b6V3pDJsGKY/IuXV3nINqx0i8cOu6jx0G
+xczAv+LnBK/VpyHAJmv0Be47zvxo0lvfm4KXL6QoS1VmIZFXNu9c8yTE7vjU
+qWvNwg/8BIxP6SS81+PeXzWcBXuHZczoy0lgmOIXV3GYhdPh2IE6z0nYc3yd
+oRI1C4NI3G+CdRJWuwepY3pnIbCytzcqcAJcz6ZvuN+Zg4JUjjcv5Mfhj4vg
+xKr7HDT1LgbMXx4Hhy5eW0+/OXAIT5uSw+XsjDqNWVz0HMSHXdMm2hwD086Z
+fYHyOaAvZ21Zzx6DJpkG1Rncf7VuWy/nIxkD0sq8jYC8eXARDyxWHxyBhHeV
+3pql89BlymHz/esInDX0eM9ZPQ9r5FezdCtG4HGMrsdSxzxYDMr85x03Ak1q
+9LR9O7gccQWqkGiOgOA+kcBF1V/QjrGNsGsahpBPt1vpN37B6/LVJoKKIUh+
++Xtq8+AX1AoRjurnDoF2a8xWL+EC3HSnci+KH4IaEzGuMqYF+FMgSebuOQT3
+u1zIJlQXYPl53T4SGoI4apLp3SycmeTNWIoGoYZdj+OB+SLwPK5pKS78CRYH
+HTSaDovARkvjjNtLgS0ojOmS9yLwGry4mhD1EyQtll6eRC3Cx1b6W3EuP+Ee
+Y1YvT+0iRPJK5wwK/gQ8aZ16d5YlaHrEXhBVMQAu6USyKitLIFouT/esuR8O
+zEXUvfeX4FgoFTV97Iex0gXRUqJleEEfEPE3vx9yqTn7rrEtw0BmoWNIRD+E
+77CexRgug/05MB/R6gfRUfr+hS/L4DmbH1M00gdmD3yyb71dAZbQlIsTf3ph
+SG2nxLV6BZ5+yOXJXegFDBauR7evQNybc8h9qBeYKo+fHi2tgN6rS1+Za3qB
+QkQOL49vFRza4nY6AntB08ZqUqZsFYJdw5WCiXuh+hf1tETnGqyaJ7CLX/gB
+L2MplCIn18DhMSn5KPYHqNqzNW5vrcETAtVVyn89cIFPMebfuXXQuk+avd3S
+AxHaZFgam3UYj57ctTDoAZ+aWDuRv+sgoDU33OvdDYJsL0q00SZgP/1r563v
+BF+s/yyewSb0FYfX4ud1gnkP7cs2h034cXOhfCGqE87UjdElP98EAbnYdwMm
+nUC5+o1RdnoT1A8Pk9CfDtBnDXOeVdoCjJ4Nm7FIB2jvtRR7bW8BpR7xrs/7
+b9DDVxjcerwF0ifMDR0p38B6RCecl2wbHj6mtRIK/gbaP0KD6di24T+pdjYG
+3W8w0udYGqu1DSIjl7zv7bSDD0nnU/aSbRjV9GVwudoOufL+vM73f8Nu+7ct
+jt5WiPzxKP7Dk9+goz7xkbamFULwe5TJE38DtUYpH21OK5RrVjMffPgNWV7D
+XLJerWBXutjbtPobuNPv0AvTtMIfkwIXkTs7QEa8r5lv1AIbfC179T47EJ51
+T8ULWsD7cMHIJmwHbuB/69HgbYHarv1rK693wJyNPeXi0Vfwc781d2Z+B0il
+WcuDM7/C/JGdUqHjLkglVNjVLzdDcdP5jcIHu6B/Pjvbpr8ZDNm23JqjdiFx
++rIObX0z+OVN1CqW7ELXWUSQFdcMd8ZT3bx2dmHp3ssAY+lm+G326KQr7A+E
+dr+g0Iz6AtVzUmTc9XsQMuY7JSTdBLSkpjynOL+esBTUl2oCmbjwNOemPTi9
+t2AxLd4ExMqGHPo/9sC9jI53nLsJmHRT8zLn9mDPPnU3kRrndNHxaPJ9wLgt
+0Fxe/Qzr0keDLab7oIZtkxrL/AxZ7NO+Wyf7sB98oe4O2WdQNysnI6I9AIeK
+FeKk1UZYF4pnl+Y9ACp1CUff1kbYmJfCI9Q/AHeqb6/8AxthMI8pgf/dATRd
+feWdvNwAPI88blNYHeL6PQwedXs9PIywHtO4dwgZ/7JM1PLqwbOL6vP7Z4dg
+OTiolxCMs2ntxdW6Q6BeeMjmLlMPJvk+jGIsR8DccPhZorgOMi90h+n+OgLD
+r1HWf5NqYW6oyiY9+RjUNh9SmvjXQFoLfcPH8mMQuUwygGdWA+13K1NOu4+B
+07r/oEGmBgbKq3N4yE7AITjZOOCwGg5jWYK6A09Ajeo24+6Daiib4tr863EK
+xPx4bHNBVZCn3hRo8vwUUq14YqatquBX8su69dJT8By14N9BVRBU0Z7xdeMU
+Gp6k7BoTVkEJj5a2hNc/kEGRt9ki/4MnkX97+hAe+u7oLvY6tRK3T9JhXfTw
+EKGKp+tv/0pQPPEs4bbDQ6++mxYZWVYCi/D9xydP8ZCzebPALc5KYC0bydTu
+xUOOA0ZbjiUfIeexs1yHMz76fipK49JWAa/IKGreBOGjcdIP2meKKkD2pHG4
+MAEfSStK2NfFVkCnA9tX3lp8pPQuitbGqAKyRb4fnDtLgNKInLjzFsrBE6g2
+GesIEMZKrPMsRTmwfgoQSBggQP1pTJj362VA5pGsq7xOgD4XmOc4/CgDHtuM
+yzpshCiqtqmBI7kM2COup/KGE6LjBnunGs4yqGzt4gu1IkKRHF8LvdEHMPFO
+SxoMIEJDm1k1KdwfwEr8v1r3VCL0ntR2tZ/sAzy7aL3u2UeEEn2MdC6/fg9a
+5YFVQ+rEyOr1K2v39lKgpo3Dp7tGghTwc/P+MpfAoIixDL8jCYoLO+BSXSyG
+u10NxKmRJOjwWWJ4Q3kxHL8fVr7fRYKYcvwmkUYxuMs1bHmYkqKQwQLp0IAi
+sF4zeBYQSoY0ps++P1wohEtL1KfR78iQQx1vvUJlIax92g8n6yNDMoolhhWh
+hUBXSP3oBucZVHG4RcXPUQgmeYWiIu1n0Hv3m2wGt96CWAJ+LzE/BRo3nhSL
+mHkDNByNdc+NKFBQbWHUdOUbcF90tU8IoUBrZQkkt6PegLFrqvGZcQr032ql
++bT4GwhYNArcwd3bfoRu0n6PyIeuhNe//L5iEJ8EM4/LrXyY7Yv9Eb6LQTFy
+0vJXJPIhUkStVwV3b6bvNvNRmc6DbG+ypxHsZ1FJ3FTmzat5kJl0rS7O4Cwq
+pNh9KkWdB9W3HLbEI88iXfPzlupLryEt0izEcPcs0uBYbFhMfg23PPxfaPdR
+InmnjjOUe7nA0ev4sneICuUfkvER1+WA5H88RYb7VOgJ/7hrQFIOxBSQ0wED
+NZob/OZ23iMHFDnNGdRNqFGmL0l2H2cOBHwvdnSfokbicldC+WOyoSzX10eX
+gAZd1KjxXrTPBgm8AM1CHhrUu/+ZslMxG0bmBncb3WjQt2jyMNatLEhpEtNs
+J6RFial4H446M4FrfuduHB8t4h9pHzkOy4SfHyiOp3Rp0b4LRk5HPhN4faKS
+2HJp0dreWMZK6SvwaUoGN3U6RLhG5L+elAHm7z31ZyrPoYneFfPL3mkQ3T5W
+nbRyDnX/qGF5y5cGzwM8FbjZ6RHPjae04bMv4RM17+O5Z/QoIm040Ur/Jdg3
+viUL8mFAEpkRXREyqaBwpqAg6QMD0j7lx+LvpuDqbUZXsc6AmE2DHwyXpoAV
+dbMdowsjOhl6PpzHkwLHZ+MVrnkzIXM68sYKhmRoLNv2VKtmQoYdfl48P5Mg
++GzrdMgpEyqY4DTeS0gCVnGRR/2x59GrnqXmSsokMNzgrfrSyIx0MJEORdhE
+sNgSk3hJeQGxCHrv0Xe/gOQjWtFd6wtI/lt990zsC/hYV3TJhowFuRinuiRR
+v4A36qFdWi6s6JWt3pAPcwJsv1sbDGxnRWc7NUTGJuNhK9VA7dklNmRt6XeU
+nRsPXiJCixGrbOgjDeexBn884HU8bFdqZUdJ3uX+TIpxULzLEMN/wo6I5YU4
+Aknj4OneabjSFQ50VNmwHJjxHN76/stkK+RAdx4cx32tiYU/F0JJ32Vzoma7
+CRftkxjYu6JNTj/LiUwZqsqo42IgP5tJjJCHC31p0D14wRUDr2PsixLec6GV
+NNmV4RvR0B3dzam9z4UONJfb02ejwFhWgbEJcSMnLxZKtgdR0N1MSIA3wo04
+1/OVHN5GQv4j+LZ6iQeJ5yc4CyhGAobhTMt3Px6UfR55lI9GgLbk54wC9ovI
+fKQoFp8qAjazuak3oi6hFE2vifeh4bhz6nF11fIl9IW0zEiZOxxkYxZHjjV4
+UdMZiZb4lidQz2t1aHTuMoozfMxsTf4ErL4kuL0KuowEX3XpTZeEgViNheOX
+lcvIKdKN9YJeGMD1THPGTj5EIWvB2pYRCr9ybA7DFPnRzf2IIknlUBDOdUu4
+9okftev1B91eCYEkLO2R0X8CqJTAomrzaggYuzgl1I8LoZgrEQe/5oPBx+VD
+14anMJLQkZGUjw+GmwVj0eNEIihxlsZSTyEYRs5bUu7kiaD2q64F7lceAcPB
+sv7YgQhyLvKXo0wMAtGsA5YgbVEkVXIUK7j7EJhVt/C9icUQ5XmrwF/VgTCU
+Mlpw5o4Y4hEX5g1mCYT+9i7h+TYxFH33QUVaaABUpTcmEKeKo2cbzyt0Dfzh
+nJDM71xiCbQ20WW82fAA16/+Sxe9L4G6N3KvUvI/AIHzu/Kb9lfQhC6p+jCp
+H9C5llTF/LqCyHj5WkP87kOhZCrxoaMkcqXS5ilfuQcSknLxqo+k0AZNpHVu
+vy8oiXL3f6SRRpeUkj7aafjCROtUBXWxNJrxnx0t/eIDiscyhWvbMkiavbJ9
+osobsM6P4i5mXUUXZd+If5XwBjz2jyOt+rLIrJ+q+krFXRg2Uugl/CmHeul6
+kus/ekHhfrtCeq48Uuc93/pTyguoq/Fl4x4ooNkQ5ZrAOk9wyL714JQTIZ40
+ueY/iR5QkU45ZJeJ0E1yH/W3Be6wcSfk+g82RTRgJR4XXO8GhDOqjIUFimjo
+pkNX8KArvEygzreWVEIf1tmuF/12gfiDVLO7nUpI7DkyJaBxgURSvu92zsrI
+bV/GNULCGY4py7xUP6sg3qLlN/yhjiBIUfM07IEqItS+e+bmeweglCQLVJdX
+QzT3lH8VTtrDjlDAvCPmGkpj46RUorYHx+CYg87Fa+gzXoc307U78JYUXff7
+cR0Z8lAziQfbQZOH91hEmzri06BiS6izBVq3B57bvzTRs7lRE0G4DYadzzJj
+/t5AuckuDj3xNnBs7ehVzHkTpRQmtxkuWsP8YrP5qIU2kjafDGgGa4jrYhVf
+MNRBY9cPlaQkrUD43dZ/lWS66JVlzNyX35awJFQitd6mi2QOdJ6KVFrAYOZy
+ZGOiHlKmiTn/9KE5rm81nH7iqY+aeBw6ujTNoNT4Sn2LhQEiv/ARi2E3hWdf
+bP5JmRsiy08EWepHxuASQqze62aEQjqoomNHjaCPX/hsZ7Ixqn+ZJTL32RCa
+3zaWfBw2QRbDn9R0Sgzg+NM4tZ+kGerbDZqdzNIHK8vV+74V5kjmr/vD1FQ9
+yPFhFkrUt0QJP12Pw1N0QYewS/cWsxWS/u5U9TFDB5YpL+5RRVgj76+9hKY6
+2qA0bsmCzbBB44uzjjveWuBOw9+s23UbOcjyu+vkacK2nMFtBXY7RJ3mfj5y
+Rh1IStpLsWl3UMWnhy1V/NeBm9MyikLRAQlW40sehKiB8tND8bELTsjNSLbZ
+YVEFyj7bRPVLuqC2NtcAHlNl+IRHWfMgzQ0xa/Vo6w0rwtHjXWFafk/kSCh4
+jfoOAtGFYP+dei9UVXfiSflPHqZcBA/N4nGdV38aa622LLjNi4swffRFDkuc
+0gF10jCmpUEQLeOHav8dLRSpSgK/X1u+g2wAUh4lb/qwKg5Tgj/v3B0PQkQh
+0eN/SkUB/Fk/3HzzGOm+YFaeZROG+q0DkW8OYWjFQn7kGis/uOgRlb2fe4qa
+8C/JXTW7BKdyfyM0bGOQ9n+igfsDXPD2Zc8tFoF4dBptPjf/nB3aMxN/6son
+oWWB3fsiTMzwKhSj8pUgHV2ljVT99vIchJltH/h256BblMI9I/lUoCW5Uxz+
+5i1qmjB6fhxGBthLaPKxRjnaDGn6SbCGB3ciRw3KpBoQeyOWsJ/jjwLdLtMU
+z4VuNPl6c6zn4oJCJIlih1HjAsJkHK0fBPYomBtMXhSL3USy7TzmciJtCv8H
+wEf1Nw==
+ "]],
+ LineBox[CompressedData["
+1:eJwVlmc8FXwfh41DmYm4rcKRzCIjIn7/Dkpk3giVlU10IllH5qFkl5mdTeVk
+RRGqg0LcOmVESEf2lv30vPh+rjfXq+vVV8Tey8SRjoaG5uvf/Z/d0hqJAy4L
+6CX71Js2abJGbb3lmx3JdyjJnp+n+vOCBp/46f2pqFr0j5JqNd5kWyPwPr5z
+eKICCbhxOCTkY8DUTSAmTeIpYrDeK6HrYoXRI5FWmh+z0BE6VdI8Kxc8mk9x
+0F5JQV05qwrFGrxQumXVdkQjCT0QYdhuXj8KGgbDmUdexSLv1vGGcF4ssOM3
+WapJ0UjRMd941kcMKvRZqheGItC2Tb/6Hrsk5A9NDVYNhaIAxMSlOykDPXcl
++Efng9FsyA81XKAc7L9sQG/ZA5Gb0zDz21x5EHFnV3MYvYum7nLfeTSuCLFD
+wRKzKneQrBtWFyFlUB5dKzjbdxvNikkETC2cBdrAEd7O7lvoRUNJ5Jnmc0Dv
+9/44XtETUR9K15ZUAkx+KFBHuu6oiD1gxf76echJXJt3Jrsg/yIsjn0FBziB
+AOnEdCeUlso3mJuqBeT8o5/0SQ5Ik2hoNKV7AYK7V22wjDcQU9HOXDWrDuCt
+3m/8F2OHfrDO3RwYvgR7ZT64STVb9PtFZ6tUox6Qjh087yZsjYynRn7eK9aH
+YYYGP7cD11D0FFdRVZ4h9HhbKDsct0KOj7K0u/qNQJbp4zGjWxYoy/CXacyo
+MZRf3vPRnDRHTl2N72iXTGBkRz9fLdgMDacQMMJMptCqG12+esYUqbb+xlLE
+zWDkBCN/O8u/KIT3VNsRfXMITU90S9o0RlbXWbi6/K7AWoPpo6xdI/Qnbapl
+scwCbGwuJ8ZzGyEO81d/8BOWMK+6KlYfbIDW2bJNNLFX4dTjEAJ++TIieEtS
+rjhfg/1h6sSJcD3UpaaykE+6DgwayyZHTumim9F6rrwYGyDdWQlsX9RB7mwy
+SpSTtqB47ZwHX8dFhET3a0uHbeGmcPUmf80FVMCSIBwaZwe7KLiY56U20pf7
+tWeuaQ/ms5ytES1a6KluI/2JbXso0MtZsmXWRFopw6sZ3g4wzrb3xg+HQ+68
+1Nkzio4QlslkaUA8j2i9doXqNxzBcT62b6sfISRgNMrX5ASVzeeZKk8iFO80
+mnolyhlan53yNxACBI9Mej3+dYHx40rD/qvqSDN+TMYM6wpGXQleJV1qSDd7
+TSeu3Q08JGt4onpUUeOhoVZKjjvIR3npGIycRffZh3vG/D3g/kkqwm6qoC3M
+cFi5+U04V7aidlZIBXW8oqeXO+MJGF9y7YChMnJkYY5x5/WC/tfGExYPzqCY
+NKKL1a4XGIaphtznV0JcOm6DedRb8M78k7SolyLaO90TI2CNhy5S/2/Xjwro
+F/XKEPULHvxctNfPpssjQnZKPr7jNviGxnKsMckjMUPDfmltbzBJCfRvDjmN
+krob/5Fv9QZH0RJXuXtyqOrwoVTBtz7A/rtQ/RyjHDr2Pe/9LroDtOtWorjj
+ssgld3T6eNsd+OfG+Nq0599gL7214aMvXLBTMh7JlUHYCJZcWeO74C5j3ls2
+KI1iw0PUbL/dhZlyDFnLQQoxbgg0B037wVxhsz+1SRL5Zlt9wnr4w0bXsp+4
+kCTqIig5DM37g3FWx6XwBXE0+IHIELIRAAssmGxJG3E0MWxP60YIBBua/b7Q
+/06gYzYED3tMECz4Ks4QOsTQjaarWQHcBIgkijm06YohtTiz22k5BEhTUUjZ
+7TmOBM5T+t9KBcMXtqSeiklRNEMeijypdQ+C5mlt5s5i0WJ7auKzlhBgZ1LX
+bqaIoBKRvZlB5lAQsiSye/mKILtzppvRpqEwJ4ir3nojjHCDF+65/A6F1wkt
+C/mOwgiblXc8XTEMTKQ6SloOCaPLmOuUSyFhkBUrk3yIcgwFS7uSJfnCYe6Q
+ZPFBlWOoZVxDw8IpHLjJ8gc1s4+idYY7cgzV4aApvK/601cQqTEKYQaMIqBb
+1iSb1YwfBclJ8FknREKmDkuu8hc+VKz1gdN3LBIiLl0hZ1rwoQy58DwmBSLg
+S7EST114EfkXXiT/KxGgc9WZppwHtUzPWMefiIbmdmZ3ZRwP4iegyoDAaCig
+qyJND3Ej6WXLlZHP0RDS8EfDj4cbHSq0kjlMuA+d+nykM0VcCLc8tcg19ACi
+H/QlGxtyIatM18dNCjGQECT/0XqLE2XdaKeMPowBM3qnBh5zTqRy9wJ3JHoI
+Yd//5SFiDyPnZvEtk8pYELRMP/1qgANtKL/aKGOKg1usmxi/JA4kb/re565T
+HHg/6E6/eZADDdphFj1E4sFn0bxCjZkdmT3ZSrUzSIDYELqhqEQ2xEAmyboR
+EoDZ4mGPsgAbspX7MFhakQCVpfmdEUqsyImxj6abJRGCWLK5VSOYkaavXmPR
+p0S4IR7YfuAoM8KiMT7H3USYLi+vbK9jQoS1whbLU0kwWZ9ctLJ8EE0Z0cZP
+JiSB+pKg2fPgA6iZU6sowiIZkqJ7RvrFDiCfmYnPyw+SYR1PKHzczYiUfokk
+p7xJBpY7qr2txxlROOPow2DRR5BG84jaM45BTHqnZbuXHoHkyaXAbXcMqrfP
+eWap8xi2Gzl3X5vRo02LS4n7nCnApTTnnZtNh4okxFWupaXAc9v8uMirdIjo
+qMIl0J0CZU8GhqP56JCt1KIbOyYVagdiG3rTaNH1zefmSbdSoQ93sLezgAbl
+KXDlsV1Og7MaPOV7LjToM+O1H57habAz931VVJYG3SJR5DGNaTBmVapoHbQP
+ZymjE51S6UA9Y1YZ3bULMxc19MmsGWCxeK5/z3EXpqdctsjaGbDolHbwEM0u
+1B/95LoTnAEG1Xym31V2IE9M0pNmOQNeWLaaWL3eAnPbNTWfwUxY8RwVf4H5
+AxLO9dUMNVlQ7UVuCK/YgMfy2Ac261mgs+zF/cpsA3Z3VqhrytlgqpLNcbJi
+HRKEchW/NWaD0kIgxz2XNWh2HNm6/SEHaKmSD5/yr0FlB2fQN0wuqFNOTm10
+rcJv8bqmxydyoWN8XfKwyiqEzY1xu7vlgtRkSpk33wr0tUhcDF3JBW4uiR2P
+/mXoptDncPLkwZ5Pz1XXhGXg6Txj2KqSB4RioqgFyzIsC2h1BAXnwWWjwrFY
+1iVgfKZeYc2SD0sPBzIs8fMwKqNVOCRVAOmDdOgJ/TywmB9QNjMsAP9hKRv7
+1DnYTX4bN+ddACfxmzjrtlkw+2T/KuBNAVzt+PzHVmYG8E3digdNnsJiHecr
+5s5p8JpulfG/+xSK0aVpBtdpoAw16TBlPQWjoRDMYNlvYMqIOR419RQqqdzn
+7dSnoDRxhnU7pBDYVu0ouz+p4PnTqM2puBAUti0ftMRSwemyIP9yVyFMULKF
+ysd/gbrdr0VngSKwlji9G5k+CSetla366ooAwneaMpUnoLPH83X1ejGwHrMI
+uLE6Dvp5TwY8BUugsJRBZ7lqHOp7tGq0cSXQeE/zhaXsOKi4R9HpxpWAcPSb
+RDqFMZiN1ox9Ll4Ksm9vvlitHQH/2DwOBtsyoCIt15kLI9Bd+HUsJaoMxOWs
+EoW+fYfZAk7hi8/LYM5F7cepvWEoP7HvSL9fBnzSt/R8LIYAMnp653PKAcdQ
+ziKJ+wYIFxxbRa2AABPmW1w/v4JiqOVhtcOVkHWlhrRL/ArPTpxxmVSthOSj
+iRHveigwqeB3MSuuEt5+LxVu8fgCId3POHKUn8ET7ebCrt4+YLsQFcmb8Bys
+Bb6Lnw/rA35szmFy43M4mO69FKHQB/vViv+lU59DXk/G/u20XiCuEgkUoReQ
+a/CblO/+GW7/2Sps93sBNwjqHP5un0CljE7z0qkq8FcjtAf+9xHWr/vq0elU
+QXImp7KExkdwCHaa7Lergr2fWenOvJ1QnbDVQ37819cSkKOOkoGQrzQ3s1cF
+Hli7iiwzMtgZiP/04yMB+ZXxfN+nD2BUT5stokgCjmnR8cLm98B0qzyF7EqC
+0+X9tU61bWD7ubDOk0KC6A7/7RjlNsjMutw/vkSC/uUkNeaGVqBfVXa8w/YS
+HmQbi9O0tcDYfoPrhtZLaNvxwte0N8PpL9waATUv4d164Gx8az0QPoRvjjyp
+hpVDr5dFZuvgyO3DWM+GasjlMpCZ+qcOTqgvnhP9Vg2GRGLT2p0akLrBUk57
+pAZkA588sdIjgWOoHF9ebA1ELxk29UVWAf5LszO+ogb2NejLdFtf/P1t89Me
+H2tgZyl7Ahf2DJytM1OnmGqhdaP6wv3yEhAV2ZFiul8LGYIyBRJQDKEbl9Mu
+ldZCpddVfTdKIQjWEDcbO2rh38U1mtJDBbDjJ0hUZamDpwnXNb9eyQTTPjHN
+1wl1UFxF5J6qTQOhq+cel5LqQDiyQSBVMAWKc+496+2vA8F9ne3Q7QS4J13l
+8ZWvHlTeiajI/n4IVllRn+rO1UN+FM32LjUKxP2r3L7Z1ENspoep3koYTOYm
+kFXD6yF4JL52kjsI4nFjt38U1cP/APE0WKs=
+ "]]}, Annotation[#, "Charting`Private`Tag$4175642#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]],
+ LineBox[CompressedData["
+1:eJw113c4F973AHAjK96S7J2VpBChwrnZO1tGoowiPvbOLpRkVfaMjBRl75Gs
+7L333kRWbz/fP373n/u8nnue+8e9557z3MuP/9M0x8PBwWnDxcH53/z/I6Qy
+bgrzCoO+WtoMXcFeAc/GERayM6fziA7xYEWhLyF+mPDMNIXz08nYe8DmNkmB
+fYlBu4SPBvmw8rBFkPNz+8wz8ja/K/6pwpANzt70mX+aeqZkYjXAUn05tePM
+9yXtR+yw2nCl6XlbyZkFeMj6xLF68M4s2j7xzJ5vUft5rAHgCVtH+/xvfxt8
+wtF/D6Gy7J+Q8ZmTRbgmB7xNoGtHX/32md/tEMTXYU2BWufdMsWZezyTB/K8
+nwBD59fTuUAMKu1aL4jHmgF9c2tk0Zlz+eObvLCW0H1DUUDlzPk5f+7ZeT+D
+r42DdyjP7Dv/d9QcawVZ1yvq+wIwqH12f0MPawN/N5aU7p95bWP7s7b3f1Ai
+ZK1MdOYveUo4vD52IML2vaXCH4N2Nm2Cr5/aw9AGBjGcmZxZKlCwxgFCPS3E
+fvphEMmvzQuiPo4weY70m9WZ8yOnaeRPnYDkZSdtni8G6dz0Tfc6dYWoiMpR
+Ih8MSjHyngircYP7VNOt770xaJXO9Wq6jzt8jMm8zXbm6nuO/D2nHnBtb+QD
+7wsMEqVxqVTG8Ybg3Uwdak8MuvqeU8yu1hvy7gTJB3lgUKU+lcxHXx9wp64o
+33M/i2dwynTx9YVRX0ruZjcMKujetB/H8YdQj0BaaRcMyp4J7j4y8Yd912OG
+WGcMeqb1ooy+zh8UmvpTV50waCktUcrILwCk2gbvvHLEIPvEEYY93Jeg5mGQ
+FmGHQd2p3ete+MHAY/MoDNcKg8YxnFUd1sGQlnO1lewZBvEVN2+z9wVDbc+5
+3UtPMWi/mqew51MIqGUPYmgsMGhFT7NKXe4N2KnUOy+bnt1vS/JcZ0gYuBkW
+BbQ/wCDe8JQxlZ0wyMAQdnzUw6AQppGJ3wbvwCh2B2Osi0GvNbKpV6nDgUuN
+0H5CC4PIjogDiBbDYeyibv9XNQwSd6a0igiJhPrx4cwwaQxqqVHLWKmKBEfa
+4w90Uhi0+TGxVHYnEoIXhIKSEAb9uSjrhWsYBSSXO6ySJDAoLieRJJwvGhjI
+xbVsRTFo7qSgHdP1HvBx57Tu82LQAwWWnHy6WKC/9V87IwaDpkcnVHsUY+G5
+kVSUAikGnXTIs+57xAI7bfCuPQkGbedrGsmMx0LLu4BX5QQYRHdJoPQ4NQ7e
+hAqQcWDJ0KiAQe3wtQTov+OjpLlBhuZyB/3s7yVDHEmBO/9vMvRg+p3UtEMy
+nPswz73dQob4fspWan1KBr+YoZBvTWSI/4TDJQU/BQrCy53YG8gQ7h+Kh0kW
+KVC8e3AwVUaGCvXm9yb4UmFTrCuqLpMMXd8amPMvT4N6YkpaOm8y9NKaL3S9
+Jw06BZtLfDzJ0KLo9i/91TSY8SRVm3MjQ+FZyqciTOngXKj96JMjGVLZ2C4+
+550OKaxrgjjPyJCG9z+2zXufAOvj6n9FiwxNCchvk7dlwEmDn6k4Fxmqu6FU
+/WcmCzr210eqa0lR8LsD4e1/WZDD7G7BWUWKtFhCr23RZYMaXWLhqzJSRADb
+6Xtq2eBTxJ187zspurPeQslacbZu0TASnk6K/CK0nDaicmCAYtfww0tSJKs9
+3Rsl/wXS0p9IKsqTInOJiKSUkm8gWz+R9q3uPMIOGprRcvwAIxWb3cMcEmTO
+G2tp0lUMGe/l1QkfEKO5m9WKNVHl8GdR+U3HOiHKoVon+YCqgWb9CWdZMAFa
+UyWQn7pdB/TBBrpkB/iIkYf1s6JaA/g/T6/s8cRDz8tsl4k8GiGuHV+sixAX
+hVjNFhfiNoMfjU2l7wYW9HA3ShPftYJLulGNOu0JjN7npR+PbocoHyqCZ6yH
+kKecE0tg0wVXRV8sfHuwD1vnDEkcHLsgynyiJFFtH8qn5PCn3btA7DVj2VuZ
+fWjfYkn89aoLpJjj1JwE9oEtRDMhP6ULvP57MW5IvA8dhletcPu74EHOiuz7
+0j1Qe4qfmQ7dMOdXPVXMsAf+7b+cDZl7IDqFvmJifhd08LwkqLh6QDzbaCd8
+dBd6bdfiu/h6gJJOaFe2exeq2HJ4tMV7QP9FpnZp5S780FvtfWXYA0uPC3Kr
+o3Yh0HwMkxjXA/IcImqaUrugzqAYlcbYCxfWWyXiUnegPxCnrPlqH5yfTFTs
+fLoNrbNPdVYF+8Awe8dr7NE2ONnmt1680wcJJwGwprsNB02XVayU+sCCssPx
+kuw2eHEz4CpZ94Hfr5U038vboCx7sP0rrw/MCQstB0a2QPTkTmj7rX4g/0pT
+Z39/C8xXOgrbNQeAkH3pxrrvBqALHC2NRgMQro+7vGW7AfjZ+ZYNFgMQy+D4
++8hoA9QupOl1egzAp+FNisu3N+Buh1wEb/oA0MGvuJLtdbDyu72z82cAcon6
+sWRm69C2Kjq1lTAIG9e7zhmqrgHtvq39p8+DwDSbE8gpvgZaDztuG38fBNJa
+F5E/vGtAMaUTNNc0CD2+dgKZxGvAuiJWLr47CCY6ln7aP1fhihW2gk15CBJ5
+SPNGxFdhTmIweuZ0CBYalV3f3lwBDfJzNEKkw6C/d2/xGfsKHB+d6rymGQb1
+i33qKpQrsC9IyKd6fRhqG1woOHaWYbTabJ7TcBg0vImA7vsytLuQq7OXDgNJ
+Zr7kZaFlONf8vCnQdQTub7xL/XJ7Cfoq9TjLA0aAmooNK8+7BJEX85j+vjvz
+hy9qywxL0H5s9y8oawTuPk1rlThZhMWgR5qEIyOQvEDIfaNmERbIWHG9JEeh
+iUiUm09uEUKUmYQCMGNAyKgzGfdgAaTq0NAg/Riwk0dEbSotwCrn32Mh7jEo
+Obj7XFFiAV4Ju43iwRhs99uEkLEvAB7tvYZjuzFwF9572rU6D4bXZD6YDIzB
+I28iSzXfeVCKFee59nkc0lX8/djy5oCgIpHAu3Ac8vCxWLqUOeD3aNQZrhsH
+FZMPUTRRc/B3zOm/7LFx6McVwbnsPgdk4Sv2+ZQTUEX1bdhBdg4GW/3YTX0n
+4EFCNsv5yVkIJdNcff14EnbJm1XxaWbhzdXRn8IOk1BD+vlbJPEslLgejy37
+TULhhYDDK8czEGX26Mg5dRIed0pKmU3NgKHURXna6Ulg5J6J5MidAaKopEwZ
+wSmYnr//qvLeDKiEFOHIlEwBufHuNU3HabjpTOE6XDMFDVOkZIkW0/CZtfOJ
+c/MUvN+LKl/Xn4YN0r2q2uEpWO3w8UlB0+D5X55s5skURBvYhCuTT8P2kZHq
+D+lp+ME6RlySMwUxC42bZIPTwMuws1HWOQlvs9o+Tk5OQ58JQYZu2SQk/lCp
+L12ahtC/+fL/0iYhwTWpwvtoGi44+qo8dZmEE+JuUgOWGVgMDr5SxDwJnNvW
+n7UtZ+D97egKHtsJyGMpuBmOnYHc9Ohpa5pxwLZHbN3737ngehBI446DekQV
+3/HFWTBQk5jmWBuDOOpXUoFcsyCe5FWGVz8GzV8+DG2rzIK7jVelsO0YZKiH
++0glzgJmjP7V0+ZRkEoqIj+WngPl7NRavMAR+M61bOemNgc6mpLF9nZneanx
+/Cr2wRyMzij/XjYaAR2Pzz/ZbecgULdVc+/WCPyWYCzvjpmDccP4GPelYRDi
+uhPYuTkHL+24fW7dHwYz8ie70Z/moVOAR8WWYwhE5w+VBfPn4VCfZf4fxRA4
+JZhrDVbMA9ujCPMP2EFoYlFNQr3zIFiZRD0zPAgLxI7OIXgL4EZIeDobPgiZ
+Dkdb2McLMJiiaRCOMwjUXYE+vdcWAb8j45r3Qj+QuE8oD95eBO6Ck+Gvvf3A
+lMj2fEl+EfrkEiuXa/thvS9p56bZIjQV4VB7x/fDENU7buvERcA9Ielg0+gH
+96wFSnfKJeAXfyGuUt0HvxgZc2KJlsHg9fXaqym9UDfPHmhLuwzxiY5CCWG9
+UN40paB1ZRku73e+oXvRCynfCjdV5JdhE7ds+oZBL8Sc71XAD16Gp4w5o91U
+vcDlj7WJIFuBnWKK7o03PbClUea1yL4Kff6R6w5+3RByE/9zkdAq0Eb48gg7
+dEPyleHAaJlVcM50Kv/3uBuS/FUqAi1WwTWFZDRbphsG/QiqBXNXIdriQp85
+cTcYfC4i7BM9q3ty9e1WEV1gZp2zs2O8DlFFCRzCWp3wqp4vnsRhHfBeClz/
+KdIJCcQftIVfrsOnXd2HZgydUP+k1PFX7jowzyuw9U93gB7WoWHqcB0K2TnL
+XO07oFpwy4EkbgPyxZ+4VUW1w31Mby7N6iYImwVxXZ9rA4rUxaePcbdAjyV3
+wr+pDV64FLXKY7ZA1qRqYyWnDUywBBMSXFsgr1b0b9u+DXyjAwlHdLZAUp9a
+YhSnDaoqo4WWy7agYCzCnpq9FQKNYpULfm2Bh0IfQRhhK6gKFOmH9G5Brzk2
+hm61BTLWTVufrW+ByyVsxpPCFsi/jK5tnvUtKRbV2i75FvCiYRXjDtuGmdVw
+djyHZsiapUg+jt+Gv4SBF2L0miEld3t2Jnsb1rLp00GiGaKrn71ZbNwGtQ3q
+rAbiZgiRqPn3G7sN1n1fw5JSmoBSmW+S22kHWkVIDuN6f53Vr/p9RttduJ9l
+/iFIrhHyLlnkcnvvQs9qXnfpjUao55YVlA/bBf7IUfMjmkYIf5io3/p1FxRz
+8AK/Lv6ENQrmnvGtXfAQUyQYCfkJ6ylPnEzc/4DW56DXt7sbAMgdl8Ze/wEZ
+nqJpm/IG8BXRwXdI+APRyYqS39Mb4CIf0e5CzR/Q6O/YsXJpgNdeQuK4xHvw
+36B1STxTA8jYNolxJe5BYtMo2751PcgSe6vK5O9B2UrKQx7derj+0sTQp2EP
++P+EqFih+rM6XaOktLIHtJm4fMzU9RAhbbFz+/Y+qL8TMJGsqYN6aQnl4rF9
+uNdISmVFUwd2C/cE9+8eAFbYdiEwpQbk0+X5/TUOILTGo9zGswZ4d85tXbc8
+gNWpT9V2ujUQScBZPx95ALoX/95qJKuB6SEe0onVA4g4L/c306Ma6l9GJ9/4
+dAhJhkdecoZVoM70WGqw4hDe4eA+7xCtglQ+cZZPvYcQk85CaEdVBes9q2W5
++EdgofyCAaejEiQHUiU9zY9gLPnSmKZUJVwl/KpuJnAMy8fKwRX8FSAmLIN1
+UToGfpNZhRFMxVm+rPP/MDuGpiBfAcq1clj773dUduxZfM+aVntWOfS2jf6K
+ITiBpI58AjuOclCoYa4cnD+B6OGfy4+YyyBjrqmkvRULKcxX4vI5SmDCTdQ1
+ch0LKueGs5TxSuAB4xenGIpTmGEpoMOfLgbqV2HDVnqnUBJSuPMrqRikSq3j
+xJdOISw61i6VsRi4JwR449/gICOjnaQYhiKoVaSWvJmMgxS+O+38OSoEEK4d
+3/yOg/4dBuHbjBbCcOXBs6kRHHTy++et/IRCsB7IyU3jw0VCZi3VfmyF4JFh
+mUIxhIusm4feKFz/AbFslr6yG7go1CXjyPDCD7Cnj1TMOoeH2JqiXr7e/g5X
+SWVzDwXxkKpFa5NY8Xe4o1+QPhKGh3K9RuaH0Hcg8+6duqSJjx6mOPawGBaA
+vtbE0DNrfFSiekVvUrIAYpxeHu0H4iMv6q0H5ewF0FBVY1BWio/Yn+t9qVnJ
+B7/SWZ9t9nPIk1LAh9ArHyKN5ic68QiQlRF70IHcNxD46H56xEyA9lBikgL1
+N6jipjUzuU2Ajn5ndDXOfgXTu+4/xuwI0JClqay831fgbPKg+jZDgAJog8vM
+qvMgiFhOy7SHEF0OLWQ8QV8g83G4cPA2IeLmTAqgofwCZbU9IXsURMjd5QbZ
+w9lc0M3XJfmsToSIumzv2b7KBS+jEnvvXiLEcfl7aHJHDkzuZc/1LhIjy4hO
+MQHLbFif7p3qJiVBT33CXQjuZsPY/eUNLgESlKG/PklwIRvYNxkq+9xJUHP9
++kFQSRZEpZEH2Vw8j14VGCW+O58F2wYXWVI0SRHN/U+hyaWZ0OiqzB3udfbP
+yjhwYXuXCaXnxF6vZJKi2WaRxDbzM5PySs+dkKIdYZXHKZcyITo8FpfmKxmq
+FOO7KWWfAdKZyGaCmxy5zMvSGgh/gjtV3V1ieuRoUAvP/y75J7ASXKO7FEyO
+DMM+pskspUMeg1a+2io5+v2RrLM9IR1Okb4ebekFJM1VZlBOlA7H9WW4mWsX
+0CRrzuHgTBo0Z0rSzFBQoJ8F0TNM1WngTt1dPypHgX48mjBick4DZsaoC0bF
+FEiX3cx7ay4VlmLrBXB6KZBCG/WBXF0qaPdVsu5tUqDsHXeNn4mp0HBKZDDA
+exEVqhTaCumlQua2qXTcp4tobmR5drotBdpO6G8aZ1Oi96ns+UtuyaB7h8W6
+oI0S0bJOPDIXSQaTm12Gzzcoke2SoMCNP0mQYPlZgO3WJdRNv/k73S4JiqSO
+pAqaLqEBEL3JZJMIIbXVMY7rl9Axb8Plv3yJUHCt7taXS1SouJXqKfN6Aji1
+6KgFm1Kh0seq75VtE8DT/tc3bnxqtK4UXHHNKR7MlDq+9PNRIxx+uRxjkXiI
+mrEQJNOjRm7jOLxjB3GQOjlkTJ9HjWqXWjyKveMgzQNH5OgRDWrvxZTPv42F
+vbAGZtFZWuQllZRHX/4RJqXukpxjpEO5LE82L3h9BGK+6zyZWnTofd64mJHk
+R8Co8OV6NtEhbJjo8/2GD5C0I0uzUUaPKp19GG/0vofgD9o3Fg7o0byksGn3
+x/cQkJ6KPyLGgJzNz/9sMXoPKZ2hpa0VDMif659N2WI0sMscZtp3MKKj8Emh
+CNxoCNN5iFmiZkJCIj+kRpqjgPYv678QYyYUpRr1xjU8CkZ0rxdY7zKh4ThV
+o69sUXD63FvUjo8Fuap37ZPIRkJt92tHUm8WRPJXqWebPBIymX4xknezIMaC
+DbLrwxGAb6+A99yTFUn/GxZOtI0ANyftzzL2bOitlI21aWI4UOCsFN1IYUNB
+XuaG08/CQUJBz2qnkw2tT3wa+iESDrjVXllMNy+jnujOqylp76Ctwq46GZcd
+mRssZzRShcG3PX2uQ1F2NOhH1b/0/S1U1FWPGP3HjpD9ftg3jbfQsK7q+Wia
+HTnb6k5zR4SCw1sxHa5eDhQ+WN1SQvsGMiZwHNIpOZF6lzP1TvlrmFD6d9la
+ixPtp0k4dBi/BnFnWu2TIU70fVo7+3lWCHixhDSK73EhXyIzvjvSwTBS587P
+hLjRl+ESJt/VIPibwPojJpQb7QSZVllEB4HLPrjG8V5Bnq62ltRLr2DDeoJJ
+xIsHjTmuje9+eAkXXUZkLDp50DnjBP1axZfwVLq4zJjzKlJePkmi/RcIo9f7
+miZ6r6InBxrnLcwDz/rb3Wb/G7xIcBxn14ghECRj5zavvOFFv9yHeCc6A0Dn
+aCSvUOkacuSYu+gjHgAXesiVqvKuoS+bl4KSdv3hkbAcD8klPlSXbjkon+sP
+rCU0bIVzfOhXI3+cKJM/JNV82w3IvIHC/F8UB5/zgyqnX5hOZn5kmXSe4k+N
+L+yvZDwkiOFHS57sDkuevmAj/j7qt5IAqhEonBxc8YHb7VMXP4QKIIX39mV7
+5j7QP9ddeb5LAGUnKC1zznjD6+P6VkEjQXT5K0tC8fgLuKq2t4+fIXjWn1Rb
+6R6+gD/ctHu1m4KIpvh8xptxL5Cg2Lkt/eYmCqa3bEib9oTv085XwseEEK3X
+YVLkvjssdxByj4oIo2TpWU4Xb3fQ7evML40SRmn8byWfEbmDBkVne5TOLURf
+zlT+gskNnHtnxprLbyFZGqaFpCxXoLvnGn/KLoISr7Ld6bzlCviGTA7bJyIo
+co/o1EjLBdS/cJlu2YoiUnklufJZZ3DSGpxzmxNFphyPH3M7OwNF50fRhhEx
+NPWVaog33gkICKQK8Q7voKCgAZ3ZXQc4vwgviULvIu3BjL6iUAcYNp1UJucU
+Rxxpbf0fuB3ArXnRgtpMAokVURoGPrQHIsfLHTFkkmfvI3wm/MgOdu6Vj3FW
+SCLK8ru7uTF2QCZwuttIjVDs17Rkxvz/wMjRaoTQFSGuDaEn2Tu2EL57U353
+FKHxvtlwbVFb8Ln+9DS64B5ao+Ivx296DlUlDG1F7FJIbpyZlJjyOXiLVuTo
+x0gh420ee95H1lBMJ5fNFymNMP7RFq2nz2A3zW5SnV0GnWe3pJuWeQajY+ld
+1GUyaJyAntol9CmUELOTLOrKotiGnl8hA5YQoVrUI3Yii1DZg1QmDku4hNt9
+KSRbDqk9fcrO72ABim7CiiaP5NE8IWNPXYM5qNglcOIuKiAHpwtUVrZmQF5C
+cpexXBEp36TZ8G16AsGsOzQmMUqI+9/tIAaOJyA+nhKS4q+MbPQOUkX9HkPL
+X3psrbsKOrU6xQxPm4Kap3NlhbcqwlDWZ53KmEKJMNuL9Eg1JPmY2vhLjgkI
+dvlEEruooz+T96+IHRuD3pPyzKsMGqhzScyxvv8hTDqlpfo1ayDm2wJhpkVG
+UKmp8HvbTxPF20vt0cYZgvXEhpOTvBZi34tTXgowgJspzA/ZGLRR7V8vo34H
+fRh6clrCd6yNeBYfM89YPIDHL2b79lZ1UDyeQv5FEz1QEF/7iLehi2T82Cws
+jXUhJrtq5Tz+A5Qo8rJuwVQH3pR0PTjl00cFUjHuUVba8IjXn5bS1gCx8l59
+Ye+mBeVRAy11zYbI6z3rfuAbTRAwUjdbgIdo6lBYtSddA7J2Q7/VDhijvXzC
+G8Z16kB2TfPlKwUTpPeHhtaw+T6QMMQwv71tighZdxTf0KnBu27anB30GLWz
+atA8cFSBF8SHBEmmT9DmJrVq+5AStGcnpu4mmaHQjADPvwqK0GFSS7R1Yo56
+xxcPZxvkIcvkIb+iryUijvxznKIoB7NPwvJibjxDi06YdIkRGUipDI6JILdG
+hA+HKVudpcHGruFQlscGNY27BesxScECQfANv5f/Ia/TQaeDdgSv7m88ZqW3
+R4X4erf8qAHiP5xofEpyQAkFH01fZ4gD3Z0L514ZOaEo2Y+X7qjcAYGfVaLG
+xi5oP702oI5EDKr7ok13v7shqpV/SzoTt4BDjK9Y28YTrWks7gu0CoGIPn+p
+faY3ctp46RjRLgiEUuUeJeCHHBsD+l27+WHVvHshIjIA7ekrXfgrygfqGx7z
+FVav0JNbXBJynTwwN2gRubkbgtzYOjaZYriAhYEJk2QThjbuY6flo9ihufja
+BWPGSGQSXKxmEMAKn1LcLUy236MMe3aNdAUGINc4+PJaIB5pNYydq3Ojho9u
+pmEYrVRU1cfqYkVzESYXu0L95jORETHKz1Y8D1V63XE8rd8Q74u/GjX38YEr
+47V8S14JmvlHw2UTcSTpoWceTp/bgA6YKsrI/bckCRT481paelGvq7TumyvT
+kuqRbNc7EjdQluLNp5WjTZIbvx9RQPJflCKtmcbVVSP5f5rnpPU=
+ "]],
+ LineBox[CompressedData["
+1:eJwVkGc4FX4Dhm1SUqGMVCKhhDKSeH5ISMMIGclBMhJCUnYph1BGJDkiMju2
+kz0qCSVSomgpMgop2/t/P93Xc93X8+UWs3M3Ps3CxMS0lpmJ6f/8IBVynXbr
+H1k1zeHHWl+nEfl3IfT1xnay1FRw1u3edw3b8VmLPWb15GxB+7YciymNLO/h
+sp8sZcSk+5ZYg9Sihs2InaCjQwF5890iSMGQDfpL3ZKPmzLJA3OXXfe7ueGS
+d18jozWN+H506+RcvRYWvHsf59YmkzaFvk9iqwUQF3q426MzgfS8d9RidxJC
+ZNO187+lYoklC7/AguAmdLY+j1qqiCar6Dd1jsWIISa1cpzfLIKIPBJtpqhJ
+gNlETlfh3TWiKlBXXsm7HU83xK+PYr5KGPtYsrxXyiD0JHd5ZX4ICX97HdWy
+suh8Mply0TeIdCamvfm+Tx6+ESIZObv9SepihpLfhAJaRbdmmLj6EU/GuY+o
+3ANhPn53xxW+RC5vD/VnvBJkqL/5Lea8CeXQ01DZEBWkyvt3lsh5keWEc1sb
+AlVR3fmonCvVk6yO7LenRKnhoGDZvPJ+D8ITHR7Rnq+OOrGzt5rYz5Gr4vmd
+zR+AQR23XoEeV2J/0ul2xGpNLO8dPxk96Eyu2MwH1yprwSLTfA23pBNRm4oM
++uaoDdPridUNsY6Es8rF60vqAfT5sdtwSJ4mp8UUFWn9Ouh9qWO7qs+e5J0J
+D2CR1MVUG79YY4EdMT9f0v/HWw+V/W+56MkUshTOnH+qVR/HY8fwPtWWvGKi
+TuyUNoDk07urKO6nyI8E1TO60Yex2XHr5rmnJ4mu8wrH5LkjEOuo4stQtyZn
+QkX71547hu2PRIyWOy1JrdGQ5BFvQ2wyjbUTvWJBnB/WWa9RMoIoso+cMThB
+BjKYjfVnjbBajyksQdqcNH8eZP1Vb4y4cdp8hogZuTJFsmciTXA31m76+WZT
+MpiWkHvS8jgyRPR03BSPk5x+mxyBnaZIUfz8eNsJE8I3d8NLkNkMcRSLqwVU
+Y1IlqsBh894MiaXGL6rWGpGr7KPGsXEn8MlK/r2hoyEpE+Ls8/SxwERRZmYi
+9RjJeLHY5GNpCW3+Fq+eE0fJZqs3Xbe1rEAMbkpxqh4hvyroU+2y1jBZiO39
+LnWYbGV22MW/8SRcqjkVzLcbEKk4Ibodjw2oBZvNBw30SXHX/pbFmVO4uGqg
+WMVDj9hINj1M9bPFn29Kp4JouqSUPc9PacYWFLpFl8jGg0Qw+VVb1SwFK96N
+7NrhpEPCqepymf526N937FB69QFioPubMstkj21ymhF1/tpkvOmB/1seBxyS
+iKWa/dQijavV5XPiHOC7pFOx30aLCHfo3mkXPo3nRisjosw1idhadxFmWUfY
+9T/QMflAiHFw77qVDEe8jA4wFXUkRHnDy8vWB85A+OgS7SQviI7ymupWWyd4
+LozwT6lrkN36u0u//XbCzBH/1fe81cn6ibWn1EKdEdVg6Bkzo0boYk8oSdku
+8Oy56CGoo0aO+b0USFZ3RZG43Q7lpH1kr0KWYkeXK1zU4mTGDVWJ/67msg5W
+NwQarg2dKttLymdzc27fcwNFaYjXfsteMpSHHeF7z6EoMdTxKpsKqVovqDHo
+6Q6a4ubB+gBlspqeqifJ5YESr+UI/3klsvvU80sj5h4Q6HH5l82qRDZwUSwk
+Zz3AtuaPWXWUIvlyv2ThziFP0BvSyuNEFMnr4wfX303xxAqrq+1jmnuI99hQ
+mabWeRx/oz5qWaZA6OEVnuzxXqBdUzpBtVAgPUeag1qGvdD7zXK1K5MCCX8W
+fJyPeONLTfHmflN5cohf74HiuDdeT3lR1dnkyYWanCPcB30gqi7h2uMsR1xD
+9YTtUn1Aiat8Uqe6i2zMqo2JN7yAI8L+Fv8eyhL2N/cuuOVewN1oJ4qUsCwp
+6KhYeMLmi6WfdbWDK3aSjbJTF0YrfWG6TuqaLJ8McQs8dZFd1g8HHvjOXLkn
+TQYT59OqIvyglv/+xzsZabJx0ah8eMgPR51X+qw7KkXYpxXdcrMuIc7Ta16r
+VJJEDC23PtzujzUvzPvGTCTJwOgJXk6qP/JWLDV9nd5G5hvzJ9/99IcFi3nk
+GbKNuC9YRLfSA8CmcSJiekyc/M7QFBrUCEKsQv4F10Rxcr7epN0gPwjFEYHJ
+c1ri5DX9QowgTzCY5da6bUnbSnSpp/49vhyMdXZfWDs9xIjm8C6fT1YhuCpa
+QY5LixH9u0zxIfEhOO82FOv7dQvRNBx2sWkPgY6Fc5O79RYSp5t2tQWheNf4
+nL25bhMpmUp0sdh+BYy4GWFDvU3ktUaBbhvlCtyb+8pdukTJ2VXCvr4pV6C0
+3JbAPbGR0PYEbvdZdxV7xfOq1+mJkAq+M24szGGwOvfjE/kqTAzOm/nuVP9v
+h3kY+QcLk0yhmjuRfmF4vkJC/mu9ECnewp/4YzIMyW1yvSwnBAkNFbSVQ9eQ
+x7myQ5pFkDSkvYzv2nYdHdpuAbMFG8iAg/jNdvvr2BBcI+DEvYE4aFNEzD5d
+h4pu7TGnboH/+q6Qp/eF47RRfhgjUoBs9xhdWhCmYu/Skbf22gJkD/vQoJ8l
+FUbhAo655fwkYNOWmOX3VKhGCWqK5PORAnqiu3xfBH5JXHdxPMtHLM3SNo6J
+RMLysgxbhywfqSHZ/G+tI2Gja4RvJevIo8924TsGIiFOVdxi37aWZDkbr+wb
+vIH4so+W76TXEGz9bssyH42Dq8Iuc8/ykh93NB9+UI0Bt6eRXRONlwhahU31
+XIzBlgaJrQoTqwn1qW2S8r8YJG37G6WTwUP4OWyC6i7dBIdSlEanMQ8pR92u
+ouSbYJF/Y0xl5SG1XKkDxZU3UXXUgN/WaRXhfjbUPDh3EyKfs/WFsJL80dfV
+5/C/haxeF2fKP24S1rc12TvlFnazWa/NLeQmSY2mfyaqb8Hl5JCOjCQ3WTtq
+bCC0dAt1Xp47nTeuIJ2l8qobQmJxxfBGst5uTrJEOypXTo1D9w3vhbszHKT0
+3cctnHlx8OrP4iqs4yCHRTR1TrfFwdRAkIPHkIOcZhwt0+ONR+4HtSItP3bC
+trJzS05CPMTdZP3XjbCSgl1jcxUPEuDK8yt0RTUr2ZNykv/VswT0Z5kxxUex
+ktNU95yJoQTE9ITNWuxmJdYRDz6ckL2NtE+GdJdQFrIqPj08v/w2DrZW7GzZ
+x0zClZitjFsT4aY9qla5hpm0dBlNL/5OxE7mpgGFH0yESSdfsmx9Eix39Ern
+JzCRp3NnOnTsktDoe0NKYmIZ0YJLb0Znk2Bn1fG4P3sR2wd5qpR3JENgMOJj
+sf0iKibDDkYZJSMyuCfYfPMi1t0TCx7zTcabyC9R7HcWkL+4OvzFk2QUm1zm
+piXMQyCw6fGUzV00JHPt0yuaRYTWiivD8SlQGamPeeI7i2OHPR3bq1JQWzPd
+801jFgO3teQef0kBf7t8N+erGYjw8rNmy99DSP6V0sS//yC69WLFQNs99HA8
+e8RM+QvtPwGvaRw0dDi+WyiX/4s5qRuUaVkaZo43/x5n+guN+cYdRqY0LBmn
+5g6kT2P98ENOkQc0jHjl7Y4f/YP7zrzUuS1pGP4aShlImMImjVgVs7o0BITK
+apa7TeHVeOORjs402FbPFk/qTKFe/kHG4e9puEsJ2pr4bxLch19+MuC5j9cp
+e6VcT03CTz/D3t7qPowE35xTIROQNhtsHv13HzuWzj98KzoBm47x22Er0+F3
+iG/6+fxv7BiW+bN5czqOyCg9T2f8xnYKZZfFwXSoFpFJXuXfEFXdffFDfDqk
+5FIzWQLHUZbXqCK6OwMBEol7G7TGkZWbMdeik4H0zII5Lq5xPD0nkelrkYHe
+92eKZOPHEGLQHt4dnIFXmTaFacWjoMid9Up+lYE+uUNCgxwjCBhQ3k/cHsD5
+catDHusQXIZmXzGyM5HIb2X48f0PpLVytW+sykQ+zf+RXeEP3Llx9kZweyYu
+xjM8HWz+8ww3Jd3JTJQKO7vL1n6HarKnU4daFjx4rFWkbgyiNspLuu1lFgYb
+HnW/tP6K+eFKadU/D0G7dOwK0/6v6DJiYgrnyMae+W3n3UW+wvYWT123YDZ8
+G/g6WPq+oIh57qObejbYbi6s+W39BZovWsdirmVDnk971M31M+p3dfcnCOZA
+lFmYTfjUAAxNlW4EquUihRhf9JQcQHxtR8a2Y7ngCs3uVBzvxzTLr5gXdrkY
+Df0kNx/YDzI7/pwnIhdFewzGXDI/4tKI3t+LPblwPvulgYX9AxzL+4Q+eOdB
+qHXb5yWu99C8PD6cmZePk3mbU9d+6MGb1Q4Kc7X5WKXlNuFN78HPjlAfg858
+yGrpUmXMe3At52Hvt5l89EsUyGrkvoPlfarLpE4Beg/L9Jy3eYu8pKO6XgMF
+iBwTW2qe68LZ6yMxX3jp0HhsLyzwvgv6JyMDqGJ03FY6SE+s6ELVtYfbZffQ
+IUlqUtV8urD0J5PmYkZH11blo1OTnTB3YX1Qk0IHxn16X/x7DaIns9GWvxAX
+L5dRb0p0oCs9cicPrRC8j8bCOrk6oLIweSz7YSFuFjALBvS+QsZ3+xjNwkLU
+hfyalXR7hfXF5ZbnGgrBz2mywej2S4hcGBkr/FoI1q+3S/3/tQFBKg4924vA
+mcajbj/Rgm5n798Zj4rAv8fWYt+TFqiomiy/KS+C3qUnrUaJLejfJMHBVlcE
+yfdLf6DRgp3GjtNWr4rg6nbImifmOUwDbeSmfhVhW+O3EN79zTAYHK6tkS+G
+T3PrdXHfZ9ie/Mvr7IlipIUYe1+seQpLZtfUtwHFEMobI9P1T6D7jkP0cWEx
+Ko/VhPLefYLlplyDLEYxck9xNJ/0eQLGXfEDt+r/+5c6L8fLPEF61aEo245i
+aDlO/XJIbELlYIfVt1/FMPM0m9W61IiasIQXQbtKMNZGdXhvV4+25WHDxZwS
+HEu8dk+c1ONbg4m5bnEJ3tz9+JwmWo/Z1iMJ0ZUl0I4U17QorsN6tsPF/K0l
+sBFw1NyUWQuFzxT95ZESyIzxLpxKqYZi94/Kw7KluJPunRDdzsCS6MqkuoJS
+FBryMxduLMY5uhejKbMMu/fzGrD81+XrxOXMjvwybOuUJtENRdjdrf+9t6QM
+Ttfaeo3OFGE53sz2R0MZCnY1VQWWFeKCyZmtnz6WIVD5RaEh4xEiAjsOGAqU
+Y8ufNYaa93PQmL8YIhlajq7SwZreqDQ8W+z1ijSpgNgVgT0c2mkQrE3uybSs
+wNvlx0KyEzRcDdlQU02pQJbSUaHmllSMyiiyfnKvgPukeOr+qynoN/rosxBZ
+AW6V1y9kRZMQoH8h4kZTBT69e0uXoMdAv1Q8lEOeAa2fDdTpomgY88QwFyoz
+ME9V9hAoj8JO/qdTpuoMJAmWPt/XGImv5z3kEg8xEBvxc8eP4evgWjqwMO7A
+wEEL68uyPsFoO9xRNpXEQLo8931xwSAY8bRpO9AYWJPAHWyoFwCNTwPkdSYD
+iwJiai10P/hy3b+eVsxA2LMN13qSz8OlRlybv42BcH3vGw59HnCWPqfj1MnA
+3+uKe733n8MG3bQyRg8DXo/8e51Nz2Av34GBo4MMrF/HFPNwyB7RmoFJ8SMM
+BDvPMGyCbTG7SaHu7QQDnrHpgutULbFZSsdEYIaBybvmMeSSCXyoD44bLjHw
+P7qJ+yc=
+ "]]}, Annotation[#, "Charting`Private`Tag$4175642#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.560181, 0.691569, 0.194885]],
+ LineBox[CompressedData["
+1:eJw11mc4F+7XAHB7f1NkZa+sZFSUdW6rkpFVRCEjVPYmOyuZUfYWIT/Ze+9S
+RvYmW3bI6vn+XzznzX19rvPqPudc5zrsxjaaZng4ODjRuDg4/3v/P1RqE2Yw
+gRi0JhVTFVhCB5XHs/b/c1ESCUdQCQ8QNFTwUWB9uEc3kd0uAoo0TIRkWEvc
+G2sJLhGHRDpKQmKs7QsCXr1Mk4ZbK5F8+Fh7qPAn57bLgl5Fuv1ZAAYtjjbG
+MdYpwL0q2ZlDrKuXOJUjSu6AsbCd/Q7Wake23/Hz7gGJhTDfGtZ/S9uk3NJU
+4UuZN8E81jsbrCMuyuow7WpIMIb1UZFXekm7BnAw9vL2Yq15JZx4S1YLaM73
+27Vhvev/hE6wThvMBs2mq7CuH3C1+FSiA2RHCrxpWNt+mG9ZvvoI/gZG4Udj
+bdCvfMqbpweuYI/vj3VwupZMQdoT2D7ZsTXGOoOE2miT0RC2vWOm1LFW7iTu
+jlc2gkj+HlsZrBU/+5RMtz8FlafE+HRYG42RR/q/NoaJGjJ8PKwpiocoeeVM
+YHcsl2f9NQb9eKVK7VBnClftq6bqsHY6Kpm5UGoOksH3CHSwHtQSDq+xs4Aj
+eTk+SayvaV+jfiZkCfEzk/YsWNf+26mry3sO6aREjnP+2P+aWai6plsB+XPZ
+q0ZY8/nxWvMZWkPMDW9XaazHoD5hnMkGSn1fLjFgTe3YHceuYgux/I+v9fph
+0DxeJFFkhx3Ujzb4i2L9J3GK3eqyPYR4fdolwbrQXWHyXoA9HLWrB0/5YhDl
+rpUsibwD6FDPsAZhfT/l16XQekdw8pEg+e6DQa6JzFslZS7wdLy9QdQbg25S
+mGrFMblCFn3Et30vDCKLbCry9HeF0uc/hquwVq52e66s4QYWnm0rUljfGdtU
+2113h5SKxWMxTwwSuMgQ4MrlBa4z3BNH7hh0XajB2zrUC1a/0fUXYn23xq7C
+bMcLmEdr259izRfbuKHT6A1P/goXtLph583k5l/uQh9IOrtp4eWKredHplOJ
+e36w1Fec2+SEQXNO0VONnn7AfXMp1AzrrDkunztf/MAzj86aBOvCQFIKHXp/
+UPvpI6TsiEEfuBp8vRf94YkAQU6rPXY+G6tqD/wCIHrRwyrIBoM4TtPEY2qD
+Qf2vjY+KBQZFcHdLdq8Hw7nuvsgRcwwaDUQcuMwhsM7V3GSCtXnCWZKdZwig
+V6YBLs8wiF1RwP2JzBugpFWJiTHFoIY9Wh3jxlCIKCkYzDLCoH+kLk1X2sKB
+eZzsAosuBllFC77w+xMOoUmFMuE6GFT3sP3qKHcEPGTIDjt9iEGdfYlkbwIj
+QDgsO2L0AbbfdosZJ5yRwJtdxhWkhUFlXrc/BS1EAhhBfKUaBtk8TSahtowG
+csXgaUcFbD8Fo2yGfaJBb9gg+5s8Brnl4bolxUXDx0jq95xYG+P/58zbGQ1X
+OMQOv8tiEGti0vW7PO/gQdDNRkbAoGJWNuechXeg50j/LOwWBl3l39xcNY6F
+OySOcn2CGLQ9DQxlhnFgJ7V/eZIag3y/T3oXucXBxLEt028q7D6Kj1woeBcH
+74JrGU4uYJB3cmJxbkccRCX+FaA7j0GXbrHbFwjFA0WMS5EsBQaJuGt4LfyL
+h38K5xQtCDBI54lUJHd6Ijx82XJ8vEuBBJ5GPWNaSoGHN2VaUS8FoqRq/pD6
+LwWsZi4q8vygQAn/VSxw0qfCc+/VLYrvFOj29n/jQkqpwGTb0TX4lQIJXqW6
+9yA/FZIPanyfdFCgSYJI3zXxNCDsvU+rWE+BKMhx5aZO0kDD+ZaoUz4FmvEt
++5gRnAGFcpd0HvtToKIi43Li9Wzgy+LEl2enQGE/oxZs1T4Bd1dBuVYxObra
+UUsoElgAIqvCSswy5EjeNHAsirwIDNMWBZKLyVBhB9+KVuMXICRYPcfJRYY4
+1LQDBl1KYMOJe8YyjBQVskhPMZmUwbrCOivxFAmiePGHoV+qAhp8q1GXEAnC
+M7dsvqlRBdnHp2x4FsRI80FWS7RdDWTFeF4KjSdC7L6MfAL+dbAk8THyRS8h
+cil7FF400QBnLfWzRb8JkILlwnVPmia49eWbRz0VAYrqYtC7ad4M+e8Pic1Y
+8NHQtbKYkI4WyKn0lZHixUMKs2ZRLtxtQGiuxzMljYtmdIuGomva4Xq2+as4
+SRz0wnsmvVKrE/6l3nt7EH4GS5kii+b43cB56U1SbMEJvLpG/5sQ9xsENxhm
+CacegYl3wC8Zsu/w8lXO7HHpIZR/U+K4J90LwWlSkbxZ++DhzHmNMKYP9Lb6
+pHfS9wDnqeEC/3E/RL0rEsPv2gGNxuefh8p+wj0tD4udvi3ILJDvba39CYXW
+1/4r7t6CvTyvqvKWn8BsfSfPoWULyIPb1rP7foIlZ3fDQekWYDA84sW/f4LW
+i6uuJHFbwFlpaxVweRCsrSRTVAy2oN9Ka1AocRC4bjv4dAxtgvPL3Lc2UUOQ
+8ZyVZpxyA+QDH+YrxA+BZD3vASHeBnw38DVkScfm22LcRfd+Q1/WUPx00RAY
+6O1bRo78hk191/743iGwVAwnNUr/DbekjxW3zw9Dr2+P7P1rv8FLKOhMJXYY
+visN3XXSXQdDaq7F/s8jQLnBHsKcuwoMtqFz1RUjcNg//DU2fhXw1Tq6PjWN
+wNQVc9Xzoaswd3PYJWlwBO5ttFFRWK9C6FTi1aHTEVAMd/jOcn0VCpy7KDPu
+jwLNoaVSceMK2L/kcho6HIWXwQqaiePLkDpR1ZyPPwZMJDI3DHqWIY4snTzk
+3Bg0886/5mxYBlr9g1J9rjGQK9m2KctYhqitYxtj9TFwemeTvG+5DDxPrcnO
+Po0BNWVL3ObhEoRnnecqMxkH0/nBK+30S+DKsFvTaz0OpSzUXJ3kS5BPWWK2
+5zYOhd5dht/OFqFHcJ9aO3IcTE50P43/WgTP1Z45p7pxUGUi+0jzZRFKL4aW
+KDNMgFe3oNqh0iKIm5aEBQ5PgL0GT7qP5wLcvHHRo2J+Apgyq+x6bBcgWCq1
+cXtzArg/ZhYwmS7AOxUVXz+SSXjmDM+a7y2A21kyPa3EJERIT5MK0C/Av9OY
+EcrUSXguLM9sX/ILPjBcM8m0nQIVZptv02vzUL+j633TewpGNZ/X2k3Nw4GH
+7YuxsClYwyMsIuqbh5Lomb8K+VPwRlM091b5PLymqZkvX5yCVjsu4lafecDZ
+ETlgNpoGkssOgy9o56HihqZ649UZ6D53YEGlMAdjmGdXVsVmwNXppJlYfA5I
+cDXzGWEGTl4kaODwz4GX7oX62PszsCPTRnVMOQeJRvb2S7YzILI7fZ9uYhYC
+x85ukpfNwJXwBsy64yyI69jS5snPAtVV26cXPs2AbITVeXmVWaCVZlO9nTwD
+hn4a535pz8LnNmkhr6gZkFNYkJd5Ngs/Bb+O77vNwHRGwaR2yCwcGLj+JVee
+gYkTOQ2avllwnbze8nZ8GoTdLZSlzOdgBfedK+mLKYjv0en5bTsHN911f9zQ
+noI5a8ftXPc5IN0dNLGQnoKOkEU9qfA52CZkVp+hnAIRhyOt0bI5GE6YfsVY
+Ngk1I+Kqf4nmgftxg2ETziRo2BbZy3+Zh5zLHTSTSePwXLfx3fnaeRjc/S9E
+IWgc8rJ8/yy3zwPVWwflYrtx4P0Q0FwzMQ/FhbzNabfHYU283muN5Bc0SaY1
+dG2NwYICzYy/yS8g/9ZPo3Z7DPDMSKs4ORaA/NwKRmR/BArHCl95XV0AjrGy
+pWezIyDEvES2JLEAciH+jzO/jYCGtOavWa0FoNT/ziacOQIu2nKcvoELYHR9
+TidefQS4ZeLlPTYWIGbEKqWgYBg4NNKtaLoXwZeNNGjJcggukr4ljhpdhKx7
+akqK2kMQmmffw7ayCCWSTVfyZYYgfCfCw5NkCcbtU0wiqIeARPr0q9DdJQjp
+lVuuqhsEMj3p3aSvS7ASf4sogXoQAu5QlQzNLwN88DFPahuAdFXmqiv7y+Bq
+7aZL8GUAemUuVSeRrIADrd13x6QBMLUzD/kquAICfAsPbBwGAP65BD53W4Fg
+wxz+r+wD0C/QpzVLswr8rFF5bD79MMrLs29rtgbDNV9JHsn3QWn95EUC9zVo
+lbey5hLpg5uR1Hul4WvgPWb24YClDxhu0ezZVq6B+9Uc6bKjXjC1aud4hFkH
+ojV/zvDiXlD4R7TGXbcOD95df1/J2QurtB1xpQPrIBD35hkuVS9sOpEamK2u
+w2yBF6cmTi+M+O8ZXaX/DUmlYuO01T9g0Xxq6JnTbxAy0KetEfwB2sRpp5Vi
+G2CzkfKUgP47OP8Jmg6/vwHO3VoE7//0gB+hJ8Vbiw2YEns4ID7QA/Z8qRWn
+CRuQSsVEXhDeAy+LxNM7cTdBULzSQYeoB05qlQi0hjehyuRjTf3hV4g76X79
+oX8L9DG3J3dXuqDEI5OYa34LxBVfZc60d4G2GmX/j90tWDqfKTib2QWyd//F
+B9Jsw/K9+lxmgy7Ip05vdtfbBroV9YPXA52AK6oo2Lu6DeUYlnmq5g7IGESF
+r063wUfV8iKkdcDFlyz+aud3QKGFy9nbqwN8rdamTMR2oDhNYlFKsgMKUx5X
+Pn29A0KkOjfzy9phFK/Dh4p3F6h8FrP0C9sAX+GcmLL0Lsy+d6b+HtYGe27M
+S0Wau/C32ZDtgVUbEJzefUHotQuyylvC6VfaoNspvGFuaBdakzU2RQpagUOi
+0XMvag/E+h7/lfyvBX6YiCD5vD1YtpaOPI5ogSc80r2dzXsg6n/pRq9tCySW
+swh47O3B0JfD1krRFngIU9ej9P7AYQZhS1BFMxibc74TFt0Hid0JK862JlD3
+/97ZoroPrNf8M5pzmqAFl4o1znIfCFP/RTi/aQKfqPjPxBn7cLW2vIhJvQkC
+nnz7wkh7AOmbKp3GE43QkhZ2a4v8EP7RPsyq3G6AXws3uIivHMIta77YmKoG
+YJI+47RROYQiid8DCb4NYKHvSCoefgiGPiwOl6ka4E9wybVOmr9w5GzTKHmj
+HsS/JVFRiR1BfazjxnP/WlixqGfp1z+CY1JSnR3VWuix18s49D0Co+a1zSz6
+WuAW3dH3/nEEuTRX1kMLayBzctoh3eYYdm7JZBpPVIPVnUdzzXHHoOxczqGY
+Ww322WO3dJuPoS7uxW0tx2rg4U4jWqQ9gbrPbGU7FNVAVXdpr6XtBO5qfv4K
+qAq85drvVO+cYO+ILhJfTBV84RzSvM52CkcsokYbY5WQsZurWPvqFDwS0+NV
+nSvh8HaOnL7UGRglXh5n/a8Cin09yM6G/8HuIPUEG185CKdFa2kS4qDiHG1q
+45MyUIl/mr/FgoPC/KW8un+UASP/C1dqLRxk97qA/YJLGWz7faGjbcBBuydf
+8V06SiHgVOLi4hgOarnTKrWbWApvyq+PkB/gIH6FEsoPtqXQmLyfayCMi3q8
+9CoeXCoF9yO9PZUcXCTlZexRZFMCYWyuHvttuKiS2mD7uWIJLISkfMBbwEVW
+pqLPVRmx+ZOpAiUuPOTwIy/+TUcx2Aa3unbk4CGnQn3zJfZiGAijnFJqxUeP
+fxVliE0VQVNcqBTZKj7K51tNdikvgnGPSs775wnQnGen82x4EXgz2RzaGhAg
+oTjCIyFUBAcbnc5PcQmRoGVMvoPSfxB7RGIZLUCIcCVZEwJPCuFrpWmYwUNC
+tDShx7f+XyE8uxgiOviZEJ0uH6X8R1cIukVUwgmmREgz8ISdca0ArJflLPFi
+iNB2zh319rQC6EuHcvZWIkRle0rR9rAAvtxhfhR7mRhRpUnm17XkQ6/lYW7b
+HjGq9IgYSknPgy+CpCV6/CTIXKiqf+VRHgSfX3HsMiJBM6me2iFUecDIHj9z
+p5cExRsEmLe//gTKDNcn9apJUbE7nYqUVS7Yx4pHe52QIt5l+SwjjlzoZ/LG
+HQIyRCYZFr4ynAMFi9dJUDcZqigNb+ZTyIEmifL5zQ1y5BjuqWPB/hEWkitX
+UyQpkPzn37/LRrNBr83+UlcIBZJyJrO1jM6GkOzbHZX8GCT7pn4FjzAbTM4a
+XMDnHNrzNvxIsJkJspobsf9Gz6FzW8ahgXmZkBgzsBN3gxIl5sV12TzLhM3Y
+KuKIHUqULoZH6TadAehnLPv75vPofPgKzsuhdPBfjTHIPziPJMWYtwRj0+Hc
+v5Q764IX0G08+zpd7XRIKLT9SptyAfkTfq1dGUiDDCF3nSvhVGhOGHf69L9U
+UDLkM6juoUK0rtwTl66ngvPbHOztRI2Y3GuHKKpSIFzPvjwzlhoV/3FxsWtL
+BoEgjs7gcWpEdWvy7y+VZHh1OF57mfMiOtOQFxUaTAIia3vhrxUXkclsa4jS
+ciL8svplsENAg3yU2MMvOSTC32CNeWptGtQRdo669SwB0hUfjUYc0iD9Wz7O
+GfQJUMGnKZH5mA6ZCb0fiH8YBw8CcAp/1NAhsYpVfKnlD/DY/EQ9k5keGbve
+Dap2/wACrp9+56/Qo6Ilx1C1jPewxsEkdUmbAamqaFGZib8HfhzriIwmBpQP
+NoePemLh7nn2s9cfL6EU42Cc2eMYELZY1+NmYUSdXes3HGNiQOShovvLeEaE
+C07bS4Ix8Joq3SoqkQm5ivTecDB5Bzq+RYkCAyxo3Cb0lHc0Cu4DqctbY1bk
+9r2ZUcg7Ctyk2vqt9lnRR5Wt3RPuKLA9JZ2E92yojvDS6LZTJHA0BMhELLEh
+LS2ODQbWSPhVVqoSJsmO0lxyEuiiI8CNiEGcdp0drY9Js6bIhANT0meNxbsc
+KHmWm0b+Qxg46ItMb+ZyoMwfxP+8t9/C9d0mC00HTrTNdkGmPS8UVLZsLPGn
+OFG/jetiH2kobKgWqKaocKENz0w+9+dv4EIa4bixGDe6Mrn0OFs4BLpHGIZP
+v3CjAjzbTv73wWBFWLJlJnoZXQrabtM4DYKvcn6qn+V4UNVDyA/pDYQbPJkR
+bAM8SExbUCpZKhCsBK3aQix5EV1m0xedvABYWXAazfrEh4z9nObb37yGGgd6
+OkZtfoQbROLpdeoPfz69vHeBSAB1teaWz9n5AzXZ3EtDvytoV+yUpsLQD4QJ
+GdMaVQXR2U+vB/yjvtB0LgeVc1xFPFGKluravuBRbpS6syaEmpn1U2vu+wBD
+uPfrAVthJP5RX54kzRsOJNk5lraFEVcMuz1FlhdEkdmey3YTQZ94px4H5XtC
+nfMH/2ASUZTjPZX3qvwVZL3Vl6BPFUWhfwYZtlo9gIk0qXZJ+hqa0JnwWhhy
+BzkSlDz5/jp6Mtl/ZEboBv0PqNvdNG8g3aNmib/sriBPzRqgyCCGGi2l2ljk
+XMCKsm5AaF0M3byV8GfMzBk0ZBI8ZL+Jo35LhtuiYU5QXW0eklZ9E4XEPdfg
+q3QEbtd/KjGVt1A479OfrYsOYHPHW+bSiiQy6pJYPVGzB/o73TqUrNKI7r5j
+cWawHbyKOJ1++UIGGQUbPcVvtwVHXddA115Ao5EFr9iJbYHnW6WacS5C55ZH
+7YnjrGFGTUkzxUUWLT0gPTPks4LlnsDLCTpyyJ81+adu8wtYjTNok7onj4Jf
+c2ScGT+HbxcXxMo0FFCiblioAbklpLPqjAXZKqLdd/7igTXm8CmoMzvl0230
+iNtr2N/hGWxpkHI/wbmLTEfGRZ5dMwOFPi6ZKlclpMtJ8lnq2ARMccpp9OiU
+UW7FpD7dV2MYrL84Uz+rgvgJHcmJM5+CzEUectspNaSyGaHJ7G8EA1wGhKlv
+1BGF1L7i6JABsClXDws3aSBJ/hLRd82P4fod45loZi30RNFp61m9HoRv//C8
+/1EbiRumHrzq1gWO3ZM+G5OHiGP1AB9n6SH0TdN+WDXQRS/2vNWZLz6AjYud
+nhLZeujNk9gJAk0tWPaJYhe8/QTpvtCvXUnTADp3ClE8ASPU7rftjIerDoKB
+BBQhB0+Rx6D7GtWCCrzdtQsjumSKeB5xUXmsKUGE3x/Olk/PkErIN8o2mjtQ
+wWXAEtNuicyO47lemyqAOm2czl6SFdKjScZ7NCILKmcM8WpidmgsiE9leV4G
+Fh6L57cpOaKYn28zREwlYDTPqiJO3RXdSLw5LHtNDEg3Joj6az3R0RVaZQIt
+UWijqZL0/+iH2uXctrVCBUHRO36IjD8Yla2T+rkz8kBQ46vZeJ1I9OAojtHr
+MTsc8Q1NXHD9gF4j5tvq+fSALLhVi15moIT8d9KybOdBtYT3wv3mIuRDUuhI
+a4QHq9RnvDdMWhFOT5lRwvqmzCFRbpKR/0+07vZ+QPj9jMz/AVUvtp4=
+ "]],
+ LineBox[CompressedData["
+1:eJwVxXc8FXoDB2CblF3kRKE0qHtFCPH9GSHK7IasrChl1ItIRoODIisJOXFC
+lHUcrpDqFN1KGZVxE8dKREYIpfd9/3g+j7y7v40XFwcHR+7//P9Pa6S1e171
+kMncrKZVd7r1hO4GCTjuqSJerF3L3ftW9Fp/e9XIPKETYxavv5/gGrhJ2Z/a
+6ZxJni6b6brJSKJzyJrtvDWZlOiv5X5cuwkl2hS72BdU4iktX0rzVMT0STfP
+o88uktjZCf+YHGVU8BtF3fC7QHw+C+hTyW5Qy+slu5ghRLIpYbifRx0OfF8f
+bbx8loRpt970l9ZCbuyJsjUOAUR6WP6FfLguCvXKIre99CW+ejx7rq/Th5hF
+zN2zX7zJ6NC4k3uKIZ7s3+s49dKTTMRHzTSrGeO2Fl9Un547qWEdNhRfNEVt
+hvZ7183HSLCE7Dsa2xy+fH0cVY1ORJcV4dL31QKcvkUdqs8cSL3ITmkFIWuM
+9HivtOy1I8suEoGFVTYIyOrIoQr8RVxufEhjnToMFltqN2WzLXkhqsGpp34E
+Dr1HP9ectyanGq382EL2+Bo4UK0pYEUeLHwMOz/vgIVjxcHsqEPkvO0xj4+T
+jtg5E3fwqo45kcvez/ow74y4wpMXaOoHSIGuWNkm/mMoyWC9Vz9uQmQGx0KC
+KW7g6VFp/Px8P7myWp3TSd0dnjnP86kWRqRlu59ng50HhB5JnhlZMiCZu/kj
+qdGeEDWV5c5u0ieTroWDJZVemOm2OPD1ASHPfZZfS44fR0OeFKeZI4hi9r9i
+tUo+CJa3tBOO0SXv67MplwJPgKmcoeLTqUMuqh3v9Go8iVfGX9g65trEpvd0
+jc3aUzjva6g337uXjNqv0HQCTkNkNvlDyFVNwohXGRPv8IP5Pq0/rmprkLme
+UsnxXQHISFfXXcOtTqKVMwSs5wPgwjFSYT6oRmaL048wngZil07Ng5kuVfJs
+gu+AYOoZsC7JXptm7yZywUfdLLzPwlKpjhH8U4WcLP5w5Bz+A0e36F/DW1VI
+lMttiegNQailfxDLb/yDLFhOV7gtB4HVzKPz2XwXaX98J1SiLxiCfjbLNlPK
+pFvoYW9SUwgSU+YWeouVSEndobDWinPIbvjXmxm6g9TNBYq/pYXici3thrrj
+dmI64ZB4JTUMnUWvDw0d2kbcJ1MXJ+LOg2Gikp3hpkimWnTONkRfQJDg2JBF
+1BZy8KGxjvSlCDxpWz6QWrKZ1IZLeIhSI3HD0FbuwoAC2c257YWFaRR+P5za
+o7VFgQR6ND9xfhOFvj0TxXwB8sT8a06C6pFo7D3SRFF/Lkdc9XRzX/ZF4+iO
+9Hsh4pvIT/FVz7V/XIQzvRzfJmQJ8+9+buHYS+CUdhuu6JQhsnJLQ7ekLkMz
+0tcusZ1C6iWZDl26V3Be7JCq8IA0CXht7Hu54wrUTJPk8n6uJ2wZUwr7ZAxE
+eZ4rBlhJkX1BK6X5t2ORfMOEHU6VJF8eVNnz6lDhpFo2R/5ZR2ZWm28T6aZi
+o6WtI5fHWnLUtVBUghIPBc4C5Y11EuTJgv3OVQ3xmLL1XN5JkSDdbgf8ct0S
+YPLYsK50XIy4q2ZU0MuuIvBdqW6wsxgZddD+IuJwDVPRg4td70TJOyFDhgRP
+ItQu+zDyC0SIV/fP+70uSTDRXKQ1M4RJyY4VOSv+6yiNkl0l+lKIXEx8J73k
+eh2ar6eHrETXENsy/ky6RDLwbGIsDKuJ59zw8Xy/ZPwbGHNPOViQdL5dDPR+
+mYw/gxWqnv4QICqyL0Z1Lqeg7Obbb7xGAiQx8lap2UAKAs3iZOPS+UmHHcNr
+g34q5IPGrfea8ZHBuD/P/uZIQ8Tph38M3OclPbpWe8Tc07DheqNK81peMuck
+Vc9mpUEx7NdZ91luEv/m96r6uHS0Za2VtB/hJJWCV33JxgwUXSvU1AriJOvD
+FqbNIjJwOap1wIWfkwTH2PjMf8qAR32r58oeDtIVONqyK+8mOJfMXlyg/caw
+WXja3zyZYHQJqeV9XIET791Ftncm+L5zlgl6/UKCvsFRYZVbWP2bMjRZ/hPm
+49fVRdNvISJePa2a8yeGL8j6ly7dQtlYko1xxRIMWBebG5qzUHzsBre80Q+o
+pLx5tf5EDu6lLAu0VC4g1OKU1WR7Dg4uCxWpKi5gcWJLv6Pubcwuc78rXzsP
+akMd/y+JXNgbDvsmJc9hnsGb/mdULlLXKGUwxOYwt6S1/sfXXPQXO5d7bvgO
+akJP6BZPGrYp81Me02eh/q1xs08WDbbWbQu/VGZxikV5NtdOQ6Pzt5lm6xnc
+rKN9njC4gwU+m2nryinQi368MNuaB1HjVVUhVlPoXxRX63TNg8j1Kg4W+xsc
+ohWySjLzEJ1d/fRCwCQWVPv8lIXzIcSlr9T/aBwHUuxDo5bysTahbQ2XzDhy
+uCIVjTXosFRRqn4UPoYfGlfGrM/Qcbj+w2q66Rek9rW3aY/TcXTkyO9r/J9B
+3SpQYN5/F9/01FcmI0bw6vBwoc7GAjB3+lhrLA5DXNdu0t+pAL+qm7mV54dg
+8sXag95dgJ0DwfsYIoMQGnKr1OgsROA2nhHT7AGMiPBlG0gVIel2zyst5QFs
+mb3Kk2xXhLBrbbHTlmyMBf119ntXETrMhNe5HO9Doy/l4dtP9xC/I00pOeET
+nBUuvc7ZXoxzMseZycxeGG21TKw/Uww7zQ6TUKmPWF/vMDPGX4Ioi1cyiSLd
+MNnYIcitcR92Am/LW+26sCzC42Vx8T5yyT7T+fxOVHG1So++uY/UY7u4Ykw+
+wN8v5DTviQcI8TKBQm0H4vtOPemjlSJuorqWLduBBVu12fRvpZgz3rTccqUd
+I0PdWjf1yvDLxGbrJ5c2CAvOjkT2lsHm1r2hEu83aK1tWTyRVI46U0/9ftcW
+NB6nRE7XlEPu0lO6pfNrTLdTZ3L6yyGdysPh4f0SbgbeUl6qFdhh7Ba4hdmE
+xC9msUWdFbjZZNUz0/Eco0abS2w5K7E14gFz/cIz0GSvFigoV0IjPv0gvxkL
+svU2t5QjK1Ec2x31cdNj/BPwljm8nQGnWpEfWQ2PUJX/9/sSWwakF6VGHxs0
+oG2xuC4tgoG+GVUnFfeHsBA3snnzjoH2aT3d8Okq1DO1lj5erELEs/AB3bsM
+VE31ZTJLq9BwrvsExbUS96LPzZT1VMFCeHOe4T9loBvuOLBKjYlD1oN6Qt4F
+aE0KHTMbZkJz4USj7w46nBPUynaJV0NgcXB54/wdvPzO3Lwb1TBaMUlxcswC
+t9L1m5mZ1Th2h/Zkv0oGvNaZ2q00VYP7/F5X7fWpeGhKNbj0vRq3e2SlKxUT
+cZg3T2u7Qg1EnMJCryAGyuGzGyYsa/BfpZar9Q==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$4175642#3"]& ], {}}}, {}}, {
+ DisplayFunction -> Identity, PlotRangePadding -> {{0, 0}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"h\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*\
+StyleBox[\\\" \
+\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"|\\\",FontSlant->\\\"\
+Italic\\\"]\\)\\!\\(\\*StyleBox[\\\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\
+\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*SuperscriptBox[\
+StyleBox[\\\"|\\\",FontSlant->\\\"Italic\\\"], RowBox[{RowBox[{\\\"-\\\", \
+\\\"\[Beta]\\\"}], \\\" \\\", \\\"\[Delta]\\\"}]]\\)\"", HoldForm],
+ TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\[Chi] | \\!\\(\\*StyleBox[\\\"t\\\",FontSlant->\\\"Italic\\\"]\\)\
+\\!\\(\\*SuperscriptBox[\\(|\\), \\(\[Gamma]\\)]\\)\"", HoldForm],
+ TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> {
+ GrayLevel[0], FontSize -> 14},
+ Method -> {
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "ScalingFunctions" -> None},
+ PlotRange -> {{0, 3.3}, {0., 3.690456156465704}}, PlotRangeClipping ->
+ True, PlotRangePadding -> {Automatic,
+ Scaled[0.02]}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "2", "6",
+ "\"Caselle \
+\\!\\(\\*StyleBox[\\\"et\\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\
+\" \\\",FontSlant->\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\"al\\\",FontSlant->\
+\\\"Italic\\\"]\\)\\!\\(\\*StyleBox[\\\".\\\",FontSlant->\\\"Italic\\\"]\\)\"\
+"}, "LineLegend", DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\"n\"", {
+ GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"},
+ Background -> Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.368417, 0.506779, 0.709798]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.880722, 0.611041, 0.142051]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.560181, 0.691569, 0.194885]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ PointSize[0.5],
+ EdgeForm[None],
+ Opacity[1.],
+ AbsoluteThickness[1.6],
+ FaceForm[
+ Opacity[0.3]],
+ RGBColor[0.560181, 0.691569, 0.194885]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 10},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[-0.023999999999999994`] ->
+ Baseline)], #3}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontSize -> 14, FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"EdgeForm", "[", "None", "]"}], ",",
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
+ RowBox[{"FaceForm", "[",
+ RowBox[{"Opacity", "[", "0.3`", "]"}], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"], ",",
+ RowBox[{"FontSize", "\[Rule]", "14"}]}], "}"}]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\"n\""}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{
+ 3.875957140679967*^9, {3.875957171901413*^9, 3.875957177389202*^9}, {
+ 3.875957286074856*^9, 3.8759572915772743`*^9}, {3.875957370668831*^9,
+ 3.875957390170678*^9}, 3.8762092922172947`*^9, {3.8871754958604937`*^9,
+ 3.887175500271595*^9}, {3.8871861172995453`*^9, 3.8871861368256903`*^9}, {
+ 3.8871861982272577`*^9, 3.887186209328771*^9}, {3.887186531197132*^9,
+ 3.887186543092368*^9}, {3.887186624995718*^9, 3.887186645867601*^9},
+ 3.893237610747847*^9, {3.8932377310303297`*^9, 3.893237737874032*^9}},
+ CellLabel->"Out[48]=",ExpressionUUID->"5632f44e-d2ee-4570-afa0-630f5721d24c"]
+}, Open ]]
+}, Closed]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[{
+ "Applications: plotting as functions of control variables (",
+ StyleBox["t",
+ FontSlant->"Italic"],
+ " and ",
+ StyleBox["h",
+ FontSlant->"Italic"],
+ ")"
+}], "Section",
+ CellChangeTimes->{{3.887175666126995*^9, 3.887175672719225*^9},
+ 3.8871757098402243`*^9, {3.893240714208487*^9,
+ 3.8932407443131866`*^9}},ExpressionUUID->"7bcdac80-37e1-4f66-bc64-\
+b0d2db5bf4c3"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"invCoords6", "=",
+ RowBox[{"InverseCoordinates", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",",
+ RowBox[{
+ RowBox[{"Data", "[", "6", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DufDut6", "=",
+ RowBox[{"DufDut", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "6", "]"}], "]"}]}]}], ";"}]}], "Input",
+ CellChangeTimes->{{3.8932377899231243`*^9, 3.893237808714438*^9}, {
+ 3.8932412276866207`*^9,
+ 3.893241228978397*^9}},ExpressionUUID->"18ba5487-e161-432a-b28e-\
+40a5d59488df"],
+
+Cell[CellGroupData[{
+
+Cell["Entropy", "Subsection",
+ CellChangeTimes->{{3.893240903148159*^9,
+ 3.893240903699958*^9}},ExpressionUUID->"732869ab-e280-4316-b799-\
+ffab64c308f3"],
+
+Cell[TextData[{
+ "In this plot, we show ",
+ Cell[BoxData[
+ FormBox[
+ FractionBox[
+ RowBox[{"\[PartialD]",
+ SubscriptBox["u", "f"]}],
+ RowBox[{"\[PartialD]",
+ SubscriptBox["u", "t"]}]], TraditionalForm]],
+ FormatType->TraditionalForm,ExpressionUUID->
+ "20c22e44-ae22-4cf1-ba9e-ec412d2155ac"],
+ ", which is the singular part of the entropy (modulo a constant analytic \
+factor) near the transition."
+}], "Text",
+ CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, {
+ 3.893240875195952*^9,
+ 3.893240882915715*^9}},ExpressionUUID->"22825260-2ae9-4101-a1f7-\
+3f6b1bfde9fc"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]",
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
+ RowBox[{"PlotRange", "->", "All"}], ",",
+ RowBox[{"Exclusions", "->", "None"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "t", ",", "\"\<\!\(\*StyleBox[\"S\",FontSlant->\"Italic\"]\)\>\""}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "->", "Black"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.88718849775531*^9, 3.8871885088435698`*^9}, {
+ 3.893237820068544*^9, 3.893237866436099*^9}},
+ CellLabel->"In[52]:=",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt2Hk01P/3B3ClQpZkSRuhQpKQD1Fca6lsaUOyVCiiKEpJokWUSpQkKSqE
+Ybb3WOradyk0iLLMWEKWREjm9/6e8/trzuO85px5zes+732/ZhSOn7VzX8jH
+xxe8gI/vf6/qsGKQx+PhAaWNVbaJrXB2Zn3EzCwP9Zj5yr5xrZBD01SamOSh
+bZrkmrvRraClYnW8b4iH1Ogn76tDW0F3+Y2vdS083Ob0anKfeysYccZrnlJ4
+OFzVYnNGvRXsbte/2+bCQx0t7ZeyxS1wseGGj+eHeXxVO52wd4ANzc3Cg8Vu
+/1C3yOJL9uovIFt0Vkp37Ry60+8W1Ac2AcO7bPGyb7OoLnjr9Mm+z+B6V3Os
+LWwGy/vbJNONP8F0zJUIhGmUnH2pM3ivHlLEvq+K757Cvg3bidzLNZC4V9O/
+6c4kAm/jbPmzSgg743Zp057f2LTxj8tlqXK4wp9x0f/nL+RtLzDdcqsE3EIb
+NrDTxnHJtxKVusNFEPe+Nz7Rawxv62ccL20uBOdLCSG67mM415Slta68EFS2
+2ZxsdBnDRmmNKzcYhZCfxtoqeGgM8+10o70fF8L3R1EV52EM7WqqTmXaF4Ky
+l+bvvVJjOOOxy2X+ewH4b5lN+nVlFKVXh1xdNpEP+Z0qIpmKI0iTiSzbr58H
+wTsXZCWsHMFOiagsWfU8MHjaZnVHbAS3nT8IEwp5UGQXed9j9ic63rA+XyCU
+B5XlQxIKjT+xaqU/UdTGguZ32aseX/+JWUIHbqdcYcHIRW3l0K5hXDm8fPl4
+BQE5zSJVvuxhZP+TqpsrIMBPs/fUsbphVHaQ6JbIJeD3YFyGPmsYi3au2Or8
+jIC/x/5smbw/jFMOVZN+5wgQNMvX9oJhjNSyn49ZS8B6cSOTg0lDKLHOS707
+mAnRGt2XvR4N4fgVyfAL/kyYtg2jhUYMocmc9kepU0yoe1i2Ict/CPefLD4e
+fIAJFyT3CCzZPYQO69YZDagyoWKFXR0xOohhmvyx2zsY4CV78vAa40H8LRuW
+MmDBgGaDxfc1dQbxTPxXN2UjBhg6v6ncvXkQNwlo9pzXZYDki4HtF6QHcdE5
+cyMdJQYUyvusqf/xA1WShiXdFjFAbENgV0jMD9xqErTkYCkdqKoRXj2cATSf
+dFRt3keHdZ9d8za3DeBXUwPbKTM63L2oJxjwcQArraTtlQzp4F42+FogbwBH
+O37I5mjQYaWzVbda9ABaX/8w5rWCDlcfSthf3D6AlAUwGcqlwaDu0JuiLQPY
+9Sp/Yfh3Ghz+XjoptH4A2W5qao9aaaCxOeBRougA3u5Q6/xWR4OespaPxT39
+GOxmJSPLpIHFdKK5yL1+tLprIW8eRQNGUkDsobB+NMot/0/1Fg0Uza05SRf7
+cVVwyn3Z6zT4+5AXqnm8Hw+1cWW2XqRB9ubjhYd1+zHk2KP0fydoIOWivO1l
+dx/WTrss3GtEg+uL+cIG2X2YduahmNROGoy8a/20ra4PHVyY/sO6NKicvuNb
+wezDqfY4s6qtNLgcM5w+FNWH1pPe0mryNOgsz5XX0enDiwvHrFP5aRB8YMZs
+u1of9k1NxN7lo8HKbqPT+op9WGr50fb6PyrYzjXkGor14ZHV+koP/lChSGvE
+ZHdfL1qbV6uYDlPBqeg/zz0dvRifMTgf/YMK01ZXo/Y19qJfvbJxfx8VNE6L
+NNt86EXWj+v877upkPxC1d3+cS9KXCi1+tdChZ1b/O843u3FlX6eBzK/UKE1
+Py/LKawXTx/mZ3o2UUGcbTHl6tuL3F/9EfwNVLgu4nn79K5eTJyrXNdQQQW5
+hOx33jt70fWkWlVXGRXylacafLR6UW39e9Z8CRV+mdxc6S/Xi7/sTD1ckArH
+g1LSL09x8SrrYzyNRYX5JUP1wcNcNF2jtEmZoEJCrNavkB4u7myd63vDoEIj
+pVg//CMXuT4CHTVUKvgaCLncLOOiUJKP8NlcKiyttQ2/nc9F3TTCfl0OFUz7
+Omuj3nDRrM5yZ2oWFbrOK4/dS+TizZhFNZcyqRC84KzUgxguCrsGnXR4RwX6
+2nmn2BAuavm7Zhmmk+edYX798QUuzvIC7UzTqDCse+91vBcXE3kx4wfeUmHD
+gbUjiYe52HRRdOnT12Q9uk5IvLDk4oCjeVB9KlkP33c6L024qOD230dR0tN/
+fzmmbOfiyj2R/I4pVIi9o3/ttToX9WRbJKmvyPrIhKW83cDF4vVxM9Kk61Kr
+K9NXc9G8YT3l5ksqnNJaPvxOnFynVKkvIL2oyF48ewkXjU5S/COSyXpaJWvn
+zHFw6b0fF9aQ3tneb0/9xUHPD75b81+Q9Ty19Sp9gIMT59cmniR9YSrwJfM7
+B+8tYtJXkxa/8aGc1czBxsdc/44kKmQuXzKYX8PB7St0P6WTtnhhJfa+iIMF
+KooVYaR71eK0kMlB9Y181p6kVUNejwy842CKc9j9w6R9GxgZEi856FiY4XSA
+NE2+wmPnYw5mdcRmHiM97cdW9IjiYGmFbmAA6Z2lfd/vh3Kws8s9J4H0dak/
+CXkBHKT31+2vJ13hLnCE48XBmr5JW1Fyv0sJGUlRVw4Oa5qnOpK2EVRp0DnE
+wRyXWWMG6ViH7VGuezkoaK4hL0ueR2uGxe5I4OCv8Q7tGNKyc/b8dG3y+1E+
+B0iR53nc6jR+28TBA//yW1NIv0kKuiKwjoPOsfIHjP5XH+OECUchDiY/qzyR
+TNYvICaDcmO+BwteunJPkPXN5+R7Z0/0oPuGjfu1yTyY3mrnLPjeg0Wl+0r+
+vqFCRMvQi81NPXizqJPyi8xPncrc0UNVPSgizO80RebrcO3a5jRqD76Nrypa
+T+YxYe2WB41ve/DriktuVmReO30MLOcSezD4/OcH4WSeT4k7l9nc7kExqrCX
+NJn3K4de0KeO9uCKhYGp9WS/FL2hnJPf34M5QfscHMl+WjSNant39eBogpbO
+BNlv0Qldqc81erBJFLT2FJL56VSIM1vcgz3etbk3Ssn6amjt953txvm5FCW/
+crK+YSai8aPdyN0tePB0JVnPDSduDrV1YxGxIim4lqzP6dSAmOxupEpp2mxp
+poJwAV2zMKUbS/ea/Ahgk/0kUv6zN74bDbvella3UqEtu9ddL7wb+3Z9mo35
+RvbXhNLhriPdGHzwNz29nwrLQ9J11Bd0Y1b2S76v5Py7xVSpEv/ThbNOXmaJ
+5HycHXnrMDHchWzp62c9yfnZ4/ImmNXahdX2xiYrhWhANU4pMcnpQu2sAtMe
+KRrYLX5ufcSlC6PaRQqXqtNAeZVCPd+VTmwIjDxr7EED8ch1Y+UenRjD+GPG
+70WD6VlZySi7TnS9cHNZnQ8NqjpWO0irdqKO7aiRfwANTiVL9W5q+44lnit2
+LrtJgwxlwX92ut/ReTIxMfg1DdR0RtVeT3RgMu/I24xBGnioX7uW960DFyeX
+CEaO0uCF0rLG+soO3CHwnO/sbxpIkE+dqWcdGF3Ff2TPPA3+/PEt3m3WgefL
+HaUMJOhQkjdyaDC2HXfN5HuI7KCDvcFIyFadr+jksUL2zX06hJv9/JR3qQUD
+jKWtXwMDSiyGbbRPtOBi70i/leYM4LMa+pht1YLXRFXdovYyIPjQj7oUxRZk
+r1m3/9whBgR69Fbdq2MjVaZETdubAacivhW5ybPxSkF7w8PHDLCsq88RqmpG
+yecU15XDDIj8VLf1BrUZC9Je5x0bZ0BVc232fGIzjrm/PZ48xQDzb9WZE37N
+uKwn1VF2ARMMR8rTvq1pxtUhPl0T0kzQEP+QnHu2CcfEva7xAxOkD2Y/cJBp
+RFal8/C2aCZQlaLyzfkb8cTPD7XZMUywnfHkao5+Rm6/ftDGJ0yITFLYvrTy
+M5775C6yJJkJ8wOxnfmBn/FjlHBeTC4T+q5eUV/L/oT7ejUSGpqY4GvzMP79
+pgZ8kvBc/rYUAWm/9w7HLWjAcwuYf0+uJKDn6SIj37aPGMH3Qd+AvJ8d5l7s
+l7vzEZvf0gs71hMAQc46oQP1KGjh9J6tRYB4yuZmk7d1uEr65LFsGwKoU+XL
+qjbU4JDpx6dZNwiIznhVYjhTjV3ZK6MEIwjwdr4WwKivxpvC3k+PRhGwoWJ7
++6vAaow/I9L/4yEBj+PevblaVYUJ+buN3yQRcFn7ocG2M5WYLWCz7jGT3M+A
+z1i6USVmxPIl++YRsC1xb4q8dCVaKkrlGhYSMMy/SEjsQwWm+FJPlhcT4NwU
+2DywrAIzJM/onakjwMTfyTuJVoYXhPM2ruoiQE5JT046ogwVf6SoePaQ99U2
+6c9RTmWYwta2yOQSQDdu0AlaXIb5q+JK1/wgQGm5ycKDR0pRw9NtLnqcgIXl
+coyazaV4iDKsHTdBQOelv57GfKVo5sbvEDNJQHwXvV49vQR5ET8t/WYIWJqj
+/FTobzEy2ZoWxXws6DuxyDK0oRitdGeNQhayoFSme34qpRgX6TNmNBexIPha
+wkmuZTEKcGoeXxUg7+PWohqYVIT2zuenUkVZULNwsOe/80XY8GiHu8wyFrxl
+VsRl7i7CdkqiT6g4C4p28v3Z1o2YWByspyPJgtftvfd+3PiAhat379JYyYKv
+wStePN/2AY8yKZWmq1ggJrc7Z3/Pe/RsvDZrvZoFga5pjXnwHpPFOJ6Wa1mQ
+saCN4zNSiHNjLomGsiz4/kpoUuF5Id57KxOoIseCXb1eMpGzBZgHr0U561hw
++dYzFcP0Anx6q7mcJs+CbOU6vV9HCrBmx7hMsAILZLy2ODky8tGvYMe1CUUW
+WAo7+4idzEe921vvv1rPgtDM6JASiXwsfJSovmcDCwZGRpNVz+WhyT4+iasb
+WbD2gTz1u1wesu8r7V+qxAJbzf2lMfUstFq5ccV90jcarzfvCmbh3zGas7Ay
+C1jnqb2zqiw80f1E5RrpYSnOVHYbgW4HX/kNkpZnSgqeiCBtlKtrpcKCg0fM
+VsnoEvhiGeXSW9J3pi+o1vYyMSgiRmuG9Ienr3dci2ViJcP5hMkmFvzSZ1tu
+M2WiRYOiUDhppY4lzv3jDFytOKtQQNrxqu7ZZ8kMNJoRzhwkHS13KtTGhoE7
+bkW9Xq7KghKMf8g/T8esakJEg/SUa/UrIpOOy4LbO81Jqy6cpXkfpWPQlKXs
+AdLOKarl65bS8coa39IjpGPMjrKbWDTkQean/61X9Eb13/akoYVUqOlu0rO3
+Cqd3rCDX7/qs1iKtrvJTaKyMipZ1/AelSB+vll2Tep6KS4W/jfwk9/fYy1rN
+XpGKImFJPz6QrhW+ZiDyORf9Dkyb3CbNl0WxLrqWi5IXXs/sIq1t3eVyQT0X
+F8R5i8yT53NqVNxP5VsOSouuuZxJOvGBcVhHVA4+L4k2tiP9SdP/0QN9cl06
+022UPH/BN+Z77jRScKbieFs46VZVwWiHe9kY/j66Noasp5HP6ZziwSwkKCvM
+REmnUWoaN1lkYY7GMfFrZB6CtO/JzC7MxPJjeckWZF56Akf0jru+Q4ETmieS
+yTztzbNxqnmfgXtC1AJHybytNpR4mXApHTfLtEeeJ/MYFnq+dCE7DYkBg6g0
+Mq9DJc29XtvSsN4qrK2ZzHPh7ieqO0beIL9pwDFJMu/H9q+lt59IRQPF05PK
+ZL8MT0zqBZSl4K7q3xVryX4KftyAYhtTkF/gvp4Q2W+J7WG1xn0vUUqpm69a
+mgX02sZym89JuDvGVoJL9muz+K3PYTHPUXqDT18c2c8Th/S+MQ4kIoVn7ghi
+LNDqevF7Dfsp8vwlFYKEWUD5fWb9wNdYjGhfrBaxmAUf9eS3rkl8hHJNrPkp
+fnJehDTpWx+LQY/zuX7HyPliL3Eh9RTex1FxQ73lPAIO7BBbuKD6Js5oVh2S
+miYgtFmleU2pFYb6GEncGSBAbdk3r8VbtCH8KU3Mv48A9njYC/Fpe+gyjcy1
+I+fjlUe7ary1z4GJWMnwbCcBpfJ3bj8XD4OZR4b7+tkEeHqqejDnYwAorXs0
+SgmwULzoGG4QC9I0b96jIgJUvpVa2wbHwSpZD8/R9wQM2h3THZx5AoXf9tjd
+YxFwxvCBoNxkIvQaDmW7ZxGQt/TKl5KAFNBsnPW+E0dA8hbpJopiKrx/Z3pu
+QwwBt2wpnxIbUqG0YFkpI5qAg485tYGb3sCrHZ6OBbcJGFOwLFH9lgYFkxXB
+dkHkPNeTpcSYZYND13MBqiMBIk5E5rXxbOhIoOZRDxMwEbI/40wSBcjr/Jd0
+OwJce0rs1gfngJqWot2VvQTZP3+s/n3JhSOLtsS+0yOgmuZilnuHDrPSO6dM
+VhCws1ytVLmLDlb0BVvfLScghz1jnKTDgKu2t8eFRMnn3cwjiOIwQEX62Np3
+/ASchCp9dwPyuWFdZR48xgRejYbmqvE8uHXsbcvRKib817NA7ro9wuFMC1l5
+Pyao5x8Z10hH+HuaSyvyZoJSTFZZ1wzClpNUKwcPJgi/zPwv2aoIbF7xP/I/
+yoQ5W/sO3kgRaN3IfG5uzoRvOZRNqFkCgkaU62dlmPDinHOZAVEGm8IuGHcz
+GJDoJJQd11kGlwzTLW5RGBBvQX/yU6Acll9Pf7w+nQEP5Jd6P7cvh3Ch2mW7
+ExkQ+omx/N9MOfzMm6JphjHATUPUpXBnJTgseJv7xJIB68cKZvRLquHh40kJ
+ZjsdgutNb/z+WQ1mL+vUa5vowM6oFcteVQMpUXx3W2rpEOnevl7BrwaeycxL
+swvoMPZ11kpAvhayVTtZXs/o8KFc71XT1Tp4X52Hv+3p4PiM2HtGrwGMPCgC
+yfU02JPSVm9t3wgKxaISk8+pMHYz26PcpxFqgygr5WOpEH8qnLcjvBFkB/hP
+mEZSYWDLFs1N2Y3Q5xJa7x9I/l5hhcbyL2qC7/+qzAKsqVBVr3yURWmCdcl5
+EsL/cmH3dMCAgsAXWMUcKbh7MBfMrST4Jxkt0CYn8en3Vwrcd2kJ1SA6QI+v
+xdlPKAMqrWVFbSW6wV1ROoA+/Ap+KkiHNCZwgN/pU3Sn+hMIuLDZ7f6KPpi4
+kVK+3DsEWjrE7TyqBuCj44ltX2VuomvQzn4ByyGIXu47/u9hIpZu1o0sXTwC
+Ed4fbbyepaGSUOFAqsUYBJSe3f3oWC7KFnqbL44YBwPf9a/eRzKRb3Zhun/P
+L2iLbTnS4FaIf/a/dy7f+BtUs+enNi4qxnZtlzUbb0yCLuPcbkP1Mjx3RHy5
+YscUxLI/3GUfr8RVsVz7RbLTYG6ao1cSUIPZR5PfTlyaAXHrM+F7u+vxiME1
+i6r3s2CkVNx/8NEnzHX2UdSf+wucF55WqNOI00tN+fMO/QPJOD2R0wLNaPd5
+h45s/DyEsQvxXfEXXLpDuLjw+TwcWDoqFFD9BYtTv+5zSpkHZ2bAb8PPX1Dj
+UpDbs+x5EO2Rymju+oJi64i7q8rJ9zu8ixXgY2P1GS2O9K95UHrcbhNlyEYj
+wU0PxCx54Nop91qokI3TftOrs/fz4Olr94q+UjZS2itfWx0hHUS/UVbLRjmK
+R8Hd4zzI+Lmw9Xo7G+cOpfYtDeKBmOlDNv9fNhIp6wwE3vCgYDuf7Eb9FvQV
+Ha18844HnlUFC0VMWlDp4ge7Xbk86E7qDZ/Y04Kxe4+dulnIA6kqOfsyhxb0
+H094xN/EAyeXE+Y+QS2oetRLLqWVB77G9fwO11uwu0wv3eQ7D1Qj2p3M77Sg
+bXzrh+s/ePByIPT7uqctKLgwbY/CKPl5A71LxF62IHpfbC76zYPplVHVc2kt
+GPhll4vrLA+GQo8oDee04P//Xw/J6lqyHawW/D9T3HEf
+ "]]}, Annotation[#, "Charting`Private`Tag$4186241#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmHk0FN77x5XskaTUp2wpClkKberJ0kJpkUJESlS2Em1CH6WsJevMkG1m
+FB/ZGlnz2Pd9hhn7FklItpDMb77n/P6653Xuc8997vO83/eec2WvuxjfXM3F
+xeW+iovrf6MKbBpjs9mYyZpQPXGOBS6Lcn6LS2z0qO7M1z3FgoxP6vIzc2xU
+E/lQCTos2LvL6PrIDza+UtC0ObyPBfvXv+isZ7LRj36JckCCBceGftUS09nY
+G/vB7XQfE4xfNfy3z5qNK29SG1tdmPCw6YWTfdEKykYf4nMKbQcGQ2isxOYv
+uhw1kaPkMUCy2EV8/7ZlFLIKFfEUoEO2QznPup4l/KXMLzp1pwWuBalPdfgs
+4p7v0VoT9k2wEOrhh7CA2YyPIdkG9UAW6d1CGJjHSee1/itcNRBjqO5K959D
+TZuO6PSBCvBxtHm022AWU75ZMFiiZeDBnfLQdWIab/Hx5q+SKQabZ0072j/8
+Qne4o2S8nA8RX4YJMXemcJe5d06M8GfI79u1NnX7JFZqe4b7L2WAnOgxXZPY
+H9jyOXStuUgyZCn63RkcGsXOI/cPy22Oh76KTBktrRFsnDN15d4VAsPKEXvx
+8xD+p/HEIcXNDhS9qJOj/w1huPbWqbgyW3Buyk4RSxhCWpnNUtKGG7Bwr327
+XeAQJkiJ9HY4WYNgjsQG4WtDeMB7PK1P3BjUdEgzVwSGMLtzlCfb/hh6XIqj
+zVsM4sRxhmKrvxMWJ6XflbkwiKeCZvumN7ngmgVUNjwxiP/sclJ3vXAXX5P6
+Ke/UBjF7oKCR1HUP4/tkI/R5BtFfx9Urb9QNK29T3EPTBpCQpXglc/gJrvdK
+1lJZNYA64n4qB/Y9x5efd1WL/u5HPiuNFP+Xz3Fp8r35zHg/CrQ8rAvpeI6D
+1klPc1n9aJl8qL/I6wVm6ZBLdTP6UWZj65XQCl805nl31tS6H6W0kkoY+n6o
+sEW2gcujD32pCcPhfMEoGiA9VWHXhx6Lka3cF4JxYUlyQ6BxH46s95KTIgVj
+dfc/5hsV+/BCKrpdVHqNt+LFh3d39OK9rL7Dnw3eYIoC/1/j/b2YrjxydHVB
+CCpr/VSmznTjhj2hn76Vh6Kdird3Xk83tvO75PqOhGKc/LrWhqpuFPcYGv/O
+F4ZiEqoP56O70TKogcBtGIa/fzuXnNTvxvG0wGzXujAszZu8NBbehQP+r15P
+l4bjcqbXhxWvLpQa2/6+tj8cNVNE/ojd7kLT6cEzN1bC8QNJJf7wkS70w+RM
+xoEIDPZwHgsa7sSGP1oFqSkRaHZk0ktVqxPbhRSIjH8jMVTTq0VPphNZWldN
+XkRHYt0ekR1mgp04y59An6BF4lEplZpnvR0oKih+ZHwkEuXYThtaX3aghcKL
+Y/4no9Dy99+bI3c7UChmOGXRKgojfwbnLl3pwHvVsz+lH0Qhf//Hq3KqHbhH
+fPp3IDkKJ4sn3rsxWch7ynkHfSkKFfI8l/xKWNj742T40DoCXssUNnr3Hwud
+jdTeUHcQkJ6wZ7rCm4WW/xF6DhsRMNfHSVtiFwt/83Q9SSAR8Ln+RHPeIyZS
+O4/cq9pJxNJT4+c0bjAxuPD4vJUmEbmMfjSmGTHRlth+KEGfiE8vfa8nb2di
+ILbZyF0n4gO74erg+nY8uth/TohIRNqdryf5c9rxoX0M3wiViNPOQ5U+Ce3I
+55PHZ5dFRJeHA+UPH7RjncOBv8a1RLzl11NsI9OOHjQCb/0cEZOCuqFbsB2H
+P+aZF7KJ+DWkq+jyXBu+5vefOS1AQhtiR+Hp2jYcuSzQdHwrCePfsQ5X0trw
+fk+NW5ocCXsTmPnH4tpQM+jc7k9KJLyS0par6daG75+kOAYfIiEhjbE/w6oN
+v8c/PWOjQ8L2LPpnRYM27Kjn7Wk4SULxnFZN6r42PCKafazViIQXC1po0lJt
+mKn7LMrpIglDsXkfib8NT5n+WIk1I2FzWVOW+AwDm+a4Qm9eJaFIdaP6mx4G
+llpcuF1sQ8Iz9Q0ZAtUMtPCfIqXdJGFAc73qiywGHkK3Q6q3SVjNqEtbiWHg
+uQtzZjqOJOTtqN3z+BUDv9MFeL46k/B4T03qzD0GTr2vMdx0j4QvBqqVnC0Z
+GPqjbh/TlYSlw1UpoycYWMBQqNrpRkKuscrdN9QZyO/hLrDKnYRHJys+9Gxl
+IHtT07I9h59OlyuY8TLwbWFrvDmH8+fLklqn6CgZRZlmcNYvLJXuNOqio+3H
+X+Os+yTczy6hVFXQcYvGzCtbzn4PuEvkdDPo2OXumvfgLglpfMWJhSQ60kwb
+3EQ4+U4Loex+X876f/+kKDqQUE20KD7ThY5LauGGtfYkdBb/Iq18hY6PSxgw
+foOEqZsLY5P06Xh3/L3bG2sSjm0rkJRVpWNe48fmrCsk3C2bHxO9hY5lufoH
+L10i4a2deVs3raHjSmvoW/dzJEzanUsKmWxF1biQfDEDEm7f+5ngW9aKNOfe
+30Wcfl/TypbgSmtF6aCksrq9JIw7RIt8QmjFN2qKTecVSbhNLyvcxakVv7bQ
+V4okOHo5mblhzLQVEyVl66jCHL2czgi11W3FvIEYBS5uEm40SQsxl2hFY9fJ
+RsFxImbJB+Yf525FII/1hPQT8fyi/Vf1ny1YkCQdTWAQMSBW9oBgVQvKtrxS
+311ARIV7KzbzWS14NfPw+oyPRCzX6wocjG1BM1XjVFocEVdGw/vyH7SgauPw
+ln0+RIwuuCfw/noLbjiUOZHiSsQDr8/uCzvbgl8DUr1jOP5z3cf/ykG+Bemh
+Uj2jx4g44umhsq29GfeHON4X/M3x93kzM/7SZtzMEFLXGCKgjJymz+zHZmxi
+jKU2NRLwSvVkW71vMzpI+34zpRCwUey6p6dmMz55FNDx9hQBHYaPvr8t24xv
+/9bN71EjIH/u1pZLws14aixxlYYEAX3zUwwsa5swyHGTxJOhKHQ+95bwZXcT
+PtkYbcBwi8IPs4bjEauaULrKqYlqGoWDxDXHnDsasd3w51zHwSi8/PXhNyn/
+RnR//LvAbjkS4bGV1rPRBkzcFL3/z+NIfCK1OcCsuAGT5M98rjWN5Ly7LT1q
+hAbcLbnj0bxGJO4SOe47cLIB5fVGF6wnIlCUrMTQfV+P00/T825djkDDU8MK
+W73r8VSj7TyfagS+mIj1mLlcj7N/rAJWeCNwYb+YHIW3HrMfxzT9pIXjQP3C
+PR67OiQa6Vkw+cMxa75iXfWOWjxt/p3mFRKKr1MSS48u1qC8+pN4lSuh6GDl
+7Z7dUIOnX7ZFi8uF4o7KA12JD2rwm1xQ0/OstxgZ8V+SZ3U1vtpql7pUFYJP
+NN4e2edYhQKBKlHN0cF4edRpKvlYFeKYUvTzTcG4L8aQLLOxCotWfQ788iYI
+x7nXCIgUVaJX4kx/q2cgWtEfMEbXVWKocNjxkVP+qOtq6RD7qRxNu10crGNf
+oJT8QamNfuXoW+jgdZX7Bf7p2NgSaFmOtN/V4or2z5Gm06T1mKccqx+HlZ1Q
+8kH59bqrTUzLMEb5g53nGW8UzFAgCvwpQRsntX2GnW5I7RoO/v6iCNk24aK5
+rurQ+XRT3Lt9Rbj7LlGSpaIHIlInMy4MfsHD3T82Zbw3ggfXPrTmwRe8m17D
+O3DeHE4M35EIWCrA06/26/9QtIfRyZ/xinfzsInLPNpC4gEorl765GBBw0tS
+BIffNr5gRVaskBakoVP5YNUY90sI1bdop+d+wqrJLTfNqS9h6WXhwuFNn5A1
+9VsoauQV1Al5H1nbkonpctFBMtcDgKXI/9o8OA1XSPc37zr0Bq5e2EbrukHB
+aj3fGoJyOIzPzB10LyejFsNeJu1uODyNbEKRnWT0KPC/bUYLh5gunzqdkQQ8
+B3D+9qEIoNW1VpxricWRpWP5jjqRkD7rKDfaGY69Kx46kYcI0HhQRnVrTBhu
+f5q0tfghASa96IfOXg1FkRgtu0c0ApiJuVFu4Ru0SLOKDlMmwsXDIqtX1fii
+5wr8uCtBgmeMXYytZUZ49m2/TgEzGpTX9dzh2aMBonf4TEqFY6D9l0+c6IIZ
+HCDesTbViwGPsBO1Dhp3QacZO5U+xkCZjP+rd6I+QPOvdfHxeAf29op2n1dC
+4WV22w1R7jjIE/RoK3Ung+GOP9PYFw/xezbS07dTYN2GDI2guXh4eT69OaaJ
+AoNUCat/hBLAJHKo7sHuJBCTVTDz1EyAKdkzpYo9H4BX2yzK9lUCyB+UTA/V
+T4N4liT/T+lEWGuZk+r9Kw0ow0LN8+qJMON1IcUxNh0+GSQ6leslwrXBUmO5
+pxlAK3Tbk2WXCCq7fhv9bcuEUnHZnt7kRKj5ZK2f6U8D/bqEieydZNCuUC5T
+6KeBcFqf/0ENMmS0L+rEamVDmLGB4CtdMkQuhkHgUDaIXj+d+8yKDLZQfejm
+kRzIElIrnwsjA+t8RF5XWA4sr/np2RRPhtPXrx8wHsuBub7Hm90/kmGv77Im
+ROXCz7dXx3ZUkoFdq6a+5VceNB9bqZecI4Nr99/0NyfzgctI/8pVLgqMTNSq
+8Mbmw8rv5s93hChQL3pTecawAM7XCTX/lKEA6TJRoYFSCO/eum9IMaCA5uAq
+qX/NEOStbB3FQimgkm/6Sy0ZwcqoiIRECsiHfizvX0RgKH8/qp9AAaGEVM14
+o2LQWrs5lpFOgeXzZt3syWKYXyUbv6mOAgva3JWmEiXwPWHe7kULBWZ3paWn
+Qwk8vCnFX8ekwDjXmufWISWQHMzzamiIAj0Z6btRvRSe/5rYdWKJAp0xVzZI
+XCkFfaFKd282Bdr9eP46+5TC16KOX6FrqNB4zaJZil4KPVtfSRqIUKH2DG/+
+gz+l4LriLD0uRoXKA5nkRrky2KmgOndbggpFonwPvdzK4G+xUtG8NBXylzOv
+tceUgXNv1SreHVT4PGppqFJRBhvH/+RNKVAhrThLsndjORQPnZI3V6VCSupV
+Pq2j5WDCxdrF3EuFJAL/r2C7cvBm/tBW16JC3F2r8iM55TCiPbvviTYVYiwF
+0iL6ykGH7nHjNlCBcIoWNcFXAT3JaUc0dakQIiPo8M6sAg4qpvrdOEmFoLXZ
+JnPPKmBpjYp+pQEV/BasjxolV0DcmlrgPUOFZ83Z6/8uVoDx0MEAqfNUeFp4
+7Y/J9krYpvdL9vcFKjz6IDScalgJ9y8HBH68SAW38M+Na+5XQsnwyJjOJSrc
+fWaTaxldCXPU9Bu0y1RwdFybSCurBIaPyRYeMyrcMssJXDteCfJja1U1zKlg
+q3/d3Va8CkolWFU6V6hgoyZsXahdBdeve/KqWFDBalvuKfGbVaDlHyS8yOEr
+/Df2OgZXgdRqK3aiJRUuzwpvK8+ugtenNqwoXaWCcX8uz7beKlhRjlIK5/DZ
++hs/7/NWw+iO2OQuDhvminTUqVSDTnQScbUVFU5Q8krlTKvBSmdxmwCHdUNs
+Uz28q+HEtWSTn5z4o0/XRdLfV4OFYoRNNocP3cr3VmquhsvCdrYWHNYyuXn7
++UI1BK556znAyWfvMdGLXTI14PDjcsNJDqsoF2jvM6gB7eby+685+StutpMP
+vFcDf07QQrI555Vfs150iFgDdwrr9L5w6iE3VbB4qLQG1Gu8Uqmcej1t0Hsx
+O1EDNlwtbhdNqdCeUieStqUWTAlTVd2ceqv5XSTaH68FX1+ZBh0TKgTc7JKT
+vVcLYo+t//MxpsJX3RtpnTG1cOvqLf84Tj+PyPw4EF5dCx9as4IJZ6kw1blk
+xCdTBwy7dwnShv+rjw+r+HQd5GT0L3/k6IUSIXjjycM6kOlI3bjlOBVMz//z
+aKKxDm7uNhd/ydFbxp7E1e+X6sDEt03Pj6NHQSHF4Gvy9XBQUrzc/iDHDxUH
+E+me9XAk3OwkcvS8mVyiHJxcDxpruEP3c/Tu+swg50RbPXSW5RUGK1Fh52Hz
++jzlBlAxnT7KkOPoNePRfFxXAxj7zZQ0cPw2Esz1rzlfI1CaxToPcPx4zMFP
+aMO+RkhS8hz2EaDCzE6CzMuARlj31tOCxvHzlegcQ8eDTbBNv8syZIwCtEfQ
+tvNmE0hzRSbPf6WAyOUq676QJtjr8u+kdh8FSkSZbsajTVAqd6bvNp0C4noe
+52JON0OXREXFqXzOvDqKP7ZphshHEUezPlHAWYa789LDZgh/v+b9cioFqv8G
+2K4jN4PF6qQijTgKeOSSHvssNUNnzY3jmj4U2PW+96i1aAs0zv99lPyEAoyI
+7Wu05VuAOc/9iu3KuQ/vp7yeu9ACAWHylAs3OO/OnnzyreQWGFttOReiSwED
+ckfDWbNWEOc1nAn7Q4Yp3zS7CqdWOLPI22M1TQbCrefsw89bQVVYyELkOxlG
+9+xR353WCif/qrtvbSeDX+6zcO41dLigm1o6lUaG6gYFi9x0OoQ26p2NsSDD
+3YzlGZUKOvxL64goOE+GzWEtQdROOnxl7BwpPk7m+NejKJSHAW5yCoueqmTg
+H2qUdbJggF6J/enyVWQ4ueA+KsvXBoZWrw3DExJhstPwX8K2Nnh+q1xdKiIR
+Ir9I/7NubxvMeoq6vfFLhBGfmtPLlm1wZxau7HJJhJfCkuntWW1AvNDJ0jyc
+CJXby90Drdqh8PeNuObGBDhuJMY9l82EAWHDrFdf4+G1jcCvxRomhNek5im1
+xwPLnatvpYcJlr3D5wur4uFO7GQ+Py8LmBTzm+QUTvzPWtdtl1lQZfMtLsCF
+E//2+aDePAuWr8b0v/0RB3faZ0tCtTqh+MM6/8LRd/DGmvlMLacb3p0dfM7/
+mAgvx7VhpL4bItbbTymeJ4LX48S/0YPdUAuur+UViOAc5vSET6QHGpQdK5IZ
+BDhbxe3Wa9sD5roaXwf3EEBEVc0+SKwXrJRTkzU7IuH1ip/RqFMfXGtoteER
+D4eqs5LC58UGQEZy07FbR4NgQnajVytpCHxOCo53yV0BdzclmzebRuBMVEhf
+iYkfMrtFje2qR6F7OeSqS2YMXnus/Y3vzA/oDf872PQ5CcuU9geU8UyCnErO
+r7z9GSgvUDhKOTUFQWLlLoYC2ShZ6HCcx+8XPLqptfyBKx+5llYnuw5Owzmv
+Agc5CuLvC1+sKnbOQvG8OmX4TSl2aVhv3fliDgSktzodpFbgXVPR9du75yFx
++cDYy6pq3BL+1WyN5ALYMLu4/tbWYZpF/PuZR4swfuJ0ub5CE5oe8T5V/WUJ
+4uuCYltUWzDTymn7oeU/sF+j2cSqoRUXBPW48y79BUlD2wNKBAYatxzWkiSs
+wNosqRPXjNpR8LBQSeG7FQhKE2NtuNSOJZTO05bkFUiP8VhfbdmOao8e20Sn
+rcCByL1P9jq2o4h0TtCWihUwuDYkvS6wHWsc9w5tnF6BFrVvCd+q2/EY/+4Q
+kTNsWHS1TRc/zsSFewv/pF1gQ6hP41z3GSamd1VRjUzZ0H1xto9qwkSpdLuC
+oOtsmGauxB60ZeLyJcqI4GM2fBwfLL/1nIk5ZOkjfElssF+hRA6XMNFZ+GdV
+0n9suJSiLZRbw0T5h0XGJzLZ8H5XmWxgCxPDDa/e8i1kQ1aJosa+ASa6/iKF
+cdPZsBRp8COAi4WKFnekyCw2hJVoO17nZ+FA+cFk3V42rBLSfn1IlIXnCayi
+f7+zQdFykjYuzUL+1R8MZH+yQXvP7bxKBRaiw0NG8SwbmOneVgmqLHzQdsL6
+2hIbxAY2Up7uZ+H//59DQdW6ADNg4f8BrWdJZw==
+ "]]}, Annotation[#, "Charting`Private`Tag$4186241#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmXk01d/Xxw0pFGmQCKGMIUMpot2oKCoJUSEZIiXfylSRzCQzcXE/l2iQ
+ociQbGPGa3bdzEOkgQiZ3ef+1nr+Ouu11jnrnP3e773POuuIX79jYM3GwsIS
+wsrC8r9REbb9ZDAYGOZxf/ixPh3uLOwKWFhkoJyA5naPU3TI/qAsNT3LQHGN
+bKrLETqoyOhdH/3FwEvcf4ucVehwYJNPV0MnAwtGthC3t9HhyPBU3YssBmpI
+pb173NcJBv7Ut6rmDOR+tNaE5U4nuDT5ONqWrCKrUph/aDgN2tvX/yyzXMGx
+3i+irwraQaT0ztYDwssYdt7HyYKzDfIcKjk29i7i3tKMlHc3W8AiRHnyq/cC
+Mt5lL3BYN8F8hEcAwjwOOaznN9dugBTePsG4wX+4nj9FdetKDZB0lZ3bAmdx
+9nsCO19vFXjfsnSV1ZlB8aX6G9brK8CD/Y2L8/hf1Jtdl3BTsBQsvZp2015N
+odWh9JCrv4sg+vNIHMl+EveXhmWJLOZBUb/MhgyJCXz5X2d+32A27OI7csww
+6Rfih93bs5pewXu5APuh4TEcqzAeSA1Mhv6qHDE1tVEs6+qOFAsMhRH5aBX8
+OIx/VI9Xfde8DHKPX06MvR3GM8LJyRc+X4LbTXlvNhPDOCJjEUsBA5i/S5Ow
+CR7GRO/bKsuR2sCdL7CFx2IY1zlsYVUz2I1KR+OnTbmG8UsAuwi14yp6XErO
+/Wc2hKUOtDHN4nu46fFrNUXWQeRenzwQ1OeHfh9lavjmBvDm2q8jFQf8cXEi
+/fL07wGMGMDLGOaPQ+ZpDwvoA5ggtji/fDQA3x9NKT+WPYAhOr8XQ4lANOBI
+1Dc2H8Da9HfEb8MQlBYUp7J49OPahtqg4qow5AvaOVll04/fuCb3m06E4fyi
+yJZgg36k3jeKpW0Lx5oeocv8cv14Lpcq6WAbjnbkrSOyX/tQqdmei3VdBL6R
+5lwxONCH7ou2Og0QifJqf+RfTvdgSKa7jFZsNNooenoW9vaguHRlSXBJNCZL
+bWylVveg3CXnyqyRaNwssNflX0IP/uAXiHdRjcG5udtlp070oCL3x2o2agyW
+F05c+hnVjTd3Fx//MReLJloTj/eqdWFL/D7K0p54jNj/uOW4WBe2BfwTztWL
+x3oF3t0m3F3IPd/qpnUnHg+LKtZ69X1F7WOXD5TnxOMuhuOWVr+vaP5A6Mjz
+fQk4UTqefq+TjjL3SD6blUn49MR4c6FrJ6ZveCPsuyYJy0//PrfPqhOFfgVR
+fHcmIYver8ZMvU6sSPQ5cVEjCR9e+tGQItGJpeargpfuJOEDm5GaZw009GDI
+UsZpSWgX0FtqKUbD5N26YSdJyZgW0gM93DQEepoKS24yfgvrLjGa7cClRfV8
+n/pktHzxtfhMXQdyit4M/LmQjKZvOgr23+vArCTRqE1yZDzbQM3mqmnHAdbm
+HG5PMgY1N+z1ed+Oo2pisbKBZKxpr89cJbVjQsGt6D2RZDzZW5sxfbcd9+4O
+vkpPI+PhiapXvTvaUeOg5vOWBjI+/FspbbK2HXfNVedw0MhY9K8irXWyDT3/
+Sxjd0U/GA4yy1OqqNiT/qFkZnySjEl8JOedOG+KGc7ySWwi8vfXzTnnTNhzw
+uTFlvYPAjO3FSWkn2tDG+GS9/y4CZcWLSAmCbVhb+KPRUZVACZWPcb4Vrdj0
+YGGy5AKB/IaZYZcFWvEriMheDCDwvVRw0Un2VtyoZrpZOpTA8wu235T/tGDr
+KRtqbySBQUniB7mrW1DV7ILcdBKBq2NR/UUPWvB+KotP4QcCEz7d5Uq/3oI3
+JKvZyAUEHgzVV43Ub0HhQ4Lydp8JdFbl9HeQakHaQ65h0hcCRx95KArTmtH2
+qHZQZCeBT8+bmHCWN2Mlpyvn024CxXbt955514w73McnDPoJNK2Z6GjwbUbL
+51G6kaMEzsXXMwruNuNgzqOb7D8JjHJ8JfvyajNa39164uI4gY2brz96tL8Z
+Z9+tuIVPE+gwcjj9pngzlp1vdPf8RyBnwY6WSzzNSDl03PvsAoG+RW90rtQ1
+4XXbgR/eqwTTVzcS91GasOvC9M9fLBRcXCM6tcG9CSWD3PapslPw9rnwuM+y
+TSiwe67bbB0FX83o/o5mbcIbRQMdmlwUHHqx5sjtr40Y9lfo/BI3BYWhJFI7
+pxH7zWa3xW6goNE3l++igY1oH8L7byMvBcMClQ/NWTSimcr5AuuNFKxT/BXa
+dLARlzh+ScfxUXBNe+pQOl8jWiUY8KZvoiC4XVPzGqNi/Gb1fRGbKeguuj3I
+pJSK5alBlpe3UDC3oqVXKY6KCxtuXl1m8oRdsDKXExV96qUm3LdSUIb3pO/g
+KSp+PnrsazuTr39YpRfupKLGS4thLn4KkkwK5CPmGvBxzelmQSbTVu562Tc1
+YEB+7/U1TOZL2dN+LL0B7aQEr9Yy1+ueHpHe4dmAa7I5vOyY7DOe5DFt1IBr
+hwuCB5n7l0SYNNUrNuCUkB7sY/L8gc27Utc2oOSubhML5vlVeusfPOyrxwji
+v2hrZny3vH3rDD/W4xft7TnHmfGnSYOoQmg9Fpbm2iwy9RpsmL/LYVOPfY4C
+ToE8TH2d31f1atUjifrDd3I9U1+BW4If+evR+u0r871M/cOKJR1Dx+vQgJX0
+4SQnU1/L/lKbqjrc87xRTXUtU991L7ZCYh26S3AkzjHzezjDwE7gfh0qhuTF
+RbBS8P2/qo01u+uwPj52y5llAkPfUMoPL9TiRVufMmmmfxyued7Po9Yi/fCY
+Russgbu/HOymPKhF0xbj3tAJAlnc+UMFz9Si1ZNwaTLTr70Kf4+E7azFyQk3
+z0dMP8dEv017VFODYTLST+J7mfWiE3B5hlSD3IZi6l/pBJ5bubHB4W4NNvOv
+3THUxvSvtaiziVANGqn1mJ2vJdB9X7iW6q1q7N+rKxeWQ6DRmOPk6yPV+Pym
+MWnTWwJVSbopYvzV+PnN+TGTVAJ/s6/h4i35gssXutLUYgi81vagfWzjFySu
+/dgi4kKghv9Ff/NvVejF1lL+6TaBAoeUNGgFVSita7h1hw2BzZQfyRWWVfhh
+3ClzuyGBx5yvOCR9qMQ5D3P2RXkCRaXURfkDKrHh1Os9ARIELn3lbwm+Uoks
+PFG+zQIE5h5tUnPjqET7jHCxEFYCpTYdYzM0rsB18pFxkS1kZKsSzavbU4Hz
+p17upFeSsd91yfYoSwXeiZLMbcwnY9xALlXxdTlu+7tNn0oiI3e29AuupTK8
+We6w8Ps6GUet1pz1airDOk61vqSLZKwQGFz9l1KGwzydx+aPM/uvZ/yNb2fL
+0PahoHHCLjJO6PMoYVIpYv4U7XtxMr7sHnn2w6cE7csl1R89ScKuh9uSE1VL
+UBoD962aJCGv6KnsC0OfsZiXy+LtXub9Y/GqtRA+45fO3HCXrkTUHrEXCFr8
+hAvWig06kono7pcgc/j1J5RhlPUkz5IwU7pB/a/xJyyKv+A3V0lCAXuFK6Z5
+Raiux7Y7woKEYxN/yHJOhchCLkn9EJSAwmFi7/tEC5GozThobJCA55UvVERQ
+C9BUu8ytfHsCFvz3fmRRrgAnaE+SqUQ8Bs7fk6sf+Yhfnx0Pz015gSUvXh7y
+jPqIyQbP66ItXuBfDdpZ1eMfUWWle2Zqxws0fXTgTgI5D03d7Hb/eRaHcmyL
+HxzMcpEaZkP9dDUWr6XIVe3kzsWMws6C/TyxGHHCjNZW8AHn+B7eohbF4KJf
+8fyhbR/w7seKcUm+GKxf76m1oSUH7Z8kjapSopDlXZZ+qWcO/uDNuX3paBTu
+0x8wv6eYg6y9v8U1+yKRFHbUuyc4G8/d3hJ4cFMk0uU4Qy8/y8RHh2qp+mbh
+eMTxZnbZz3do6y8u+e97GL7KqmuVPf0Ob0xT+7Wdw9Bt3zOBRbYMZLX5T26W
+EYpChzcT8a6v0Wtr6nAqazBevSCc222VisUDURH2ht74e3pW/X5lCnLgl0mn
+g0/wYUwT8kqmILus/gOqkBeSur3rjzLrkj7o2W6d74G59a1V51qSMNxM0ycz
+wxmzZm7tGuuKQvYkJQnpIjlsVBfbu4MUiTm745UUbfbDxOM2Df2rEdhn1LZ6
+bOoMmGy+l2qHz/G979SU1co1uHiIl4211hePJvzpvsfmBF7tMu07KvSQK0BM
+WcvJE+Q39tpzKOyDpY/rT1wkvIA25Z3MN28CWjWidY/8n4BHpHadwz4nqPvc
+oV+u+xQqxAL9E/m8wduY9UzCOz+wtZWz+bgaAVXf5pcXfobAaQkX06daUTC0
+Sy7XN+0ZyPRW6J9/GA3/iVyXe2weCj8Nrh74uRALuxP573fVPodbh8M4RWdJ
+EKXmz0McCYdCbo+O8vspwJp55NbpskggK/C3ZUmkwpDYxiffNkeB3/msZlJT
+Krx0F7LXt4oCw5jh+geyaaC0pWAkiSUaJsXPlsv1voLKbzyyHxRiQEpdJCvi
+RCbs4Xu25uqlONhwJT/DcyoTflAjlIei42D68YU3t5KyoG23We+DjjiwGCo3
+2PUwG9buS9zUc+EFKMrM6a105IDOBeLGH4iH2g/mJ3ICcyE41r+1fjoBNKvk
+K6QHckElJVgwT4oE2bSFo0lqeZBXsjew24QEMQuREDycB89kpeBHEQluQI2G
+tVY+7Mpc+1X7QSLQz0cXdkfmg2wbW4xJSiKcuX79oMHPfKj2Iy8XNCWCiu/y
+fogtAO+lnveOUknAqFNSFpwqhEWpEK6e+iRw7lnJen6qCHS2bn4ZN50Eo+N1
+imuTiuCmfvuX90LJ0MBnLT+t+wkIE2GLtbbJEG/0QpqaWgxLLec8TOaTYf8Q
+q+gTE4TXZ/I0H3uSQbHIeErpNYL4avGJl8/IIBXxrnJgASGQx4z+PIEM64mM
+/WS9UnCqnc7O+UiG5fMmPYyJUvj3wUNI7ScZ5jXZvxgLlIGe6/0n/v/IMCOT
+mZUFZeCStOYqmY2A3yxrnpqHlcE1n1vH5IQI6M3OkkXlcgjJtxF8q01AF8l0
+i4BpOVAjfvicuEAALYBj5bZ3OayWa3a9MiOg0cKsWbStHBS+vulru0NACd86
+l8f3KqBN5+jxkmgCipZzLGikCggWKlguTCLg49gVXcWqCqjhj/7wNJ2AzNL3
+In38lVBSkBzoXUBAstO1Sq38Slj5o0I5QCeAdIUrM7q/Er616ex4109A3Onc
+2PF1VaB64abB9CgBYWLcDokmVbBlQurk9AwBIRvyDGe9qiD+pHbKuyUCAubN
+D+u9roK1M+5rNNgo4NWct2lloQqcVIu56ngp8LDYYslQ4gsEGfKfbtxKAddX
+60cydL9AhI5UyUshCjh5WRZcSfgCIe53PJokKWCpxGNerFkNp5OUFLZpUOCa
+cMHprdbVELE9WaL4MAVMOa1Ubj2rBkF/i5ADx5kv1IECDuG+auDl76vLOkMB
+/QarP/+trYGwxdjd785RQLeA92u9Yg3kuaUve12kwLGwGxkenjUwsawq+86U
+AocfboxpS68BR4rfMsc1CmjYFXnuaa6BNSkDZ9QsKaByhO9it1gt7BU1MRS1
+pYCi/CdNVZ1awM3BfrSbFJDbbiMVfLcWJnT+SdneosCuyU8LGuW18NNeOnHz
+XWb81OM+M+O1cIXPw/jyfxSgvannzRSsgxb7QxnO9ymgFHDxhe3JOvjsMjF0
+zYUCQdbdu8Tv1kEq55Fjom4U+HbMKrOLVAdsQRx8Oe4U0BL7dTCqpg5ico+G
+CzykQMyKc4XeTB28kpXhNnhEgcmuRb11YvXQtShWYvH4f/F700vP1MMG0YY/
+xz0pkBrNbeXuUs/sB2sGl5i86hwxrppSD886v7UGeFHA+LyQ63hjPTR3VHP8
+YnK2AoUtfbEeckz1CyWeUIB7vdwzC6kGMFxnKa/E5BtjOQJCBg3AHamauIXJ
+JVXqlLZHDUArO6VDZa7fnlIm/+x1A3zVdXK8ymRnL5187Y4G2JDVdrKSuX/D
+1ZajLKxUKGL5w8PGZMlDlxsK5amwiRTHIsA8/+Ptg0b/mVBBuYXNhJ0ZH33W
+blDehwrCXiV61R7M/LRNOoxmUaEj7bOQFVOfkGzXf8ndVNgydGmO5kqB0Wcs
+Ty6vawT6wLEdu5j6HnEIWL9FtRGO17/6fIqpf/xpvpiGa40wStrGf5KZn2nJ
+ODG/oEZYcg4w3sHM31l2sbfwsRHyG28W1d2mQNpA+v6FwUbY2hDrfJGZb9OE
+fN1b6k1weUfkhykbCuS6QoekdROQl6xT1t2gAK9RtXl/WBOc/BT1cc6CAmV8
+nfcMxpqgYa/xRlum/3hcshgc3M0w8LA5f9SIAkXW05VDO5uh8M09naNMv249
+7nGOdKYZnuxMHfNn+rtMGbe6WTZDqbjKpXunKHBbjL3rkkszfGSfsdNk1kPN
+StCNjSnNkNjJBhbM+vEoiHfzXmwGTtbf8UtSFJBJ7ztsztcCO0lz6nXiFGiP
+llijKdUCG89+GL0vzPT3f29CZy+0wKmgB1uZ7wUYUihKsXvdAhwBQZfTFwjQ
+SflK1TdpBYkxWZ7+CgImfTNtqhxbIUyjVC23mNk/7J4yDj1thRLtWSH7PALG
+FBSUZTNbge+WbrJrGrNfFHhFsa9pg8/CRma7/QmooUqbFWS1wWzuIrXtGAFO
+2cvTilVtsGbTwN1KdQK2R7aEvOxqg9NW5P5YJQLsTDxKIjjaQV95b+R3EQI4
+hxvFHc3a4XG4VprCHBlOzd8fE1/XAdFvh7bcTiXDRJfukzjhDuCT5FF58YIM
+MZ93Cm1U6YBOlv6xV6FkGPWuPbN8pQMmKa4hD1zJ4McjkkV73wFBcmJRVF0y
+fJGovB98jQZ38qqC2DqS4aTeZvbZvE7Q8JASu6SQBKGWXFMLtZ2QcYWNT3BL
+EtDvs/Sv9naChRYt/P18ItgnTRRxrqWD2pmXNJuKRAj9U+csbESHu3QjaboR
+8z4Mfzp0/B8digQEtZfuk8CeNlMWodYFllG0mV0x8fDh56+sWN0usDGszPz6
+IB6WV4cSSde6QL9F4a+dcTyESre4pfl1QaS4SMDW7cz5ru+Ui2hdEH6wiysl
+9gUsC9kQgw+6YXJm6nXe8zh4bt7ppZTfA79o5GcON2LA77cmjDb0wIGk6XuP
+tGLgsRtlJWGoB3rpYmw222LgdqSj+zreXlAztgv4VB0N+tXs9/pu9AKj2i3S
+QyYaePcq2YZs7oMS17fBN4ciIXQ1QG/MsR+MQrubKg6GQ7W+CM/5zYMQp9fM
+avbTD7YqDm5zFh4EBS2zoZnnfmDB81IsSmoQXtXZLl3Y7weL9fL76BqD4FvC
+Ym3k6QvyOppmFlaDEOsh8CeYzwfCjpu9dsodhKSZaxI10k/A9OCLk+FGQ7Bn
+b55Ln+EDGBfnf9waPwxJLpw8GUGn8P69PZbPt41CBlfk4nNSCHb28BnY1IyB
+qNwB9x4iCS3cNL+vO/sLbvolGmskpGPFngNBFRwTkCVi8X2CnI1SXMVjqacn
+4ZDAKRFThzwUKXY4yREwBe56FJO0K0XIssj22nnoL9APWEdcX0Scu/D5WpXk
+DLy+vofjTUE5du8z3yHpMwtkFRdSUX0VOhnzbZLo+QdeOoyrvL9rUDDqm8ka
+kXkYOygl0DNej5lm5PRp1wW4u8Oh6unpJjTW8jxd83kRHGVqCkqhBXOuOUpo
+LC+BTIw6W1ZPK85zH2cvvLQCwitHDvaltaNByyE1kbhVeH1kU3+wGQ25D60v
+K05che8b18trWdGwLLXrzJWUVdArPiL+x56GSq5ulgmZq+Bo+I39kjsNeXfm
+hwhWrYJ9WFaazAsa1t5SGeb/uwobbkae+kOj4RFO2TDeswzYf7VEYsGgE+fv
+zgtlXmBAu/opTTTtxKzu6pd6xgygamsv+l7vRNEsm08h1xngz6dsxe/cicuX
+Uke53Rgw7e89cii8E/NTdmqtS2OAhI9XRHpTJ97m+VOd9pYBbe9zRlw6O1HK
+pcRAO4cBnDp+3af7OzFK96qdbzEDAq3SMn9PdKLzVHwkexsDtMIS/xzipaOc
+mb1oCp0BKX8rDTdto+NgpfrrY30MGFV9Y/ZdhI7n4+glT34woFFfUz9agY6c
+bK90xP8wwAqy1R330xEdXNpLZxhQoOn05aQWHR90aJtbLDLg5C/zGdGTdPz/
+/wpwXbheMX+Wjv8HeA3r7w==
+ "]]}, Annotation[#, "Charting`Private`Tag$4186241#3"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmXk0ld/3x6WUiFSkkFCZQmaValORFMmnkIyFRCSRlDIkZMo8D/e5VKQM
+mYfaxszDNVw38xCJEqkMxf3d71q/v571Wmd4zvu999nnrHWEr93Wt2ZmYmJK
+WMfE9L+vDOycptPpKKajMOGhS4Pby/sCllfoGHVhz273MzTIzZcTXfhNx+OG
+Ba2uajSQF9e5NjlDx2nbo6VO8jRQ2ebb19JLx+GkocRbO2mgNj7fFJ9DR7ZQ
+E8JjqBf0/VuzFMzpWOQufXzNsRfc2n0dbnxYw4bwCZ3gcCp0d7NPV1mu4gtP
+3/gXJd2wp/I2t4rAP1Rxq4s1Ze2CQvtalq2DK/jhAZ/d65sUsAiWm/vks4yd
+WwMC16zaYSniYQDCEq4aTQcYaLZAGufQ7rjRP0hbKZRiW22AJG05565nv7Hj
+qLzUhsE68LlleV/i7C/8pWnjaMheAw/Xv3Zz/v4Tmf9KFRntrgRLr/b91Ix5
+LLCoz1T8VgbR7yfikuzm0Cmfq2hmuRDKhsW3vBGZxSz3Ha6po7mwj0vt5KWU
+GbRpjzrD2Z4B7yQD7MbGpzDqZB0u+afCcF2ekLLyJEZ/MwwO8Q2FCaloeSwa
+x7OKk3p8bFdA8vGL2amscXxVVLRNJfAyOLYXvt5OjCN1glXv6BZ9WLpDFbEJ
+GsdYu8fzcwc1ga2YdweHxTjCuuVP9/4dQFn1hAXjzeOoaU7vL+Mww4eXUwv+
+XB3D7oGMUznNLrjtcaayzLpRFFMP+rxjyg/9isQbuBZHkB5rE2mi7o8rs6+u
+LHwbwcJ03u4bCf44Zv7So4Q2gh1ffrrVnQvAd+pp1SdzR1BQ4cXR+KxnqM+S
+rGtoPoKXg/6mepsHo9hu4Vamh8O400L8K9EchlyBe+fqbIZx79Un7Nq/wnBp
+Zc+OIP1hNCX5rHYIhGPDAN8VHslh9O8PX3ngEI62JO4JiU9D+IDatnyMIwJf
+i7Gu6qsMIVUtoNBaMxKllH9IvVgYQBeeAdXMlGi0kfH0LB0cwKx9Y8abPkZj
+qujWztb6AXzOU8Wj+j0at/MecvuTOIB3pt4MiqjG4OKiY9WZ0wO4S7lNeK47
+BqtLZy9PR/Wj1d2QQ1ZMcWh0fPbxIeU+/LNGG6lQSsAIpceUU0J9WGo4MR1k
+mIDN0pz7jdj60KLYWlDKPQFPCMo0eg19wvtXK68PlyfgPrrDjk6/T7ibh3sT
+ByTibOX3Vy69NNy8ravO4lgSPjn9vaP0fi8euPE8pXxbClZrfbugeL0Xr8p1
+vBqUSkEmnZm2bJ1eTP9kr956JgU9Ln9tSRPpRVGjv3bcj1Lwns1EQ0gLFV0L
+L948PpGCtgGDlZZCVOS/+uB+e1YqvgwegAE2KlYLD83k16Ti57D+Dwa/e7Bz
+v1X/tf5UtIz/VHGuqQfzHDSyt7KQ0Ph1T4mSSw9e9xEL8JMn4fmW1tzNDd0o
+N/E1TCOAhIEdLYd833Vjd0Tr18cRJGzobs5eS+rGwDnTmsQkEmoMNr5ZuNON
+0eby3p65JDwxW5cxyN+NxbPh1BkqCWW5PpDybndhYsB5/2OCBDpyv98rZdyF
+v+nKtqmiBL7ZVZHy8nQX/rx9s21chkAJ4bKkxN1dCNu5yVxAoIh8UdzTmk4M
+UQmI/2NKIM+l7LArvJ14TNjGsDuawHeiQWUa6zuxe4ytiJJIoN7yjc9yPyhI
+6/KNekcQGJgifJitnoIuXfN6gm8JXJuKGi67R8E8q1CVhGoCE8vvbH51jYIX
+CtI35tYTeDhUVyFSl4Kq/Ks6GS0EOiuw+tuLMlhlsRyoBE4+eigjQO1Az60j
+ahunCHyiZ2TEWt2B4xaL9IPfCBTap+Tz620H8vD94leYI9C4Yban5WkHmuZF
+UD8vEriY0EwvudOBvR06ks//EhjlkCHxwrQDh08JavDRCWzbfu3RI6UOpD1U
+Vu5kIaP9xIlXN4UZ7bZZH9ZYychawk+5zNGBj6RDnNm3kPFp2euzJk3tOBVe
+WlG7jYyV5lbJiuR21HPbxXyHm4wrGwTntzxox7aSzZR/O8noeCE87r1EO87t
+1rd+x0/GjF/a36LXtaOXhAu1fw8Zx+I3qDl+asMQ6XLxz3vJKAAfIjXz2lCq
+dEm2WZiMBp/dvgg+a8Ou+eCasH1kDHsmp7po0YZeLVYFigfI2CQzE9p+uA1d
+1JeoRaJk3NCdPvaKqw1P3NNa2ylORnA3U/aaakXq4OC/SxJkfCC4K9CoshWf
+6X5Md5IkY0ENZVA2rhWvc0TW3zxIxlnbILnNTq040GagrCZFRnFOjaejZ1rR
+5U1a1QKDr+Wv0Ur3tuIi57MjvtJkTDIqkYpYbMFtIeEO8wymrt7xsmtvwa/v
+K6VUZcjIlXaw++SrFrSmh2lYMlhba0KM37MFaw7NP73OYN/vKQ8XDFpQ3Phk
+uTqDP0QYtTfLtGDH5cvv/jLmW1LZvi99YwveNrRVCWew/GDzPY+hZrRx2b+T
+mcG3fJ42XSpqRmvexN26jPW9FANB6dBm3GhzaosrQ89oy9IdFptm/BuzWHyP
+oVfA+V3d4PFm1D38c0Kf4YcB763dRTzNqGndbLaZ4VdYxQGH0O9N6DDjOh3P
+8LPJcrjSpq4Jj5gd09vA8HvDpnhuSG7C1l0fDLQY8TjxRt+W17UJ9aS/1Vgz
+4vXuT93Whv1NKGEQO3mQEd/Q1+TqE8uN6KshT03lY+SXmadrYWsjflMY0pzg
+JeP+j4f7yfcaUYcSfnuckU9MD3hCd59rxKGNm/wTOck4KP1TLWxvI5rKmA7t
+YydjTHTWy0cNDXi/9ho9bT0Znc8GXPmV1ID8fcF7Exn5fGHVaov9nQZsbPSS
+smTkO6u1oLMRXwNuLw18Y/STwAeK4ccVbtXjdzUfk5lBAg2mHOYy1eqxv4/E
+rEcjUCFJO02Ipx7Fr6rle3US+G39hs2cHz5iFulFxumPBJp13eue2voRz1nX
+47ksAo/6/+dv/rkOL7x4ksqSTiCvquxRakkdnsEk7YAkAjvIX1NrLOtQLW/o
+1GQwgSedTexT8msxykxi35IdgYKiRwR5AmpxTUG0acaSwL+feChBJrXoqPU8
+JN2IwAL1dmV3llqc3/bH/roGgaLbTjJfMqxB3w8CfKwCBDLXCRY2HazBXNVR
+jZ3bCBy+//eGOlMNHt/23mCChcC4kYJWmcxq9K2dH6iZJSFbrlj85r9VyGev
+2H3nPQknr28479VehUeYLkXeY9TTGt7RtT9pVYiORw1V0kjo4Zlg9fl8FXr3
+7jw57U/CWV0OWUypxJoNfw8x65LwRf9EyFffD5i/bv+ftLhU7PPYmZqs8AFj
+b2T86HVLRU7BM7kXx95j8dmPRZ4GqXjPIqOzFN7jmHxw4P7tqag5YccbuFKO
+h0iXdWN8UvCBX6L4icxy7K0dWlA1TcFssZYjPw3Lce1olaiWSgry2kmbGBeW
+Ycm2+Kbgr8k4NfuDJOlUihQnbfswzWQUCBN6NyRYimWjl8UVBZJRT+5iTURr
+CSotx2jLzCdhyd13EyuSJbj+a2OkQHwSPltykWyeKELlcC355JFElGReybe/
+WoB2/iwRTecS0CxNsm4vWwE68nPtieNhnM+nr1K7SvLxpXRVSMhQPK74VSyp
+7sxHR7VzfiMO8djM7nl8CyUPhVl3quR6xyHT2xzdSs88bJE9fezM6ThU1B0x
+d5HJw9c3lOTGWOIwKUzdZyAoF3dZ3M7l8ItFmiRr6JWQbORNHz0U6h6Dag43
+c6um32LB+NyNeIUYzMhp6pTQeosbuDQO3v0Wje6KIbwrzG+wRSZP4bZxNPKd
+2E4k3M9EH0/kdhSNQh+vuzXM1Aw89Y/doKcnEmequyfsFDLweF5CX+6TSKw4
+EyupOvsSvVVKFZ/0RaDpRYGC/uvpmM4tlmjjHI7fFn4fca1Nw9iEtw8O8oSj
+R0w7ch5IQxW7p6xVhWGY1O/TrD5JYHGo8Y6E4eco9djkYr8mgR6LosTgtudY
+LqTc6/KKhF2K5WW3ToRiQXNn3QVKCjL79t4N9g3Gbi4/ik9EMjr86RNlTg7C
+hctHBgv/S8ILFYt3n70NRPmR1F/81HisuJIgXJAfgBcP/Md0ITYOtfP6f0a+
+8kcnu41bfIxikfumEsf6MD/M+XVr31RfFMblhb1xOeqLbUeEDvEnRSKzvvbT
+oBUfnH3cdVTXNAL9H/NzP8/yRqPtLum2+Bzzdap+6OMj/E+Vk3ld41N8eTLR
+es7sDkbUuey+ce4JWsQKGMlo3cKOC/2yra1eGHz1ruHrDmtMbNBD+RduKB7G
+MW3Kq49e3eLd/DU6OJBxsOgEkxlIbR20Y5FWBPf8c5V5KVZAnfdJ5VoyglPS
+mlMTO+zgYaRmk72iEwhva9fiOOUMNULP/JO5fEAh2vfn8qeH4Bsj4qQS6gvP
+RBe+9ux8DJpbKowo7P7gYCl0103ECxoWZyVYNgWD80i0ep+qD9y4IWlTtBYB
+H98RDmH7/UBLxM34yfEoGFPuEvnC5Q/igzW6eh7R0Czbbiy95A/T+qYq08ux
+UFdbIHCl5BncOhHGKvg7CWahYbfEhhAoZXvYU+2aBn/VlzRCXcKBJM3TlSOS
+DnV/L5R/7gwHP72cjqT2dCg13DvrfSgCLsWMN9+TeAkZ5QfSqscjYE74fLXk
+YAa4Vl6rizsSBb2nJ5E3MBMGKi/PWQdFwYcbXu83qLyG12YmS239URD0tqBk
+KCwLDirx74q5Hw2iR/bkRJzOhrsjR6fayDGwxaT4jed8Nvi16Kldmo6BhccX
+X99KyYHc9vOVObKxYDFWrb/PIxfGLnQyrSuLBRnxRZ3VnjxY5FQrf4lx0Jhv
+fjrvWQF8dE64o5SYAMfqpGrERgrgh2w9k1dnAuRSl9VTlAtBNc+2fZo1EWKW
+IyFovBDc/zOiytxNBCtoOGp9vBjyzzQUNh1PAppedGl/ZDH8zj8g7+yYBOeu
+XTusP10MP/m7uvRTkkD+6T8liC2BXTJO15r+JgG9SVZu93wpsAVcKut7mwzO
+A6s5z8+UwVtOg7+RtGSY/N4kszGlDPJp0YYJzCnQwmUttaBdDkPJTYqxl1Ig
+wSBerDW9AjwULpoGz6WA0tg6QW8jBFh8tp2NhQQyZYbzspkI0qJunQrcJBCN
+eFs7soxQdPJqjsA+ErATb5RIOpWQ/uSBuowaCf7pGQ3QZyvB0etjpqUbCZaO
+rf9oyFv1Px+1o31J8Es8OycHqoCrRLsyOJwE35g2PDEPqwKz6ayLja9JMJib
+I4Fy1RBasT3dv48EfUnGO3iNq8GtdCR8aoIE1ACWVUefaqDNMN3cNk+CNour
+HYJd1eC97mxBxUYCPnBtcnvsUgNiL2bu+x0ioOxfngU1qQa4yTPuCkcIKJoy
+0ZapqwEd9plfWScJyK58t2eIpxbOtJvRmS4TkOpkVnu8uBZqmZbiNN0ISDLZ
+nB09XAvxkqMZxp4ExGkVxH7fVAcPrXoMjvsTECbEZp9sVAcGIw3MTjEEeHUU
+bltdroOiiI4AxgUePCos/l4S+Qii0lu9xUoJuJ/BPvFG+yNocjKNBiEBTl6W
+JSaJH2H0+uEDTc0EWMpymFccq4eZdweSDowRYCZQosVtXQ8Tz/yLz38hwJj1
+uvytkHpQ+aJWcuYbAfojJSwCQ/VwVjY6quw3Abot13/c3dgApV0H1yusEKBd
+wvmpWaYBKKL8j7zWCDgZZvXmoWcDeAQR2YkbyXDCY2tM16sGeBpfO3+TjQxH
+bcs8D3Y0wDyPpSEnJxnk1bj+6xdqhGMjAbF93GSQkSo/pnC2EeLmKv4w7yKD
+5C4b0aA7jcA/XuPNzE+GfXPly0erG4HvRzF/gBAZPFpP+f763ggZmv6bT+0j
+A/V1M2f27iaY07KQbT9ABtmA/+JvaDSB0J29Q1LiZAi07t8nfKcJgm+SzE0k
+yfD55PXsvqQm6P1TzWQmRYbjQjOHoxqa4ETN7S3yMmSIWXWu0fnVBJvYk1to
+h8gw17eis0moGVgO/heoL0dm6PehVZ5rBqHteSGp8mRIj2a7/sCtGepj5vZU
+KpBhzTniu0JaM0jk2XkXKJLBUI/v/ve2ZtiYmLjqoUSGXGky86uVZhjvEe3d
+rUwGNnbJEAvRFnDa1X8xiMFWU3m8fPot0LyvKJfC4A91R8hdjxjt3lNK3xm8
+K61KKiSzBe5IfhIZYrCz19lizZ4WeLNLoiSdwS2mFHWmda2QUl2kpM7gA6pX
+WkqlWuGRD9GXz/j/412jBneNWkHg6/mJf4z10X7bjkr5toL26vVIAQbLd83Z
+T+a0gpDtgPAOhp7g3Pt/UvtbYTB0uWWEoX8yhMn7yqY2qE+40PFUlgxq9gHs
+OxTaIP72Rxtmhl8JWlwxLWZtsBqW1GQgTYaFA3FCfoFt4LV4U+nJQTKcXy+U
+BUVt8LRHZMRfggwvR14pLY+2QeR5vvXWYmQwTizWvnWkHQY5/j3PFCFDwX3o
+OWDdDhPdj29sY8Sf06DefDisHV7I34vQ30OGKq5eF/2pdmi86FNsyUsGDrcc
+OgtbB2jLB/PJMvKrzHqhdmxvB1C8l8k0LjJwn3p4IelcB9jTB3+UbGaMl0Nu
+d0sGJ8/tmmchg6PQ+r7Lbh3AWUfIbmAmQ8NqoNXWtA6YVLX7Ub5MwMOSBHef
+lQ5w5kj7co+xf8RfDZ0w56KAKWH0MYixv7qjRTYcE6XAzAgf56NBAmTuvg79
+fZEC3i/5Q353EjAmXZZmm0mBdad6BE9VEPBcYM1WAynAPT8jqFZEwDH2kzIi
+PRToD/GZ4MslIGaqsaSfqRN4Blgc7NIIOJv2qVXXqBNKTpgMuwYQMPc026bO
+oRPkevmG/bwZ9cT2CV31SSd8NkvYff8BAVPS0nIS2Z1QyWdB+WtPQECJV9T6
+DV2wcb+DarAOAQ2tYldLcrogU2XD7R9sjPqR+29Bpq4LJi1MU7mZCdgVSQl+
+0dcFJ3VfyAosk8DW6OGHCJZuaHx+93fnJAlYx9uEHa52g+MDM9exShKcWXKd
+Et7UA29EaeNpt0kw26ftHSfQA5wcyYGrViSIeb+Xb6t8D9gP9jmrGpNg0qfx
+3D+THjA6mupmdZoEfhx7cqjvekAj99BlR14SfBSpdQ0yowL/Opnn806poKGz
+ff3vwl7gmeJjVmhLhlDLzfPLjb3QJ6bjcawgGWiuTMNrg73ANndKgD8hGexS
+ZstYN9JgVfS9iZE1o/+PJmcBAxp4qye9py4zzsfwJ2On/tBgzD1Kdh1/EthR
+f1VFKPfBu7Ny5xdOJED+9ExOrHYfZPyMrxnbmwD/1saSk8z6oHZ4090spgQI
+FaO4v/TrAxWy4Y+GqnjIv/9WrozaB7Sm8WcqJ+PhH58NMXqvHwZUlPn/qcbB
+c/NeL9niAaCn7183uiMG/L4dg8mWAZDlYq0R+x4Nj93Jq4ljAxB0jzZy+mM0
+OEY6PNjEOQjJHDveMjPuG7r1612GrAbBwivsy/NPUcB5SPZG8PYh4Fru1GGP
+joTQtQCdKYdhcJXruK43Gwb1uns49LaPgoVHolCnuR9wy4zudBYYhYlVJb98
+Fj+w4HghFCU6CoFeT3sMs57CSrOUIu3oKFhVXqj6+tsXpM4eu2pxfRSeXcou
+UA54AmGnrmY6FYyC8WvpikjCC4wPx2uEG4xBh8OMx3M9V/guzPO4M2EcQlMv
+sGurXEBXl4OWz3dOglFnX5Yyewj2DnDp2zRMwTkxzycTXSlo4X7sy6bzM6Ab
+fNrr8LtXWHNQJbCGZRYoTjziT7JyUXRzxVS61hxsPnzOXdG1EPdU2GuwBMwD
++WcW77h1GTKtMGc6j/2E6cF2eLquEhcvvjerO/ALzp9bW19VUY39iub8B3x/
+w55vdSKx7XXoZMi1TWTgD9jx/x0v/tGAu6M+G23YswRugqV9xvPNmH2V9Grh
+/jK4vqan0c61o+FxT62G9ysg2MFqe0WdgnlmDiJH//0FZsO4apWhTlxiO7W+
+9PIqgMm4oGFGN+pTVJX3xK3BJ7a3kosmVGRTZa+qSF4DqRGt4xlWVKxK7ztn
+krYGR14qLl25RUXZ++6WidlrwO3jZYMPqci5tzh4dx1jvEWQcEQCFRtvyY/z
+/FyDAArxx4BGRTVWiTDO83TImSjWMr3Ui0t3lviyL9JB+OxFyX0mvZjTX/9C
+x5AO697czf16vRcFc2zKg6/Rgct2MPP+3V78dzl9ks2dDiEdW3RTInqxOG3v
+8U0v6fAz4MRJVkovOnL8qH+ZRYfI/AwzGq0XRd0+6Gvm0WHIo2FP5kgvRmmb
+2j6toMOXR4VPzs/1ovN8QuT6Ljq03ds7k7CVhpJX7QTTaHT4HMTF58RLw9Ha
+I5knh+jg5ECZ1thLQ7042gfvr3Swc9C7syBDQ1bmjLPCPxh6wnpEm5VpiPZu
+3ZW/6LAnsORR2gka3uvRNLdYoYPc7wFXD00a/v97DFxzE91qoEvD/wPbCGD1
+
+ "]]}, Annotation[#, "Charting`Private`Tag$4186241#4"]& ]}}, {}}, {
+ DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
+ AxesOrigin -> {0, 0},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, DisplayFunction -> Identity,
+ PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity, AspectRatio ->
+ NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox[
+ TagBox["t", HoldForm], HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"S\\\",FontSlant->\\\"Italic\\\"]\\)\"",
+ HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :>
+ Identity, Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0],
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping ->
+ True, PlotRangePadding -> {{Automatic, Automatic}, {
+ Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["h", {
+ GrayLevel[0], FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "h"}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{3.8871885224783792`*^9, 3.8932376275906477`*^9,
+ 3.893237839180531*^9, 3.893237876356636*^9},
+ CellLabel->"Out[52]=",ExpressionUUID->"f282764d-6683-431e-bd66-aff690b1329a"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Specific heat", "Subsection",
+ CellChangeTimes->{{3.893240903148159*^9,
+ 3.8932409167324743`*^9}},ExpressionUUID->"91682356-0150-4742-8ad7-\
+87c14223ec68"],
+
+Cell[TextData[{
+ "In this plot, we show ",
+ Cell[BoxData[
+ FormBox[
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[PartialD]", "2"],
+ SubscriptBox["u", "f"]}],
+ RowBox[{"\[PartialD]",
+ SuperscriptBox[
+ SubscriptBox["u", "t"], "2"]}]], TraditionalForm]],
+ FormatType->TraditionalForm,ExpressionUUID->
+ "a889c51d-cced-4075-b076-eae0732091de"],
+ ", which is the singular part of the specific heat (modulo a constant \
+analytic factor) near the transition."
+}], "Text",
+ CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, {
+ 3.893240875195952*^9, 3.893240882915715*^9}, {3.893240920042145*^9,
+ 3.893240927292811*^9}},ExpressionUUID->"6d8da3cb-bbd1-4fe2-a26c-\
+2969b50861eb"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDut6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]",
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
+ RowBox[{"PlotRange", "->", "All"}], ",",
+ RowBox[{"Exclusions", "->", "None"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "t", ",", "\"\<\!\(\*StyleBox[\"c\",FontSlant->\"Italic\"]\)\>\""}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "->", "Black"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, {
+ 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9,
+ 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, {
+ 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9,
+ 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, {
+ 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9,
+ 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9},
+ 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, {
+ 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9,
+ 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, {
+ 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9,
+ 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, {
+ 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9,
+ 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, {
+ 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9,
+ 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, {
+ 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9,
+ 3.887187764733572*^9}, {3.887188007450289*^9, 3.887188008193816*^9}, {
+ 3.893237873044557*^9, 3.8932379005484257`*^9}},
+ CellLabel->"In[53]:=",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtl3k01e/zwKW0KJJWyi5r2T6WNk3JUqTSghSiUhGljbJFlKwlt1AqXWS9
+901SFBOyRrZ73/de+xKJsia7+72/c35/zJnzOjPPmTlznmfmGRnHK0fP8/Px
+8VXz5P+0Gqzr53K5GHB0jaflHyZemZILnprmoq+ZgPrdASYS7zQVxsa5KJ43
+czv1FxO1lMwdewe4uFNw9bfpHibqrQpsqmZxMVki5lhMGxP3dI9UxdK5OLKp
+oqqwlolHH9Sk/2fPxYXbT9I+ZDHRozbQ9ULhPJrUNIeY3WAig7G8v8hhDuMT
+lPcf6GOgxJcra/Q2zaKhvpPh2CkGvnf5KrCydRrPLdIJLS9vxDNhmsOcgCmM
+Pj5zb3xDI05GeQUjTOJDP4eV/ecbkCrcJhbT+Q9P3XPvyY2oxxemmtcaH46j
+bV7qDH9CHQZcdvBUPvAX2Yp8I3/MatFrYZrHtT+jmD0Xv+JLczU63K2VJ1NG
+0O6egM3VbVVIKeiJeeE8jBcnxfRyt5VjfrvSigzZQRyz7LAPvFyCciJ7DI6/
+HMAjs0pyMomFmK0S7NzV3Ye+p7fHKjzLwfbSLGld3V6kfn/yXnuCij1bKFqY
+242+S4yeXbWzQBXfpMG+9G5kXn70+LCrPrrVvk8TTehG17DHZWqCm2HSnZR1
+Cu3GnJViboH3LUHww/rVQme68ZgR6mziuoHG3rgxm2Xd6OXD2GTt7g9eJ17l
+/DvVheHi3Y5pAlHwJZl+VdqiC1erBO2OpETBokncYmrchd+k1eaY8k8gIq4j
+MV6D5+8WHxGwNxpet8tQDAW6MM60RFfl+lMou5R4M4rWieLtxitMc+NglW+q
+rtqCTow7Yi95xToB7ucqVYhMdKDUD+r4yKMEmB58e3Lsdwc+W7Y1SLwyAbrs
+k70/sjswZT8ZZrPtDWTvpRYbEB0YuNu44L4oFY4KxB+ysu/A+JGZ0PXvE6FM
+f1PH9hMdeGl8iJXzMxF23HruvsmsAyknlC4OiSWB7M/Y6E7dDnTOE3Ha4ZME
+YxVPm1yEO5DhkPBcHJJBUUymhs+rHSftP7Jf0t+CSIjUcKlTO3onhdtymt/C
+5LTE6tCj7ch/h7k6bUkKVLSIn1yr0o58Eivur7BLgYuv1/Qoc9rQjs97vEog
+FdIUl84d1WtDzXQrsfY9aRAVs1h6g1wbil0aumThlAZ3lgnsaxVuQ+qDtmvH
+Q9PAdGDBwwu9rVj5NTd0OSMNBmgza7wprfjSx/+Q7pl02KI7tCVprAVNvGbf
+mpzNACc1P7+8Vh67apOqgRnwSmFlQ015CyrrlUwHJ2aA6Hp1j3/PW9C/dN40
+szsDJibcikwMW7AU/Z7EnMoEjeH51afVWtBHSmtwt2cmOPdFOF3d0IJKv5mV
+p6MzoYVNWx77uxnlxptvz1dlQnHe4In+6GbM638TRGrSYDbLN2Xetxnn19Nf
+6pjSQCdNeEb0Es9fY+GF5Y40SIlTe71TvxkNjFVrxB/RINzLrT+spwlVViqN
+lffQoOz6/K6E2iZUWGDg2TxFA77LEZHv85pwcWyRz3khOlw7TdNuC29C7xoT
+2VYtOljrD/qq6zah9vJfi0970CFKx7d+n3QTPry39p38Azp82yosby3YhIej
+ko6ce0qH3ZJqlXfbOBh5erRs/zs6eKwr3Eip4GDqC13Ony90IIQPuaVmc9Df
+7edhwe90kOO6rm64z8FNYW0Tqb10OD0xd773KgcvUt7d3DpKh6dD4R+nbTio
+9335iNIcHZZ2ZNrKqXNw8NeDA1+XEmDA1if0xDj4us897JYQAV51NfwHF3JQ
+pX3v1p5VBAx++fP2BouNutHwd0KMAMU8n+ngIjay5FcdeyFBwJksIfP4dDYG
+b17hPydNQFxq/KssChtFBozjN8oT0JiwdbTUj43n9g6V/1MgYEVcgWHTJTaC
+xn7ZSGUCjKPMnw0eY2PI+7fff6gS4BfS+ot/Nxurb94YnthKwMcA113rldhI
+OsplVKgTMHpnLkJVlI191jqKVpoEqF4P74RZFgZmawdTtQg45yKhfbyXhaqN
+2f8y/yPg5dnM+xfrWLgz1ej5LW0CWKf0Od75LNyiGPRqjscix2tUHyey8GzO
+UrV9OgSYHrT1TYpgIZty7poJj+8Z/qnL82Rh9SHFWEEeF+//fVj7LAv5T1yn
+RfLO85kPfKeZszAtxM+K5MXbbdFvrryNhU7FikVtvHy8T/yqpsqysOKcglgq
+L9/8k31mkkIsVBlYFaGjQcCU7c+qmAkS447bHA5UI2CbY++B1V0kKlKMwylb
+CLjl1FMRXk1iJnfE85IKATnOP0yWfiDxXNoBQz4lXj3cussCEki0+75M1mYz
+ARrXu4zmQknUkv1k5CFLwBWPzq8et0icUSe6raQIoHl17Bs9Q+JQMr/m7EYC
+fvu1F182IzEv5dHZcxsIuBjc+sVBmsSOkvhj/iIEJIe1QIsgiT9an97VXUHA
+j0fNhZbjTLy4KN+dWEKAQyzns1kVE41bUPjnDB1ex7N3luUwsVB4s8GdETq0
+JbDy97xiYmtAVEMM737apDE/6vDmoPxi1cHbtXSIoTH0CDsmnglyc9MvoQOZ
+3ZircoCJTxvbdSJy6XDsU32OlCQTzSmXojjP6XCwuoZYVsFAMdugiM0OdAip
+q1YPzGZgUNQHMwcLOlQwvtHmXzBQE5bbq+2lg1FrZcaYOwP7fdoTfaV472uw
+NKV1I48tDxGLWTTwHv2qaL2YgVXjY2ItJTTI/1eS3DDciONBtltNCBrocYsS
+y0sbsb9QN7zjAQ00RApfZ11pROmBXH4NLRq4rSmQ2mLTiHXK5UHFG2mQseHz
+y2TDRiwUDYChRTRQlsl/8VysET9aT6aLkZkgq5UbE1TSgAt/fu4svp4Ja4/T
+Hp1c34Ah648H/X6RAdkKoflGCxvwhs8xC8uADDgydeGH5lA92oZ7sa9cyICQ
+lzLbBMvrccA5ckOORgbM90W359/i2e0eX43EdOj18VLbRNZh8s7NyF+bBm6H
+H8cUKNdibMTwatePKZDy1/Q3ZUEtbpTVLKuMToGu2EV73Djf0TG73av3agpY
+/vD4KfnwO9oFWM04KKUA3LbTvdtXgxtX2gRfiebNF6oqw+BtNXbpH9tn6ZAM
+2f9KV1bIV+GA5XvNhnoqRKS9Kd49VYlYvzs5gkoFFzu/m+9rKjFE0TtB9CYV
+5Mu2Nb+5VYm2EcVx19dT4SklPdmnogLV2zf6p518A3e0H+v/d7kcj8fuCnJn
+vAaDa6ddXr77il8km7PbDj2HpOae8F+Bhegrl+M1ExgKthabcprPJuJel7UF
+y5xCME/Qi1nMi3P9psmE6BwVdboWSPpbI9zON7fYwiVQbvjT1I7iStCpUzT+
+IP0BD1A5NYesG8DCrYaSZlSARuaiC8ffs0BHRYsT7lSEkfasuxofWuDm1COH
+3q8lWH5IQuiIaCcovlrHZypThn9k1vo2xHXDON+sYp1SBd68oeoQua4XRhqS
+HXr5qpDVInLUqaIPFkX/m9Ns+YZnbu/6ueTgAGzpTFRv9qzBElW9kBKBQVDM
+UhW6Jl6LCss+9yXuHwbXXR+fFeyrQ4nPLkYCwSNgcNNYGX7XId80f+q1rlFo
+fyhvGRJTjxMWBXalm/+CXd66YU+NBmzWtt+4OXAcOkfX+JyvbsCrViKrZFv+
+wQUzoTM+to0oFv3DepHEJLhQlLbbtDUi7dTrt2OeU3D5bejYq7MMtNL3219R
+MA33ih/G+TQxMMvOVXbH7AwktUrE7TBl4qTgvoV5J+agtPLKkYBC3n+3fqeu
+RMw8UFndebkKJAruXF70OX4elJ8vE/VTIrEoscnsNHUecpgUCRMVEjU8bzs8
+p82Dnr/hYXIricJSH8LESueh6Fe61Ig2iZWXtbrXjs7DKuclIRv2kbhnqfIj
+4YNc+PusfKu6PYmT7pPiNAsu3D30VWaQ18fozeVJ5lZcEHqjVJ3hSKIk3elT
+mCMXdlwIMlR2InH2RGKv4G0ulC0WL5N0JfEDVUp/STIXzBo7pWfvkOgmNFSe
+nM6F5i8a93O9SVTwKDxqnMUF6VdW1Ku+JEab2l4M+syFUuYDgR/+JF4biXuy
+sJEL2wL7XcqDSVQ55SxJZXPhZYx7lF8IiZ1ft6catHHBuTvQXS+MxCMx7EL/
+X1zI8Ek9mRxJ4lL+lAMyQ1xIOPfT0fYxiejiwfjylwuLswQ3r3lC4i2msf2Z
+aS54UJRfV0WT+P/7CkTssGHcfUri/wCiH9o9
+ "]]}, Annotation[#, "Charting`Private`Tag$4195771#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtWHkwFYr3JzxLZevJS5ElhEi2knSEkIg8SpGtUETxLCmFKCIVUcpadpUt
++3auy+Va77Vde3ZJsstSuV+/md9fZz4zZ5vPnDlnPkfE7paJ/TYGBgZ2RgaG
+/7NysHuaTqfjG/HX36vNaHhrXSxkfYOO3tNXciVNaZj7+YjE0godxSX1lcJN
+aKhw0NBu8jsdb5zW8LloRMOjPEF9zd10PB1xZWVKj4YaYwuNb3LoyMbBlUJX
+o6FJcMsHRWs6KtjX6fwSoaE3JcjFsWoT7xNd+iR+dGFn5/bpats/OGwfIE3y
+6kJBwq2/j+77jVw32mVFmLqw0LmWhWtwA6mPJxUCn3aizdMj870P17E48biI
+DUsnrkXeC0FYw5NnLzKE+ndgMueXPTEjP3GRgzPdYaod4/SPuHc8WUGiWidj
+2Zl2fHjT9o7UmWX0tgNH/Y9teI8py9v9xyJmK7ybaV2hoq0/5QAtYwELH7oI
+fj5JxejKiZg4p3lU5DCsdNtoxbKhgzs+is5izGWRQYcjLSjGraFpmvAdK3jn
+ml9ZNmG+dIjT6NgUOvco6dlKNOAQKU9YRWUSFeKz2Us+1aHvv+vaxw5N4tdQ
+1WOU5Dr8Z0TjxnHRSUyk3ioaflOHxr8peSc5J9Hk2qHAxUd1SFCY1dSdnMC9
+4laB1Ct1mJQobW/+agKNb3vz3NpRh3Y+yZl3f44j920DqY1rJJw4FK2ARWPY
++GI5fT9jLUo/SJ2d+jCGL0zmOh4t16ArpTCL990YLp5+qTv6tQbX3GiiDmFb
+mGyJ91trkKOYf9dOmzFM/N60diK2BuVPvV26zD6Gnn2MB5sVavCeWWLBT4tR
+XI6LDEu4RERCWs5t4fOjGOOtE5J+lojMa3hIX2cUNRWkZFPUifjs7XBKvPwo
+CrXbcNwRIWLSkEi0NssomuyeVg+eqsa6GymekdkjKC7h3CvjUY08DzJV5BhH
+UMGxbH+VPwEfFx0kc68O46AvcyiPOwE3ZtMvLc0MI7PA9pELVwk4ap3mW9Iz
+jPqybf1FpwmYfyqZqJk7jEPT+vFkdgKasMSfu2g9jDJ7Xn2QFUKU3CPSwnBv
+CO07KWFkgUrkDt0/T3IYwr637in26xW4tiG4K8xkCFn5Ve0HuyuQPCBwiU96
+CE0D0r0toirwetLfE1K9X3D5cl1j8PYKzJJk+2Ny9AvK7fINM1gsw0Mqc4dS
+lwbQPTjLLi6hBB3k/PxKBwfQbXHVNdijBBMluNpb6gew8D2/u4p+CfLyH/b+
+GTuAQRRC5uByMa6uulbrag9gzvYQV3XdYiSWzppNR/Vjko6zbsJQIZqrzz44
+rNKH8ax6qvK9+Rip/KBNS7gP3RwY1vjT8rFJlvOAOUcfmhab5Wa45+NJIbkG
+/y+9KDWwo5PAkY9idJdd7Y970fgIQ8AnlTycJfxI9+juwd7WVOaFtWwM1P5B
+Lb3TjbFCTVf+uKQjUW/GSOlqN5o5eD4vmktDBsPvrdmG3djiJD3jfTsNfc2+
+NSeLdqPc8HdZ1lup6OUwQQ5vpqFKQInaNptkvB4ySLAVpmEBj5iIrmACpj0d
+gAEOGnYsB9tQNuNw/EV/1YWVLozZOc7C+CUWbd/0Vpxt7MLmeKda7eg3eDmr
+q0TZowtvT1SLP5mMQoPmllx2cidO2Vmzee19jKHU5sNB+Z2oJSs/yRweiOTO
+puzNuE7cpfjSib7mj6cHGz4uuXXiJ8XWrlU/bzw5S8oY3NuJYqt+flLBGijP
+XZWUd6sDV4ufr4Y+eQR8ptkvLvG3Ixtxp7Xz5DvIlwgrO83UjnLvqk6tZb8H
+43XH8SNzbZjN9FuczycZQhNEjnHUt+Fp0yESM28qbE5FDZV5tWGdrr7g4IUM
+mLx/T24fjYos18onmWVzwNUoIqZSioJ/JUxd7t5WDBnL+jPRjBR0BH2vKb9i
+GH3DrOHa24oCbTNNmX+K4cK491ehJ61o9plULf+rBMDHSsV/qgUlWY4qzP4p
+A+5kmU7N9GZULjVidhZCyP9J4iIfaETdPatjVdQaeJb1nnhyvQHpBxXY6AK1
+4Gzl51nY0oBMi9puMva1cKDuWP97rwYcLvDgkluvhVfRH9Luk8k4uXTv+9/7
+6+CuUoS64s16FKmUUGmyIMOFKZf5TI16HCiK3bR4RwbFOP1kYb56JMrt3bwy
+SYYZJmZ2zqo6PDOtVvjStQGsOrw6p7jqcHkyjrvbqxE03S2dEz7X4iWbx4+N
+rJtBSEJViC+kFscOnXf59boZfvXytYVZ1uJ4arvkS0ozFJyiqPiw1OLxiect
+jmotIMGjuc30Yg0yD/LE9zO3wjaSUGGjTA1OPGqbFlBqhaE7vxxPMdRgjccN
+a067VogZLmiRyyRiZvraro3SVuDIlXzD/qsaVcuPNBheosDkVWYDf0o1Dtu5
+10Tfp0AN/8jmz+RqDO3i+XgjiQK+fm+vjRtUI+9Hpuq0EQqYK3rzW4hUb+3K
+wVJmBioof/23sW2FgKzvhyM8Oakwe26nPCYQsCnIfjuPFBUat02PKv9HwKm4
+ugpVZSqkF9VFf9QlYMaBoR0JGlQIckrWE9tHQIUeXRf1s1QgnGBYVRxBXLHq
+8OE3o4JPSqmlSChiOOu1NRkrKijs+I/IqYjI929Wz10HKsz8d+jg7/4q3EVu
+VmR2pUJq/0T4t6Aq9IhdP0v2oEKf7+7EeMUqlK/jbnS8SwVOId3c86OVKLuS
+LW7pRwVN9K5miajEYyPLi6mBVPCyyWgvhUo8Y2Y+djqYClmMvWMusxW4oshD
+OhFKhS/v2VdE4iswb/ruw7CnVODVPv4X7WwFii05iSg+o4LOhBN/6EY5arDf
+Jyo9p8Ldx7EHT2aWYzjRLCliC2dLNqsuXizHwKMDnGe38Cj5t37aX+U48Z/z
+XbuteH4nWcvLhWWYaP/boXcrv8F2KxfOa2XYyXTmVt5Wff+Pzx4Qecuw5Po3
+rZmt/goM8blXdSkKv3HOCguiwtTsXJL07VJkL3DwjfCnwr4XwvlfhEpxQTM0
+jX6PCsZHztdEtpRggW2WZI/XFv/tAZ06viVY6NbAJehGhZL/8ic2pEswjE3Y
+j+q0xe/fYz+ze4tRrk4sdfkqFYSLdrFdDSnG2dJwDLOkwpM1D+mmiSLs+bXA
+vs+AClVvUtX8oopw7ubc0h4tKiwepxkoahVhSNdN7ShVKly+f/RWbFIh3tXy
+/8UqToVnQtf9jYwKsXG03PEvASoQMSaCabMAjbp+aIVtzZP0to3PzhYFW/dy
++Lj9DAWskqVJ+zkKME0gJr6gnQKR2ha0jpLPaDex45N4CQU2Hlesqe3+jL2u
+rGMB/hRo2u6nvqMtD33fjQcWsVKA4VPOOYJfHibE2mykfW0FpXPD1h5yebgf
+QXOsrhXiXpx6OBCWi2NpWnymga3QI8327FJ4NgZ/zopMW24BDZcbudXTn/Cj
+BM+jR5QWyMhpbJfS+4Q+eSHTPZkt4KMUzr+x7SN68VZ4z1u2gMBJ3ndv72Si
+skSigGNlM1w5v6+g/2oK2ixLilo5N8HM0oqqZ20y7qDtvx2k0QS+ryjIKZ6M
+JrTLyY58TRDX/7Dp1OQ7jM5fLHSvaoSCpnaSUVsCxl4RMF/f2Qg5yzfFpvqi
+8HjX5yqfVDL4dx7s3FtjiDml6XXiZBIc4hp0YpFVgjb+JlHztySgLTxM5F4z
+B/71n0+jb5Lg3kudRmel2xBirH7yKA8JaoSfBMdzP4Qb+Rc11CxqwdFR2qFo
+MxJKpXSPnlkiQinHvS6iZzI8WL7u/kyVAEmyfB05oilQara+ELCdAI+Nc6hx
+lBQQaA0X1SpHMH011uQllQa5nraFLcwI8yIGROnBDKiNDb0vGVcJEqqCOZHa
+2ZD2JyvSYaAMGj5ba+c9KQD/8XFKfUohnCAdqpEcLgCu1w+/3jcthFza+qkE
+lULYpVot9ZK5EF6tv4SwsUJYVpWHPvsCuAbk4/bqxfBrLu9cx6HPQG+UP7Jn
+oRRIT1I0ZJpzQXmUUSjAHOH1SGfd09gMkCu7uCCfidD2IfV3ikAGSER+qh1e
+Rzj64N90w7fpsP3dR+UkQwIkNpQYGsamwW9j8wH6LAHoI9ds5pNTYDA3RwqP
+EEFtvivqH0oSJN62qlUvroV5xixBPq6XEGfJnh09VAv7f7OnOcpFQoxewesf
+rCTQfrkok3UuAl4IczjHm5Mgvf9qwqLYc/CnFvL8WSfBPo/cs3K6IWArv9O6
+4kQ9KB+vPXqqzhPE5svXjxMbwCainj1b+z76tmgFLf9ogGCjaXaJc/5Iy2ri
+zN7TCN+exBMk1wIw1L5fTMStESb3ctdRdB7hfN+GIatwEzRo3w5mo4RhFUn1
+fcf9ZuDiZXzwRScKL8cW699UpQDTy0xXJpUkPJPc23LOvB1SLN8l+Jz9gPOP
+sh1ILu3QkeZaYxv/AWOuB9LVAtshrkV3B+PcB5ySlT0ild0OMfKbHQ4RHzGk
+xD+KibkDlgS5n/W3f0Jyi6RFSU4HaJ8Iyrl2IBd11zynRFi7QPne+X21Afl4
+2pCXaaWwG4ZTGfaZjRfhM1v2hfWGbohdFtFwZyrGHk+Goc3BbghJlArxES1G
+p4TZMra/emAlZMeKjk0xPptrdN93oQeGOHcbDfdt+UcEjmr97AENf+XmA80l
+6ERbro5U6YOw+sPZmYll+Ny621++eABu7j1MQ64qrD8nuNOYdwTcDQIfh5oT
+8YcI34P2t2NQoptKXGQjoaeHjO3z3ZMgG7Hnzj6beuwe4DZxIE/Brj1jboFp
+DWjjc+Irq8F34Pymx7MZ0YQ1MkdDa1hmYZaiKcx0pwUl2CumUvTmQd76mHfv
+PxQUrHA+zRKyAJFPCPMrZ6jIsLEt0310EZYqb46dZG/D1fOVViTxZaBMcl3l
+ym3DfiXrveJBK8ArGFWVcqkdb1/k5hEd+AkVFeX7RX+2456ocXNmwTUgKcWb
+Sm3pwWyLpPSlO+sQ6+ZszcnZiRfV/fTIlRvwwKNHZSGsE/OsXESP//4FLW0e
+qQTGLlzj0GIqNfsDZbIM2n33utCkTU1FMGYTAkyXK4emupBDbXt1RfwmrKte
+t6uY7sLqlL6zlsmbcPPV4dyYmS6Uv+NjG5u9Ca17VfSM57uQc3/x0z2kTei5
++9SlfLULG24qjPEtboJM+p2MgL+29DKb1AtOAzowGmFBqxhtS4+tCWSfp0NV
+ggQmidMwp78+1fAiHZhVP3m5S9JQKMeh/KkdHcZfh//4W4aGv81SJjl86FCZ
+3vzHTIGGxcn71VnT6HCMPbGarEFD151z9Wkf6GCy/OZDtCYNJbyrTHTy6HDL
+/qG2nTYNo/SvXH9UQYcc8/DADV0aui+8fcnUQQdufK8quaXvpS2chJJ76BD2
+QCRhwZiGI7WqmZpf6KCneSu/3ISGxjE9VQHftrDf1+lzF2jIti3jjMgcHVIy
+znD9Y05DdPbuJCzT4YnK9NjwJRp6delY22zQYXpg/HqmBQ3///8AlqfMEtyu
+0PB/NIzz6Q==
+ "]]}, Annotation[#, "Charting`Private`Tag$4195771#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmGk0FYrXh2UoTcKNrorIFJnr6pralUxlpigy5GowJGWMiygVKhkimWWs
+Do553MbM4TiO6RwkXJnnUJy/d6330/6y9+/LXmuv59kCN50MbRkZGBiYdzAw
+/F+VAu5JOp2O0qYhk11XKei0Lvh8fYOOR4Cmr3iFgjl5siJLK3Tcp9fqlmhE
+QbkTOjfHp+hYQj21w0Gfgmc4nvS39tDRQGFuP8MlCp77vtD8LpuOpWEnV46o
+UNDwWdvHU5Z0/Mve/O5xQQq6tz9xvF25hXONLsq2s91IJu+drLbexN4voj5n
+PbqRt8rp4Jmjv5GP81H4IHM3FtjXsRygbWD34VyR8FdktAqRne/zX0f6nM3A
+8C4yroV5PUdYQ4K+zmRoQBemsA3yRH9bxeixP0bFpkkYe0n2QdeLFQyyrJZ9
+oEtCfwdrDzGtZTz6HILliJ3oxZTl/mBmEe+5LLO6b3agtV+7ECVjAbOadq8l
+aHZgZMVYdKzdPL5iv+seeLAdS4dO7Pt0fBa3bos9M77ShoLs5y4Yx08hbSKG
+5+qrFiSKP7cb+T6Bs2ksbulOTThUn8svLz+OyYre7n68DTgmESmHhd/x6kcn
+JBDqkMMnU15qxzd8Or+bZpZVjYGFJxrZfw7j3XMhXKfiq3FjNv3a0vQwBhPV
+fzOGVeOIZZp3ce8wch6OygnxrEbi+ZSaCznDKGhgXqiuWY2GLHG6JpbD6C7K
+tVdntApFeQTaGLyGMGI1I+cGdxVKyM9JpC5Rkf+RDJyrKsdbUr6+JTQqarz2
+KlBMKscEkQOktgYqZudUyPP6lyPnIWn31fdU/CGtVfNOtRx//rxXrXGRir/D
++6od6suwpmT2ymTEAD64kKZqUleKpiqzPtLy/Ugc/ePOAUIxhv3l06nK3495
+rMpcpcHF2CLJJmS6px8v+F28oHG3GM/ySTX5Dfah7tqWFqtQMQrSHf8gBfZh
+WvsOuWPRRThbNZPu0tOLT2jMbk6PCjHg4kxHiUcPais5yM0J52ON5rTeaZse
+/LzT7+NJhnxk0Jn6StDpQRdpO9GL/XnofeVHa8rxHpT5VLmL9VUeut0aa3zZ
+SsEjxGSTriUi3nlOq7Lmp+AEHvM8XZyL2q1tObsbyWhxM+5bhCoBgzpapZ8Q
+yWh4mOl7x8xnbCS3ELZiyThxVLaVEPUZ1WhNn5acybj5lDSsPfkJz87WZ9CO
+kDEvIkloPegjyrBXJuY6deEdU5/RsyUZyGVMCL12iITXNJOc99ckI1EkuFSN
+iYQ2M5sW522TUX/99qjsXCd+11YMYmZNxqB4gb/3NHSi78TToVPaSbg1ETFU
+6taJr5rMfU/EJ+D4v15SRykdeEuLwc3R6x3e03sTXSHWjkFTFbe72p9jxvKl
+6cgd7cgmmFL7N88zHHnHfO5e31ckz4zaHrB6ildH3f/je/EVT382dJgZe4zg
+aSHvN9GGbIzTDT3JrsiecpJ8Ib0VxXTDnK/vsQTiav2BRqFmTB0f2+gbfgOv
+spJrzq43YRPHwDRlZzjYW/i6FrQ1odCyQZSWdAQIffl7INmtCUuOFxjWPHsL
+byM/pv3b2IhibzbNPUzfw6PTb1ROOTTg/v4ESf7aZLg64Tifea4Bex6Liik4
+psCp2Esp/FwNKNYhAWw8H2CaiXk3W+UXTIy32P2nWypYdLmRJw58wTm7+6Pz
+6hlw4YG5fXxeHVZ36/WE6BGAT0SBj+t5Hd78y0LK40g2/Orj6gw2r0OlCItn
+rJPZkH++Xd6TpQ7NVn4t5DfkgAjHBUZjk1q0vq6v3e5DBMZ6voLmk7XIPsS5
+8HKeCEMev26fZ6hFn9+XAjdt8iB6OL9NKrMG4z+teIrp58OeHNF3u39Vo27M
+tL0zFMK4DbO2X3s1PjB/YHO/qhBqD33bWk2pRnLDudB01SLw9o35Z1S7Gu8Y
+aThxGhTDrO5+GYyvwnrrhwlWQaWQOjD28seTSnTV4tESfo3Q782dEHeqEoND
+PrayHa4CNj6NHIORCpzSdOo0vlcFblYZpBKowLWs0t7Ao9WgPmZ3KGijDAcV
+Rq5nvamBR4HvT5zNLENl1sNFUcs1QBBtVVg0KcOTSY+YV67VwiE7SfPrBaU4
+E5aVf1OiDiZm5xLF75fg66shJfOL9XA0lJ84yFeCVtmSFioOX0Bf1qA2rK0Y
+kx6detQ98QWKHxLHNsSLUfxtrv3N6QZ4seYi3jJWiLSZPCcj/maofJeq5BtR
+iLKR58yuFzXDoiJF+5RqIarYCPgnGrbA9X/POL1PLMDfRs0MV9+2gjjjRp69
+WT6m1m6xfTVuB4sU8fpje/IxokytmJe1A8IumlG6ivPwGoTbyd/pgI3A8jUl
+7jx0lnp/z0e6E1r2+qrs68zFSY2lUqY+EjB8ztat8s1FysTIlIdmF5zWHbZ0
+kcrF1oyPW59KuiA29Lw/NTgH967tiwlIJEOvOOuray8JqJ37zMXBgwLnHO/m
+VE9+RlvizeU3sxTIyG4miWl+xuVjn4jrNj3gefrloQ3GTzi+c7GLeKkXRtxm
+FW5afcRwZrF8lrJeuFSiZ95ckYVRDNJnE0/0weGznEkxHpn4dkZg7el6H/j7
+PaxlpGQg52iLToVZP0zVkMfsTmXgf+LG7/4s6QdjFnnWrtB0fPFP3F1ujgEo
+14gSV5pNw/4Q80BlmwEQClrTTrmchs4X1JkOZw9ASOs1p72ZqfhFP0tWa3kA
+ltnK3jzcmYqJi8aWznJUuGFwNH/A5gNu6nMYad6lwvTSioJrXQrmq9yJLY6i
+gvfb7dshnILdp/eaVlVSYZ9CplrG02S09ftmpDFIhdgB/5bz40lYovKVQ22V
+ChI+5gYD6kl4fSviSdVOGpTxy/e4pCdiw2MZ7/YDNLhUe+AGG2sixh13b4rk
+oEF+C6lerzMeq5QuCV7cRwMye2Cnf1gc6r9W6+NmoMHSFQVagVEsKvuOWhnP
+UIHz/fTExMH3GCVh0XyZTAW54YTlI5R3WFjMK25UQAUDYSMGvaho3HGrk/FL
+KBXu2+3c528ahX/czi1luk2F0OySQwU8b/GHyJrQvb+pkL3sIDjRH4GOO/NF
+7rBQ4asCv/SR2HCc91DxNv46ALM+XYq6N8KwafJrckT4AJhyuny4g68x7wBr
+YtDBATBSYmPc0fQU+21BfnB7f37kE+QjtTp42Vw8JPN1D0gcoNmxSJ6GYFOl
+OsfzPUBZ8E9gXzOFzxcjjdyXKOAVrt5sf/o+LDaXltaYUqCW/8WzOHZ/OKyq
+7+Qs3g23b4vfKtwKAyWlru6kZRJoHne/HqASAWqxyRxbuSQ4QavV1feOhMkq
+Jzat+ySYNLxxZnI9CpQ5K+Iy5zrB4WwoK99KLFzutHniuN4BJXu8umtcU6DM
+YlnC2fErJEpydWUf/wBHWeR0FH61QaB+dkds+wfQ0psu/RrUBsZvv7e4iaWB
+nsdQqFJ2K8wLaNeI0zLgiZqzMPe+FhBR4M0Ou0gANZvWrKX9jbDPvOiT7wIB
+DmbE7dXLb4AlH4Msh/hsyKDpVk2bNYDVSI2hoHcO5Ckw7CURvoDUiZ86m925
+sDm/etP/Zj005VlezH2RDwr+I1Mbv2pAuV6iVnQ4H/5szHJyzKuBHMr6+Xj5
+Amjiy7lcbV8Db9fDIfh7AUx3dbFtDFbDP9CoaKtSBCOHNGmy7VVAb5aR5Vko
+Ab+eLbJJWgX8NbKD77EpwnLSPtHylEKQKjVZkMlEGLDenWenWggiYZ/rhtcR
+XJt9E6a3c/cmfforUacKvKSSxG+IFsBvfVMqfbYKmoT8/owqygNaTrYYytZA
+pKCGVM9GDiTct6hTKaoDmklhadxKOsSa7yZEDtUBx1NBYTHLdIjWzI+a2VUP
+MZ0UxYqmNAjl32MfZ1oPWdf2hy0kpYJfRwHH5no93Ms7kSlpkQLWMvsty5Ub
+4JuDx063nfEgOF+2rljTBG3xz+tuE4PBu031yfJMEzh8F34mGfcCKFktbASe
+Zmg+ttSrEvwMgmwHBAWcm4E7W5GT2zkA5vs3dHbxtwD3sfjgk/VuUFmvkNz1
+byvE9M2yBHyywuvviy45KLTD4VqmBXJiKOZ7QLewbTvkaC3e5/J9g2xXGyyH
+QtvhnUT6v1LmYVjN3uNiONEOa3usJVc5I/Cgqpde7OUOcCKeZ5Z8GIVexTGe
+/hsdIFeWwpTAEI9aKX1tuqYkeFdeNOook4rzTwm36h1JUG+wS/Xby1SMvhNA
+VwogQfdlnuCpyVSckJSUFSOQgGsh0rUxJQ2fF/tFMDF3wTDtjxvl7BnY2CZq
+VpzdBecafhRr9mahxprrhMCubpifzPTM5MhBNR1OppWCHnAOiSzLGc/HV9a7
+F9abeqDDkb6ZzlqAva4MQ1u0HpARLr0cIF6AdvGzpaw7e0Fk+HXluGMBvppr
+fnD0ai9U3Wcbtl3a7n8TMKK62gtzaJNtt16IdpTl6jD5fpgWUItOXyzG15Y9
+fjJFVLjyISz2wzZPB04rw3grFUr/1uwS2+ZtH8/kzfcjVFCMMbONHizHe+GO
+j3ax0cAg+F9+uSMVqNvA5DL4Dw38WXmfmoVXIJu0zO0QzkFIILgWJflW4qut
+5zoTjkPw2fvamq1QFTbo8u7X5/wG8sIE5ezOapwR4PIhxXyHwUPdOYSEOnR1
+OWn9mnsc0kV3Bp3fu81VVHbDW40TYPXaby7XugmtPJX/26U9BeTjh9oNTVuw
+9uSZoFqWWVDuDD4TpdGGIrvLJz5ozkNSTB7LybmvyFtur8byfAGsQ9VDvpzp
+QIYNxswHI4vQUuLWbLvegT8NKizqhZeBqG86yZDciQOnLY8IP1kBr3Mk21M6
+JLxvws5xnLoKAZu+LUxTJOSJGDVl5l0D++XBhUNuXUgwS0xf8lgHmSkZ+ioz
+GU1UfDUbKzaA+NlKNSWAjLkWjscVf/8C9aPuVsc2tv1vjypTyZVNiEtLlKS5
+dKNhp5I8b/QWyEvqv7w70o17lPZWl8dtgdoXkzuao91Y/aH/snnKFrguvZgS
+Ge9GGQ9P6/eELRgvmJ0c+dGNbMeKQnjqt0CaqNh5daEbmxzkvnMtbkHNaqaJ
+FMO237KKhbJp0yHhYatIHC8F15zXDhMM6PBoSO6i8zEKZg80pOqY0IH0OGO/
+mgAF+bJvlYXcpANbskLqlBAFf1/5ML7Hkw4DRgqTpyUoWJRyTGVX2va8StZY
+kSIF7+2fa0j7SAfuoPXOQGUKirhXGqrn0oGnUNbhylkKRly6cedpOR0sFzqy
+Fs5T8MFCTDhTFx0OP1oxEtGioLiZHV9KLx1q8gqJi9s+/q1OIfPCIB3GGjSq
+KrUpqB/dW/n4Bx2KBi5PXNn2d1bGDC2BOTqUf//JKGBIQbR3J1ct04GhZ6x1
+atv33brVLa026HDioJx64RUK/v+/AH5Mrt3zM6Hg/wC/QLd2
+ "]]}, Annotation[#, "Charting`Private`Tag$4195771#3"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmHk01I/7xYXSgrR9WolItkikVDyUKIoIiaRdkUgkWUIqISRlLWtlHdtY
+Gx5r1rHM8h5hENJQDZJCMd9+5/z+uuf+f+8593WlLjqbXeHn4+MTW8TH93+q
+DP+N8Xg8FFu/I52wJNB5Vjpodo6HNyvWiWlZEJhXqCo7Nc3DVTWpe1NPEbhb
+7sTFka88BPbx+psnCdy7KrC7lcVDPcG4Ln5DAnWGJptjc3lonrWHKqFFoNlj
+apaaHQ+/bN5iu12aQI/2QCf7ygU0ya5yvMZlIoOxYqz6wjxSwm/pHbrLRPEq
+57V7t/xFQdaOpUOCTCxyrFu8kj2HjntGbsaEMfB8qOrEx4BZ3MSK1/sixMCZ
+SK8ghBn8qe6VFfOAjqmifRtjPv3C60FSQWrfaJhgqOpKfzKN9ywkDH2NaRhw
+48Jd+WM/cd4hI1e3oBO9BDI9XL//wDIWNSt4vgMv+LXLEOmTmPyjwLnsaAe+
+qPgck+AwgeZnvjo3rW3H8n454extXAyg7hjOs6CitJjOIfPXX9FaRGw3EdaC
+BQpBDoNDHKyISk6/7NKE/fX5khoaIyjJ2XY9RaIBPyu92I3FQ7jMlKTtlleH
+q3wzNJQXfUJDQ0fNWznV+KhYrlHs9wAKRHfamCRX4xz33ZmpbwOYZyuuI/ui
+Ggft3nqXdg3gvSMZipXe1Vigm1pzKG8AP/H+RL8wqkazxa+MT9sNILcvqqf7
+SxXu2ChF5fPqR0uGoIb3pipU0hhXejPVi73dMrRHLRS8qnz/fhm7F5FI8EvO
+pmCi7EoataEX09N+kdKeUnD1ehWPX/G9KJz2+M8lEwr+/n2z2kCvF73o10/V
+dL7HmjKuxVhUDz7ZJN3b21mOVlpcXxWNbkzlDIk6VZZi5B7fzsOS3ajsP3DN
+KKEUW3aKylgt78ZzO+ZWidwrRW0J5Sa/vo+44/DVcM09pSjNc1pDe/QR60qX
+UVUzS5Bb9f2dG6sL76QSp13DivGB3veOsrssvGEqWknSJmPN0W8m6pdYeCsz
+b1RnIxn5TnxtI51g4cbWNc/ypgrR22K0NXUbC9UKy8x2pBfinaufG5+2Ephm
+td/DcWUhXgtiV12QJFCwWzVwNSsfj7dS85Y1MrBrO6fxzTMSBne0qgQWMHCp
+jIfKGi0SNjJaSAsJDPzuoeoox8nBI+ym7Klb/3zUgreBVg5qc+vT2ZsZGGi+
+Qu/wUBbuEqtMynemo8EqFYUH4hm4zpwUcWY9DW/miJGkj6RigWxI+REBGnoO
+bEj3HkvBk7P2w6rjndig3qXvEp6Cwa+l9i1v+JdT4ff90l3JuMCJ6i+/04kq
+AnfaUy4n4YiPl/IWogP3JvpzjWlxeNPkWUyFfDuOG56NlbsUiuk/Db+9WNSO
+uOt20NeKYByMFdS5+bENXfMwO/i/J2g57PFF4kkbOl8aX2VQ/RDB85yGH4eK
+t+OXPFSc8UGxVEXGoXetyN1mkeCwSQcLftWvbJRpRu1NyxV0h0MhLDOlRnu2
+CauWbXHTWxwOjufuuxdRm9CtZ/DZeFQEyHzY15NypwnPmX2YXYyR8PJF1luf
+xkZstPm8kykfDffUn2mp3WjA4lgHLaFdSWDJcZrI0GnA7KYOgwONSaCWYJgq
+ua4B5w/35IVdSIZvAoLLRCs/YG6P92hadAqco99hcFZ+QKqUaZbI6jdwyPWs
+4+vCOrxI552X0csECVlNiXVBdahWxNMJn8iEPx/XdYacrUNqS4bAjddZQNZt
+1/BcXIdZPuTEqIVskF11iN/8dC3mfSC6bTtzYXnejthlf6oxcKxAKX2oAN70
+fH46GliJRtZqX0fiyqDb+7/EV2qVqMV1puUsLQdRCYM808EKbKNPt6V5lMOd
+8+m0MqhAHx67VPvMe9D/7LA+eO49xtKsXv1QrAAOdzxJwaUMj5qM7nQOqYIt
+EZIFfRJleIrzbGc1tQpOqprWRlJLsVdM8Mi0WDWU3i74PKdQispuKv3icdXw
+ZMZNoeVzMfKWrWrXLK0BBf65QkcbMrJ2daXtV6yHc6kK9VuXk1EtQUby6f16
+iNSzIeilhRga2rfFllkPc48oMwf+K0SlM4urCx9+gJYV97WEO/NxbOW+cuU/
+DcCXk2tcdT8f3a53dlnbNoK68YCdm3I+HhqPPZ1S3QgJEboBvSF5eEbkYceP
+iCboUlgaduYpCQ/clp/aZ9wCOk7X86rHcvDrqKI+o64F0nObafJHc1BOhx5V
+pt0KnupP18/xZ6NZqcs7Iy0qDN7hal48n4WHRaaGfGqoYFhmcra5IhNHw8PX
+Cx1vg03aq5Pj7mbgd85ykRCndgjwu13LT6Sjs+/wrJJAB3ytYXx2UEtHgzht
+kZdmHUAxiFY4wH2Lgzd3x8T96QCZ4JnjqUZvkZnFV8Sx6ITQ1jPOKzLe4Ezm
+SEUyuRNsTbeQey6l4Tt50X2X/WnwbWpa070uFdv0It0duTTwftmOottTcdpY
+7fb6i3QQ1sw4kv4wBZNDl4zrsOmQ0BPQojuSjMrWu4OGzjNAyfesaY9+MurH
+Kv3axmXAe0kNltu7JLzma25x8hETyC20epPO1+gsOpVdwiaAIfaoMyDyFaYn
+m3JiklgwZaHJLjqVgMcjFQfy3Ltgdfw3DmdtPNaeNCNp2X2E3QOJPzcTsXjK
+087Gx64bTLef4jOJjsGluVMs97s94OKwRDjAKhq1slv047N6IffnDWlOdxRu
+F+jQ2ni+H9o0JVU2JzxHux216bNOA8D1pe83to3EAT3viOTdn0Ck7pG+v8Qz
+rMvWFpWd+QRWq93SrmE47hN3k3pZPAjRCd3v23Sf4oaWb0Wul4eAkNWlq9cF
+40SUyzz19xCszX83FqcfhEvdh8vY9sNw6oAo/6Kmhxj8VLIokjQMkfVuG+2N
+HmB50qXpjKZh6DDp2UWl+qH5ffIIq3wYJMgPIq4meaPlTAn/ysfDEN94Ene/
+8cCzskIuB/cMwwa2OHchwxUTfysKTLUOgeIQU/OlrSNGydgQ5yyGwI8hx9hc
+ewJV5I4dSDMZBKWVbIfFO9Xh8nye/3zTJyAmAxLFZqwgVKJN8qD+J/B6rt/s
+qO4CtHOFXV6GA7Dg6xmfqOIOwt0dvrLp/eDnkH2DrnAPbuu6N2790Ae1kk8e
+vxILAL/c54J629gQ+HKby96wQKAMqqVU2fWCvjDFqnPFY1Ckmud0v+2Bxt9c
++cVCoQBkr0MpJt0Q7BS0OjEwDI5F5/Uo5n2Et5MRPlv8I+BuKiVxzYaPYG+v
+cLV4IRJeC9ASZ/+w4Og2D+sHWlFwZdETjxUeLJBj1xqf9H4BQRR+IuU3AWNm
+tnvHZqMhOW7u+4gQAc0imYol+2KhkukvNfqSCVmNv7YGesTB85mcwk0KTLih
+HbFUYjoBiqvmBxdsGHBitvfvmNpr8Nfqeblvjg7KZPnJEtdEuF1C6iPF02Em
+6tM3uZkk+Gg/sP/ZFxqULfdi1rinwojimc8Frzshaec6eu62NFBtuaJGN+qE
+RydzOxLa0+DMwM0o23/9M3851HJH/i2stQTezgsdMCF1vEaBnQ7ioz5SFk/a
+gKU3guuDM+BYTpj8qEAbVNr7VQjuzQQ7zYW2fH8qhOSQS/sisqDs1mMv40et
+IKspnhupR4L38JhQyWsG4bMl2fcnSXBxwV2vQ6cZpnxNM2+8zoVFfWenyfQm
+OD9YYybtnQep7awVP3iNoCz3+8Q8Mx/0rScvibg0QFOhnV7+EzKEvE1Y655U
+BwfrlWp3DJCh+MzjJbzjdZBHzOq+1iiCtdihxpirhZezzyFkqAguty+j7bOu
+hcvQuP+KVgm4uujs58rWAK95l+rGyTJY0tYbEDKI4No7nxtuUA618qf7DG0R
+Rr43Ky95XQ7Dmeyl5I+V0Cp2RWnK8D3cm/aNtGZVQJxl7A5qGgV+O97t/jr8
+HvYMLpLwt0JITzGnU3RLQbn89OSuDITzrFmuUXcJyEbm1A3MIsyzD8iwb5fA
+iuTsPUknqqDmsoH6j4xi+HvSqpfHrYLN/Pwjl6WKgJ2XK4+qNdAgvMmuWrMA
+El3O1WmV1EHbPrOh3RMZkHB2GelFfx3Y123J4JplQMxRcvR3oXqwDnc9RRSn
+Q4TkcsdXVvWguku1bn3AO/DrKFo1P1sPIFZl/X37G7iwS8SOcrABogYmnX0S
+k0B64v3s/pomOJxmWJD0MAK8qYcDf35vgg8E1bHkcxgQmS2ipI3NoGDTuLW2
+NhSCr/RIS91qhituppY3goNgonvuhJBkC3BF1UcbdPygsl4zhe7TCvFWB+SY
+67eBdXyJ4Q3Ndmj2fMds9HmK5LvA3H6lHf4EXCf6DoejqGWDXX9EOzz1tbtf
+9SACq8VYbmacdlCqNDheczgS1x72Mkkw6oDd609eTSx6gV6lcZ4Bcx1wnX2R
+5HQpAY+lfqQaW9FAoSDNWtcnDScekq7WO9EgXy7zlnpvGsZce8A78IAGG3It
+I8v2v0HOzp2q8iQaeBbOfvL59QaDSv2iBATpoC09GrPs+jtspO6wKc2lQ0jt
+Jb65/ZloMOPOkRJiQqvSgyeiMbl45MRqgekiFgTHFotMksgYdmHZ5GwTCxgb
+KarQScYud77+BTYL+qpaI12myOjwmlu+dEkXKFELWnz2FmHYeLPrFssuEDiu
+cNCgsgi7nj0YPPyrC/4qb6iq+FCMDsTP6kiNbrCplhK+UFeK4XYsv10lvfDq
+i735i3sUfPTtIIy09kKAx1Nd01gK+nqmzMcP9kInU37drxIK3nzudE9IlA1G
+g/2zcz8paNwg4NZ3mQ3JfirO004VKKqyyz50dR+QBdI/NNlUYthC0AmOUz/w
+xvf/GVpThQ3G4iInV3+C2Of1GU9qq/G71DpfWtwQKAXL/1cdVYfubooXwv8b
+Ab9HW6MD+BuQ1StmdrWRA5w0dYc06yY873nwi9Dxr8B5JNXobNaCtYp7g2sX
+c8HrqyNf5iEqyi6jcNKOTkD/iMzv8bE2FKc4HlkcNAlaa/zHuHs6kG+OP8N1
+8AdIX37v1vK7A3+bVpyr3/4TNj0xv/kiqRN71O02bw+chtK5cIEfRjR0OS22
+alvvL0i31xoaHqXhxqhhK0HxGcgS8jm91p2OJJukd1N3Z+GvgHaFsCADT2vd
+P9pYMQcvFl+5Sg1gYP45p237//6BqrmaOevZf/y6/LBAmcU8lKrK2Mm7MdGs
+84CGeMwCTCo8t639xMTlB1ZUU14twOLSplspQ0ysTus2Opu6AFZkYWX/z0zc
+ddfzQjxpAab+7EvUGmWi6NaS0I31CxA1kWNfMMHEphu7h9b9WAAd9dHsEB4T
+dZbKR4ge5wGlZ9Pw/BYCZ27NbCKZ8sCEtGYvTYL4t6sb3pw4zYPazXwab/9x
+kUTu1fehF3kwZaS074QMgX8t0kaWe/KAt2GTabQigSWpW7WE3vIg5vnp8c37
+CbwpMt7wNosHOpeDVn49QKCsR6WZfj4PnqU+ZpdpERhlaHvtIYUHNX+uPLDU
+JdB1Mu65AJ0HzPC22ZCjBCrYOEikdvHgVFViiJUhgZ/qNDMO9fFAaEy2VeY4
+gSdjuir9R3nQ2tJ0hmJC4FL+9GNS4zywypV499iUQHT0YFT95IHyUHyq2SkC
+7zD17c7P8cCOZWsibkHg//8dsOi7X+YXSwL/B/POLlA=
+ "]]}, Annotation[#, "Charting`Private`Tag$4195771#4"]& ]}}, {}}, {
+ DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
+ AxesOrigin -> {0, 0},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, DisplayFunction -> Identity,
+ PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity, AspectRatio ->
+ NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox[
+ TagBox["t", HoldForm], HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"c\\\",FontSlant->\\\"Italic\\\"]\\)\"",
+ HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :>
+ Identity, Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0],
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping ->
+ True, PlotRangePadding -> {{Automatic, Automatic}, {
+ Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["h", {
+ GrayLevel[0], FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "h"}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, {
+ 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9,
+ 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, {
+ 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9,
+ 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9},
+ 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9,
+ 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9,
+ 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9},
+ 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9,
+ 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9,
+ 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9},
+ 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9,
+ 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9},
+ 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9,
+ 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9},
+ 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9,
+ 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9},
+ 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9},
+ 3.887187744969038*^9, 3.8871877776872168`*^9, 3.8871880220364237`*^9,
+ 3.893237910849724*^9},
+ CellLabel->"Out[53]=",ExpressionUUID->"632547c6-cf8a-4755-9e26-5f9a8c901698"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Magnetization", "Subsection",
+ CellChangeTimes->{{3.893240903148159*^9, 3.8932409167324743`*^9}, {
+ 3.893240952846768*^9,
+ 3.893240954869104*^9}},ExpressionUUID->"b265c475-5c2a-4729-88fe-\
+bb9de99d3c77"],
+
+Cell[TextData[{
+ "In this plot, we show ",
+ Cell[BoxData[
+ FormBox[
+ FractionBox[
+ RowBox[{"\[PartialD]",
+ SubscriptBox["u", "f"]}],
+ RowBox[{"\[PartialD]",
+ SubscriptBox["u", "h"]}]], TraditionalForm]],
+ FormatType->TraditionalForm,ExpressionUUID->
+ "9ccc58f9-7198-4f0c-b1fc-1a083a734169"],
+ ", which is the singular part of the magnetization (modulo a constant \
+analytic factor) near the transition. Notice here, as in all plots using this \
+library, that ",
+ Cell[BoxData[
+ FormBox[
+ RowBox[{"t", "\[Proportional]",
+ RowBox[{
+ SubscriptBox["T", "c"], "-", "T"}]}], TraditionalForm]],
+ FormatType->TraditionalForm,ExpressionUUID->
+ "6a836779-b628-479e-87a4-c2772a03c8a2"],
+ " (the negative of the usual sense) following conventions in high energy \
+physics."
+}], "Text",
+ CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, {
+ 3.893240875195952*^9, 3.893240882915715*^9}, {3.893240920042145*^9,
+ 3.893240927292811*^9}, {3.893240957814611*^9,
+ 3.8932410410866423`*^9}},ExpressionUUID->"78afd124-f9bb-430d-875b-\
+072cdcafc777"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "1", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]",
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
+ RowBox[{"PlotRange", "->", "All"}], ",",
+ RowBox[{"Exclusions", "->", "None"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "t", ",", "\"\<\!\(\*StyleBox[\"M\",FontSlant->\"Italic\"]\)\>\""}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "->", "Black"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, {
+ 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9,
+ 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, {
+ 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9,
+ 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, {
+ 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9,
+ 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9},
+ 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, {
+ 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9,
+ 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, {
+ 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9,
+ 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, {
+ 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9,
+ 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, {
+ 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9,
+ 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, {
+ 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9,
+ 3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, {
+ 3.8871882148709106`*^9, 3.887188249270643*^9}, {3.8932379251256237`*^9,
+ 3.893237957397731*^9}},
+ CellLabel->"In[54]:=",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt1Gs01HkcBnCxFCqyyUruaqVZG1s6q+zjKC2KomxKLsOuLSrl1LqVFK2p
+rbRkV2i7zKhISoWY4edaQ6RQFCWmmUbWbczMf1jmv7Pn7Ivvec7n1XOeN1/L
+sGi/n9TV1NS8Vfdf2mPRJ5qmyVIXB/tnIi6iJ61Zk1M0USqNRMEjXNx74LBs
+QkaTpG7BU4mMC0db7zDREE2OpvnY2mjysGZB6puWLprkNxf/cMeaB1fBePOl
+uzThKG+aBzJ58Etrvf1NCE2ae1P8Hfp4iG1L3f9ztZJI1m1zWSWsQmen7qda
+5gxZ3dZuwbKtgWlN9MI1S6aJTVBVn9eBWpRGNWjqvZ0ibwtubUh7WYfQsw5j
+r09OkkqDMPbN9AYoMhJZBApSfixfFhrxGOz574yz++XEfubY9xr3+Mjzcojp
+OC0ji5+/Kg33eoqT+5hxyz2lJMVlcbPQ+BkSNQpjY4YlxJ3x/rpNx3Mwk9ts
+Xt0aJz1GWuOTde3IqhJm50WOkVZB4Ok6RScq+2znFlmNEG3lwejKx12w1nd1
+2/7XENF+4ZaT3PEG9+1YkQMCMemNbfGVcd6hr7HEwslJRPivYz4ePtwPISPL
+kZQJSHOS+EEbR4AFSQVO9rP6yddJfI9JWxEYTqOM/IlewrI4pe1zRoyUDcPP
+K+K6iKjVQHlt9hAMtxdf2GnUToJEZ/YmewzjvrxRj2/TTKRdZe4RdqPI7xGe
+G0ytJtHO4sKQhDEE+S552BPOIazwTXtdVo2jQifxZd0RNg6uc8hldoxj9cAs
+sxMBBFfUv0pkREpgPcaddK5rgt0ky6ddKIEn+3WrT0A7FJqFeqd2T8Dd20BD
+VtqF3PVzTTc2TCA9pCt5ZXkvvis8KcsykeKJj+m8rQb9aNGqz2AfkmLY0jCp
+PUeAX9+7tJlwpThyeAUzfZEIkp1R1zgzUnT16vtF8MWI7/vD/zdXGULj132c
+vXkI9Odba/ITZKhfseZMveYIUqZc/FmlMizT5ok5HmNgdYvPWwzKYMqLctdk
+jSMj5VXfhy/kUJtSL4gZkIApSzYTespB+VYFNy6VwnS/zyW3I3L0rAoxWZoq
+g1izX2/0mhwHd+gvsOqVg7crgFH0VA7jix8CPjNVYFq/fo9gTI7iwKs3J+Im
+4ZZcJU0zorDD5bgHv2oKRcHu562cKZQE77dynv4HcqdtNU27KCh01mtU+M+A
+lZNZIDpKwe/FWifTbCUi/Fv0/syloLNWt5Z3WYlGk+tlpnkUajlvNu1mKzGQ
+tdCTo/LKuHhmbrESz34cXFlymcJ88/Kzxo1KlNCa85qvUGja5ygwlCgR2HN5
+mmJTcJ2z/ML8zTSua7kJNxSp+g8pFhf70riUOaLbpPLdnif53jtocL9UM/e+
+Q8HsbgT3bBgNy+JIHf9iCtP+HJFOPI3CDC0q/B6Fcra5y+wbNM6dz2UkPaRw
+YN7okxu3acAzasmsUgrLYqv9NpbQ4H+iFSkqX/QK2nOKR8MsIT3udBmFmPGc
+TI0OGscD/v498xEFu8BIM3Y3jTtDaWLDCgr9Dd8WuL2jobvFiJGt8tbs7uoT
+gzSM+LYJeZUU5qjf8rQcpaEeV5ZqxqVAomI7a6SqPYwtR6+q/MvLjSGhUzR2
+FylCrXgU/v9fsOM+cuSo/C+985py
+ "]]}, Annotation[#, "Charting`Private`Tag$4205127#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwt2Hk4FIrXB3CRiEibuIpICNlpd6yJiJTSVdZLRSkVKkJyI5G4kjW7LNl3
+4UjGvu9rZCdmzDDGUjO/3ud5/zrP53m+33P+P8LW941tmZmYmAS3MDH935QB
+3nkGg4FGIWdO0F1fwf31w37rGwxc+pCzIeXxCnLy5cWWqQz8co1++4bPK1CQ
+MLCe/snAUU9nQ8K7V3B8l89gcx8DPyyffFCc9grUJsiNEdkMXFHVvC04/AqM
+fVsyFC3+5J1KM5g1fcG1zeferUo6Tlledvfh94Pubs75r1a/0ZemT/Dl9YeD
+Vff3Hj/wC/1Ijxt2ygVAoUMN686RDeTbQqoW9HkLlgHySwPe66gT85HjWf47
+WAtx80NYwzE+JktjtRBI5P7OH/5jFZmNAoy/KYZCtJ78w67XVGR2fDHb/jgM
+RDn1Gtt9qGibuS119XkYZDRZi7R6UnGHB0lDxDcMyvRDO+udqZg2YSv0JiIM
+Bi7SFCqtqFh6/xlLUmUY8F6uWE49SUXrE9930rZ/gCAzXWePuRVM3JyTPZ/8
+AbzvWj05qruCHbJ1ckOkcPj+1jy6THMFHX285AI3w+FUrlnVBdUV7M243KbD
+FgEUqgm7o+IKFlM3d/QJRoCVp1543sEV9FbJfW5+MQLUQhRLTlOWsTMjeyt/
+dgTQi1nXDKKWUQzfBj93jQQ3lnTXh4sUZJO54acsFg2OEebbLGcpqDb5QdNe
+MRqsZfe8N5ig4DGC4pdUtWjQM3PPkxig4G+Bsm2aZtHAl39x8XsNBbffZRIl
+vouGAutl6wvRFOQM1NUVp0cD8euZi6IXKCi5d9HHcSwGrLzaRHtTyZjpZDDW
+UBsLVwdiVUcSyfjz4deRh72xoKfwwHTyIxmjxA9vik/HgtIkTwAllIypJY//
+GWKOA/bzxsvcL8g4muPAVSASB1k7e77qXCejbJV8SIhNHGx+HDQv3U7GpTkF
+F6X5OHhfMRUebb+Eeqylrz/vSADzJ5Eex22XUPti8SzX/gSQUDT8p9NiCZ8R
++FOfCCdAWWqJLLvJEtL11FzsVRLg+39vah/BEhK9n32oskwAcXv5Fb29S/jJ
+39dWvTgBHh7b+EhxI6HR1fqZBYdE2JpoYy/hREJP3b0CIa6JEMbXomxuR8KZ
+SSNtjZeJ8IUlrrnBiISyb+eKvkX+yQ9qb8QdIWFvYVmMfuOf/KtgE8M2Io5k
+b1F7KZUEZaMSOz6LEPHKNXVe0moSuJ/ZkhnJR0QrYsikDEsynI0YMHjNTUTS
+uXri053JUGXsH2S3sYgCfqwkeYlkqCP83C3cuYhfvMqkpf5Ohu6MLP6wF4tY
++eXcNcOqZCC6Kol7jS2gTryIUMP7FMjp3lHv2LuAu3KZrgYmpoCT/NTtm80L
+SP14v9g8NwVW5t+nnypZQO76cNWjLSmweZN2jBq0gDkBzloWrJ+AXatMyR4W
+8JmlQ5X5k09wmEdN48rHn/jjrz3nZe6kwlu5H8/s//uJk3IiShzPUmHNyDvf
+y+8nblIDbNb8U6E5uEY08+FPrGuWW+PMTIXHe3TZtun8xDcx7dTdlFSo5TVu
+LibNo6cEf0+JZxrYH/znqoD6PKptNVxUTE+H7rOsQfIq86hV1Gf1riIdVM1T
+6nSk5rFjMXOUuSMd9sTOnni8bx5Vh4o8JdfSofzQPYGWuTnM2sYs4KeTAdyi
+LmMeIXOoR/qbGDWfAXmSfvbjE7OY2xHrIqOZCUIdlqVSA7OYdszhquT1TAhw
+Pcnu3DqLb2KF96rdzwTbmvlkttJZPMmV01oalQl85gY/pN/O4o1gpf55aiY8
+D95t6npiFvldNvfdyc6C82vR2jsCZ/D80bBhzgM5UPjROdTEewavm3XTOyVy
+QET74sRH1xkkWjr8SlPOgc1ghpe89Qyub7dd8TXMgSwp6/Krx2ew8qJs2zaf
+HNhrIa4Y/2MaRbQ2Pkss5cAoIfeQiso0FhcfyWzpyQX3y+taJ6SncUgq5Tph
+Ihf4fqjdOSUyjenZPgdayblg9KstV5V7Gt3WPK/u4c6DKgWihs70FOqz6VTd
+18mDuFhJW9OwKXRRTTP1r8gD66eJac9WJ9G7WuHM4ZJ8oG/72eK+MIm9BpGH
+ntbnQ2SoAsVjfBLH9h4WmuzPh87sr6detk6iX2XF7/X1fNCcHm16kzKJF7k+
+mR49WwCilw8Qo69O4pYs60sldQUwJf1eAYsmUH/3k+piYiFIeiQTZzMm8Dax
+6UQ8SxE4thWm746fwMwGycI0viJYc+oVsXszgad+pxbzaRYBR/H+PVyWE9je
+EN/oHFEEcuqRy39vn8DUHgEHW/1icDOJLVg1G8ch5dJytpYSqErJfnDo0jh6
++QUcvDpdAlvXUFrv3DhKtxr7NjNK4G3kWFKM3DgaZUfVKyiWQtyo8Hst1nGc
+6ChwIUaVQu2dJOeQrB9IuFzN6+RcBrs80lRktvzAMIMDxXoXyuFVkUQ9D20M
+27uKz529XQ4bxE/XlxfGcPL7MZ+b/5bDuEWKe0n/GHJxCflKVJVDnnpitUbO
+GPq/f31t+XgFGLPGXLxmMYYnCd65BXKVIM4v3MLkNor6Jn68ZNEq4PEXWiLY
+jeLOLMN/M1SqYG3j4J43xqN4Y0Wv9uX5Kqgf/uv6PslR5NzKXvv2bhXcjts7
+dXTgO5J6P+7lLaqCdHH238bHv+Plw8c3xAy/grQKSTp5eRj/62GJtIqqBjsZ
+T8/SkWEM2LNH6Ex+NcSK7exsqRtG5rWbrNpN1bB7v6zratQwHi+sqp3YrAYa
+zfGrjtYwuokuHrS2+AbVpUST+dAhfNakFdMqWwO/cj1S6R5D2JIX86JerwaU
+07k3d98ZQrFHtulrtjWQGikTd/rsEKo516/8jq6BQDfH+YCpQeS4/GElg4sA
+pmeJHrIqg1hx75vw/g0ChCh7dGgeGsRjZwl5pXy10HSMW9SUYxDX1ALIUcdr
+QVVQpsHr+wAmDx7hFnGphcOMe3s6Xw0gmTlITWe1FohVi58e9/Wj75Vp7yCW
+eniptdhe+qQPdW+5R+hfa4Tq8wuGSjZ9GPY4hBTo0QhMBj9bswz60L+pml80
+pRHcTeaaE0X68JQ7h77xaiO42E3VBzb34uCsrFprZBPc9hupsjrUi6nBh9w5
+qc2QEjAMwxy9aJ4R9ZJFpAUm3w1VXqX24G43zxpzwxawihgov9DYg0Q79RaN
+jBb4O72nRPlxD56UEjEdvtUK+s0tOdvru1EgOzFXmdoG/u3Nsj553SjGpapy
+d2871Hc3ZdGju/FdpZOWq0w7aI80fF526kaD9F/vzti0gyqRkDoi0I2EpqL+
+kLZ2kOOpjMu934W9djvmpvM7YN+VrHfX93ci062E3rWsLsgTe1OmzdKJw/M8
+UdjaBUbrtyblSR1oFjdsX0fsAv+Pwic46jqQeeRebZRsN9BnQ0fLXDow7Gbw
+deuCbph+7iZzoLcdL0lO/1Xa2AOOhsHhFUfbUDi5VT5duh9SV/QW3m9pw0Fh
+M1clk34Yj9iq5jjQijxDSqbsHv1wddJ1RvB1Kx6RFN8X2N4P8NRcxWu2BTX5
+bntxPB0AnkSpbo1PzZip3s7+rW8Q8lYJO+tFGzGJMOys2zgCb9MTqlXXG3Dy
+0RW9HsYIOJh7Ohe2NODOvxVG0pW/g2jtiaEElwZcLeijyiR8h7D3GSnP6+tR
+IbHE5pnHKDxTCj6reLcO2WfIb57Gj4HGwxsOH/NrMPBlgs2U6zgIip0U3OdX
+g4Wg39X5fhw2B/Z1vLlRg8UCdp8b8sehQL1N5SlrDRJfxPG2kcZBbJcG85Vr
+31BnZ10j3+0J4MgRj9i++RV3c94rTDKdhOShqcA5n0oMXesPzZafhkF33tgY
+xUpUpwcbZ+tPA7egTs6l8QrUIGavhN+aBhfL1M5SqMAc7OQSj5mGc1P2+/03
+vqA2p0OkANsMzBJJcZIPSrFI8pPUSM8MSDJv5DuYFWA3p96jR2ZzYJ4oSRDi
+KMCewczy5IdzEKJl1ttVko+rx0lr+a/nYONV+dpp3nycsx//YlM8B02cnmd3
+dOSi/9p3G65d89Avyf72emAWbiceorlXzMPNSwcKhmyScNuY7iuuzZ+wsEw9
+6VyTiE577BTNuBbAPawNuY8k4raE82m+QgsQPeTdpD4dj1mG0inPNRegoKmT
+YNjxEXd8yRaZeL0A2St3D88OhiLxUtiRrzyL4NUt0S3wzQBdG5ZvXmIngvTO
+EXvWY0ogmBOpO8pLhF6ydyzPminwCN1dMj5CBLf/zjU6KD2Aven1ZgvqRPh2
+6LVvDI83pLoa8RKfEuHWLUm7InoI3Mkit1pMEaGUw62n2jkRnBWGtL0zSBB3
+bF9XtkgSJF7ke6pQQoJXRtnt0W1JcEeQs7uphgRXwiaaXI6mQLNrPK1shARL
+wvrVkiOpQL9fV3+ebQnETh7MDtHKgjSNiidHVZagId9CK/d1AbSUjBBbA5bg
+DEH6m/hYAVB4ZfxJwUuQ07uu/lGlEAq6tzCzf1iCsPX/4M1EISiNGYwcil+C
+f6D+lO3ZYvA/U/92pWAJGI1y8vzkUvjwxN9ReWgJlMe3CL4wRSAHcznFiJBB
+puwaWS4NoYkpSDZMjAxiIZk1Y+sIW51uNb2WJANn/GflOIMq2KFxvdFKgQy/
+jEyHGcQqeOFqJdGrToaRnOyjKF8Ngvezdw1akCH2gXnN2eIaaCZaFr8PJ0P0
+je1Z70droPeRSho9igzh5ws+LLIR4OWZiGKbWDK8O8ThEGNKgOfdY3oiKWTw
+ai/c9XudAP/uviP9MJ8MVnJcFuVn6qC83yPSpoUMh5e+rJ+qbgDfA9sWKulk
+cG/R9FlZbIA8ov379S0U6E1v4s7ibwTpH50FcqwU8LcdOizs1AipL1QfhXJS
+YGlww4DtUBPo686VKPBRoJJwMqHreTOsEl2ftMtR4O+oYr27J9vA5XqCZ4UF
+BXQTB1oumnZCHpiaBxX+6f+bZUe41wmcmjMzHCUUCL/9knH6ZSfMmLJd8Smj
+wOyxY/JHszpBWUxn/AFSwK/EK5RlaxeEb/11Qr6BAvUt4mYl2V1w+MYA4dIw
+BXTWnGeF2XogDJc9JLYsg7bBbhZqYR/4fGrxr9NehiCLPi+54mEwn67Yzlm8
+DHUXD3IZ7f4BWuc8fZWFV2BReJ9HZ+QE/Luza8PtyQo4P5ayCuKdhuNCC1nm
+hBXoG+YxtqufhQsFgV2bPFSwfHpmhk3/J+za4Uf3vESFb1LH/b+xEuF2dxKd
+GkwFse3ls0nnl8DMaPJkQwMVDpY7aLP6kSH4ReA5xi8qMG0wpz0cp8CtCaur
+gvKrQLtUYU44sgKC9BLmJfNVGFKyEDjiQ4WJ0n650cBVeHCNZ5fI8Cr41Rzl
+eVG6Cvyhk6ZbD66BZeLqZxhbhSyzuE/LT9ZBSTViwISdBtfOep6vr9gAbgvX
+D4LSNMg1vydy6tcm7LP5zd9sQIM1Dk2WUpPfcLzl662pBzQw7jitcjCcDq1S
+Rs9vvaMBx2nOr+UxdHAydY0g//HXpMELNxLpwKIQEusWTAO5J0+torLocJ1W
+dScohAbcQsUB/AQ6rEL3amEoDRruKkzso9DhSJXRBj2cBmrsR99x6zNgxbVj
+wCv+z32ntb+yLjHg/qV8DfYEGmQP1SUbXGNA95JTWNAfC2bbfQmwZkDC53h6
+TCINfpkkTXM8ZUCVR1BnaTINihOFzrKlMOCpQPnbxTQaOHKR6lIyGDDGnpP6
+KJ0GYq6VxudyGXCulZS5/sehejdv/1vOAAMpx2esn2nwkBz5H0sXA7hcRA8c
+yKKBpJm9YGI/A0xeKgfH//GPmpNpGt8ZoJJUTxbLpoFReH/lizkG7KIHOcvn
+0ICdOVVXmPRnf0xHeNEfo4Nrd9UKA0IO5Hw6nUsDl55zFpYbDCgQU0io+uP/
+/+fAfhtzP+08GvwPkw2GqA==
+ "]]}, Annotation[#, "Charting`Private`Tag$4205127#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmHc0FY77x6VBKpRKUjITISWkPjy0lEpSysoKhYzsIluEkJUQQkJlZYfH
+3ntvQsbFde81Lir32++c31/PeZ3zes7zz/u8/3h4DCxVjejp6Ogst9DR/d8U
+g4MEGo2Gr777OEyt3wHLdT7f9Q0acrkl8vVt3oHM76ePL63Q0EGCY6lxqyqc
+OXHLYGqOhpdOHttStEcVpPd6DTT10vCcFf/fDB5VkJ8gN7zPoOET1aywbUqq
+oOrT/EVCl4aLy3zWGjGq4NDqZf64dBMfEVerNhXvQlfXLkK5/l+k2/gkqTJ6
+D46WWe6XPvIHcxOpnM/f3Idcs6rtLMMbmEHo4HE1VQe9gNOkfo91bKvhcu8s
+1IS1ECdfhDX0/trSxyX5EBKZRzgif66iL3/AJz1hPYhROm3d+XoFX3w+Vm+8
+pg/8u5Qa2rxWUMFtK6GQpg9fGg14W1xXkMTGVLKXwQCKboZ11NmtYJHr0uvW
+AwbQr0w9U6q/giJvDCW8JAzg4N2SpRSZFcxgtbHrtjSAIK3rdi6zy+jNkXtO
+at4APJ7qOwpdX0Yb666cleVHMBKoE1N0aRmF9Ie/3t18BOeztMpuyC1jc4RZ
+UAGDIVBW1BgtJJYx4j29+LvDhqDvqhSZfXQZ4YxzUoq8IciHSBRcoCyhj3Ri
+Im+gIWzmb1+7Fb2ExwTkJD+LGYHT1jQH6wUKKqbGcef5GIPFe50dejMUJO1L
+q1IKMQaDU2zhtyYoODeTJTMdYwxKWs7ZJ/opuKJ4I0862xgOfVdeGKmi4OeU
+nj7pYWPIMVgyuBFDwesnGkd+nH0MxPL/lPlvUPDTwa6/ewiPQd+tlb8nhYxT
+7/U5+i1N4H5/nNxwIhnHwr18jJ1NQOmMlfpkLBkP8ynk/PU1gbOTrAGUMDJe
+1Z2wvp5gAozXVJeY3cmoZa2f+qDbBNJZussVNcioUZalrC5rCr9jB3QKd5Ix
+vm2a+9wBMwgv+RUZY0rC5T8qU2zTT0HHMcpF2oiEUdc4QoqoT+GExG3DDl0S
+KjzrVrNiNIeilIJTjGokjHenWe4UNoeRUP8aGyBh+qbZlmVzcxA0Pb2stJ+E
+xIsOgT/WzMFadCOW4rSIyh813BIOW8K2xEemJ54totuqRY6qqCVEHGqW1DFe
+xLPtQaH75S3hx9b4pnqVRWx1uZfebPTPH7iyES+wiGn0dcPs2f/8V2/VbrcS
+8fMLshWroBUUjZ7Y/ZWXiA9WuIc1GqzA+b8t36IOEVGP84T2qS4rkH3ff+s1
+MxHTuU/N7RmxgjJVvyDjjQVk+DRnPEW2gtrquX08HQvoqj17aMfhZ9D1JZ0j
+wn0ByXnkCqanz4DocFbQbWwerx7W5nBjt4bMrt11Fj3z6HGQXyCI1xqenf71
+5GHTPEZYzXWmiFrDMiE87XzBPNrdslL9c8kafj+kiq4EzaOG6396As+sgfFy
+0VlTmMdIkyN2Ac3WwMcqf/Fe7BzKDJ434giygUDxny9MQ+fQRl165+cYG1hT
+8fju5juHduEsdpfSbKDpbRX/N+s5vLfb/09KtQ3Ysl1n2KE4h9MnDWSF/tpA
+zUHVpvxFAkoRCKn7LG3B9KjhfU4FAtoPRKRI6NpBl+z2oNNSBJzRUrhZZ2EH
+cjrJtYonCTiSFdVm4WIHbHEz52wPEJAtO2GO/MEOirnNOZtnZ3EpWfV157Ad
+MPPbj7mEzOImz3c2Ln17yBb2NR2fmMF67yXvNHsHONauV3iyfwbZo14a6Ps6
+QICDDKNdywzGcSzcEI1yAKMqwieGwhmsaHvasq3UAQ7p3PopEjiDpvW79fJ2
+OMLLt/vUHc7NYLTJVfZLMY5wbS3myu430/hig310T/9zyI21C1PzmMaybeWX
+0xeeA+8V5YlYh2m0nzALfUL/An6/pbmdNpjG9vo/H06KvID0kwbF96Wn0Vtw
+Wpvk9gL26wpKfPw5haRrVrYfTjnBaHUWt5TUFNLJu5dNJDiD8931y+dEppBi
+1CXnXOgMh37Km5znncLvAoXN4m3OoPKnNUuOeQpP87EOEf86Q9kZ4kXFqV9o
+/vzVzirNlxAfJ2ykHvELV7PFnDY5XMDgeWLqi9VJfCtkXSKU6QqbO+aanecn
+sbNv63xKgytEhZ2huIxPopi06W+lX67QkVF+3rNlEonZLNrOe9zg0tRoo3/y
+JEoOaXXRXXYD/rtHiDH3JzH9gfhn9xw3+CUSfgbzJlDPqWRKM8kdhF0+EWe+
+TGBHmfGabq47WLTmpu37OIFGskOTLjXusPash9fYfwI5jusL7Jp1B6Z8drY9
+ehNYovbu6qNTHiCuELWkuXMCU1Xr6C6Xe4CTWlzOqtY4Rug28zr+9oSy5Awr
+7jvjmCu+pijC6gXb1lBE6eo4bmFWkKQX8ILAqLGkD+Lj2OF3I2L/bS+IH+UJ
+v7x9HN+UaE0OJnlBjUmSXUj6T9T7dE/gwgNv2OuSKiW25SeuhntcTeh/Ba/y
+TtSxUsfww2p/9UvyK9ggftZYmh/D0iBmV7edPjCum+xc0DeGO6r86f7K+EC2
+QmLFxcwx3P+LwjMU4wOq2z8oP9Adw9Bj0urepr4gyMHTTOc0iqs8i72qJ/yA
+1e8Yqdp4FAn5r/S6r/jB2sZRNn/VUeTcvlU94JEf1A0d1jggPIqMBRYh7+P8
+4En8/l9C/SO4tem1Jxz2hzRBxr+q0iP4fiaP7/ThABCRWhT5tDSEgsLf8mqv
+BYKxmKtr4fAQrval8jM/C4S44ywdzbVDqExIWEl5Hwj72E85rEYPIb1Hod/o
+XCBQqRblipeHMMrzXpNZWBBUFBLVCGGDmHDlR7CNUzD8yXJJ2XQZRM311y72
+IcEgmcb8e5/JIILwll1fU4MhJUos/oLsIDrZ7HyU1RcMb5wsCAG/BvC1fvtV
+KZm3oC5LdDklNYD36xc/Fm0LgRBJl/ZL3ANYzZfFcfZYCDSKMvOrMw2gU0Xw
+EEEmBOS4xOrdRvrxy6NkZTarEOCjmbN1vOpHVoGWEaPRECCWLXy27e3Do+dm
+HzQ1hILn5YW2QsdeFJseGJAeDIeKa/O3zz7qxRLLxy0Wm+FAd2uuJf1WLyaL
+OwrReCLAWW22KZG3F6MSnJfFTSPA3vhX3ZumHhyyjOb7sxkBT3yHy/S5e9Dq
+d6WEzoVISA4YgiGmHix/rPe23jASJoMHS++vdKN+eqhLUmAk6L/vL77R0I1f
+yhaeZ0xEgmZad4GkbTd6fM4ouxb6Hm42NWfurOvCGhktEgdTNPi1NZ3yyu5C
+Hkd2c5UL0VDX1Zi+GdOFHfFmu/ebR8OV4fqvS8+6cEqJqH+jIxrkiNUpw5xd
+mPPA/31hYgyIs5bGZ1l2YqZgXXaOYSxY7C85JqLZiZcJotsG4mLh66Hi2OTL
+nbigc/JbzmAsCPEUxURzdKKrXP1SuFoc8J7Ji/Su7MBvN8PSTwnFw4F76cEa
+7B3YrnE8z1XmI2Qf9y+6srUDi83VvrBpfQSV9ceTpxfbcb8vfw7zy4/gF8tz
+jqm2HR0EperlKz7C5kzYaJF9O7YriLnW3EmAqZdOYkd62lDDJDVnm08ieKqo
+qzNWtGF/bXTibEYicPNJeix/a8OVtGv6av2JoFlH7G7ybsPV3KaWBtEkaNln
+8PKlZBvyqLTy2gwngcXtt5ElQq3os2VP1iHNZEhZVpoP39KKLLohE8kByTD+
+fpu8RX8LfmTtWp3BZLg/6TDN9boFfRWP2Eac+AzwXEfKbaYZaWqzpr/pU+AF
+1yE/9bJmlPJ/8yPgQgrkVLYPi0c2o82nuYhF2xQ4wXzF+6diM8Y5e/qdJ6QA
+a+LJroufm7DIouOd7mgqKF37Jcjp2oQLzduqV7nSwGsh1mnpfhOqERQCPXXT
+YE16H1/Sjiasyj0rFzKRBj+b1p5tN27EpsCc9xxrXyB7tZqljr8BmYkK7OsP
+0iEwLaFCbr0eYXT226vMdDDTcbXLba7HcyLsQ6lMGcBfc24wwb4eCctzaX2V
+GRAR/iX5ZV0dOo6JhLl+ygTr674ayzF1qJB+905GXybc/mu42+xZHYa2XC3u
+3p0FjEZc1uqH65Bl0ZZ8zDELXpx9KyvxtBa1J63bjbWy4f6MOSlVvhZjpuO/
+MrzLBokYpUTuA7UYpKbm3duZDfNbt+1kLq3BMwrnpvnvfAedTvuuGZYarKDW
+CZlp5cBFa22z2O9V2CGl9Pt+fh5wHZfhOuBbhdlMkt76TPnwu/9Au792Faoq
+ajJe1s2HHIVWqefbq/AVa4VFPXMBHN97kf7eg0pkUHKycnlVCPTVXLkNJyux
+vuEoEGcLYdTx92MFukos8cE7ubeLIHIsp1kstQI1984nhPH+AKZMwfc7f5dj
+1Lsrum3TxTD1aNtNt9ZydC+QvySmVwKV7D83VxPL0XNzJ1PgYAk4u0YZTt4s
+Rwe2VSwYLAWi8h5xjC1Dz9OhOdoeZdBATxiXtClD+jpBU5amMvicVxP+VbEM
+qzgWJfLYy6HsPzqqxE/E7ZVs8fy55fBp8NebWa9SLHO9OOLHVAkDzgfjPkiU
+oiqXGLFYtxKYuRQz74yXoHlCKbdQfiXY66V0FEIJqlpmft14WgVXf5my+238
+QBEPhtKs1Wp48Sr6hFzqD0x4d2jLmG4NpAs2yVAe/MCn7O5Mi401wG4qqq2Z
+W4QVnNDI8q0WZoiL8cJWhfiI80mGQEQ9HAnmzh7hKsReL9EiLo4GUDl9pzKk
+uQADj2052hjXAAU22b82hAtQIiFJ8XtBI7xesxVu/JWHwfxHWPceaYHS958u
+uIbl4c218NFFbAHK+Z6bEpfyUJTld5j9k1bQfCltGR2fixdGCQx/HrWBMP3G
+9385QENOYgfTeDvoJApXH2PKwXf3w+3lrnVAyGWtns6C76hOnXl6LqsDNl4V
+r104+B2riAJ2af6d0LjLVXZ3exYOacjcM3zUDXTfMpTLXLOwZe7m229j3XBW
+eUzXViwLX87P+03r9UBMsILHkH8mfkz202c37YU+YcZAjTfpeJ5KSdsf2w/y
+5iaZ5YRv2LO58jjp9ACkZDR0CF37hhMxZhBbOwDPz75h36D/isYxddmXNgbh
+sNy+j1GOqZi8yecSZzcCD+8cyRl8lITrHeetzzX8hPmlFRm7qkTM5Obx3Ht4
+HJwjWpFZIBEb882tnpqMQ8ygR6PC1Ee0jFRVurBjAnIaO6pvt8fiSyO9mEjJ
+SehifdXuEfIBpzYXx7tcJmFJTWY4924MfqrPHZismYQzY3HLnD3vkVvYj/HW
+3V+QsfyUb2YgDJ9dDipW1J6CFhnuU5wxoWhqK/mFM3oKiC6d55UfhmD1i58D
+b/qmQH2fbdITDMJsNQdTldvTcPcCM/2Wem/k1R3hSxSZgZBqW47HNzzxswtP
+7Xe9GWi7PSje3OyGbldWRDxCZyC6TgXPfHJABp7m67YrM+DWdaKLs/IWPjlp
+kuL2ZRZEWIZNt4ueBU9dZcbbPbPQQ/aIY11Th0jBfdyH6AjgFHq1weysFYRT
+z5UVqhCgkvu1zwdWD7jB0+POMk0ArwheK+lAL5i2CSn2ZZqDq7uL1dt3+YC1
+s0aTtOgc1FGJQtsZAuAZJ+ePO1Zz8PixsHHeZgjMLXyY4iHOwTVeB01P2TBo
+ZAuSXds1DyeGK5VVnMMhUvbRTwmheSCoPpQmrL+D5m2HORf15+GpXDAj10oM
+fBCojqY2zUMhk1N3hV0inBLvPjcQsADxogc6M3iTgKdn88tE0gK8Usloi2lN
+glHe+kXX4gW4FzHRaC+UDGWWD5NcCAtA4rlZITycAsIn6a4uKBDhuMzRjJDL
+6SAsfXmSNEaE3dr5X13J6WCYFRDusUSEJZc7aU9jM6CGxedL2/ZF0BuvUOVz
+zoS2m0cupQotgtgJ6q2/3Vnw20njlJPFItR/172c9ToHDI7OCc0tLMJ/1SKV
+gmM5wMZfoPf3zyJk9qwrxErlgnuP0RXydhJErIeC/0QuMF3rnw3bTwJDqDtv
+JJsP241LQibESUBrED/NQS4E4/2v+TaNSCA5voXLXR3hBaNjbGAVCcSKHpDF
+UxFEKHtF0+pJcDzkW9XYOsKGvI/5jxYS7Pr4VTL+Vhm8IWV8xT4S/FFRH6IR
+y+Al/RO/u/MkGM7MEMLTFXCom7Svfi8Z4qx0qmTzq8DroS1T7X0yxGjvTA8f
+rQLS4QDxQU0yRF7LebfAUA1R8wVDMzpkCOZmMvugXg1vM8SPkI3J4NaWu/fv
+ejWoVVvY5NuTQV98j27xf7UwwPufqEg4GfhIP9bPV9TDC/kLtsItZHBuvuS1
+vFAPdrQjvQPtZOhJa2RO/9dzu6mHt73qJoOf0SAfz7MGcOcuWG8aIgNpYOMW
+A3cjZAtskrnmyFBaLZPQ+bIJ8jVDYHQHBTSj85WeyrTC0lqbveAFCuQ4QreA
+USsQe/I8leQowHy/Vnc0uBW8rp8aMlGgQDlrr63qTCt0LfmGfVCkwP5LTrdj
+brSByrjKkYG7FHAqiHrusdEGTBV6c+lmFLie2N+srN4BwJ7S+ieSAiTvdONq
+8w4oLa0+/DWaApFPPGkXPDvA5Gt/oXosBWZERU8LpXfAm+c3mNISKeBb4Ba2
+dVsnCL5QeSOaToG6ZkGtgoxOEH9E/lpcQQHFNbsZHoZuEFBXKj9CoMCVW/u2
+ruT2wmv0c6s5swSB+jvJ6/W9cEfbgFB3dgn67OhGN4d7YVP5wGi91BKYxhKL
+GHf0wRYJeuva8//8xQbrI/f7gFXf1ynr4j//ref4pdU+WCs3Wb+o+s/vWS4P
+kRqAiE7eQBOrJQjS7XUTzx+Cx3d9bgumLkGt8tE9Kvt+gnyHeX/TwWVY4Dng
+0hE1AfDR8Zus1TLY2Z7UDzo4BftGR40SS5ehd4hV1bhuBqYWD5603bUCes//
+m2a4OQcGyWKhbTdXoPKktF/ldiK4fNtR8/vNChzfWTyTdI0EwkVq2vdqVuBo
+sdmV7b5ksI+ef7K8vgJ0G/Sp1uMUkJNw9n8mtgrUOyU61QLLcPxI/4y/9ioM
+ntXlFPD6t9ezyFrivwpWD1j38g6twiThtlN4/ipwhE2qbzu6Bmv++Nl1ZBXS
+teI/Lzmug2x/cHjpDio8kHW9VleyAemTXA9ThKmQpWPOe/7PbyCtaWhZ36TC
+GtOlrYVqf6HsqPdksiUVVNsvSB2N3AQ3uVFHCKIC04Vd5cUfNiGbWLZU/4/L
+kwZuaCdugmG5sfq9YCqIOz7Xj07fBGuto6NP3lKB+Vh+AEf1Jnx5uGsiOJQK
+9U/PTBygbALRxLtx6B0V5BmFgplv0mDH4IaqYfy/+8/WDqffocF/VeP75/9x
+xmDtp1sPaNBe6VRu85EKXBnGPwIMaPD30/CARwIV/qglTTE9p0GxzwmW+CQq
+5Ccek2VIpsGVB7u8elKoYLFnsTb5Cw2GOx8sa6dS4bhDqerVLBo8ka+5PfGP
+w5QePvEu/ucn8NctplHBmhwVurWTBhc7UpDhGxWEtUy5Evto4C1e8/rNP/5Z
+JZN6cYQGN8P/A7Z0KqhE9pW6z9LA5cftp1wZVGCkT7nOs0iDjkMbE4n/GM0c
+usqWaeCZc0hRKJMK9t1XdfU2aLB4Nzs8/R///38bdhU2t0pkUeF/0p8S2A==
+
+ "]]}, Annotation[#, "Charting`Private`Tag$4205127#3"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmXc0Fo73xyVJSz5KKGRmJluImyQSEZHMKBJlVZIdkqJCSMjICGVGtmuW
+TciWlZHx8DzGY8Tz7XfO7697Xue8zr1/3fe551wuSwddK2oqKqrEHVRU/1dF
+4cgMhULBXz9C3+2rYQOHdZ7A9Q0K5u3bnbXcyAY5X8RPLK1Q0OzuWdHRDjaQ
+ENCynJyl4LbCYbfaMTaQ/c+/v7mHgs+4+Fzzqdnh7Dix8V02BePij/UrqLCD
+7rOWT5LmFGxNYv6z+o0dHrX537tdsY1RYpfE3/VxQFfXvpkqiy0svVAd+jGP
+E9grHQ7Lsv3FX5YZIfV7uaHArnbXwaENdCx3MrwdyAM3gsUX+3zXsWBvjKir
+BR+shbkHIqxhwVE1gQJTfkii/8UaNbqKdQ/6reyGBCFWQ9y58/kKHhRb30yv
+FAHefRqN7f4r6PcpR9ayWQQ+NVlyt3qvYGn20CpXrwiUaIZ31D9cwZ7FWdai
+BRHou0yWqLBYQVqV8s9w/CQc0StfSpP710+oca7K+yS8Nr740OvPMr5y7f1Y
+c0EUfO9auApeXEa1Luv3poRT8OuVWWyJyjKyDrTbGG2dAvlc48pLSstosh3K
+LU4rBqQVfTp7yWUUfxKVdZFJDCy8NaLy2JfxWqoJT4WkGJwNkyxSIC1h25t9
+z4qdxGC7cNeaVswSbjPtpuIliYH7zoxHzvMkVLurPy9GKwH278xob0yTUIms
+PvyRXgIsTx2K0BonoVgLEyMfswRoGHvkCfSRsHPZQ09CQAJYvlye/1VLwruV
+jGtRGhKQb7lkeSmWhAzSB1xjQySAUHXmMu8lEp56N/LmE5ckWPi08XanEfH3
+TuNC3+tSYNAXrzSURMTygAzflzelQEPC0fB3HBE5EpE14Z4USP1mCCaFE1Gd
+R7d58IkU0KnrLtE/IWJmm+jJggwpyDr4s0rtOhFbHk3q/dmSgs24frPiPUQM
+cXDTf58hDRHlE1Gxtov4V4p4V/u4LJi5RnvJWi3ikRSt1EQRWRCQ1L7VYb6I
+mkE7lyhyslCSVnSKTn8Riewm1KNXZeHXm6Bv9+Gf30qfKBMkC/y24ssahxcx
+0s/UUXFDFpxPbsSR3BdQgC+OVXjsNNAk3bQVcFpAJt3ONxzE0xDJ0iJtZr2A
+r3uLxTip5KB0Z0Jzg84Cyj0vPHaZQw5o+lU3EvgW8Ol2Z5mBsRxEBoTqa7cR
+sNO8s0a4Vw5KhgX2f+YmIPejfVqOQ/LgcWZHZjQLAQU1RxxE5uVB8V2f1nN6
+Aspb0Bwi/5WHSt0Xr6035vGHtD5PEZsCfK+bZeTqmMcj55WdZ00UoOtTFmvk
+k3ksdhUw5R9RAMIjKX6fkTmUPdvp6U06Azld++vtu+fQ/oCmkTiNIjiJT9iY
+Ns+hFOu2wjKTIizPRGTIF83hun68TaacImyakk+uvJ7DNU/asYUnikB3vkTK
+FuawSxgyG5iUgIfh7LmrcbNI6xid434J4JXYqJvtm1mUf7ZqKWwBsKbj+8Un
+cBb/TEmUkVwAmkNreTOdZ/EDwW2x/gPAg0MXd9OqzWLZe6VLbzcBvh3RbS5c
+mMHuXAZqguFZsGW/ZXBMeQb3vZQX2ceqDF2Ku16Ly8xgkDhB1ZdPGZTMUr+r
+Cc/gzyNembsllOFQ/PTpB0wz6ELZX6l4SRnKOO8da/nzB02OFDld91IGel6X
+Ea+wP2g3RRV5c0oZ8oQCbcfGp/GqlLKTU905OP7jRrFw3zRG3Pgv6n3nOQh+
+JEf3sHUasxvLIvtHz4FV7UzK7uJpXBM98/zZ9jlgMdMaFXk1jZat9y7nnFYB
+z1BGw0enp7FiOcvFIEcF1NdiVfe/nEId1VvLjZnnoSDuYbi+7xROsm+nXKo4
+D9yql8fjHk3hxxSOQ6Ot52EzlOIjbjmFZZHhWRqL5yFL2LLMQHYKP/P0j7JJ
+qcJhc37JxNFJzKN9RRlCVRiuy+WUkZlE0p+BrZnpC+Cht37+tMgkqoi6slI2
+LgDL6Nk78tyTaLsfMgQPqIHO37ZcJfpJLH9HX1strgaVEoRzapMT+PwFH8se
+DzVIiBeyMoycQNG+NoM9TOpg+Tgp3W31NwZzd4fsNLoI27SzLR5zv/Fl8viA
+jMNFiA6XIHmN/cYxw2sMAf4XoSO7St6v9TdePVqw7Zp9EVQmh5uCUn/jvkD3
+oK+0GsCrx0aINfiNMzf1KitKNGBCJEICv47jhllSfYi8Jgh5pRCmP43jK6oe
+rRZ9TbBvK8hgTBxHMYqbtKSTJqw5dXNbB43jKfs8f480TdhbyHzowI1xfFpu
+XkXPqgViytFLRnvGsaBUtvAJ9WVw14/PXzUeQ4rC4leDdW2oTM125Lwyhu/r
+dRzOHNABmjUU0bgwhtxmFi+n2XXgVfRI8nuxMTR3Od4fBjqQMMwVcX7XGCoN
+Jz+W8deBb3eSH4ZljaJfUJcSifEK/OeVLiO6YxR/P4cifnVdCPgqUM9AHsFy
+3m/iYKwLG4SP15fmRtDp2StGF3tdGDNP9SjqHcFNYWY+lQhdyFNOqj6XM4JP
+9FkfW/7WBd1d7y9fMx/B+t4oIjlQD/hZuVqo3IfR7Feid8X8VWB4cXyxznoY
+N72PhZrs0oe1DfZDQbrD6N0qGc/Lrg/1g0evMwkNI+VamoaUlj7YJByeEOz7
+hSn/WRiYZutDBj/dlq7sLzxpZK4h42EAIjILIilLgyikZ2KprWAI1qLe3sVD
+g2iyvPNSsLEhxJ842NHyfRDTvrY07/cwBEbmU49WYwbxnMFWykC5IZDJ9lVq
+5wfxuZnbm2/nr0N1MUF/JnwA3au6FV/cMIK/uV5p214DWBT/8K/FUyOQzqDf
+ZLwzgAqGWX0vMowgLVo0QUFxAPWc+mo7V4zgpbv9TPBEP4bSdlKZhRiDoSLB
+65RMP5odlT+i1G0CYdJeP1Q4+5HRnVL5gcoUmk7S8xru7Ue3A1GZd4RNQYlD
+tMHnVx9WcDw4xeNrCjyUe4c6AvowokKQ10bKDAiV8x8f9PSiioFboVWmOfid
+n28vdu3BmYlivQlPC6hWn9OWutmDxnPjDEejLYBKa7Y1S6sH34SceB751QI8
+9P80J3H3oED6aITtogW4WE/Uv2zuxrX91n4xty3BJnCo0oKzG8VL+c4dsroJ
+qcGDMLi3G7csArvPBdyE3yEDFQYrPzH4je5W08ebYPGur+xS40/89XhJcnH2
+Jhhl/CySfvAT6ZrotlNcb4Fmc0vOnvouZK5nydubYgUv2ptP+ed14UXt8iGP
+Ziuo72rK2o7twrNyji43lq1Adajh85JTF5rN0JB8Va1BiVCXNnSsC+WtyMds
+5q1BjKEiIdehE7MH+sBO3wbsD5cfFzHqxKLd+sr9/jbwmaUsLvV8Jyo2LokN
+5NuAIFdJbAxrJ46b7vKLPXIHuCW+Rj2t6UBiHpXTzdE7wHQ1K+Q6cweaeW65
+WUXaQd6JoBLVnR1IJ5Ljd6nZDnTWb/8WX/iByjvWKnqo78KLOK7Te7//wO7S
+p53zTndhezp8uMTlB35+FkG4YXgPJj3dRdm621GCxSua7aID+OkYGtJVt+MF
+moapHy8cgJNH2nc5sx1THqkfsWhxAKN6ws/mp+0oT5HUfSXkCK2Mlp6e0u3o
+zSwjXV7oCPbaoVHlgm3IWZdytO+PE6Qta8xF7GjDSSrVyKeMzjD2juasfV8r
+OtF/na9RcAaD34+mOJ634lXdAw93hDgDPDaT8ZluQY9nDqUdcB/cOFheGFa2
+YGJqmuuNe/chv+bHkFhUC955hk+iYu6DAL3q01G1FiytiBRj2rgPDEnCXec+
+NuNnT0emVHwAGuoT/Me8m/FmTEP+DOkB+M/HuS8ZNOPJo2se5BMPYU2WkSeZ
+thmLqNUs3UIfwmjzmtMu6yaU4IuaS3R0gbzVuoP1vI04Yi038s3YFV5lfKhW
+Wm/AWGJOu1WSK9iZeT8saGnAv28f/7wy5wq8304PfHBpwG+j828lfB9DZMSn
+VM/6epSka61mQDdwvhh4fTm2Ho8+PXubgdEdtLdu7bdzqkcLilfIR2t3oLPi
+cDY8Wo/0Nekl3w97gJtUqKLk3e+444m5y6EATzCYvreYfvY75luJbTNMeYJk
+rEYSJ9N33CMrOUSr4QVzO2n20Fd8+5e3gXcOH/EGs06XrumD3zCKX6Va7JYP
+yD/Te2b+uw6rgntzb733AWYFMfnuojpc1h+v6OrxgfYPf+JrLOqQLoSJ/rXO
+EzjnbGIX96UWuez2mb7Q9QWOE3IcTIG1KJz/ta8k0hc2+5h+BJnUooe10C3P
+QV/IV26TebyrFv3Hyf/N3fWDE/+do756rQZZLpXzr37wB+o6joJG4RpUyD8g
+Lb/iD8Oum7eVqWow4g6wBlx8ClEj+S2i6dWotKpa47H2FPbm8L/bs1mFRxTj
+zWmdn8HkTRpNn7YqjLtzVTSl+xnUMI9uryZVoWz0n5lFxUDw8I6+9VuzCm3j
+fWKXDz8HwuUDYhhXiR6MAfeLpl5AI/XMmPT9SnThLOGsuRUEH79+i/isVonO
+vd4iNhNBUHmGiiw5isiRypfERAqGlIGJl3/8K/Dpse73boqvod/jSPx7yQpM
+cBiz5v7xGug51HKujJUjC4058ZVUCLjcSOsohnIcubYVYNkZAhk7+sbvEcrQ
+IEoy2uZEKPz6sGeF630Z3h5z4113D4ULE7bMLzZK0XZneL3AqTBwC4gRUEov
+RRPHgXM7X4ZBFn+zHOlaKebKLgkMz4cBs+1JE6OCEkxn4SHxFr+BacJCgpBj
+Me5zkIk+7hYBbCGceb84irF5LslAfDkCdMSv1IS1FKG0vOKOMOdIKLqfN7Eh
+VISSfvaCRz3fwtzh8dWsvkLs0lxRK9wTBZxfD9HdDCxEqM/heB0TBc/XHgg1
+TXzFWMZkTtr2d1DxLkXBO/wrjt5p9TtzPxpI8t2akipf8Yr24R+DbDFg5Cnr
+EJNQgC7D+ZZ1/rEgRL3xxc44H6XllvMi8+LBLEmo7vjefLz7jk3qpEYChJ03
+7u4s+oLRm1WnD1YmwEZA2ZrCkS/47bzNKGNZIogKzO9ZrM3DAeqLa+PnPoBl
+A/ux5Pt5qPAm1Yip/QM07fNW3P8jF0++qpy5REkCqszsy5XeuUg/tZ6u/CEZ
+pC6PmD8QzUW9I3pVblopEBui7DsYlIOB7/UbD2EqtIs7vwmRz0EatrDw2oCP
+QJeqevF5Rza2Bp65b3o9DXqF6F5df5mFgY81qpK4M+DsvTs5VTOZKNw8vyV5
+7BOkZTd2CKpn4phdx5gL92dgIAmvhKZ8xlIVW5U4uUx4LPWSeYP6MwY9oHXd
+tMiCMReCnOWNTyhdzaOy8302aBRrmzSWZyDn7S4uQZccOKrEmBjtmo5iOZr3
+X0/lgq/P/Rrq7jQMFEjQuP0lD2aruyZsJdOQcpdlPublF7i6S4auM+Qjcri9
+THj5KB/K1N4KKRBSEZY3X39zLgDeF2uaSZdSsYRZK4DqyVcIbr7usC89BZu2
+/z4WTi4E0yts+QM3kzFqwPe7jkQJzC2tyD2sTUIMHDf8G10KHpFtSM+XhGwN
+Yf4/uMphv1y6atrTD5io+zyRrbECYgd8m5QnE1GGPBLfcKkSRLxMrgxcSER+
+ntmtU2pVUMop0/PgYwKq126zvb1eDRo1B03p6RLwNfWWdfTTGshv6qjT/hGH
+gwaO2xyttdDFEPDDN+w9rtIOS+nLfIMlfbmhAr1YXO5mTy2o+g6MMXPT04dj
+MC/gtin5fgNIjMQvH+t+hw7Xi+03dZrgCp8elfbbKBzcv22abtICjra0+30N
+32Jk5f6mr9FtEJJdzFzAGokNfD+NhHb/gOzluzzT/eG4474457BJB7TKcZ46
+FvsGV034q7paO4Hg1Sl/2TQMSxbj9+qa/ARDxgfJNvga621u6bdiL7yN7S9t
+VX6JHjQhr9OC+6H7hHKnVO0L7P7SVjNnOQh6CvTUOxqe4h2vSd6TtCMQVveA
+9fYlP7Q+NvibeXoE2rUHxFpafFD6tr8NT+UocOT7hVgneGAOJWCSL3gMYup1
+UCLlEW6whOgMaIwDyxA7YTvdGXfwX41s2RwH4fGfcpGmdjgXSeYRjP8NPl0C
+XcdqtPB9/6plL06AyMEh210npYDRy3aZESahm+gbz7BmCMRZg//U8ydhUZuf
+5OBsDTuuXLnlwTkF7m8uNNpJOUL1YQm7JP8p2PZ6HBN/6iEUcY+tRo9OgY/t
+57udQm5AM8LYJHh6Gmo4nz97z+ALi4mO7MVd0+Afye0o+8ofRM7Izw0e+wMX
+9pcZ/tj3DJ6oPKseM/sD9WSC4K7dwbAv5CaLYP8feHEvkDHe/xXQ69NoMB2a
+gVRiiCfbkxAwZ6PmU7o4A7dvC1l/3Q4D0vIfa9msGVDnfmTkpxgO9rQbXg5D
+MyAwVHNZxyMCqCXnnAv2zsKMrqnszPpbmE9uUt9xYxYaD2QIF55+B3cjy1LU
+A2fhU/3qcf9H0XBufKiZK3sW7iqF0HGsxMKNThvv2bVZ0Fof/DsjGQfXRRf0
+drPNgWi+ILHQOR4+uTvt3680B2vho3MCawkgTfpvmNF7Dor3uv+sfpgEQb2y
+X+NW5yDhJFNnNncyBPBrZc4fnocAnez22LZk0JbyX7gnMQ9XI8ebXARToVyp
+//tJu3lY5NKsFhpKA//WT9rZXfPQc34SmV+kA/M7C9bw+XmouO1TTiObAQdr
+a4YJuwgQlJlf9CvkE7iHF9hxSBPghBx7dtj5LOhNiddZf0mA/SaFn72JWeA3
+VUvmTSLAkteVjLtx2RA9cYqGUEiAG2PVujweORCacHXaeoTwL1/JWls/c6Fr
+RPWm9skFaPhifj73eT4kLLAbGxQvwJk6kRr+kXy4L8peW9iwADnd68pxMgXw
+9k//6+G+BYhcfwNB4wXwBc37A9cX4BbUy1spFoKHVTC3zLFFoDSKibMSi2Gl
+4Fxuk94iOA9uZb9WK4HTm4/mnxgtwuR8oyhtXAkY7xM4w2exCM0MViJLGqXA
+YjncImW/CNEG7/hbkstAUav5mN+zRZAe28HxxBChINk4SKRwEURLrhHF0hHo
+o/KXvMsW4URYZu3IOgJt1tH071WLsC/xs3SCViXkKqd1SDUvwl8dw0EKoRJS
+s/MKgkYWYSgnWxDFq+FOQempq7uJEO9oVqtYWAvpFlWzJpeJEGuyJytiuBZ2
+RdGaBusSIUo9/+387jqwetfQlG9AhBDOvXbvDeuAON5PQzQjgk97wX9b63Ug
+THPUi9WBCBZiB8zLznyHpUGjZsVXROBZLF2Xr26AJwGJm4b1RPBoUfFfnm8A
+T6X5fUebidCd0USfxdoInraqsT/biPDCaoCHy6kRyOnnn5zpIcJi/4bWbs4m
+IBw2EGiaIEJFndyHTs9miGFyvb6+gwRGMYUad+XaID3GFskyJMh3hZ98Vm3A
+2qvVyCtPAnqD7+bDIW0QyZK3qaVIgiqGnge6022AhiHr4SokOKzirh17qR36
+Uy/ar2qTwL0o+rHvRjtQbaoLH7QhwcWkvpbLhv8u86698+0RJFh8mmVdd68D
+7O4uhQdEkSDKxo+i4NcB3icWPeRiSDB98qS4YFYHBD4c4H2bQILAIp/wnTSd
+gBdOu0h8IkF9C79xUXYn+JSzE+eRBGprD6e5dv8EWROxRzFTJFDVYty5UtAD
+n+KpM8vFluCVxR7iekMP6DuJ0ddILEHvQ6rh7aEeuHrBdemb1BLYxhFK6Gh7
+IeVQnF7j6X/+QqMzm0EvROzYnYFn//mhfmMqq70Q08kea63zz+9ergqT6Ycy
+n7CNL/ZL8Nq8x0escBCaDL8M5X5cgu+X2Q/oMI7CRT7d0CKmZZjnYvLqiB6H
+zJLyd7ccluHhA2GL10cmwUh6D+tS+TL0DDLoWtdPg+bU7tXxvStw4/GZqd2a
+s5CQ6V9toLkCNcKyL2r+7fGHKua48JcrcGJP2XSy+iJQtfuPbNStAHuZnequ
+QCLottBUp6yvANUGdbrzGAlWq0rdRERXgXyl3KyObxn807nPXDZZhQEp82N8
+/ivgknn2SEDQKjheY/iPe3AVPtXp7b5VuAqs4b8NadjX4NACV6zur1XIMk74
+uOS6DrnyjmkRtGS4puitXl++AUtmm3W+QmTINbvHLf93E85mDidpa5Jhba/K
+zmL9LbjWPjwb4EAG3R8KMuxR25DpbF/L9ZoMexX2VZW93wa5zH71z/+4Krn/
+kknSNrjI0xbKhJBBzPWxRUzWNtyaKta5FEoG+uOFwax123BvzMbt/hsyNNyV
+GGcibYMEtV8mviXDWTrBEHpNCmQqff+mlvBvvtPa0awrFFCaSQlt+8fZA99T
+tK5RoPOsuNq1RDJwZFuXBltSoDna1tn6Axn+6idP7n1MgZ6JU41+yWQoTDqu
+uDuVAgkbsk9L0shgf2Dhe+onCnwek94+m06GE48qdC/kUuCj5xXL7/84XMPU
+5mkZBd6GbM12ZpDBmRj9ZmcnBeqqZnbNfSaDkLEtR1IvBTKIb3udMskwWiuX
+fu4XBXR3REeS/7FOVG/Fkz8U2DpU1EWdTQY66rSLXAsUMC0avRr4j9HuUVfl
+MgVUvd0rD+SQweXnBfMbGxSoFwtmfvOP////Ay9Djxqx5JLhfyEsbYw=
+ "]]}, Annotation[#, "Charting`Private`Tag$4205127#4"]& ]}}, {}}, {
+ DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
+ AxesOrigin -> {0, 0},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, DisplayFunction -> Identity,
+ PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity, AspectRatio ->
+ NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox[
+ TagBox["t", HoldForm], HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"M\\\",FontSlant->\\\"Italic\\\"]\\)\"",
+ HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :>
+ Identity, Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0],
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}}, PlotRange -> {All, All}, PlotRangeClipping ->
+ True, PlotRangePadding -> {{Automatic, Automatic}, {
+ Automatic, Automatic}}, Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["h", {
+ GrayLevel[0], FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "h"}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, {
+ 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9,
+ 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, {
+ 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9,
+ 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9},
+ 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9,
+ 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9,
+ 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9},
+ 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9,
+ 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9,
+ 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9},
+ 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9,
+ 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9},
+ 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9,
+ 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9},
+ 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9,
+ 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9},
+ 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9},
+ 3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9,
+ 3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9},
+ 3.8871882575514183`*^9, 3.893237964294105*^9},
+ CellLabel->"Out[54]=",ExpressionUUID->"18837f4b-03ee-4fc9-b362-36801a1721f3"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Susceptibility", "Subsection",
+ CellChangeTimes->{{3.893240903148159*^9, 3.8932409167324743`*^9}, {
+ 3.893240952846768*^9, 3.893240954869104*^9}, {3.893241078991336*^9,
+ 3.893241080223504*^9}},ExpressionUUID->"5bc01cd0-6cca-49bc-b33d-\
+929852f4376f"],
+
+Cell[TextData[{
+ "In this plot, we show ",
+ Cell[BoxData[
+ FormBox[
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[PartialD]", "2"],
+ SubscriptBox["u", "f"]}],
+ RowBox[{"\[PartialD]",
+ SuperscriptBox[
+ SubscriptBox["u", "h"], "2"]}]], TraditionalForm]],
+ FormatType->TraditionalForm,ExpressionUUID->
+ "ea33cbf9-2d9e-4e17-9266-a9dd99678c85"],
+ ", which is the singular part of the susceptibility (modulo a constant \
+analytic factor) near the transition."
+}], "Text",
+ CellChangeTimes->{{3.893240788042069*^9, 3.89324084285141*^9}, {
+ 3.893240875195952*^9, 3.893240882915715*^9}, {3.893240920042145*^9,
+ 3.893240927292811*^9}, {3.893240957814611*^9, 3.8932410410866423`*^9}, {
+ 3.893241085040443*^9,
+ 3.893241094559909*^9}},ExpressionUUID->"f88209d4-5087-4518-af4c-\
+b36509976c37"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LogPlot", "[",
+ RowBox[{
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "1"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"-",
+ RowBox[{"Re", "[",
+ RowBox[{
+ RowBox[{"DufDuh6", "[", "2", "]"}], "@@",
+ RowBox[{"invCoords6", "[",
+ RowBox[{"t", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "]"}]}], "]"}]}]}], "\[IndentingNewLine]",
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{"-", "2"}], ",", "2"}], "}"}], ",",
+ RowBox[{"Exclusions", "->", "None"}], ",",
+ RowBox[{"PlotRange", "->", "All"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ "t", ",", "\"\<\!\(\*StyleBox[\"\[Chi]\",FontSlant->\"Italic\"]\)\>\""}],
+ "}"}]}], ",",
+ RowBox[{"LabelStyle", "->", "Black"}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-1\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-2\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-3\)]\)\>\"", ",",
+ "\"\<\!\(\*SuperscriptBox[\(10\), \(-4\)]\)\>\""}], "}"}], ",",
+ RowBox[{"LegendLabel", "->", "h"}]}], "]"}]}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, {
+ 3.871628883904001*^9, 3.871628909432775*^9}, {3.871629457267346*^9,
+ 3.871629525012162*^9}, {3.8716296135256433`*^9, 3.871629703591056*^9}, {
+ 3.8716297390329103`*^9, 3.871629853114192*^9}, {3.8716298958192244`*^9,
+ 3.8716299139879017`*^9}, {3.871629944204525*^9, 3.871629952700124*^9}, {
+ 3.871630090583139*^9, 3.871630094694592*^9}, {3.8716301742008753`*^9,
+ 3.8716302000245533`*^9}, {3.871630243281377*^9, 3.871630253377584*^9},
+ 3.8716304265249653`*^9, {3.871631246388459*^9, 3.8716313024379177`*^9}, {
+ 3.871631382016287*^9, 3.871631383422778*^9}, {3.871633017182467*^9,
+ 3.8716330172537737`*^9}, {3.87223244386093*^9, 3.872232463125258*^9}, {
+ 3.872232659147134*^9, 3.872232720226219*^9}, {3.872232925175202*^9,
+ 3.872232941062345*^9}, {3.87282774234025*^9, 3.872827744082013*^9}, {
+ 3.8759514937750607`*^9, 3.875951563008548*^9}, {3.875951848422546*^9,
+ 3.875951850621904*^9}, {3.887186743041842*^9, 3.887186790098441*^9}, {
+ 3.887186823363668*^9, 3.887186826291638*^9}, {3.887186890645186*^9,
+ 3.8871869906863422`*^9}, {3.887187366630084*^9, 3.887187367965156*^9}, {
+ 3.8871874509191723`*^9, 3.887187457679159*^9}, {3.8871876036586847`*^9,
+ 3.887187764733572*^9}, {3.8871878714397583`*^9, 3.887188002562066*^9}, {
+ 3.8871880651171618`*^9, 3.8871880740271997`*^9}, {3.887188109820418*^9,
+ 3.887188166220853*^9}, {3.887188266607832*^9, 3.887188319744246*^9}, {
+ 3.893237970542515*^9, 3.893237996990089*^9}},
+ CellLabel->"In[55]:=",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{{{}, {},
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtl3k0lfv3x5Uh6oiUJEOSKFRIlGhTKcrUKUMiQ0WX0qVMkYRuJLdouKVJ
+19DgRmkktR9KVJQkMmQ4zuzgnPMYDsX5Pr+1fn8861mvtdfzWfuz3++993oW
+Bx+hH5guIyPDo57/e6+E+XypVIp8OfdPGQVlcGR8Sfr4hBQnlGu3DXHK4NET
+c0NyRIpeZgkP/E2egMUy12B2vxQd0+pVPcuegPWctPb6VilGtkUWlBBPwb5P
+9PFaqRTd4rIdZnc/B/qZhuLVAVKM32KhfFb/FcR+STsc+mYKT0vUdPczqqC5
+eRa/KmgSbdv1XU4lfQId4sg8a+3fuHyX3ljc/iZ4Fv5OXuXnBGrJn9OO0WyF
+wHPmwraUcTxo0hdTEdgJkpyEdAQJMlqVC5xf9UD+7C7Nq72jaGA5GP9Pdh/c
+2GYe9S1jBMvsXN7wD7Eh5VBQ3HLnYfRPFOz9pM+DBNkHsVEDYhR//2AdrSGA
+oOQvBi33RPivh4q91ddBuPyadfVGmBB/S5yCox4LYW9cbpL1ASGeDqtSb30u
+hGWr3fc3BQhR+XFD97pKIVTce7lK0VOID6efyR9/L4Sui5nvj4IQNxvI7Anq
+FIJRmPnwtnlCnLgb+ateQQRRKyZuiROGMDbwSsvgbhFUdC+j/ac/iOuerXg3
+WyKCRNtpD3MXDCKvfUo94bcI7K61uWbMHkT13d/CmDJiIOhnz4dMDKCtQ5t8
+iZIYamv61RY3DaCjM7lbW0sMzcUlmldODeCUzkLDQDsxDMZaGiX3CFB+jKHu
+c1IMj5ppdREtArynRb7xSRVDpDnroH+9AK2X9t3yPCOGYf7lBzYvBbi0q5Gz
+6bwYfvmPrRg5L0Cdlcs6RLfEoLi5wjIMBJg7+VMj67UYlqjab9x1qx8PqMz4
+kDUmhr/Neo+HXexHs2+S1h2/xCDxSHmSnN6PltNS9qpKxVCf/c7gYVQ/OjWu
+eJCoQMKxuc4zFLb2Iz1nt94cdRLez6fXvxji49/snHQ9cxLMrEm5z0w+LvAt
+dTxjSUKu9yU7Zhsfj+X2NnOsSThytaVE9R0fL4+Wb7iygYQFC/dk/3GVjyO0
+YLW720kI09nvpeXAxzuaY8vP7yeh2U7+vLkVFTf/eygrlIQNe4tqt5rwMWJt
+cuvpMBLm3uauPabOx2/Vq3sD/yShUu+wVgOPh+9WzrxZnUDCbIOYnqQcHhq1
+HfvXOJuEuM0ampfP8PBf7Z0rnl8kgbH/5Y7iRB6mropfbHOFhBeFE9WtITys
+37xyvsl1EgKNThaaredhwfYTfaUFJJQZp4cx+rjY/k30l81zEhZ9DSw3aeMi
+bXpIqt1LEs7FrlOM/sxFe+V/o9dWkHDgHb9wRjkXT/r30ua/oe6717XX9G8u
+dhh7YEQNCWlyhmYxqVx86iezxKyWBNGDqSSM4+LvUx90eXUkfBwr1abv46J5
+2eFSh3oSTmSr+cSu5aK/UgQvs4kEvnV/EbGCi2AdX63YTIJX19sRpSVcfOz8
+sjnxO6WHSfTFG8pcVMtTi972g4QbX10ZrOlcTPJw7M9vI0EpztB8lYSDNbM6
+wobbqXq8a/1cxeDgXraN1/GfJLiHP9KZ9YODpXtkH5R2UfWdk3FoVwMHrdtM
+Wju6Sbi812Ym5wUHbcjErAUMEpwkNxxpWRz0Xvd+gT6bhGe3oi95pnCwebMT
+m8YhQd/Rre9WLAftFV+YDlL8K1uabB7MweV0ueGLPBIOrv3x5bg3B9l/PvPz
+4VP6dz3SfefCwezvEuW5/SSUmARXellzsKvnu2a4gAStJptZeaZUfswNfooD
+JKTHzfXlLeag67a259cpHtYV3LPQ4GChQ5bO0kESgmrejSXQqO/PbEoroPhz
++M0tNdM42HSN1aU5RIKNWszl2WNsVOT4Lz5N8d2XbkxvARtXyl8FNsXzAoxW
+3+ml4szkFXZCEk7Jy6TwW9jImDajO4PiweIfjavr2Xgib6FTPcW+9MeLTlSx
+MXrioZ+ciIRaSUbE++dsNIh/pmpBseXt4Ncq/7FxjG/k40lxnuN62u47bNxW
+MWUYQbGyYO6ef6+wscTAKjKR4uM5gvv9mWx8FNVgnEwxe22NxPIUG1XMarfG
+U7yz++bWpBg2Ru1fXhlKMXE65kptOBvT6icTtlNsaurOUg1iY85ceoIBxdea
+jCx9vdh4UXltiZjKVyFeJjV/OxuLRDWKzymOWtT2VWDPxslL809GUNxd81jP
+yoqNNkXO8toUJ+4c37zWlI1fmlIsa6j6LOi1/8NGn41DWw/U76f4aUR6lu0C
+Ns7x2/N2gqq3x+8vjzfMZmNA1TeVMxQLMjRa7OWo+GOHe0oUp2sETGycYOH4
+fJ3UFEo/wmJw41Y2C83j57V7UXr7EWtCnTsp9lq3qYzyg8T1ROb2Jha+f/uz
+TpZisz9oze5vWJiuTMpmUH6qH90p2fGUhcHu14oquZS/0q5r73rAQj0nY3s2
+5b+828YHfK6w0GeowkKL8qvtiqgM33MsLLXWjzdkkfCjovyhXwoLo2o3ZRsx
+SVBtcRoNjGDhwP3GObMov/+378LCffup8//pCB3oofwvat1wwJeFtoE9YTVU
+f5yihZ75YwsLP2aG7fSi+kk3t6Q43JaF8lENhiqdJFQYjX45bMFCIpeV8prq
+P/HG0wuidFnYUufyeKKVhOD4/PvHR5mY8yF9YOQrCVMK/Q2JAiZeYA7QfBup
++XrJQpzEYKL2K/2IJ59JaCqtskn9zERlT/jm+ImETezuT5lFTDS3O2DNfUtC
+z1EjYdYNJtpGGhwbqaL0m3Zk3oUcJm7c5V4yhpRe2lN+l5KY6LXq7Hj7KxIM
+dmoP3vCiznO8I6f9hNKjZ5/abRcmznJOcGx8ROkRUWx1ZyOV35GNG+NLSLiU
+YXOycCUTK/o/ut+/T4Ic4aNaosBE/pNF3cm3SWCZXrbA533IW+asNyODBOOk
+wkFucR/m+Y4+qjpNQsSXZw/U7vShy5LVUREplL6RLfohmX14LvNy8C1qns98
+oTFXObAPx5bdk/c+TOntkEv6KvVh9MCF8SVuJETnPChNm2JgtknmxUlnqr59
+FeElJAOvpk9vr3Ok6vFXR9+0LgaeLRG4WdpR8/KTdvO9Mgbqhvqr7jUhIcHz
+9tPRPQz0tp+lPCZH3beo9E+9HQwcF+it4VL7UE6Cptu2MHDJy4a8jxPU/szt
+KbhpxsDGp02m+4RiyOtefHmzPAOve9anMtrF8P6Pguickl48UH5yQv2hGOYk
+3bdaOa0XNf7sDV2zRQx/PV9WpzrWg6+Pno59DWKYGLy7mxT0UPu/y23tOjEw
+AooSX/7oQQd6m4eCqRjKHPKrNz7qQc9/NmTJzhEDXf6mm3dADza2W9xJ+SEC
+I83FDTIJ3fhilYnsP/4iUD27SFgT0o35nuU74jxFIJnQmZtJ78Y5SYJkF1cR
+1HUu3K1u3I0KskvPNdiK4GDePNbyti78qnHrnoWWCB4YKU7SrbvQd8cJUeZ3
+IZhaDZkWkp149VBGzlV7IYSsPHmy/GcnvrdRv0+zEsJtQ5WmhtpO7HvtKhNl
+IgQ1jVWxo9c7MVd7a7bqfCGMjUVUbd3ciZEq1+i234egunzQk3+pA+3GJZoK
++kPgYzeYtMqqHeUSFg4dLRqA1M0DjeVxrdhvmMCVBPCh2kngbrmvFUM8kteX
+buaDjGv/5xLXVow6/UbOfTkfEj159fn6rbgqWyFyu5gHMSGsuqz6FjwV8WTC
+JpUHB9N/EkF6LZiH2RdV7nDBpb7hkVJdMy5/s21JeAMb1HeVXNit0YRwy+TV
+fCEDykZrVOoMPmLxL2X7Wu8WKOxgZfHS3uDgYgetBfll4L9D+2nHvgL8ZB1q
+7NZSi+UzE75XR+dDY32A9ZnqDlzDmKZ7ygdhVeTwk1B1Ni4Rvhq3qf4AP3Ri
+6cddBtA5v63BzacJfB66LtJ1E6Ojq5rsyLNWYGXnyY/nj+D5gNZksxedsLqx
+iemXIcFaNx1lD7Ve+JuuXFwe/QsHFqsnNeX2gZz5T26kzBRGHzMJOj+fDX2R
+qpM1xjJEa6cqPaSOC5k6c90VfKcRgfG2nBku/aDk0T8/cN904q2J9dm38oOw
+6duy/opIWcJQqZJb4CQEu7W+J48HyBE6leGO8ukiEObWVKjZyhMyE9PvRzHE
+sMjgMlmgq0CM7Xi9t2bpMPTU0u/achSIDssAraVpI2AUdWek6dkM4k9v1Tn6
+naPwbIct/78YRULzEtNHTkcCjeD3KkxfiSjZk3eXjBuHsZ2phTHNSoS33Umn
+utcTkKxqEXf96Ezi8d7D+ja/f0FQoJ5botIsQjJzk2y55ySs+SfXubxwFkH/
+ut5K5+oUfOy1zRo2pxEz18+qqrw5BQVbWrX2WNKIqoL27X75U2CqKLO1yopG
+mMXFB10vmYLJoJij59bTiNmLXpzTrJmC9m9bl+k60ogPhyz61MVTUNz2U2uV
+D42wV1x+YbaLFNqumf+akUQjJJGShSU7pHAg+LpncDKNKO2oLXT1lkII38mj
+MoVG6JaGvDoXLIW4KwzDI2doxG/PAvbMeCl8t13j13iBRrzIX2Q3o0gKF7K8
+ZE7l04gI5aHaomIpKPFCD30vpBGGsW/oWx5LwV2Udnz5PRpxaZv/wdOVUnjm
+Rz/R+B+NiBLlXpT9JoVO+ja9hc9phPGeMN38H1Io0v5wO/wljeh9t+7+xi4p
+GMxYXV1ZQSM8rv54c4onhTINa6E/0gjF6fecFw9JwTBL8ffDKhqB4bHNxDDF
+1auLJ9/SiJjvWwICJ6SwwqF50uU9jfj//09Qy5Afvl5HI/4HZdvh0Q==
+ "]]}, Annotation[#, "Charting`Private`Tag$4212189#1"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtV3k01P33t2bmM5OlqCR72dosNSXp/eZJISqV6FGikCdLUbYQRQ9tksqj
+slRKtNhSlnA/mAljZ6JIGkuRLGViEPOd3zm/P+6553XO65z7uve+/rhX/dip
+fe5iIiIijcL4v7wOLfkuEAjgv1HbmOrcQnRqWjN2ekYAh4xlH6pMFaLcVwZa
+E78FELQhhBlpWoQMdWyPfR0WgNS2JQwPdhHaJBfdWd8hAK/nRave9Bcj3PeT
+fTdHAHpxny18lErRvpiG50ZHBbAEgl5mWpIoqCna50T5PLR5DkZ+bmIiDof2
+vcJ1DmRMf/ybzWtEyuQp+U0r/kCf3Vmd5b4c9NqLKSnTPQMDAQlU9oWPyOWa
+wfjHi9Nwe6bH1t+qB/ETQmMB8cFIhhuwJ7QXpUt/VkziTsJQXtGhqJIBlGxt
+4N92+TdojEa8k18xhC56uwbrWvFANVHFbkPADxQq/izIf+QXrGW47JPQG0eu
+kU0r2zN/gqfOTvYexV/oTtlAUvLJcbBxCdu8XIOHSnp06C80RkEvRk6qIXoS
+acpi8wOpw+Dnky2fOs5H+XqxJ3v7BmE64x6N2jKLelh5agzGVxhKZtxS/DWP
+BtbcMYQ3fVBXEO19fpkoljufxVgnyoXmn11WL+XE8RrG2JonE59AJI1/K1FT
+EkdtH2kuDu6AmIu1fcxkKVxp+WPPhuMdEPfGjsXMkMIitsON2bYd4DqaIcfK
+lcJh9kP16RodUGJo6fuOKYUDPQZqrte3A4Uj/6jmhxT2jO0mXdXa4ZNVhcvz
+rRRsU9+QS63hwM7j1buLOin4SnP9+uh8DgSsv2cY1E/BNZy67PlkDkQ1/f1S
+f5SCLbprX0z4cSDIaaVjgigVbxtlZXYrceB0FL+UokPF+rLlD/JOtUGM+ecF
+589QscKB7PhDS1tB+s3+R1QxAudrXS2xEG+FDQ6FnAEqgfdOn+g3GGuB5Cjz
+D/lyBL6Sqr6ZqG6B4sS6h8rqBJ4fvN1TEtgCmksnZnQRgb+Gh65b0d4MRnrJ
+6q+DCBy119GRUtkM4Qa8+BPnCaymufEi72UzRM2t1BK/ROC/a0bf119qhq4r
+fjcmbhK4cdGx8PCNzcCVu/tv1jMCew1se/qPejNcS9t++E4ugSlFSi32C5uh
+YWFAqfsbAl8qeWZ1mN0E3ANxT/MqCOy752ZSmW4TUCN2/NvfTuBMnvWPO6JN
+MPDf1hV9XQTuvSuBfT82gk5RoGrFFwIf7A/6pnK5EXB7bsmy7wSOv2xgMuXS
+CH9kX/DiRwnMXjcc17S5EW5enuwZ+EVgFOLMiBxsgEUV0bMaswQ+p7LsiiPZ
+AKHfEUkVELigqqVbP6kB/jw7cJQtRsM60haXuDsbQNqGs72dSsPHXs1/KFZt
+AOqH4cVqC2k42bFoTcJUPVSYf2zEsjQsm76aY/60HjjLmmkSS2jY2nJAWymi
+Ht7oDNOfLKPh6JHU0ImD9TBnocdXVKLh8gTHprp19XBoQRlxTJmG+ZsWaT5e
+UA+WxfQLYao0bNhdFxj2uQ4sw98neqrTsPfFS+wDb+pA4TiOWaVJwxnaSGVt
+XB30pc1fy19Jw9x6vp+kRx3MNrr3SmvR8Ar/fFa3aR3cML9eYaxNwweXeiu+
+UaiDBce93Qx1aDi+dJVP3AgbHJRmJPhCzHbtIT1YbPDda9t9WZeGJaTuyqMU
+NnxwKdf+JsTbXuzzXBrAhv1ZVFUZPRoOtqOXjtmwQZY4My8ixPmTLJmalWzI
+PfFdtFTIj3v2qHLbdC1cHGp0MBRiL+eIgNcNtWA1NrTfQ1jPctFhnTWPaoHN
+NRNxEOpb+W5z16PAWnhBee4pLtQvck4hTnFXLdibSd4/Keyve+0vHK9aC7Hz
+555e1aDhEm7jxAJeDViHVzxwV6PhxDvPM8JraoCn+HfylHCe/laxh3jJNZCa
+zcnHwnnvmXOje/nVgH3vIhEs3MeaPDPgWtSAYPe1dJ48DVPcVfwdl9cAcewW
+eUSOhvuXza5sGq2GwM57588J911R39FhUVUNeqxQqrXQD+c23DQ18q6G92Ic
+m3mhfw4O+oxn4WqY1QoK4M4Q2CjZOl1NoRr25XzYdfY3gX+IS1Cly99BZmqD
+asYQgWsKv7yNTngHKLXy7V99BH7iVeY76/FOyK8yj/tEYOe2QM6gzDsY5Zkm
+aTcSeEvM/pij/SzQahszCXhH4KUm+lvai1iQf+dhgE85gZsfDaVVubLAhO70
+zOklgc39D3ulvmLCLtPGbxoxBFbRMlZRiGWCspYzpyiMwLMfFVquHmZC0R+Z
+jZN+Qv+bNTFCJJlgzEw75eFEYC05c7EDDlVwzjPk7TI9AouxVF6zV1eB5J1O
+/sAKAvcEz54wE6kCkSm7wUMyBE76UtCwLqsSWqKcMWOCiolc7bvU2QooCD7R
+yXpDxV+PS9hENlUAo0zVrSGDiquWcucn0yvAXj8qJDyRisMi7rn121SAIk9n
+7sNZKh7dvVAfUkmYdV/85OpaKn7SNXB9KLocLNI40v43KLgzbElailE5LFA0
+JQpCKVhaZWeuXW8Z8DMCb746QcGBLpmtxagMVvc/iRndRsE7Bk4uvTLzFpzc
+d6z0/i6FB0fHHuidLob+58EBBxlSWE9s5pWXUwEw/BaeUsmSxEfsVhR0HX8M
+qb2ldl8YYvjHxG/jAGY6OC5dfoiqJIbDEptAelU62F/2i10vEMXJXRfrzL4+
+hCHVtxsCq0VxQV0ra09LKlSuYXwWOIjiHJ635mDnbRihnTFJCBHBkRwdjlKV
+LXg/l1g0HD2HionQ95UB6WjjKrfCeMEkerBWoS1H4zGy3uJXeLl2Ev27N6c5
+uekxOnQ2xDvv1iQ6kNhXF6ibgYLfTzGv60yicXWbSr3uTBTde0M+4sBvpGWs
+nJOwPRtReK0pLq8nUO2ro9vzLhegrtHBAv/742gra02V9pcCtIlfKePrNY5y
+26fNUhmv0Y/ZHsu7JuMocfoWutr3GonK1H+bKxpDbqhmi7tpIeIqVvtQzEaR
+gK1voPizGLk+0uG/PjaMNvaKqlxwBGT/+Sg68n0ArStx+KmfBehaRO2nf+4P
+IK2El8wv04B+8rIDK2wGEO3hi40PbEmkyff22Jvbj/7sdfwkGCVRYds/1/rP
+9aHu3BxdMKhEjf6bk9KUuSjttDPTtJCJmPnJ2y3XfUSa42+nt1TWosURHrct
+NCpQWMNf0byRWgSrUFrMIhK1P6uTzlZkoyuzSnuSpMrRFfcuTXU/NhosXVn4
+UuiM8c4ZWym1OrQ1JYJ9OzIPlbOMH7WF16PDg+qVSdfPoL/vF1p7Gzeh0m2C
+8PqpMrBK/9iw27EV9UlFah/ufA/jl7I9WD6tiEhvPiFv0Q5JnlECk6hW9E76
+SE9ATjsMrl1roJvdik7ZluxnRHVAbFHkbXGJNkTfwzEv0foINQ3aTkU5bYg/
+WWRm5PwJdvIDBtWl3iPzFSfv/7bkgoXtIvHfrzuQj2L8KjW5b3DjaEekfuEn
+tOOJtv9lm3Go3q28cO8iLqpevCm+sYwHI+oK51vv9aE2U7HdQUf4EHB2teuN
+JV9ReWaS24+YWej4JLvPo2YQ3fSidvBT5sElZOs3KZth5JCi0CGXIkJWrd50
+pUpyFOVYnywSfBMltailg48tx5G+s1qwkYQ4qVzqZSEZ+xON6V9XH14gQYrM
+iGX59/5CUyVpRoguSU7ZlTmzVvEQez8zYPe4JNm14ajSqujfqLL3qrj1hwXk
+aQdZOY1Pk2hpmIRDcLYUqXi731FCmY8uRMrbBnpRyGynB08ngqdRtd4e15a1
+VNLBNMKypmwGFe5tarfppJJ5zj4aW/7Moln+xiOVoQTJJ/4SL7afQ4a6kiKa
+mjRyX4sJQzlpHtVuetafUkQjCRNaRWnKPNKZeBy6+i2NrHjcuetw+jxqN7FO
+LiqjkfrBIa73s+fRkXvbQlsqaaS0auE1RdY8UvnvdMFcPY2s9TbsUxDeleQI
+bMZcGokpuvHSNgJk7vvqmS+VTvL9+Muz7QQopLCqeoRGJ3O6qp/YOghQ4Kkn
+Z7yl6aRKjsfba8cEqNgtLNhzMZ38Y//4KxEiQFfcGrc4KdPJwnRVU6kMAdKd
+8mWuNqCTvgvHqjOeC5CxqDw33YhOagWV79uRJ0CWC+bjlBh08rb1Ec9LpQK0
+XtkkjWpCJ/1/3rsl3iZA5/uu3vmynU7qOZ1USf8gQM8Lr2L7nXSSyzTOMv8s
+QAeLxc7XWtHJvUkfyi8MCdDWbyO5ubvpJEUs00p9TIBSXr3M0LSjk+AVxCF5
+AtQ3Ero+cT+dDHy/46jLjACd23h+F+Ugnfz/fwZ5LemcCXGkk/8DRFly1w==
+
+ "]]}, Annotation[#, "Charting`Private`Tag$4212189#2"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtV3k01P3/zc6YpqGZ6SlLtpQ1lQjxflsqCiFFUSpPKUskS1KSSrRKiKLI
+mmrsWw9eH1v2bJNdNCIpW5YsMd9+5/z+uOeee879595zXue8rvRpd6sz3KtW
+rVr4i/9jVcQY5XA4sDfF/EJnSQFyX5ANWVjkAOnVv7s1eQtRZs42+elZDqRr
+D65P2F+Itm8xOz38gwMhMvwiUR2FSFPkVndDBwcapbMt+X4VITw4VReTwYHj
++x+p/dlSjKzuNL7Z4cCB0/liqtkHCeTbdMvNqXQFJKyXxr07KhGLJTxadmoZ
+AtZmt75b/ogkCHeapvgfKFTLiz1/iYXyXCr51vQtwm1Nh1B6SBc6eX/bZFfQ
+AvgQopsYlv1oPtw/BNA8eAZIG41fZ6NEyuf10V/m4AB1DvSJIRS7f5tnW+gs
+VHjmWJnIfkdBrqcuK5jMwLFNM0ZaAT+RP0+6r+fYL3BMbpbv2zqJTgU2ybWn
+TYFZOOXdV6lfKLJkKDrWeRIirYOPiCjPoPf9W8hvZcbhbirtVWj4HJKlYgPr
+Fz/AK+FwWirPAspWDHFmD44A00fvoeTYEuqvypLS0BiGxONCR1ZLcNCQcuR2
+yB8EZp1szoIWFxYJeK2hyvUF9MXvbww/wIOD87fUUH8PwIT/Y8Vvh3jw4njq
+0emfA1Cc3KGkb8+D2Q4pVws7ByA1/eMWXjcenK2fWG6QOQCejw7lfnjIg634
+4sxtHAaALTrlZdjGgzevl25c5d8Px1zMGCYnebGyxoRy8nQvqPa7Pha7z4fP
+ql6/XtTXC185r+n5UXz4pfya1sbqXpjxckuwTeDDouu2+s4974V5bqlV+fl8
++PfvC2X7jHrBKOucetsXPlxeNH54NKIHgpc3pr3S4se2uuMBWzW6oUhM8t7s
+BD8O3xnQYijVDXL5aiXpS/y4XoUiZ0vqhh/m1vnnBQSwnqRqbeDnLjBp/qHH
+t1EAy3Lc1rYGd8HFx3xXcs0F8DgxlurV0Ql3jJ+mcmcK4JtGY81FlzsgrCy6
+pP+KIC43/nlQ3bEDXg9aPMu5I4hXmf34yDTrANaVeypPIgTx1cPfGxJl/mqW
+V4M3UxD7nB2qedDQDux9lAP1bEF8LqSPOCXVDg0lz/jrzYSwaUNjplANC179
+GY+vUSHhu80NW29ls2CXVCJZfzcJ17DqmSuxLNAJp1rV7CfhPX21b6cvsuDg
+ATU2zzkS1huvSusTY0GhxrNL2xNJWI1aGp/l3gb6UYmuoeLCmG7NDDu6rhXS
+ahUkaeJknC1/7/0enlbg+x6dc0+JjC0WnL5um2iBO5wNUjQdMr77QnoXqboF
+dvCHkG2PkfHKSET/e58WKFcIVsmMIePha/6q4u3NIBlLaSoXW40vHHwcXaLQ
+BB8OfpOJUKXgtJn9PyO5mmBU1YHLC1MwO4YXX+j6CAUW1WRnKwo+8tX3m2To
+R2gOGrgc40PByO+ERuBIIww1R7gJExRMTVRiGaQ2gKKdlqirzRqcPVe1pkau
+DoJ8rS+xTan4Yfqrcr2FWuChxSlZ2lKxy4nr3nmNtRC45aJXiyMVy33Y1fPK
+pxae+1Z7CPhTcVTkm5RrNTXgSj2obZ5OxVfUH+vucK2GQJnUCxfJItjA097l
+RU4lLNmV1jgPiGBJeS1JekglSGhuZZ0fF8FLXfSWe/aVMGS0wzvwjwjO1W/S
+8OOrBEWpA7TZf0SxvIgBt7VNBVTyqcdwrEQxKXNzjNBSGaQ+9ypg1ovi5J6h
+B99vlYLQxwdTvz+uxd1XGS/jdpRCWbdJJHxeiymS+zIt2SXwZLt8fuT4Wuxz
+Mq21CJWAm9yNW+cpNLx3yHnd3cX/oI0+vvOhOQ2PjE/EK3oUweecE82Hm2hY
+PEwq+7NkEZi4igma99OwxTbLivDGQrj8bui3+gQNF17KHlpULIQOvYVpoNBx
+6LyXYv1QPqRqP2YeNKXj0phknesR+ZBoH11gZEfHv7TbTXcY5kORuEg+lzMd
+H7um6f48Pg94ZJ7VFwbTsSL3Yo6LXS74cf3csKeYjk8kKlZtJOWCtTBfYEoN
+HYcb2bW3FebA5bP9xg9YdPxh6N63O045MBi/IXu8n44Xg4vndRg5cOlNlyOM
+0rHqljGhycps0NBiXpyeoePTtRJiSZeygf1E0D5ghY6jnM2VbWWyQXzOee0h
+AQauF76uS27JghMnXy07rmHgVe8yzInrWaDiarz8isHA6uYDDl6qWYA8Wvy5
+JBj43AT14pa+TLgy6OTjIcPAsWH6Qb33MsG9r/nBgDwDN2/zfBKmnQl1jg/W
+GygysGDKHpPQ1gwY8D+pd1uZgT1GUlymtmYA6bSV4DMVBu5UFHx49AETxJJ2
+hnj81djtfGbZ6DsgbX4+M6/EwGkZda0Kxu+AFsn/UVaBgam/lGYfJ78Fw090
+frYcA/upP1i3yP0WbDuUFTZtZGC2z7jW6ZNvoNqedrd/HQPvLzpoX1eSDm1L
+HRd4/+bLXsoM2C6WDhS1NXohvAy8QU804dnl12AxGP/m5DwdBwVequBuT4P+
+0MXBW3/7/FHOGnLekQavCpNzx7rp2JpPQ7AtLBXsGmSyImvpuHjfU0Wd8RTg
+Vpiz8sunY7m786aJB1Jg3/2RtU8T6Ph+w1F34dfJYD8Vc2PiLh0ftxTP7XFM
+gpSXsnrHben45/SslndlIrhtz4qh6NLx1agmoGxKhPge5XgZKTqO7Qmq1x9O
+gJCA8Oq4LzSsHGBv2bM3ATZEQaEkQcP/SWl0eKXGA0P9TPbOOBrOrW+tOtjy
+AtykXTecP0TDLGpwS1B4HGR+TJp4rUzD04e1+vIOxYKh0+LuWl4a3j7wckas
+PQa6otNJM1lrccaMq+xIdwSM1Wq26nKvxR+1pLaKxT6BcxP2zzNZong8oE3b
+/Hg4uB+JX5ecIoptRb2SzsEjGGiZrjhhIooP6VC4uWpvg7yq1sKfeyI4kLWF
+JVZhBisCirp2olSsvKbPmU9FHemXH81Uq1mD26eCXlLnbdGZ2ZZdpq5rsP+T
+vXUu6h6oHH7mROVTcIVU6J04ahDy+KolccN6NXZyUjybvxKOlscELNLfk7Cx
+jO+xm7oRqOG2EzPOhYS39FWYW1yNRJF6Hdo3JEh41Oq45ujCUyRy5qYH45YQ
+dtULE5ScjUWmTr1NR+wFcRHJ/1O5dyJy3BEXeVqTH8er0NsyZJJQbuL0o3VT
+fDjYIqM5tikJ1bOO3C19w4etowbrfRRSUOTOp19bZfnwpLRpuWJfGvIsVOZN
+leTF8loSGeFGTNR4+7ZxlA43JtsXvL0+xUTL13YHxXBz4+kAy3TXFxmIqrt5
+wrKOC59kl1vJXs1EmnkJTJYd19/7/W22/CkLFfrE7a4KXoVrcxyMskJzkXGY
+zDqj6WW0u0q5YvNALuJcsLuzFLGMMtsX9F9o5KGp+LIvJZrLKGrhCbo3mIfK
+1NxjDgb+Qf+iGu0zugXIMyrmj4zEEuLUqW1bP1WEfFSe/Si5MY92srkkb9gC
+MmjSKaP0TSPV9zZTaq8BZdqsq5yMnUby4e8qBxYADcSbfbM5Po2EE97ujDcj
+0Ev+wffv+n+hPxa2vZxxAilbNv0yGJ1CfZkZCrCtHPmC34379En00uNEpW5B
+JUpWOnKA3+s7irUXYkb2V6KCizMZQPmOoo1zn44JVCE2fbFaLn0EhUmRXOJs
+q9CFitz739nfUGBznsjyQhU64+zYIms/jE6prXYo3l2N3P5sOPHGZRDJTv63
+oF1ei0b22VvsGu5BVxsNb82M1SKXTqUdCdt6UHt6PYW5vg6NPflBkwroRnfP
+9MhKX6xDTRY76Yc2dKHJ7kUzAal6pJfTlKHp0I5Kq7RetV1rQKRaA3TxnxZ0
+7HnBfletJtSQf9TMqrsY5V5GnzadaULVc7qZudfeI8qRaof+sCbE/q8mT0mu
+EJVRO7ysRpqQ8eunibuu5CCaof/B2APNSHfuvMjckyTkX/jML2ixGbEPFKxc
+3fUCTBK7Gs1tW9GB9TzvV5IqYfI282yVWyt6RGJQ+xOrIPrcTY7OzVZEuy7G
+Tkr4ACMqKtsUmK3IPzMrYDSmBkIKAyN4eNtQyeMjz15ca4Caxs12hRlt6Hje
+y8hGoVbYN+89Ii3wCUmc23xztVEX7DET5ZnN60BB1wbNWbsH4eEpoamF2g4k
+YB+239hlEDq9V/Wv9HUgjeFWx6iYQXB+Mf5ekL8T/RT58KVs9q9/os5T/Egn
+opxbeGj/9it0Pr7JNpzrRJu74oXaRIfBuX2mLFyjG42a0LR1P4zAI4eOQLWC
+XjSznUftVMsYBP/cjYYbelHFelVv1aUxCPB7tfyc3YtcxK+M9sqNw4UnblcE
+KH3ooljcP599x8G8msfr8799yP+DkrWP+ARQtqo53Rf9jBr9Wc0iapPwcCXE
+bMStH918ii32nJ+CanOJ1RaiX1BYbaPX27xpGJOmB7Q+G0SUzhBk+vA3eHsp
+nXrEGEac0M61dgOL0NFLtTpbM4JuWSZ/yKGvwEm/3d8ETH+g8nJu0T7HVUSF
+kubdCr5xpHtFwmOwgIuQFyoeSTKeREfO7lwo7uYmJIpd9vCFTKFGbl73XDYP
+sWqR+7Un+xeSLNu94/VPXuK3ZcmJqk0z6Ntow/c9LD6iR91BbNOtWdTIDGN6
+Az/hYUMVkemdQy9qUur3RAsQ6yO+2vJKzKORXdbvj9kIEky7+NTpywtIc/+V
+K6liQoSN7nXjmpJFlM5xl8+tFSKyTrjJaP9ZQo+OCbbccCUR8yRDnqLDy2js
+fFKTAl2YsGrR0ZCIXkGXOtxrs94IEyQd4bLiuBVkGN5QZ8gUJsqSug/YJ66g
+Ftvbhz5lChNql/1OPWeuoMOp/y3N5f39IDcW3F9ftYIaD5HeqhPCRK3r9kH6
+rxXUlHw0O4YlTGBBhTCKKQcN52gHCS8LE/MX5zcwLTmoRXOo/CFHmMjoqU42
+s+Ggf1mGYSLcZEIy4+x/909zkPyJ8ha6AJn4czhpmOTHQRsphjP/iJCJgsSN
+ugIpHGQzuNwttIlMXFg9UZ3yhoM0rNYu3t5MJuR9S632ZnGQCcUpjUuRTETs
+P37udjEHDQidz/mtSiY8p5494WnjIJmcrXc+7yITinbOkomdHDRTGSZno0Mm
+vlRqvTb4zEHWu9ysmnTJhEV0Z+mN7xw0gXeeLDUgE4LcaSbSExzEJe2Od+4h
+E+DiyyJmOMhrnsh6s49M+Hza63BykYN0iixzpfeTif/f36gRGxs/NSUT/wO6
+LMC+
+ "]]}, Annotation[#, "Charting`Private`Tag$4212189#3"]& ],
+ TagBox[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]],
+ LineBox[CompressedData["
+1:eJwtmGc81W/cgOmYx+l0yJaTESFJEhn1vZUkWSlRKlRUMvorowiZESUiISlK
+sssO988K2SN7RSSZIaM4z/N8Ps+r69317npziV9yMrHZxMTExMrMxPR/VAD+
+SQaDgYPUVEZWSwvAaVXyweoaA2/cY6syZymE7I97pReWGJiHbphXoVcISjIG
+l8Z/MfCjwD0dBV2FoMrt39vQxcAHarhsdv4uAjQ6/+V5FgNzOUj8oMuWgElQ
+Y9o+SwYWl/VVqjIiwK3Z3+Fq2QZuj2q6GNxVBR0dXJPl1us4YISzv2q9CUQJ
+J17Vbf8wyTdkv9utDsi7UcW6ZWANkw99SJF60ANWoXvnenxXcXXO6TzZk0Ow
+EuHxAMMKbrnPLbTmPQJJ1EGhmG9/cGLvOxdjYgzi9fY6twcv4fJ+Wo2F5E/w
+tbd2lz2+iDNE/SyNvabAg/TezXn6N/a+ViE+tWcOrH2ad3S+m8dNXYPCK2K/
+Iap0LCbebg7bsx4bkZNfhOIhGUq6xAx2vuE1kB7xByRp6PDphF+48Lh8QDdp
+FT7IPbAbGZ3A167tKLad/gtD1TliKirjuN99es5DlAFj8lFKOH8Ub1303Wes
+zoy4vVJVFJi/YV6rgI8y+iQUmC9TS1sexv5NGjTv0yS0NpNydmFqGMfeWrTt
+PU9CI5ZvPQu7h3FJg65wogMJfdBKqjicPYz3qI5oXXtMQiasLwzNLIfx9uOP
+WObbSWinkHgjk8cQXvieeZjHmgXJq8zKv1nox/dkVWcVwliRrYK3d9FAPxaY
+iApseMaKXkpvaWus6cda68mKzq9ZEY/AHrc/cf04LElp5msBK1pediw/pt2P
+pT+PODKNsqKKohnTyad9eCG/Z3xKnQ2ZH5zx2qPSi882pOoGzLOhiP1erUfE
+erHvn5jrsM6G6ndTd5iTezGJ09aGxMmODtEV6nwGe7DNRQ3FVDF2JMlw2NoW
+2IO1fKNmHIzZ0QwxnXK7qxuf53Py+pXDjvy0p1uK3LtwxBa/y5r3OFCF7pSR
+8uUuDHc/OgmGcCAmg19NmQZduDDD+QzTMw7kafqzIUmiC3fwRHAtZnMgV9ux
+2rCGTjz8OyLYYYwDXXswQFiLdWKCM+VUqTEn0m9ozOas7cD3EtaKfPeSUUhL
+wx7/Dx14/cjvMk5ERrUd9Zkb8R04MsBk/KUhGR0dqEtf+K8Dq9OMRdZukNGh
+mep3AyId+IrJ/YzrKWSkSCtLzHFqxyaTkSdOiXMhvtOZ4WcF2vCftM1xZhIU
+9EH6YfFRUhs2ylTx+LmXgoxXr37fO9uKi/7lloVqUVBIgvgBck0rNvVVoHBY
+U9DGxNOhYtdWbGTXKtWZSEHj9zwUtnW2YBUfqxNLkpuRo9GTmFLZZrwU3F8R
+pEZF7xb1pqKYm7GOzhLrixNUNPKcBTn2NGHbF/VE3QUqOvPd7Qc9uAlbdlyI
+tPOlIrhzUcVnohE7prs9b2mgIlrSro7DKQ3YybR07prtFvThT/WW2h1fsMMY
+yzEnMxp69P51xaHVOrz7/hU/scs0dOOit0teYx3WzRS1GXOkoR2fD/S9dq3D
+zfmOkmmBNBQdlfb2Xm0tXg5WkVQooKG7yk8O7rOvwb2XSDWntnGjMxMOc6mo
+Bm96VZBgLcuN9sXrJYnx1WDFLtU/QSrcaIrEwkkt+4y1CgJjtp/kRhfbXTsm
+tnzGehk6+gFB3Oiw8/kbCR+rsJmtvXTQKjeiS6vR+R5UYZfCbD0DDh70t4ev
+9eH5KlzNcbNdSYAH5Wo1q9xhrcLkZ6BwcT8PkuY+vOm0WSW2Pmr3+OgtHkTO
+3vmc8285/nR6dmloiQe96RsL++lfhtXAg3gowot6PflfvthXhq3qe5gPK/Ai
+Kv1Y9smRUpw6KxEup8WLXK3etRVBKWaUp3VGX+VFOmN2AiFrn/Cwplnr33xe
+NDEzmyh3swivakyO8FvzoW3hYh8G6UWYNtunHOjGh4z3nqyMaCzE1uSxxIOP
++FDhrQ9ja3KFWFzzHUdoCR8KXrktVz+Wj++JF30a2MaP5DatfbxhkYvtyGY8
+BjP86GKSXPV2ci7Wzm1rRmQBFKFt0dle+BG/4Fk3SZIWQGuBJSsa/B/xb1Cl
+VVgJoHou74OU1hzcpy26u6FXADFlZBkS3jnYf2cRI3ZNACkbDlveVsjBdc5z
+x5aFBVF8uJZv/8NsbN5Skmd3QRB1y3E8OhuWiSdy7Btqfwoi5HA9u3wyA7sM
+hjWEUYXQu6wvbbK6GfhnliaVrCyE7iiHCaxtSscb5wKi0H0hJHyI51Wseyrm
+evH8lqmUMLpwcltu3+VknK/prKj4XARNLSypuVQlYesH0SKkehHkGd2MqVJJ
+WLOSSeTTugiK7/Ot1xp/he+tykQm2WxDufVt1UatCVhWU/soVVMUddACW30j
+XuCHzJin8j9RtGCqNpB3Kh7XML2bqngrinjipiYmeOOw6No+6t1eUaQ0/HJR
+pPM57lqROrGLQkcnpU4xGT2LwYF/75z9oU5HN+3YKL7mz3Bjr8aonw0dhWcV
+CeQJRWPPhxxpkSF0lLVoLznR+xQbXPdbtH5HR01qYntE4iMxOYVwXSyhoxmv
+dnXDCxF4H3cct+BnOtpcFahzn/4Ez3Kyp3qW05E5z+3ka/gx3t54ZGkknY6e
+xfd+atIKw9H2c5PnAumoU1qrXbkqBL+cja0O0acj3pyUyVidB1jG8drQ7IYo
+OqVB3cRcF4A//iUM2BNEUUT1baGrJ/ywvgBSM94lilqM+hQbG33w/kH7sR2p
+2xA91y/cNtET3yLN294W3obiao2x0hs3bLUh5OPkK4IEB0RnNlKdsbBxsq/G
+d2G0a/SrWvSFG7hHWGax4LAw8umQ6RCpNMDz+UkpUgxBJL9lwI51tzLQnoeK
+v7ISRJ3zvi9pK+Ygb/IvaKZaAHlE6ny5oXwT3jpEHW9N4EcbXnfiXu5xgfmA
+GT/ZrfzIxy7dvl3uLrjJa5guh/KhSrHgoBc0X7BY+zZdE86L/KMlbqo+8oeP
+rwqu+wv/b1+UEvNWriAojXdxUUndimqXZ2RZ2UNBTzIrNbyDB129KmebvxEB
+ocbCfd7nuZGuhNs5v4NP4Qf/qJM9OzeSGag0NPaMgpn1Zgm/PBqaNLmgOrn6
+DCx2JXbdEqahL5vf7yo48BwaHgh4zr7agtJq/2z3d4sF8Yq59N9btyD7Q+Ec
+9KV4aGFeX2pipSKD1f5/k/sSQFApiSodsBkp5MrOFzi/hPOK6RO3ODajlaff
+pmRWEmG676YLXZiCisgeXytckqA37Idy3BUyStzN154lkQxDp/1jfy1xokDj
+rJb45mRoHs/caRjCiU5Hj9a7yr4F/3/5KpmfONCcuH6F3MA7EC+r1Zc6yI66
+tMexQEgqdFJCQjVH2VDZVZ9SFtX3QA6xULR7yIYeZuQWDoanQeNP2rOMb6xI
+Wk00K0I7E/haBjUSk1gQ5XxBuvd8JkSa0ufkzFnQgtfJ9/YJWTAbaEvaT2VB
+ViMVJpKe2WCxR97ukRcJKcgsG6x/zYH3Fy4FzTluQnUfLbVzgnNh90OezD0B
+TEizWr5y53AusLU0PjbSZ0LZnataCSp50D8YUmnAy4SiVyPh4WgeiFHH7aMN
+GHAFatVtDhZATkHA5WPv14HxRXGv0HwReDXWuia9WQPn/vWsx8eKwVTPITFC
+bw3Gp78osCUUg4V2T++ruVVooNnIL+h9grRkBRIrWoXYM893NiaXwM470cVy
+v5Zh/wgz/b45hn/3w/w2OS6BQrHZvGIqhgz5TgXlnUsgHZFRNbyKwfPuvUN8
+3xaB61X6/kQDArbfCjbpPrMI/4zN+xkzBJzWIdWS9RZgIDtLFu+tgC3t7eMp
++vPw8ubFqoMFVSBLOtFbc+UXxJ/nzIwaqoIj1cVDSyuTEKOb+2yavRrW+Btj
+5sImIVyMfOOFeTW8SRlQR8U/waclj3t9tRoKxOHcisgEWCtutizRrIHHXD5m
+95jHQHLu06p6RR0wJosjp4IHwbPxiP/idB1wee4PsWkcgM739dRMoS/wNLLJ
+RpBnAEJs+iTF//sCYuKT+SIv+2Cud82AXawe/pNjuSRf0w1l1Wqv2+81gMak
+7UkD/XY4F1egZ6/WDNfTiLhhmQrIdYevUjbNwNf4K1tungDqmRrLofBm8Dyx
+r+yoK4ZyWtdtk4lmCMrffJ3/XTHwHvEwij/RAjGC2dzeSjngURh7x3etBfTm
+C1nPGDrj40k9jYbmbSB/N7/Jub8czwVk2lY7tIFju6HSwW8VOOaaH0PDrw0a
+JIzYer9X4ondu/fKZrbBHLtHXdRENX5Q6POUxNIOudKW2pYjdbi2cadFYVY7
+sBd6s+W1tOBjKy4T4uxfoSdCjpys0I2PGvCQlvK6wGWY9jK5cQQ/suacX63r
+AqWn7SzV/0ZwtwvT0MZAFywbOM+X7hrFdgkzxRxs3fAndNJGPXgUP5r94rzt
+TDd0W8x9vnL4O+5+4jdy5E83eFNZqvMyxrBd52J5hEovuHVe5x28PoEfW3b5
+KBb0w/erZufO+03jwClNGG/oh3+zbwOiM6ax153X63Ej/bD1mPtqdtc0dox0
+uMtOHQCZDqp70K4ZbFhDuj14ZQCqy0UncOsMpu5RvBrKMwgNCzpMRyhz+NHG
+A4MJhyFQPqD25JjuPK4xFN1szPMNzjIbBF1+voCnxfm82mJHIV+/+LaT+zJ2
+ub3L+jH/OHjsfSTa27SGu/ppJra1E+DX1ikRxb6Bre5o/mDX/wXs/ndVVy4w
+EZW7VEMqWWeAL8LYffEDMyHNWTKRrDsHx/fHHfXp3ESIltw4yvpgHqjGJsmk
+IRLBtLYp1XnkNwTwfRG79ZOFWD5ZerFaahHcpMRSHFpZiT5lSxEp/yVAK8mf
+5kvYiJtmNG6J/j/AldgyxhbNTgg9/W7OIroCvwQvBpiYchCZFokpC+6roFy9
+Rm4T4iTMDnrr1pauwQuSZAR7LSeRc9FBQv3fXwiLe6K+YkcmVshHSEWm6zBF
+PHQt38pFmLRqqIjGbIBGtm3xlfdcBFmDq7zkxQYkvD+jsJzORZQn9544n7QB
+RUa2ssFZXISi+x3ruMwN8ByNykvL5SKo2wtChao3wPIb565fZVxEnb3SKN/v
+DVBMjcw+1c5FIA7ZcKo+A7hlak41/OUiVv5bEc48yYCPjFqG0QYXkdVX88bA
+jAHrr48daGeiEPQs20+hlxjgNWVl1M1KIf6ZJo+T7zDg4JZA4YEtFKIgaftB
+9rcMMPew1W2VpBCOm2dr3qYxwFn8ZrOBNIWQdisz0clhgBLdb6xOhkI81btw
+LaCEAXm6NpjYTSGc52MjSe0M6F52VUhVpRByFnb0pG4GCHjLKEmoU4hvVWqp
+hwcZkBwu/jlWk0IYx3SX3f/5v76BoJchWhSCY9O74+KzDHBMPTLGrE0h8A23
+DmKRAeES3z+561AI1686llZrDLh1IVxyVpdC/P8/gNPnnLbZnKAQ/wM8aBta
+
+ "]]}, Annotation[#, "Charting`Private`Tag$4212189#4"]& ]}}, {}}, {
+ DisplayFunction -> Identity,
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
+ None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
+ Ticks -> {Automatic,
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ MachinePrecision, RotateLabel -> 0]},
+ AxesOrigin -> {0, -4.225253979208682}, FrameTicks -> {{
+ Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision ->
+ MachinePrecision, RotateLabel -> 0],
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
+ GridLines -> {None, None}, DisplayFunction -> Identity,
+ PlotRangePadding -> {{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
+ DisplayFunction -> Identity,
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "ClippingRange" -> {{{-1.999999918367347,
+ 1.999999918367347}, {-3.597953707140854,
+ 7.693451190080213}}, {{-1.999999918367347,
+ 1.999999918367347}, {-3.597953707140854, 7.693451190080213}}}},
+ DisplayFunction -> Identity, AspectRatio ->
+ NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
+ AxesLabel -> {
+ FormBox[
+ TagBox["t", HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ "\"\\!\\(\\*StyleBox[\\\"\[Chi]\\\",FontSlant->\\\"Italic\\\"]\\)\"",
+ HoldForm], TraditionalForm]}, AxesOrigin -> {0, 0},
+ CoordinatesToolOptions -> {"DisplayFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& )}, DisplayFunction :> Identity,
+ Frame -> {{False, False}, {False, False}},
+ FrameLabel -> {{None, None}, {None, None}},
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> GrayLevel[0],
+ Method -> {
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
+ None}, PlotRange -> {All, All}, PlotRangeClipping -> True,
+ PlotRangePadding -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-1\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-2\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-3\\)]\\)\"",
+ "\"\\!\\(\\*SuperscriptBox[\\(10\\), \\(-4\\)]\\)\""}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["h", {
+ GrayLevel[0], FontFamily -> "Arial"}, Background ->
+ Automatic, StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {
+ LineBox[{{0, 10}, {20, 10}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ Opacity[1.],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 10}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.1] -> Baseline)], #4}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ GrayLevel[0], FontFamily -> "Arial"}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
+ ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"Opacity", "[", "1.`", "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2, ",", #3, ",", #4}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
+ RowBox[{"LabelStyle", "\[Rule]",
+
+ TemplateBox[<|"color" -> GrayLevel[0]|>,
+ "GrayLevelColorSwatchTemplate"]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "h"}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, {
+ 3.871628888535161*^9, 3.8716289223051*^9}, {3.871629457518793*^9,
+ 3.871629525242256*^9}, {3.8716296137151327`*^9, 3.871629625997673*^9}, {
+ 3.871629704200838*^9, 3.871629853550775*^9}, {3.871629898460318*^9,
+ 3.871629914537928*^9}, {3.8716299451102247`*^9, 3.871629954339423*^9},
+ 3.871630097238586*^9, 3.871630131562233*^9, {3.871630181745326*^9,
+ 3.871630254768821*^9}, 3.8716304278287153`*^9, {3.8716312511595173`*^9,
+ 3.8716312558499823`*^9}, {3.871631307414646*^9, 3.871631326008296*^9},
+ 3.8716313890517387`*^9, 3.871633035236746*^9, 3.872232484200904*^9,
+ 3.8722326877670507`*^9, 3.872232744803054*^9, 3.872232822043681*^9,
+ 3.87223294392085*^9, {3.872233009055416*^9, 3.872233025832799*^9},
+ 3.872233187762746*^9, 3.8722332247040377`*^9, 3.872233388756542*^9,
+ 3.872233836144418*^9, {3.872233886469149*^9, 3.872233911922018*^9},
+ 3.872233954033169*^9, 3.872234657727256*^9, {3.872827739501729*^9,
+ 3.87282776748412*^9}, {3.875951503161869*^9, 3.875951569735404*^9},
+ 3.884691802873703*^9, 3.8846918532524557`*^9, 3.887186743416803*^9,
+ 3.887186819461278*^9, {3.887186878027606*^9, 3.8871869938232822`*^9},
+ 3.887187474086*^9, {3.887187655128037*^9, 3.887187678918461*^9},
+ 3.887187744969038*^9, 3.8871877776872168`*^9, {3.887187917169589*^9,
+ 3.887187949227336*^9}, {3.8871879838276787`*^9, 3.887188010158411*^9},
+ 3.887188089249675*^9, {3.887188126546927*^9, 3.887188177721342*^9}, {
+ 3.8871883124067802`*^9, 3.8871883283898573`*^9}, 3.8932380037534246`*^9},
+ CellLabel->"Out[55]=",ExpressionUUID->"42596919-1903-49e5-8e75-1a532b575569"]
+}, Open ]]
+}, Open ]]
+}, Open ]]
+},
+WindowSize->{628.5, 1010.25},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+FrontEndVersion->"13.2 for Linux x86 (64-bit) (January 31, 2023)",
+StyleDefinitions->"Default.nb",
+ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[558, 20, 318, 6, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
+Cell[879, 28, 209, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
+Cell[CellGroupData[{
+Cell[1113, 35, 166, 3, 50, "Section",ExpressionUUID->"c6615333-57fa-470a-9d07-45b7998853ef"],
+Cell[1282, 40, 1292, 34, 91, "Input",ExpressionUUID->"80831edd-bcaa-4fc0-b1cf-e561a87ed645"],
+Cell[CellGroupData[{
+Cell[2599, 78, 3285, 61, 111, "Input",ExpressionUUID->"43cfc45b-1fff-4120-afd4-982fd6195a7d"],
+Cell[5887, 141, 29139, 618, 234, "Output",ExpressionUUID->"7e2943f8-381c-42b0-8f9b-5bee0ef91468"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[35063, 764, 1662, 39, 144, "Input",ExpressionUUID->"8fa1ecb3-1ecc-4bba-8fa1-06377280f14b"],
+Cell[36728, 805, 22174, 481, 186, "Output",ExpressionUUID->"22fc8cc4-070f-4958-a56e-3747a3946f91"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[58939, 1291, 3554, 72, 186, "Input",ExpressionUUID->"98d70064-2bee-4c5b-a8fe-984577f41f88"],
+Cell[62496, 1365, 4296, 64, 220, "Message",ExpressionUUID->"0a6c061e-9d22-469f-9a77-bdafbf23ad0b"],
+Cell[66795, 1431, 4298, 64, 220, "Message",ExpressionUUID->"373d98dd-b1a2-4d6f-95ae-eed0eb8466ed"],
+Cell[71096, 1497, 4310, 66, 306, "Message",ExpressionUUID->"dd61bf6b-294b-4bed-aba1-2e9c5e3c51b1"],
+Cell[75409, 1565, 494, 11, 22, "Message",ExpressionUUID->"e21c2683-2071-4eaf-8b43-f1a927c53e45"],
+Cell[75906, 1578, 21815, 477, 191, "Output",ExpressionUUID->"ff6a7053-cfa6-438c-814c-b29d04a9cf5a"]
+}, Open ]],
+Cell[97736, 2058, 2498, 66, 75, "Input",ExpressionUUID->"ffc53174-430d-4e0b-b71f-902d34f687b7"],
+Cell[100237, 2126, 483, 8, 22, "Input",ExpressionUUID->"249e2bea-239f-4870-bccb-94af3730f0b6"],
+Cell[CellGroupData[{
+Cell[100745, 2138, 2207, 48, 119, "Input",ExpressionUUID->"a6d0fc76-cf0a-4234-9fe3-d57ae603ad2e"],
+Cell[102955, 2188, 38371, 715, 223, "Output",ExpressionUUID->"fd2b4eb1-d3d0-47e3-9856-c74924a73143"]
+}, Open ]],
+Cell[141341, 2906, 2524, 67, 75, "Input",ExpressionUUID->"22e15b10-be95-4312-870c-ebe3402ea67c"],
+Cell[143868, 2975, 490, 8, 22, "Input",ExpressionUUID->"6e3ba380-2dbc-463d-8279-e42bb1e3c387"],
+Cell[CellGroupData[{
+Cell[144383, 2987, 1962, 44, 83, "Input",ExpressionUUID->"965d5a6e-a5d2-4e2f-8234-02ac11e44315"],
+Cell[146348, 3033, 51438, 932, 181, "Output",ExpressionUUID->"e027c86a-5f73-49af-9682-15a84fa4ac67"]
+}, Open ]]
+}, Closed]],
+Cell[CellGroupData[{
+Cell[197835, 3971, 283, 4, 40, "Section",ExpressionUUID->"af69f70f-b3b9-4794-8398-01134650a149"],
+Cell[198121, 3977, 2232, 60, 135, "Input",ExpressionUUID->"fbadbe6e-e274-4fc8-b8ff-31d7d09129f7"],
+Cell[CellGroupData[{
+Cell[200378, 4041, 2213, 56, 126, "Input",ExpressionUUID->"3f75c1e0-258b-4769-8308-40547e5bc66d"],
+Cell[202594, 4099, 22045, 413, 288, "Output",ExpressionUUID->"9917cd53-ba22-4159-9239-28c8a5b2c68a"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[224676, 4517, 2283, 58, 126, "Input",ExpressionUUID->"3f8b6e53-ff20-489f-b395-47d925d34ae6"],
+Cell[226962, 4577, 13931, 278, 288, "Output",ExpressionUUID->"9950232b-1eb6-4bf2-a1cb-424ab941d88b"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[240930, 4860, 2405, 61, 142, "Input",ExpressionUUID->"f1b88156-90fa-4eff-991c-fedc7873189b"],
+Cell[243338, 4923, 24259, 450, 288, "Output",ExpressionUUID->"4fd8761c-1544-4b9d-b5b4-9faa986a6608"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[267634, 5378, 5365, 129, 175, "Input",ExpressionUUID->"7af4aaca-fcbd-4164-a23f-452af7281199"],
+Cell[273002, 5509, 35446, 648, 254, "Output",ExpressionUUID->"f0d6a512-a16b-45e4-a62c-27480dbdbe2d"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[308485, 6162, 4865, 118, 174, "Input",ExpressionUUID->"efe0717e-1a4b-4a72-a5da-a2e9186bd1ec"],
+Cell[313353, 6282, 5389, 80, 160, "Message",ExpressionUUID->"50c6b3be-692b-4bb3-b631-dd6ed0112f44"],
+Cell[318745, 6364, 4526, 66, 151, "Message",ExpressionUUID->"1390bb82-7e0c-4a82-8be7-3aa0578e2c3d"],
+Cell[323274, 6432, 52833, 934, 247, "Output",ExpressionUUID->"5632f44e-d2ee-4570-afa0-630f5721d24c"]
+}, Open ]]
+}, Closed]],
+Cell[CellGroupData[{
+Cell[376156, 7372, 389, 12, 40, "Section",ExpressionUUID->"7bcdac80-37e1-4f66-bc64-b0d2db5bf4c3"],
+Cell[376548, 7386, 670, 18, 39, "Input",ExpressionUUID->"18ba5487-e161-432a-b28e-40a5d59488df"],
+Cell[CellGroupData[{
+Cell[377243, 7408, 155, 3, 41, "Subsection",ExpressionUUID->"732869ab-e280-4316-b799-ffab64c308f3"],
+Cell[377401, 7413, 605, 17, 50, "Text",ExpressionUUID->"22825260-2ae9-4101-a1f7-3f6b1bfde9fc"],
+Cell[CellGroupData[{
+Cell[378031, 7434, 2322, 64, 144, "Input",ExpressionUUID->"973946cb-df1c-4924-a2f2-30f2ee7fc843"],
+Cell[380356, 7500, 44903, 816, 190, "Output",ExpressionUUID->"f282764d-6683-431e-bd66-aff690b1329a"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[425308, 8322, 163, 3, 41, "Subsection",ExpressionUUID->"91682356-0150-4742-8ad7-87c14223ec68"],
+Cell[425474, 8327, 712, 19, 54, "Text",ExpressionUUID->"6d8da3cb-bbd1-4fe2-a26c-2969b50861eb"],
+Cell[CellGroupData[{
+Cell[426211, 8350, 3588, 81, 144, "Input",ExpressionUUID->"502b8651-e019-4a6c-8e02-02b77d829c3e"],
+Cell[429802, 8433, 34814, 647, 193, "Output",ExpressionUUID->"632547c6-cf8a-4755-9e26-5f9a8c901698"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[464665, 9086, 212, 4, 41, "Subsection",ExpressionUUID->"b265c475-5c2a-4729-88fe-bb9de99d3c77"],
+Cell[464880, 9092, 1079, 28, 68, "Text",ExpressionUUID->"78afd124-f9bb-430d-875b-072cdcafc777"],
+Cell[CellGroupData[{
+Cell[465984, 9124, 3642, 82, 144, "Input",ExpressionUUID->"a33a6443-e55c-45ac-8ec6-84306b68cf53"],
+Cell[469629, 9208, 37930, 698, 194, "Output",ExpressionUUID->"18837f4b-03ee-4fc9-b362-36801a1721f3"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[507608, 9912, 259, 4, 41, "Subsection",ExpressionUUID->"5bc01cd0-6cca-49bc-b33d-929852f4376f"],
+Cell[507870, 9918, 813, 21, 54, "Text",ExpressionUUID->"f88209d4-5087-4518-af4c-b36509976c37"],
+Cell[CellGroupData[{
+Cell[508708, 9943, 3746, 83, 144, "Input",ExpressionUUID->"f223d556-482e-413f-bd97-027e350d7fc8"],
+Cell[512457, 10028, 35544, 664, 194, "Output",ExpressionUUID->"42596919-1903-49e5-8e75-1a532b575569"]
+}, Open ]]
+}, Open ]]
+}, Open ]]
+}
+]
+*)
+
diff --git a/figs/F_higher_singularities.eps b/figs/F_higher_singularities.eps
new file mode 100644
index 0000000..e3d6a7e
--- /dev/null
+++ b/figs/F_higher_singularities.eps
@@ -0,0 +1,343 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.15.4 (http://cairographics.org)
+%%CreationDate: Wed Jan 19 13:55:17 2022
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%Creator: Wolfram Mathematica 13.0.0.0 for Linux x86 (64-bit) (December 2, 2021)
+%%BoundingBox: 0 0 360 221
+%%EndComments
+%%BeginProlog
+save
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+ 0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/pdfmark where { pop globaldict /?pdfmark /exec load put }
+ { globaldict begin /?pdfmark /pop load def /pdfmark
+ /cleartomark load def end } ifelse
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+ {
+ dup
+ type /stringtype eq
+ { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+ } forall
+ currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+ cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+ { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+ /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+ /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+ cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
+/cairo_image { image cairo_flush_ascii85_file } def
+/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font f-0-0
+%!FontType1-1.1 f-0-0 1.0
+11 dict begin
+/FontName /f-0-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {-12 -14 908 692 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 73 /I put
+dup 76 /L put
+dup 82 /R put
+dup 89 /Y put
+dup 101 /e put
+dup 109 /m put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca5d188dea508ed
+e1b2455317d2f89946db9171817b252ef4aed3b4d1e2d956531eb1466794df0a360608df9ddca3
+31d2d2e2835dae9cd39f88612df7540cb9134838f4d1d7d0f988815e63e88d14438a2ae43b6c64
+be2dc4f7b2e0c6a08fddad8746441fd5ac6854ff0c5ab7f7aca25cf081d4002f9811a93d3cdd0e
+00461c900c9e0c4f58969c6373636df5e12ca751b7e06a02b752e460d25a56e1b33dc0411ddd9e
+7b458fb4ff92195044e45a4c4f7904a7044d8d7f650b213d98f76e83b77a688cc939916088b4f9
+316351e48f38913000572d64d4afabc0ac17fd4b7223a755f8b481993158b33f9a2524016d7477
+18ddb89457c416c0db81b77356fff18507f286362ac9e87ca0429ff2f1acf7da2c47c6bdeb8d3c
+dc85780c28d652b255ed19df2c7f1c293e2b4bdf5edf4f16ac3e63826fc81a6bcebd904dbea152
+fd3b2185df087937c972d9c4a501a4c7f0991d1033d353df360f862b6d64d19957837efab9f754
+4b76f75fd04448d93f7ab3efdcd67a3b9b75470a0a773a7ddfec9008c973d8c459fcfc82947e61
+7c5140a933df404ce0206a24d9b6b6eed01d8b7eeee44aa93da77f3fbb1c99652e49426f7553c1
+13eb226edbfa600fb6ce98480d508f341eb46fe90bdc9e935d369104cf68e1435eef393cbe5a6a
+efd5a9d8c610237e51e66ed3de56b37a7c59f9e3642aa04a2c3feb1b5abb201b93dea4435b152a
+462dc36f44e1bfcf3ba187d9a9f70fa6beaf5d86c022ba6ebae51edaa5c2342996c0ddae2272de
+8bac4e6ccd4c78fbec53c96b34f4331c65a2f71190129f4416757fb1c470e976533e1f06441616
+b5ff7a78767d4b03f77127ef23a399515d6872fbe8977e3964bec1cb24c25fec9b6cba05a3bf46
+be9af306047fabbb331681b6c868e4a4ee1deab5eb4b85a8eb6e1bfdf21879963c943083af8e41
+e8c6ff780f855a21a161365d196069e0ae48e5d0b919fc7739a8486c2c7a3d7e5e577d94444a88
+f74814b026e2daa92fff0388fb5daaa8ef72bd44483204465071e60635f799dd2db005d99abd51
+13861f361f8d668fe4096a495b88e511086498864a23f931cd6043a33d3d09682f051d001b3f95
+dbcfb6ad9568d4ccf870fe2b242b09cd5e0365dec74bc5b4ac844ca0f5d994762e9918c422741d
+e6babf3da5b45853b89197b1b305b8842ba7a257615aa19d73450044339f90a351f4ee83288330
+7286c63001122838f16c75a11d404ea26e4ae1f27bc81979767804594b2bc71814cc25658dd8a0
+0709c062e5fb4f4478cb108f13bb74d8db95907f94a16b2953129862c3cae5b4643a42e99893a6
+d95b8d4f8ae8f8f287e7b822a9bd0f9c7a59b283baa4c396d52e6d4144261d6f79d9ba824c235d
+60f9b23849684b89f610e3eb3d642f9113269e3639e1c69e19572609e94ad0bcc0e60000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-1-0
+%!FontType1-1.1 f-1-0 1.0
+11 dict begin
+/FontName /f-1-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {29 -169 437 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7
+41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7
+1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8
+412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b
+ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490
+41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5
+d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b
+3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827
+5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4
+b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070
+43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c
+3d20720000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-1-1
+%!FontType1-1.1 f-1-1 1.0
+11 dict begin
+/FontName /f-1-1 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {-6 -207 465 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /uni03BE put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192
+3c6b565d778d9618b31789d664bb543a0e576f202df308890d53425311c0df16d70e7088bc233c
+2aeafd23aed96e18251b90593258f09f68b68c844c8e5bf170e06e331e14147fa538f8473eeb1e
+c84dbfec93c34173c11f0744da9bfa7cf6a3d8c4eb2a75eb71b49d69da4ade018689e722cfab11
+be4351efa968308dff1933cdf6da74c1d45ce31ed30cfd322f1554cf02839075c2488a6e43b89a
+f24d9bd7595d4fc4c07d5aa69574f2b45a692e0305a31ca8496286dde55759bacec2cf519a550c
+fc581758620e692c3d1f29b52b360ab757e8a4ed621b3b2c5ce883b037b9fd1b119dba66319bb2
+4706b3eb74ba54dfb209979bff3f44781327e8d4e7b20328f58cdea3284522496934f1cd89a9ab
+8f825cc46c51daa2ea8f85719a90e312bb07457ba2739fe15e7f59e27a646521ff053df21c2edf
+9d96735ee9d39d251bcf0113dc96ad03208d1ae62db8141146cfd99f59fcb8a10bdbf341def129
+fd5b55b7fe37f31eae75b5caf35814db82b954eeb9ce040e42be770590adeaa9a03b85f5c8e344
+bef5c97285dc20e725e2b0ecaea95a78cc672f11240e0fed510f9027f695fe53aecf49f9bdd51c
+949743af735f932804173c4d9584652fc9184b875b8cf21b4af33bdcf8580ca4ce84b48a0a40b1
+9771faa53eb86add0076d818c9d10927b64117ce25af360fa0ef5061787ff063349478ead89981
+4641ebef5cebc2b444f7497c0f9638073d57ef29982e7efcd5421544ba5a737b3527d24db03842
+aa24c1f0c002b36b8656951b8f835f2dfd1d419cdcd2e490cc73162e9163805e9cf101f7d336ea
+d0caa5b458789b0f625cc937389ec0a67f90c3c2640000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-2-0
+%!FontType1-1.1 f-2-0 1.0
+11 dict begin
+/FontName /f-2-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {0 -12 363 715 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 105 /i put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192
+3c6b565d778d9618b31789d664bb543a0e576f252e8520c2d0698c337b75c663f61d3deead2935
+71dc9621dfa39dc5f30363291678a7d9dfdeaa2de43d090fdf9945858d9b5b3a5df2a5865b3028
+dc4b7ac7fe8270eda10a09d5669f164eb5fa6e4ca848129c7f59349ba575bbdf02dfbd8f5ed330
+d9554dd1eb8b856cdef62fe801b421cc107aa678dbf1124aab4cbde909fd8611cafc587bb34560
+f3428a01d0fd050e1c1ae785787bd5c142500e345326b240d6d37c6801da6061e4be60b75cc4a0
+06ffe4ca26e456a9313b7f02bd60218dde34c309130b9ee274c413f042863100acb2ad54244397
+b1ccf64df275ba901ee414216a2d7c659e80f9eb06bcb6f8d4b9e005690000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 0 0 360 221
+%%EndPageSetup
+q 0 0 360 221 rectclip
+1 0 0 -1 0 222 cm q
+0 g
+0.36 w
+0 J
+0 j
+[ 2.88 2.88] 0 d
+3.25 M 0.18 119.551 m 330.613 119.551 l S
+BT
+10.08 0 0 -10.08 336.375 122.110031 Tm
+/f-0-0 1 Tf
+(Re)Tj
+10.8 0 0 -10.8 348.045 122.110031 Tm
+/f-1-0 1 Tf
+(\()Tj
+/f-1-1 1 Tf
+<01>Tj
+/f-1-0 1 Tf
+[()-29(\))]TJ
+ET
+Q q
+165 17 1 204.762 re W n
+0 g
+0.36 w
+0 J
+0 j
+[ 2.88 2.88] 0 d
+3.25 M 165.398 221.66 m 165.398 17.441 l S
+Q q
+0 g
+BT
+10.08 0 0 -10.08 153.009375 9.12 Tm
+/f-0-0 1 Tf
+(Im)Tj
+10.8 0 0 -10.8 165.830625 9.12 Tm
+/f-1-0 1 Tf
+(\()Tj
+/f-1-1 1 Tf
+<01>Tj
+/f-1-0 1 Tf
+[()-29(\))]TJ
+ET
+Q q
+164 17 3 53 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 165.398 68.496 m 165.398 -45.668 l S
+Q q
+164 169 3 52.762 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 165.398 170.605 m 165.398 284.766 l S
+Q q
+0 g
+162.477 65.574 5.84 5.84 re f
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 162.477 65.574 5.84 5.84 re S
+162.477 167.684 5.84 5.844 re f
+162.477 167.684 5.84 5.844 re S
+0.36 w
+165.398 68.496 m 173.66 68.496 l S
+BT
+10.08 0 0 -10.08 177.659063 71.055015 Tm
+/f-2-0 1 Tf
+(i)Tj
+10.8 0 0 -10.8 181.319063 71.055015 Tm
+/f-1-1 1 Tf
+<01>Tj
+7.2 0 0 -7.2 186.036563 72.761265 Tm
+/f-0-0 1 Tf
+(YL)Tj
+ET
+Q Q
+showpage
+%%Trailer
+end restore
+%%EOF
diff --git a/figs/F_higher_singularities.pdf b/figs/F_higher_singularities.pdf
deleted file mode 100644
index 12aa35b..0000000
--- a/figs/F_higher_singularities.pdf
+++ /dev/null
Binary files differ
diff --git a/figs/F_lower_singularities.eps b/figs/F_lower_singularities.eps
new file mode 100644
index 0000000..ae7d570
--- /dev/null
+++ b/figs/F_lower_singularities.eps
@@ -0,0 +1,270 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.15.4 (http://cairographics.org)
+%%CreationDate: Wed Jan 19 13:55:11 2022
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%Creator: Wolfram Mathematica 13.0.0.0 for Linux x86 (64-bit) (December 2, 2021)
+%%BoundingBox: 0 0 360 221
+%%EndComments
+%%BeginProlog
+save
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+ 0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/pdfmark where { pop globaldict /?pdfmark /exec load put }
+ { globaldict begin /?pdfmark /pop load def /pdfmark
+ /cleartomark load def end } ifelse
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+ {
+ dup
+ type /stringtype eq
+ { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+ } forall
+ currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+ cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+ { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+ /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+ /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+ cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
+/cairo_image { image cairo_flush_ascii85_file } def
+/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font f-0-0
+%!FontType1-1.1 f-0-0 1.0
+11 dict begin
+/FontName /f-0-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {0 -14 908 692 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 73 /I put
+dup 82 /R put
+dup 101 /e put
+dup 109 /m put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cabe8722c0ba224
+7e4445af50cf2457d0f320e3c97746456087766b4bf11115560ce328711eca3bd110d9edf8f723
+7690411035c2d2a4529eceb3758e9dfdf69937c82634682ddec349213e6cdca1236ff1e59fd7ad
+c509a9f3c257841b8053a86b38d617d963b24dfb3767bfc9b4af0288c9b0b8e2572d16601fc539
+50419b779278a6ee6aa2c6f6e88f16020db6e348845fd5b2cd9ac2bb9cc9caa74bac30ab845da5
+f651fffe8b245f374569b60b2520d5b091c2895daa06f7cacffa423bc29ca3a939660aef03f4ba
+db6c051bab9e97aa6f8b3423aee96ff61f682293fdb336288dbb885c46c5c6d7ca5c5a0cf84a99
+4b1ef4f098cdceee4559f76b71375ac1e48de97bc26d04e944bd8f7723aaca9bdeb0a55b4d8e30
+b9169a69c8b151f7e913240de4e7614c0ce99885f8de5ae8d0c7602bdba359c79247126be04fa0
+4837a74d4b1829aba24a81ace9429198af5c03ce00c992b95216dab9619da47da7550eca0ff6cd
+0ebc575021f16decb7f0d945e2c73764f06e1781806305825422f0f7ad20cee7de432128300693
+599dbdafc575e2f472140a927b4552e1cd714bd09871feab74613bf38b4117e1b2c870998d1584
+50ae3c9c1b184d5529d7092e102d713e1e4a8d02eb0fb3edc7ef054b7fbe323e488fbcf700dac6
+058c3eeb18d59888e42247d792f3cff694e14a0b69965054b8e811dc8ae391c9be575648546fef
+0365caa0b5334da60343169e20c6b1b8d51c5fbe17cfca3ec7f3bd1c61d09838b717c08ccfcbda
+2a43ce0a730162c3285d5185e5fa3f8c6aaa204a403cdae550e565dcaf3816e4f19a66fee5bb4d
+e532d49827c5c811b8c6effa17be7f7f897390f48ca0d11588bc17af153bec904639fcce603e9a
+fb7417deeba06beb6901c0fba586004121e1aa2dcab890d83326fd7ffca74c35e64a22c9434ef6
+7d7496180137f9c8705089856e54a802d541062de40941e37319ed189b6dd27b69783befae9725
+88dacdb39bfe000a0789e90bfdcc7a2187dbff723ba8a74bb2ececfee0a9ea34b01434890000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-1-0
+%!FontType1-1.1 f-1-0 1.0
+11 dict begin
+/FontName /f-1-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {29 -169 437 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7
+41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7
+1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8
+412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b
+ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490
+41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5
+d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b
+3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827
+5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4
+b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070
+43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c
+3d20720000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-1-1
+%!FontType1-1.1 f-1-1 1.0
+11 dict begin
+/FontName /f-1-1 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {-6 -207 465 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /uni03BE put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192
+3c6b565d778d9618b31789d664bb543a0e576f202df308890d53425311c0df16d70e7088bc233c
+2aeafd23aed96e18251b90593258f09f68b68c844c8e5bf170e06e331e14147fa538f8473eeb1e
+c84dbfec93c34173c11f0744da9bfa7cf6a3d8c4eb2a75eb71b49d69da4ade018689e722cfab11
+be4351efa968308dff1933cdf6da74c1d45ce31ed30cfd322f1554cf02839075c2488a6e43b89a
+f24d9bd7595d4fc4c07d5aa69574f2b45a692e0305a31ca8496286dde55759bacec2cf519a550c
+fc581758620e692c3d1f29b52b360ab757e8a4ed621b3b2c5ce883b037b9fd1b119dba66319bb2
+4706b3eb74ba54dfb209979bff3f44781327e8d4e7b20328f58cdea3284522496934f1cd89a9ab
+8f825cc46c51daa2ea8f85719a90e312bb07457ba2739fe15e7f59e27a646521ff053df21c2edf
+9d96735ee9d39d251bcf0113dc96ad03208d1ae62db8141146cfd99f59fcb8a10bdbf341def129
+fd5b55b7fe37f31eae75b5caf35814db82b954eeb9ce040e42be770590adeaa9a03b85f5c8e344
+bef5c97285dc20e725e2b0ecaea95a78cc672f11240e0fed510f9027f695fe53aecf49f9bdd51c
+949743af735f932804173c4d9584652fc9184b875b8cf21b4af33bdcf8580ca4ce84b48a0a40b1
+9771faa53eb86add0076d818c9d10927b64117ce25af360fa0ef5061787ff063349478ead89981
+4641ebef5cebc2b444f7497c0f9638073d57ef29982e7efcd5421544ba5a737b3527d24db03842
+aa24c1f0c002b36b8656951b8f835f2dfd1d419cdcd2e490cc73162e9163805e9cf101f7d336ea
+d0caa5b458789b0f625cc937389ec0a67f90c3c2640000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 0 0 360 221
+%%EndPageSetup
+q 0 0 360 221 rectclip
+1 0 0 -1 0 222 cm q
+0 g
+0.36 w
+0 J
+0 j
+[ 2.88 2.88] 0 d
+3.25 M 0.18 119.551 m 330.613 119.551 l S
+BT
+10.08 0 0 -10.08 336.375 122.110031 Tm
+/f-0-0 1 Tf
+(Re)Tj
+10.8 0 0 -10.8 348.045 122.110031 Tm
+/f-1-0 1 Tf
+(\()Tj
+/f-1-1 1 Tf
+<01>Tj
+/f-1-0 1 Tf
+[()-29(\))]TJ
+ET
+Q q
+165 17 1 204.762 re W n
+0 g
+0.36 w
+0 J
+0 j
+[ 2.88 2.88] 0 d
+3.25 M 165.398 221.66 m 165.398 17.441 l S
+Q q
+0 g
+BT
+10.08 0 0 -10.08 153.009375 9.12 Tm
+/f-0-0 1 Tf
+(Im)Tj
+10.8 0 0 -10.8 165.830625 9.12 Tm
+/f-1-0 1 Tf
+(\()Tj
+/f-1-1 1 Tf
+<01>Tj
+/f-1-0 1 Tf
+[()-29(\))]TJ
+ET
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 0.18 119.551 m 165.398 119.551 l S
+169.527 119.551 m 169.527 118.453 169.094 117.402 168.316 116.629 c 167.543
+ 115.855 166.492 115.418 165.398 115.418 c 164.301 115.418 163.25 115.855
+ 162.477 116.629 c 161.703 117.402 161.266 118.453 161.266 119.551 c 161.266
+ 120.645 161.703 121.695 162.477 122.469 c 163.25 123.246 164.301 123.68
+ 165.398 123.68 c 166.492 123.68 167.543 123.246 168.316 122.469 c 169.094
+ 121.695 169.527 120.645 169.527 119.551 c h
+169.527 119.551 m f*
+Q Q
+showpage
+%%Trailer
+end restore
+%%EOF
diff --git a/figs/F_lower_singularities.pdf b/figs/F_lower_singularities.pdf
deleted file mode 100644
index bfd76b5..0000000
--- a/figs/F_lower_singularities.pdf
+++ /dev/null
Binary files differ
diff --git a/figs/F_theta_singularities.eps b/figs/F_theta_singularities.eps
new file mode 100644
index 0000000..cba0e16
--- /dev/null
+++ b/figs/F_theta_singularities.eps
@@ -0,0 +1,374 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.15.4 (http://cairographics.org)
+%%CreationDate: Tue May 16 17:20:36 2023
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%Creator: Wolfram Mathematica 13.2.1.0 for Linux x86 (64-bit) (January 31, 2023)
+%%BoundingBox: 0 0 360 220
+%%EndComments
+%%BeginProlog
+save
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+ 0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/pdfmark where { pop globaldict /?pdfmark /exec load put }
+ { globaldict begin /?pdfmark /pop load def /pdfmark
+ /cleartomark load def end } ifelse
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+ {
+ dup
+ type /stringtype eq
+ { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+ } forall
+ currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+ cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+ { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+ /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+ /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+ cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
+/cairo_image { image cairo_flush_ascii85_file } def
+/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font f-0-0
+%!FontType1-1.1 f-0-0 1.0
+11 dict begin
+/FontName /f-0-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {-12 -14 908 692 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 48 /zero put
+dup 73 /I put
+dup 76 /L put
+dup 82 /R put
+dup 89 /Y put
+dup 101 /e put
+dup 109 /m put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca40352c6e2284e
+344947523a70f7b109147467f7576cb1df156dca2f25ccb577c1669626620a113ccdc0d69bb530
+dcedcb09d669e42789d3d1f1eb2fba73343f65132cb03065d412c4d987b79778555f98cbc72ab7
+18a72c35e371bf684a718b599d9f12c1a856afb05fa3bd876d6a55dcc6279feec01485b499c3da
+d50b200814e31ce340178663202f0a0324b15a23d545a665ada375c999b9af688f6f64738c2b03
+3fad0ff51c135ab5fc976cac8f6ee6fd117af76aede659c3d7c3ef848e783a3d7fc2ffd6dfb65d
+6fec08c4a48386ae22093696e4a4149206687406201494f7c92d83695ede02da0ec2efc745388b
+d4e96b9bf02196c1313f7b64670b3012e1b26b62b4c4398f62988c452011a3012866807ac3e958
+f6a33e22de6dad25663512af2f744cb4b2bccf96491c7dabfa4a6f3809714ce5e12c0ec56411de
+8d2d1ce34f9869137188615c0f4fbdfbea4b6aa825293167df8a44ecd5367cc0d134374c602f68
+cb24646d0a40cd42b9eaaa594b27274ae56eca9966b295b52c551e9431db92a8490105b9fca3cf
+abf2e646e6178f99068ffc46e80d0e6b91f6f7753ef194c42e47f2e32cfdbeff85b184ae87b96c
+ba03c00d2bb80c124412d6eac22d919a886efaafd1e1f0539f0b2277d7a3a570c352d18e8b9098
+262a6012482668a2836e6c631e98f1ffdfbd7e6a8327c434da366e42b10b3a04e6020dbad97dbf
+44a4eeb858298517e1b653d5719207f977d26cb9faf9285db28ec7bb55ecdf88173ed6a7542538
+75b780cffa546283ca777009c8bde4c70cd590dd3eca81b89e295c43771d95b90337e38f8f9d62
+501c3f0250ee10607517107eb9b8686aa2b2e73618e6ec508658efdfd4a9fbeff0a5f794ecb851
+81b07fb69e57d0ba45b34b1ddf3985403bf1ddbe9e24e73214cb9e3417f1569784c7585e54ce17
+993a0b1834c6e8641e48f9d2ed82931b358ce1638f893f198549802d03b5f77c30cdb701565094
+9cbc86327e59767775ffe0232e8fb09d9a865d66031371a7c4f279e83b7bbd2a9d3d5c04b876de
+303044b11569247c0a341892b60d49bf5a3d90cff8ecb498d5221203b27e9f7a0e2a0f5c83b803
+141289b187e0e40330f366ffe1889280fe6e24c8fe248cdd7b505c38a12f9aea4e0604d3a39b85
+dfa73f752e4deea83932b5b06717fe4ff53bc029968c48bf2eb97e7a4e0e462e6524fa833c2544
+99918cfc9b5c58f63e8bafb50d95ca777708fb85e9fd4babeb223ba13b0d5325efaf7813ead314
+ba40c2317c875af7430deaab519f75944b416da03bc21b407842090e3499d799ed64c606ae45cc
+de54f08502d814e5cd8cb51c31d0c7c591ea9e77342183be87d82d0bdbccf16c8edef1c1499d14
+4bff2d5ba6173f20939c2f5662bdb688061117662e55fa0d8aa7080bdc88b7a24b462ccffc833e
+1e75fd5537be5f7e7079349eacdec1709dd1889595a5092327dbbce7a3a8fca00d74fce608e932
+9721f45d89f7ccc9ee55a8f4082b95ef9fe1787ce123cdddbb83af12376b602e43b5a8cfcf4550
+0e418a92789eea9e01719ad69ffd7ed668660165e0d959ec6695fac6f428d6d777d8610000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-1-0
+%!FontType1-1.1 f-1-0 1.0
+11 dict begin
+/FontName /f-1-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {29 -169 437 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7
+41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7
+1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8
+412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b
+ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490
+41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5
+d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b
+3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827
+5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4
+b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070
+43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c
+3d20720000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-1-1
+%!FontType1-1.1 f-1-1 1.0
+11 dict begin
+/FontName /f-1-1 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {28 -13 453 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /uni03B8 put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192
+3c6b565d778d9618b31789d664bb543a0e576f202df308890d53425311c0df16d70e7088bc233c
+2aeafd23aed96e18251b90593258f09f68b68c844c8e5bf170e06e331e14147fa538f8473eeb1e
+c84dbfec93c3410e50135635b99de6891224a561e7c815e270995932d4ca76c8cc14b02767bb66
+7e6acad1ab52cbc965dc9fc5d35b7f55bd68178f09c7128011331eb172346c01b77767a131365b
+3cb1e76bf2ef8772818a52fde15db663b8b91d9d22148c044c1f17c084466eee12d35401b0d206
+447bd9cb8b6e927f74a828d01e7ce0e8504701d21d52e83a0f908b3eaf18af033d7fdc4519160d
+a1f3998dc14198ecb66970ab1422655946606979ebc3920ec6406caae936b284318ce59d7fd021
+6da6916dccf7cddaa08c95fe84fe0a36eff860ec858faee6eae9b234fd7f6b7922b6407fe66548
+4ee8a12cf4b24800049489170c1c089065cfd05e7611f514854ffb249e79b19db4e86d95818819
+599eccc923f9ec10ebcf73f55e7828ba032aff285278971bd99c0a3ddf0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-2-0
+%!FontType1-1.1 f-2-0 1.0
+11 dict begin
+/FontName /f-2-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {0 -12 363 715 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 105 /i put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cae134058d6a192
+3c6b565d778d9618b31789d664bb543a0e576f252e8520c2d0698c337b75c663f61d3deead2935
+71dc9621dfa39dc5f30363291678a7d9dfdeaa2de43d090fdf9945858d9b5b3a5df2a5865b3028
+dc4b7ac7fe8270eda10a09d5669f164eb5fa6e4ca848129c7f59349ba575bbdf02dfbd8f5ed330
+d9554dd1eb8b856cdef62fe801b421cc107aa678dbf1124aab4cbde909fd8611cafc587bb34560
+f3428a01d0fd050e1c1ae785787bd5c142500e345326b240d6d37c6801da6061e4be60b75cc4a0
+06ffe4ca26e456a9313b7f02bd60218dde34c309130b9ee274c413f042863100acb2ad54244397
+b1ccf64df275ba901ee414216a2d7c659e80f9eb06bcb6f8d4b9e005690000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 0 0 360 220
+%%EndPageSetup
+q 0 0 360 220 rectclip
+1 0 0 -1 0 221 cm q
+0 g
+0.36 w
+0 J
+0 j
+[ 2.88 2.88] 0 d
+3.25 M 0.18 118.234 m 330.754 118.234 l S
+BT
+10.08 0 0 -10.08 336.51375 121.472907 Tm
+/f-0-0 1 Tf
+(Re)Tj
+10.8 0 0 -10.8 348.18375 121.472907 Tm
+/f-1-0 1 Tf
+(\()Tj
+/f-1-1 1 Tf
+<01>Tj
+/f-1-0 1 Tf
+[()-14(\))]TJ
+ET
+Q q
+165 16 1 204.801 re W n
+0 g
+0.36 w
+0 J
+0 j
+[ 2.88 2.88] 0 d
+3.25 M 165.469 220.387 m 165.469 16.078 l S
+Q q
+0 g
+BT
+10.08 0 0 -10.08 153.148125 9.12 Tm
+/f-0-0 1 Tf
+(Im)Tj
+10.8 0 0 -10.8 165.969375 9.12 Tm
+/f-1-0 1 Tf
+(\()Tj
+/f-1-1 1 Tf
+<01>Tj
+/f-1-0 1 Tf
+[()-14(\))]TJ
+ET
+Q q
+164 16 3 52 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 165.469 67.156 m 165.469 -47.055 l S
+Q q
+164 168 3 52.801 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 165.469 169.309 m 165.469 283.52 l S
+Q q
+0 g
+162.547 64.234 5.844 5.844 re f
+162.547 166.387 5.844 5.844 re f
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 0.18 118.234 m 41.5 118.234 l S
+45.633 118.234 m 45.633 117.137 45.199 116.086 44.422 115.312 c 43.648
+114.535 42.598 114.102 41.5 114.102 c 40.406 114.102 39.355 114.535 38.578
+ 115.312 c 37.805 116.086 37.371 117.137 37.371 118.234 c 37.371 119.328
+ 37.805 120.379 38.578 121.156 c 39.355 121.93 40.406 122.363 41.5 122.363
+ c 42.598 122.363 43.648 121.93 44.422 121.156 c 45.199 120.379 45.633 119.328
+ 45.633 118.234 c h
+45.633 118.234 m f*
+Q q
+288 117 43 2 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 330.754 118.234 m 289.434 118.234 l S
+Q q
+0 g
+293.562 118.234 m 293.562 117.137 293.129 116.086 292.355 115.312 c 291.578
+ 114.535 290.527 114.102 289.434 114.102 c 288.336 114.102 287.285 114.535
+ 286.512 115.312 c 285.734 116.086 285.301 117.137 285.301 118.234 c 285.301
+ 119.328 285.734 120.379 286.512 121.156 c 287.285 121.93 288.336 122.363
+ 289.434 122.363 c 290.527 122.363 291.578 121.93 292.355 121.156 c 293.129
+ 120.379 293.562 119.328 293.562 118.234 c h
+293.562 118.234 m f*
+0.36 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 289.434 118.234 m 289.434 109.969 l S
+165.469 67.156 m 173.73 67.156 l S
+BT
+10.08 0 0 -10.08 177.725859 70.396453 Tm
+/f-2-0 1 Tf
+(i)Tj
+10.8 0 0 -10.8 181.385859 70.396453 Tm
+/f-1-1 1 Tf
+<01>Tj
+7.2 0 0 -7.2 186.125859 72.102703 Tm
+/f-0-0 1 Tf
+(YL)Tj
+10.8 0 0 -10.8 285.038906 104.944219 Tm
+/f-1-1 1 Tf
+<01>Tj
+7.2 0 0 -7.2 289.778906 106.650469 Tm
+/f-0-0 1 Tf
+(0)Tj
+ET
+Q Q
+showpage
+%%Trailer
+end restore
+%%EOF
diff --git a/figs/F_theta_singularities.pdf b/figs/F_theta_singularities.pdf
deleted file mode 100644
index 105fa55..0000000
--- a/figs/F_theta_singularities.pdf
+++ /dev/null
Binary files differ
diff --git a/figs/contour_path.eps b/figs/contour_path.eps
new file mode 100644
index 0000000..cb65b3c
--- /dev/null
+++ b/figs/contour_path.eps
@@ -0,0 +1,440 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.15.4 (http://cairographics.org)
+%%CreationDate: Wed Jan 19 13:55:29 2022
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%Creator: Wolfram Mathematica 13.0.0.0 for Linux x86 (64-bit) (December 2, 2021)
+%%BoundingBox: 0 0 360 218
+%%EndComments
+%%BeginProlog
+save
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+ 0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/pdfmark where { pop globaldict /?pdfmark /exec load put }
+ { globaldict begin /?pdfmark /pop load def /pdfmark
+ /cleartomark load def end } ifelse
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+ {
+ dup
+ type /stringtype eq
+ { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+ } forall
+ currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+ cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+ { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+ /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+ /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+ cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
+/cairo_image { image cairo_flush_ascii85_file } def
+/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font f-0-0
+%!FontType1-1.1 f-0-0 1.0
+11 dict begin
+/FontName /f-0-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {29 -169 437 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 40 /parenleft put
+dup 41 /parenright put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7
+41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7
+1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8
+412c2e7e4c95c1440662af1652abdb4ce6be4b5f976724c26d20f166e17532da87ef8b24e90d2b
+ca09313d345112c202c1d9528e8c8e15bdfd68385cef36d711b99ee54d324b8778dae18d9af490
+41fbe748f7910913a3460e4af7353d7952f1fa9fde2bb171a7717e297425e0c08ca9800b01b2f5
+d645e0dbbc3a76bdfc773c19f4917354ed597d131dcc12985dd83ff833cc665a3ed3f11ec3814b
+3a8be6d7aef97d0b12b552d8da18f6cea65a8e284355941aae2da895a0fee8c8c2d4c22664f827
+5fb1ca0fbda2da6ff7fee9a610c58ec5d0c82dbb9b890d86f03ce85b69a56821a477e957df28b4
+b7afc889cbe637525896dc572b943c7f55648deb0894a36d8a1f7cfe05e48b6abb21a9949c7070
+43ecfa2c9ed9ed591f98e5fb1581bfb12e97b35bab44504370459fd28ca0c151ded5634089598c
+3d20720000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-0-1
+%!FontType1-1.1 f-0-1 1.0
+11 dict begin
+/FontName /f-0-1 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {28 -13 453 799 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /uni03B8 put
+dup 2 /uni2032 put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251ca90bc9cf8825c7
+41412dda705317b7cb229dd377ff3d18e94daa9ba3bbd4ccd2ecde18a1c220179cca13293a42f7
+1d167cd6ac624b8f8573fc281c165eeb093c7705f0c9d1ce383c8701d14fcde12ac700699f81e8
+41298a056fbf05326bc567de0a0b26ab9bb8bf1c727fffe1a769e825cf16eef0e80b165c6bf01f
+c921bca94f4af777d97a2f19e0a6ba590a7e6bb59956c28a9e498787adbe3de7e6d3fc47ff7726
+4b0c3148d711961ef450730e7d9c2a0f9a8a8f7848739b2b8d2d56196d23d6b0a070f7ac34e28f
+1949b3d9933bd71bf994c695728647fe1cf6384f74801dd45d812cb26587dcf820b46a68885bcd
+be76f7a022b91b2856413f8b472c291f6323e69460888d3cf8b748160f2e465f470393d943268b
+e792e635a8fd6619217c82809f6c96a1c9f9d29ad32faaaebfee0f7caa41b8bd0cb26e12ae0006
+88ed16f82ca7c86fa6dfcd1624fb95587b3f4af99d73d037e596049ed240cfc364725448a51776
+ac6f8704995692b4cfb620640c12fafe8bda7ad95960cba96348a26386586f689b88045f9d5c17
+e43924d6e512c17db975287c04f45268e5a9a97237ed2fbf40344d73de6125e201a21057af59b0
+2ebd555ff2f2a4fec3352b5f2224db9c832d06cce2408ec8547633e84867b3a73065ab9671a46f
+925533c889164deafa20f00ef1f3f3a6639bc9333208014faba60b13c7b07b41e98c88d797eeaf
+1109a75b204ee60000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%BeginResource: font f-1-0
+%!FontType1-1.1 f-1-0 1.0
+11 dict begin
+/FontName /f-1-0 def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/FontBBox {0 -14 908 692 } readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 73 /I put
+dup 82 /R put
+dup 101 /e put
+dup 109 /m put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece636fb4a96c74d26ab84185f6dfa4a16a7a1c27bbe3f1156aea698df336d20b467
+b10e7f33846656653c5ac6962759d3056cbdb3190bac614b984bf5a132dc418192443014ba63de
+800d392b6fea026574bb2535fd7bb5338f35bf15a88ea328fdaa49670c7852e3d060f3c5d6b07f
+2ef6d0f22646c5d18e19a2ae3ee120390f6dd96f76dcf1e127de5e9299077a00c17c0d71e36e5b
+9d5ec58fceda57739a6a4214d4b79d6c48d2784b60c320323c7acddddf34db833cac0cf109f799
+69d114a330d372e5c978a66acc84e3fe5557f6240856a013ffaa0199444e5c5036f775eba4a5c5
+8cde66cf604b9aca2178431127b8a1ff7ed633a65c04600af5f573483112251cabe8722c0ba224
+7e4445af50cf2457d0f320e3c97746456087766b4bf11115560ce328711eca3bd110d9edf8f723
+7690411035c2d2a4529eceb3758e9dfdf69937c82634682ddec349213e6cdca1236ff1e59fd7ad
+c509a9f3c257841b8053a86b38d617d963b24dfb3767bfc9b4af0288c9b0b8e2572d16601fc539
+50419b779278a6ee6aa2c6f6e88f16020db6e348845fd5b2cd9ac2bb9cc9caa74bac30ab845da5
+f651fffe8b245f374569b60b2520d5b091c2895daa06f7cacffa423bc29ca3a939660aef03f4ba
+db6c051bab9e97aa6f8b3423aee96ff61f682293fdb336288dbb885c46c5c6d7ca5c5a0cf84a99
+4b1ef4f098cdceee4559f76b71375ac1e48de97bc26d04e944bd8f7723aaca9bdeb0a55b4d8e30
+b9169a69c8b151f7e913240de4e7614c0ce99885f8de5ae8d0c7602bdba359c79247126be04fa0
+4837a74d4b1829aba24a81ace9429198af5c03ce00c992b95216dab9619da47da7550eca0ff6cd
+0ebc575021f16decb7f0d945e2c73764f06e1781806305825422f0f7ad20cee7de432128300693
+599dbdafc575e2f472140a927b4552e1cd714bd09871feab74613bf38b4117e1b2c870998d1584
+50ae3c9c1b184d5529d7092e102d713e1e4a8d02eb0fb3edc7ef054b7fbe323e488fbcf700dac6
+058c3eeb18d59888e42247d792f3cff694e14a0b69965054b8e811dc8ae391c9be575648546fef
+0365caa0b5334da60343169e20c6b1b8d51c5fbe17cfca3ec7f3bd1c61d09838b717c08ccfcbda
+2a43ce0a730162c3285d5185e5fa3f8c6aaa204a403cdae550e565dcaf3816e4f19a66fee5bb4d
+e532d49827c5c811b8c6effa17be7f7f897390f48ca0d11588bc17af153bec904639fcce603e9a
+fb7417deeba06beb6901c0fba586004121e1aa2dcab890d83326fd7ffca74c35e64a22c9434ef6
+7d7496180137f9c8705089856e54a802d541062de40941e37319ed189b6dd27b69783befae9725
+88dacdb39bfe000a0789e90bfdcc7a2187dbff723ba8a74bb2ececfee0a9ea34b01434890000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 0 0 360 218
+%%EndPageSetup
+q 0 0 360 218 rectclip
+1 0 0 -1 0 219 cm q
+0.999985 0 0 rg
+1.310865 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 8.371 116.121 m 32.953 116.121 l S
+49.336 117.352 m 49.336 115.176 48.473 113.094 46.938 111.555 c 45.402
+110.02 43.316 109.156 41.145 109.156 c 38.973 109.156 36.887 110.02 35.352
+ 111.555 c 33.816 113.094 32.953 115.176 32.953 117.352 c S
+295.125 116.121 m 319.703 116.121 l S
+295.125 117.352 m 295.125 115.176 294.262 113.094 292.727 111.555 c 291.188
+ 110.02 289.105 109.156 286.934 109.156 c 284.758 109.156 282.676 110.02
+ 281.137 111.555 c 279.602 113.094 278.738 115.176 278.738 117.352 c S
+49.336 117.352 m 155.844 117.352 l S
+172.23 117.352 m 172.23 115.176 171.367 113.094 169.832 111.555 c 168.293
+ 110.02 166.211 109.156 164.039 109.156 c 161.863 109.156 159.781 110.02
+ 158.246 111.555 c 156.707 113.094 155.844 115.176 155.844 117.352 c S
+172.23 117.352 m 205.004 117.352 l S
+221.387 117.352 m 221.387 115.176 220.523 113.094 218.988 111.555 c 217.453
+ 110.02 215.367 109.156 213.195 109.156 c 211.023 109.156 208.938 110.02
+ 207.402 111.555 c 205.867 113.094 205.004 115.176 205.004 117.352 c S
+221.387 117.352 m 278.738 117.352 l S
+165.266 21.145 m 165.266 58.523 l S
+162.809 21.145 m 162.809 58.523 l S
+172.23 66.715 m 172.23 64.543 171.367 62.457 169.832 60.922 c 168.293 59.387
+ 166.211 58.523 164.039 58.523 c 161.863 58.523 159.781 59.387 158.246 60.922
+ c 156.707 62.457 155.844 64.543 155.844 66.715 c 155.844 68.887 156.707
+ 70.973 158.246 72.508 c 159.781 74.043 161.863 74.906 164.039 74.906 c
+166.211 74.906 168.293 74.043 169.832 72.508 c 171.367 70.973 172.23 68.887
+ 172.23 66.715 c h
+172.23 66.715 m S
+0 g
+0.36 w
+213.195 117.352 m 213.195 125.543 l S
+BT
+10.8 0 0 -10.8 210.748688 136.975703 Tm
+/f-0-1 1 Tf
+<01>Tj
+ET
+0.999985 0 0 rg
+1.152 w
+8.379 116.582 m 8.465 114.039 l 8.574 112.461 l 8.684 111.281 l 8.793 110.297
+ l 8.902 109.434 l 9.012 108.656 l 9.117 107.941 l 9.227 107.281 l 9.336
+ 106.66 l 9.445 106.074 l 9.664 104.988 l 9.773 104.477 l 9.883 103.988
+l 10.098 103.062 l 10.207 102.621 l 10.316 102.191 l 10.535 101.371 l 10.973
+ 99.844 l 11.082 99.484 l 11.188 99.133 l 11.406 98.449 l 11.844 97.148
+l 12.062 96.531 l 12.277 95.934 l 12.715 94.785 l 13.586 92.66 l 13.789
+92.191 l 13.992 91.73 l 14.398 90.84 l 15.215 89.141 l 16.844 86.051 l 16.945
+ 85.867 l 17.25 85.328 l 17.656 84.625 l 18.469 83.266 l 20.098 80.719 l
+ 20.199 80.57 l 20.297 80.422 l 20.496 80.125 l 20.895 79.543 l 21.695 78.41
+ l 23.289 76.254 l 26.48 72.312 l 26.699 72.062 l 26.914 71.812 l 27.348
+ 71.32 l 28.215 70.352 l 29.945 68.488 l 33.406 65.027 l 33.508 64.934 l
+ 33.609 64.836 l 33.812 64.645 l 34.215 64.266 l 35.023 63.52 l 36.637 62.066
+ l 39.871 59.328 l 46.875 54.008 l 53.75 49.457 l 60.164 45.695 l 67.117
+ 42.066 l 73.613 39.039 l 79.977 36.379 l 86.883 33.793 l 93.328 31.641
+l 100.312 29.574 l 107.168 27.793 l 113.566 26.34 l 120.5 24.984 l 120.703
+ 24.945 l 121.312 24.84 l 122.121 24.695 l 123.738 24.422 l 126.977 23.91
+ l 127.195 23.879 l 127.414 23.844 l 127.852 23.777 l 128.73 23.652 l 130.484
+ 23.406 l 130.703 23.375 l 130.922 23.348 l 131.359 23.289 l 132.238 23.172
+ l 133.992 22.953 l 134.098 22.941 l 134.207 22.926 l 134.422 22.902 l 134.852
+ 22.848 l 135.715 22.75 l 137.434 22.559 l 137.543 22.547 l 137.648 22.535
+ l 137.867 22.512 l 138.297 22.469 l 139.156 22.379 l 140.879 22.215 l 140.98
+ 22.203 l 141.078 22.195 l 141.281 22.176 l 141.684 22.141 l 142.484 22.07
+ l 144.09 21.938 l 144.293 21.922 l 144.492 21.906 l 145.699 21.812 l 147.305
+ 21.699 l 147.414 21.695 l 147.523 21.688 l 147.738 21.672 l 148.176 21.645
+ l 149.047 21.59 l 149.156 21.586 l 149.266 21.578 l 149.48 21.566 l 149.918
+ 21.539 l 150.789 21.492 l 150.895 21.488 l 151.004 21.48 l 151.223 21.469
+ l 151.66 21.449 l 152.527 21.406 l 154.27 21.332 l 154.676 21.316 l 155.082
+ 21.305 l 155.898 21.273 l 156 21.273 l 156.305 21.262 l 157.523 21.227
+l 157.625 21.227 l 157.727 21.223 l 157.93 21.219 l 158.336 21.207 l 158.438
+ 21.207 l 158.539 21.203 l 159.148 21.191 l 159.25 21.188 l 159.352 21.188
+ l 159.961 21.176 l 160.062 21.176 l 160.164 21.172 l 160.367 21.172 l 160.773
+ 21.164 l 160.977 21.164 l 161.176 21.16 l 161.273 21.16 l 161.375 21.156
+ l 161.672 21.156 l 161.773 21.152 l 162.172 21.152 l 162.371 21.148 l 162.77
+ 21.148 l 162.867 21.145 l 165.258 21.145 l 165.359 21.148 l 165.758 21.148
+ l 165.957 21.152 l 166.355 21.152 l 166.453 21.156 l 166.754 21.156 l 167.152
+ 21.164 l 167.367 21.164 l 167.586 21.168 l 168.016 21.176 l 168.125 21.176
+ l 168.234 21.18 l 168.449 21.184 l 168.883 21.191 l 168.988 21.191 l 169.098
+ 21.195 l 169.312 21.199 l 169.746 21.207 l 170.609 21.23 l 170.719 21.23
+ l 170.828 21.234 l 171.043 21.242 l 171.477 21.254 l 172.34 21.281 l 172.449
+ 21.285 l 172.555 21.289 l 172.773 21.297 l 173.207 21.309 l 174.07 21.344
+ l 174.273 21.352 l 174.473 21.359 l 174.875 21.379 l 175.684 21.414 l 175.887
+ 21.422 l 176.086 21.434 l 176.492 21.453 l 177.297 21.492 l 177.398 21.5
+ l 177.5 21.504 l 177.703 21.516 l 178.105 21.535 l 178.91 21.582 l 180.527
+ 21.684 l 180.746 21.699 l 180.961 21.715 l 181.398 21.742 l 182.273 21.805
+ l 184.023 21.941 l 184.242 21.957 l 184.461 21.977 l 184.898 22.012 l 185.773
+ 22.086 l 187.523 22.246 l 187.629 22.254 l 187.738 22.266 l 187.953 22.285
+ l 188.383 22.328 l 189.238 22.414 l 190.957 22.594 l 194.391 22.988 l 194.492
+ 23.004 l 194.59 23.016 l 194.793 23.039 l 195.191 23.09 l 195.992 23.191
+ l 197.594 23.406 l 200.797 23.863 l 200.906 23.879 l 201.016 23.898 l 201.23
+ 23.93 l 201.668 23.996 l 202.535 24.133 l 204.273 24.414 l 207.746 25.016
+ l 214.23 26.281 l 220.59 27.715 l 227.488 29.5 l 233.926 31.383 l 240.902
+ 33.691 l 247.422 36.109 l 253.809 38.754 l 260.738 41.957 l 267.203 45.305
+ l 274.215 49.387 l 281.094 53.93 l 287.512 58.766 l 294.473 64.84 l 294.574
+ 64.938 l 294.676 65.031 l 295.285 65.617 l 296.098 66.414 l 297.719 68.059
+ l 300.969 71.594 l 301.07 71.707 l 301.168 71.82 l 301.367 72.051 l 301.766
+ 72.516 l 302.562 73.461 l 304.152 75.438 l 304.254 75.562 l 304.352 75.691
+ l 304.551 75.949 l 304.949 76.469 l 305.746 77.535 l 307.34 79.773 l 307.445
+ 79.93 l 307.555 80.09 l 307.77 80.41 l 308.203 81.059 l 309.066 82.398
+l 310.793 85.27 l 310.902 85.457 l 311.012 85.648 l 311.227 86.035 l 311.656
+ 86.82 l 312.523 88.465 l 314.25 92.105 l 314.352 92.336 l 314.449 92.57
+ l 314.652 93.043 l 315.055 94.016 l 315.156 94.266 l 315.258 94.52 l 315.457
+ 95.035 l 315.863 96.105 l 315.961 96.383 l 316.062 96.664 l 316.266 97.238
+ l 316.668 98.441 l 316.77 98.754 l 316.867 99.074 l 317.07 99.73 l 317.473
+ 101.125 l 317.574 101.492 l 317.676 101.871 l 317.875 102.652 l 317.977
+ 103.062 l 318.078 103.484 l 318.281 104.367 l 318.379 104.832 l 318.48
+105.316 l 318.684 106.352 l 318.785 106.906 l 318.883 107.492 l 319.086
+108.789 l 319.188 109.516 l 319.289 110.32 l 319.387 111.227 l 319.488 112.297
+ l 319.59 113.668 l 319.691 116.098 l 319.699 116.742 l S
+0 g
+0.36 w
+0 J
+[ 2.88 2.88] 0 d
+0.18 117.352 m 327.895 117.352 l S
+BT
+10.08 0 0 -10.08 333.65625 120.589891 Tm
+/f-1-0 1 Tf
+(Re)Tj
+10.8 0 0 -10.8 345.32625 120.589891 Tm
+/f-0-0 1 Tf
+(\()Tj
+/f-0-1 1 Tf
+<01>Tj
+7.2 0 0 -7.2 353.68125 116.145016 Tm
+<02>Tj
+10.8 0 0 -10.8 356.53875 120.589891 Tm
+/f-0-0 1 Tf
+(\))Tj
+ET
+Q q
+163 16 2 202.641 re W n
+0 g
+0.36 w
+0 J
+0 j
+[ 2.88 2.88] 0 d
+3.25 M 164.039 218.621 m 164.039 16.078 l S
+Q q
+0 g
+BT
+10.08 0 0 -10.08 150.290625 9.12 Tm
+/f-1-0 1 Tf
+(Im)Tj
+10.8 0 0 -10.8 163.111875 9.12 Tm
+/f-0-0 1 Tf
+(\()Tj
+/f-0-1 1 Tf
+<01>Tj
+7.2 0 0 -7.2 171.466875 4.675125 Tm
+<02>Tj
+10.8 0 0 -10.8 174.324375 9.12 Tm
+/f-0-0 1 Tf
+(\))Tj
+ET
+Q q
+163 16 2 52 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 164.039 66.715 m 164.039 -46.508 l S
+Q q
+163 167 2 51.641 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 164.039 167.984 m 164.039 281.207 l S
+Q q
+0 g
+161.141 63.816 5.793 5.797 re f
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 161.141 63.816 5.793 5.797 re S
+168.133 117.352 m 164.039 113.254 l 159.941 117.352 l 164.039 121.445 l
+ h
+168.133 117.352 m f
+168.133 117.352 m 164.039 113.254 l 159.941 117.352 l 164.039 121.445 l
+ h
+168.133 117.352 m S
+161.141 165.09 5.793 5.793 re f
+161.141 165.09 5.793 5.793 re S
+0.18 117.352 m 41.145 117.352 l S
+45.242 117.352 m 45.242 116.262 44.809 115.223 44.043 114.453 c 43.273
+113.684 42.23 113.254 41.145 113.254 c 40.059 113.254 39.016 113.684 38.246
+ 114.453 c 37.48 115.223 37.047 116.262 37.047 117.352 c 37.047 118.438
+37.48 119.477 38.246 120.246 c 39.016 121.016 40.059 121.445 41.145 121.445
+ c 42.23 121.445 43.273 121.016 44.043 120.246 c 44.809 119.477 45.242 118.438
+ 45.242 117.352 c h
+45.242 117.352 m f*
+Q q
+286 116 42 3 re W n
+0 g
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 327.895 117.352 m 286.934 117.352 l S
+Q q
+0 g
+291.027 117.352 m 291.027 116.262 290.598 115.223 289.828 114.453 c 289.059
+ 113.684 288.02 113.254 286.934 113.254 c 285.844 113.254 284.805 113.684
+ 284.035 114.453 c 283.266 115.223 282.836 116.262 282.836 117.352 c 282.836
+ 118.438 283.266 119.477 284.035 120.246 c 284.805 121.016 285.844 121.445
+ 286.934 121.445 c 288.02 121.445 289.059 121.016 289.828 120.246 c 290.598
+ 119.477 291.027 118.438 291.027 117.352 c h
+291.027 117.352 m f*
+211.898 117.773 m 211.59 119.559 l 213.195 118.715 l 214.801 119.559 l
+214.496 117.773 l 215.793 116.508 l 214 116.246 l 213.195 114.617 l 212.395
+ 116.246 l 210.598 116.508 l h
+211.898 117.773 m f
+1.44 w
+2 J
+0 j
+[] 0.0 d
+3.25 M 211.898 117.773 m 211.59 119.559 l 213.195 118.715 l 214.801 119.559 l
+214.496 117.773 l 215.793 116.508 l 214 116.246 l 213.195 114.617 l 212.395
+ 116.246 l 210.598 116.508 l h
+211.898 117.773 m S
+Q Q
+showpage
+%%Trailer
+end restore
+%%EOF
diff --git a/figs/contour_path.pdf b/figs/contour_path.pdf
deleted file mode 100644
index 7fb273f..0000000
--- a/figs/contour_path.pdf
+++ /dev/null
Binary files differ
diff --git a/figs/figures.nb b/figs/figures.nb
index 5d47f55..f2fddc9 100644
--- a/figs/figures.nb
+++ b/figs/figures.nb
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
-NotebookDataLength[ 575676, 10294]
-NotebookOptionsPosition[ 572542, 10235]
-NotebookOutlinePosition[ 572938, 10251]
-CellTagsIndexPosition[ 572895, 10248]
+NotebookDataLength[ 710113, 12495]
+NotebookOptionsPosition[ 706934, 12436]
+NotebookOutlinePosition[ 707330, 12452]
+CellTagsIndexPosition[ 707287, 12449]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@@ -79,7 +79,7 @@ Cell[BoxData[
3.827383160348928*^9}, {3.827385962751856*^9, 3.82738598922388*^9}, {
3.827386034376981*^9, 3.827386035376443*^9}, {3.8273869985697823`*^9,
3.8273869997536163`*^9}, {3.844329603873919*^9, 3.844329607908242*^9}},
- CellLabel->"In[2]:=",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"],
+ CellLabel->"In[1]:=",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
@@ -138,9 +138,7 @@ uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
- PlotRange->
- NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1,
- 1}, {-0.6180339887498948, 0.6180339887498948}}],
+ PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{{}, {}}]], "Output",
@@ -148,8 +146,9 @@ uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr
3.827382821172866*^9, 3.827382840956325*^9}, {3.827383007560814*^9,
3.827383129164433*^9}, 3.827383160604924*^9, {3.827385963050185*^9,
3.8273859898238077`*^9}, {3.82738602858241*^9, 3.827386035704603*^9},
- 3.827387000123047*^9, {3.844329605815187*^9, 3.844329608477652*^9}},
- CellLabel->"Out[2]=",ExpressionUUID->"214b4f47-73c2-4169-9a4d-ef2b4e5fb5f4"]
+ 3.827387000123047*^9, {3.844329605815187*^9, 3.844329608477652*^9},
+ 3.851585708242787*^9},
+ CellLabel->"Out[1]=",ExpressionUUID->"47b1d716-2908-4128-af4c-2c85a1c62384"]
}, Open ]],
Cell[BoxData[
@@ -157,9 +156,10 @@ Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/first_order_singularities/paper/figs/F_lower_\
-singularities.pdf\>\"", ",", "p1"}], "]"}], ";"}]], "Input",
- CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}},
- CellLabel->"In[6]:=",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"],
+singularities.eps\>\"", ",", "p1"}], "]"}], ";"}]], "Input",
+ CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, {
+ 3.8515857109622917`*^9, 3.8515857113301897`*^9}},
+ CellLabel->"In[2]:=",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"],
Cell[CellGroupData[{
@@ -276,7 +276,7 @@ SubscriptBox[\(\[Xi]\), \(YL\)]\)\>\"", ",",
3.827387056043375*^9, 3.827387113115541*^9}, {3.827387242150291*^9,
3.827387318344166*^9}, {3.827387529243909*^9, 3.827387531995368*^9}, {
3.8443296126213083`*^9, 3.844329634021158*^9}},
- CellLabel->"In[5]:=",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"],
+ CellLabel->"In[3]:=",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
@@ -363,17 +363,15 @@ SubscriptBox[\\(\[Xi]\\), \\(YL\\)]\\)\"", FontSize -> 14,
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
- PlotRange->
- NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1,
- 1}, {-0.6180339887498948, 0.6180339887498948}}],
+ PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{{}, {}}]], "Output",
CellChangeTimes->{{3.82738699503043*^9, 3.827387001000444*^9}, {
3.827387056404755*^9, 3.8273871135979233`*^9}, {3.827387261706016*^9,
3.827387318714815*^9}, 3.827387532223402*^9, {3.844329613323139*^9,
- 3.844329634256328*^9}},
- CellLabel->"Out[5]=",ExpressionUUID->"d190cc8e-c3ee-4623-b28c-c47d1a8228bc"]
+ 3.844329634256328*^9}, 3.8515857139189787`*^9},
+ CellLabel->"Out[3]=",ExpressionUUID->"ffd47d51-d7e9-49d6-8d88-f9c2685bf164"]
}, Open ]],
Cell[BoxData[
@@ -381,10 +379,11 @@ Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/first_order_singularities/paper/figs/F_higher_\
-singularities.pdf\>\"", ",", "p2"}], "]"}], ";"}]], "Input",
+singularities.eps\>\"", ",", "p2"}], "]"}], ";"}]], "Input",
CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, {
- 3.8273862326284933`*^9, 3.827386237604206*^9}},
- CellLabel->"In[7]:=",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"],
+ 3.8273862326284933`*^9, 3.827386237604206*^9}, {3.8515857167144403`*^9,
+ 3.851585717186307*^9}},
+ CellLabel->"In[4]:=",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"],
Cell[CellGroupData[{
@@ -521,7 +520,7 @@ SubscriptBox[\(\[Theta]\), \(YL\)]\)\>\"", ",",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
- "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(c\)]\)\>\"", ",",
+ "\"\<\!\(\*SubscriptBox[\(\[Theta]\), \(0\)]\)\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "14"}], ",", "Black", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Times\>\""}]}], "]"}], ",",
" ",
@@ -548,15 +547,16 @@ SubscriptBox[\(\[Theta]\), \(YL\)]\)\>\"", ",",
RowBox[{"FontSize", "\[Rule]", "14"}], ",", "Black"}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.827382480044902*^9, 3.8273826908509808`*^9}, {
- 3.827382820190197*^9, 3.827382840645884*^9}, {3.82738300603374*^9,
- 3.8273831764043293`*^9}, {3.8273860050562143`*^9, 3.827386063937243*^9}, {
- 3.827386126458579*^9, 3.82738620035579*^9}, {3.82738626700533*^9,
- 3.8273863320539207`*^9}, {3.8273863645590267`*^9, 3.8273863742232637`*^9}, {
- 3.827386476137185*^9, 3.827386479416823*^9}, {3.8273870103864107`*^9,
- 3.8273870114740887`*^9}, {3.827387151108595*^9, 3.827387206893936*^9}, {
- 3.8273873335042467`*^9, 3.827387391017824*^9}, {3.82738742603411*^9,
- 3.827387500451023*^9}, {3.844329668733633*^9, 3.844329681670041*^9}},
- CellLabel->"In[9]:=",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"],
+ 3.827382820190197*^9, 3.827382840645884*^9}, {3.82738300603374*^9,
+ 3.8273831764043293`*^9}, {3.8273860050562143`*^9, 3.827386063937243*^9}, {
+ 3.827386126458579*^9, 3.82738620035579*^9}, {3.82738626700533*^9,
+ 3.8273863320539207`*^9}, {3.8273863645590267`*^9,
+ 3.8273863742232637`*^9}, {3.827386476137185*^9, 3.827386479416823*^9}, {
+ 3.8273870103864107`*^9, 3.8273870114740887`*^9}, {3.827387151108595*^9,
+ 3.827387206893936*^9}, {3.8273873335042467`*^9, 3.827387391017824*^9}, {
+ 3.82738742603411*^9, 3.827387500451023*^9}, {3.844329668733633*^9,
+ 3.844329681670041*^9}, 3.893239233336535*^9},
+ CellLabel->"In[1]:=",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
@@ -576,9 +576,11 @@ uJyZd4a+hfODLlqbyc54B+dD8wOcDwD7wNOr
Axes->{True, True},
AxesLabel->{
FormBox[
- RowBox[{"Re", "(", "\[Theta]", ")"}], TraditionalForm],
+ TagBox[
+ RowBox[{"Re", "(", "\[Theta]", ")"}], HoldForm], TraditionalForm],
FormBox[
- RowBox[{"Im", "(", "\[Theta]", ")"}], TraditionalForm]},
+ TagBox[
+ RowBox[{"Im", "(", "\[Theta]", ")"}], HoldForm], TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->Dashing[{Small, Small}],
DisplayFunction->Identity,
@@ -625,7 +627,7 @@ SubscriptBox[\\(\[Theta]\\), \\(YL\\)]\\)\"", FontSize -> 14,
InsetBox[
FormBox[
StyleBox[
- "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(c\\)]\\)\"", FontSize ->
+ "\"\\!\\(\\*SubscriptBox[\\(\[Theta]\\), \\(0\\)]\\)\"", FontSize ->
14,
GrayLevel[0], FontFamily -> "Times", StripOnInput -> False],
TraditionalForm], {0.75, 0.1}]}},
@@ -658,9 +660,7 @@ SubscriptBox[\\(\[Theta]\\), \\(YL\\)]\\)\"", FontSize -> 14,
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
- PlotRange->
- NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1,
- 1}, {-0.6180339887498948, 0.6180339887498948}}],
+ PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{{}, {}}]], "Output",
@@ -673,8 +673,9 @@ SubscriptBox[\\(\[Theta]\\), \\(YL\\)]\\)\"", FontSize -> 14,
3.827387012286086*^9, {3.8273871575708647`*^9, 3.827387207139093*^9}, {
3.8273873631427307`*^9, 3.827387392526597*^9}, {3.8273874262628717`*^9,
3.827387438548918*^9}, {3.827387470865808*^9, 3.827387500818487*^9}, {
- 3.844329675205503*^9, 3.84432968190254*^9}},
- CellLabel->"Out[9]=",ExpressionUUID->"55ead135-59f9-442d-ac33-7c08fd310e39"]
+ 3.844329675205503*^9, 3.84432968190254*^9}, 3.8515857205104523`*^9,
+ 3.893239234109535*^9},
+ CellLabel->"Out[1]=",ExpressionUUID->"cd4d61b2-4474-441d-86f3-942c313cde21"]
}, Open ]],
Cell[BoxData[
@@ -682,11 +683,11 @@ Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{
"\"\<~/doc/research/first_order_singularities/paper/figs/F_theta_\
-singularities.pdf\>\"", ",", "p3"}], "]"}], ";"}]], "Input",
+singularities.eps\>\"", ",", "p3"}], "]"}], ";"}]], "Input",
CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, {
3.8273862326284933`*^9, 3.827386237604206*^9}, {3.827386389102764*^9,
- 3.8273863926784687`*^9}},
- CellLabel->"In[10]:=",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"],
+ 3.8273863926784687`*^9}, {3.851585722850504*^9, 3.85158572359441*^9}},
+ CellLabel->"In[2]:=",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"],
Cell[CellGroupData[{
@@ -1017,7 +1018,7 @@ dW8QFl5SR+BT+dA02XOl8/Bkn70CFY7sLWjQ3n/DDrc2C+Rshv/CH+91Bx6h
VmwqdmBM9LIezjRU+KqnzIJzeZkfdNp75EKugZEAaS3RydBkSeLDfyWzARU=
"],
- CellLabel->"In[29]:=",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"],
+ CellLabel->"In[7]:=",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"],
Cell[BoxData[
GraphicsBox[{{{}, {},
@@ -1146,7 +1147,7 @@ mwzsDvMHNcQZsG+qI3lHdAmI6ZY168gwQDLyw0mfrmIw5tWbsTjIAPZ7MiXG
OZF02LP3jVOOGQNW/2z+KPAoFY5xea+VWDMgRCiZeQdTAlz4diq61pYBPE0q
d/j0AyBlj2SIuh0DOAfYXwe5usB/5zTXsw==
"]]},
- Annotation[#, "Charting`Private`Tag$8492#1"]& ]}, {}},
+ Annotation[#, "Charting`Private`Tag$4201#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
@@ -1231,9 +1232,7 @@ d/j0AyBlj2SIuh0DOAfYXwe5usB/5zTXsw==
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
- PlotRange->
- NCache[{{-1, 1}, {(-1)/GoldenRatio, GoldenRatio^(-1)}}, {{-1,
- 1}, {-0.6180339887498948, 0.6180339887498948}}],
+ PlotRange->{{-1., 1.}, {-0.6180339887498948, 0.6180339887498948}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Prolog->{{
@@ -1290,20 +1289,22 @@ d/j0AyBlj2SIuh0DOAfYXwe5usB/5zTXsw==
CellChangeTimes->{{3.8273909699521523`*^9, 3.8273909789452953`*^9}, {
3.827396042711411*^9, 3.827396059416113*^9}, 3.827396117784916*^9,
3.844329699605468*^9, {3.844329785633713*^9, 3.844329824137244*^9}, {
- 3.844329864747488*^9, 3.844329905004916*^9}, 3.844329946140485*^9},
- CellLabel->"Out[29]=",ExpressionUUID->"db8055d2-fbcd-4066-a806-99ab1f7161ec"]
+ 3.844329864747488*^9, 3.844329905004916*^9}, 3.844329946140485*^9,
+ 3.851585726073978*^9},
+ CellLabel->"Out[7]=",ExpressionUUID->"27b04507-3c39-4d5d-affa-0b88d32e7be4"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"Export", "[",
RowBox[{
- "\"\<~/doc/research/first_order_singularities/paper/figs/contour_path.pdf\>\
+ "\"\<~/doc/research/first_order_singularities/paper/figs/contour_path.eps\>\
\"", ",", "p4"}], "]"}], ";"}]], "Input",
CellChangeTimes->{{3.827382842246332*^9, 3.827382891238717*^9}, {
3.8273862326284933`*^9, 3.827386237604206*^9}, {3.827386389102764*^9,
- 3.8273863926784687`*^9}, {3.8273886033746567`*^9, 3.827388609494101*^9}},
- CellLabel->"In[30]:=",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"],
+ 3.8273863926784687`*^9}, {3.8273886033746567`*^9, 3.827388609494101*^9}, {
+ 3.851585728434494*^9, 3.8515857290265512`*^9}},
+ CellLabel->"In[8]:=",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"],
Cell[BoxData[{
RowBox[{
@@ -3332,8 +3333,2208 @@ nj/M84d5/jDPH/4fGjhzeg==
CellChangeTimes->{
3.8278290102675734`*^9, 3.827829059120655*^9, {3.827829133148831*^9,
3.827829148282629*^9}, {3.8278291923049583`*^9, 3.82782920335533*^9}},
- CellLabel->
- "Out[160]=",ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"]
+ CellLabel->"Out[160]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
+eJzsnWfYXlWx9/fZ+973k06RABYQRHpLSIdAqCmQ3ui9hBY6CIQqRQRE6Sgd
+UbrSm/Re0hPkKIJgOSiKyYf387vfmVVnzZq175LAdT6857rWPslT74QnP/8z
+///MmnT4GccePffwM4478vCNxp12+CnHHnfk6RuNPfk0eFPxX1n2X8fCOW6j
+rAG/rrIsehyXZe3++pvqWfyfY445ptdhhx2mfjdJPcv/C2/7As7fzLkGTra3
+ft93jjrqqDfN25+GM2Du3LnZ5JrPmyZ8n0arl1CcNmfOnGfhlPglJuovfyf8
+/hT8PfzfVfDri/DXk4WPn5H+lmvod21+3HHHLYd348ly9SxOh+doOP9Ub/tU
+vQ3/RJ/ZP+XY5Oc2TzcvC//vR/Dre+GlwH+ibB/9yr+EN61pXslW8K7F+OFT
+9JejH27+ND32ZXxqTvAyzJ9koHo214JX8w75g9o/9FT91e+C3/7YvrgJ+lPw
+3f+HvGD8qv+C30ufMqn+u5T6K6yr/5iHHX300Reaz3R/+ear9sA3WWr+hlMv
+pN/xxx9PXkjwKZNrvoV5Fevp/9D4Y/A9eL323eYH8Bz4zCvgkL+J4L/LlvCD
+vZj8wAYfP1n+0uE3xv+yD8N77HvNS54NX6Q5a9Ys/NF8HM5c+DD7r+kO+P3J
+5ptcCb++AH9d93lT5G9lXsj6/keqsn85k/13+qv5McJf41e2r+JbRxxxxBvw
+3f4Mb38K/j/+d6j9vKnC9zEvoVMMqX+QFX6VAyr139X8C63Iz4X5kQ/ftpbw
+trXbfNv/9s/9Or6H+jv9r///d/51fo9u/s6nCG+bugof97/tNfTW7w/+x7oQ
+PkdBYzb5xIb/n233QXmbX0y9gArfv4/6oGJQRv6PvjyNtfr/RVbfoVQfr36J
+X7Jaf9v1skb1vfHfyeGxQQmPDeFFbDx+QzjfxQPvhSe+aSN8bJxXG43fuITH
+9+A93x3/PTib2FPC4/tlteH4TQt4bFZWG4zfvKy+M36LHB5bwtf99vgt4WyF
+J8vVs1F9C37/rfFb25NX39SPbeDj1x+/TbX+hG3xwMfDM6/Wm7Ad/CHWnbBd
+te54e7avBo7fHj5g4PhB8EnrjB9UrTMBz2D43Tfg2QPPHapvjLdnCHwMnAl4
+hsLnrTN+KD6GwasZOH4YnOH2FPAYgV94ZIa/HAXfTB343brjd8THTvgYjY+d
+c3jsgr8ag69w3K7wK3t2g9/vhp80bnd87AEfOm5PfOyF33PcXnDG2gPfbtw4
+fIyH960zbjycCfqMnZBX3xi7dwMe++AfdOzEap29JlYD95qIf/i9JsIX3HMi
+vGO9PSdW6+0xCQ/+te0xCR67w+Obu08uqm/uNjmvvrXrZPzPsevk6ttjpuDB
+/xxjpsBjlynwju/sMqX6zs7qwDu+s/NUeNPoqfByNhg9tdpgJzzT8MAbdpwG
+b95wFPwWzobqTIf/+iOnw1tHTM+rDYdPhy+44fAZ+Cv8//i7YTPgHUPVYyb8
+vAyZCX9hG+4ws/ouORvtMBM+dKPBM+HHbjD+cuNBM6vvDZqBB34Hz7zaRP1y
+k+1nVN/XB14tPOGx3YxGtel28KtNt50BL3CzbWfAmW5PUW2+7fSy2nyb6b2q
+LbaGX225Fb7KLbeaVm2lD/zMbLXlNHjbVltMq7bWJ2vis1FtvTk8ttl8Wllt
+s9m0vNp2M/w4+Me0Jv6Dwn9eJf1HmVSlEsI0BUr1TxP+UVb7LtoBzpBq9qIh
+8EebvWgofO3Zi4bBGa7OrEUj4OAP56xFo+B9MxftCGcnOKPVmbFoZ3jfjEW7
+wGufvmgMnF3h7AZn92raQjzwozhtIfwoTl24F3zk1IVjqykLx8EZD98Pn81q
+8sIJcPauJi3cx5yJ1cSF8OM0cSH8JO2zEH9g9lk4tdp74TQ4+Pc4YSH+nY9f
+OBPOrGrcwtlw9s2rsQv2y/rDc/9qL3UOqPZccCCcg6o9Fhxc7a7OIXAOrXaD
+s+uCw+AcXo1ZcAS8lF0WHJlXOy84Kju8Gr3g6GqnBcdUOy6YA+fYatSC46qR
+cEYsOL4aMf+Eavj8E6thcIbOn1sNmX9StcP8k6vB80+pBs0/tdoeznbzT6u2
+nX86/P8z4JxZbf/+WXB+AOecapA686rB750H5/xqh/cugHMhnIuqIe9dXA15
+94fV0HcvhXMZnMurYe/8CM6P4VwJ56pq+DtXV8Pf/gmca+D8tBrx9rVwrqtG
+vHU9nBvg3FiNfOvmauSbt8D5OZxfwLkVzu3VyDfugHMnnLuqUa/fA+eXcO6F
+8ys4v65GvXYfnAeqka89COehauSrj8D5DZzfwnkUzmPVyFeegPNkNeKVp6oR
+Lz8D51k4z8F5vhr+8u+q4S+9COelathLL8N5Fc5r1dAXX4fzRjXkxTerIS+8
+Xe3wwjvVkN+9Ww19/r1qGJzhz71fjXz2/WrUM/OrHZ9eUO301EL4D7Lzkwuz
+DapdnlhUjXl8cbXrY4ur3R5dUu3+26XVHr9ZWu35yLJqz4eXVXs9tLwa++AH
+1bgH4Nz/+2r8fR9WE34N51f/Xe2N594/VPv8Es49f6wm3v3HatJdH1WT7vxT
+NemOP1WT8dz+cTXltk+qKbfC+cWfq6k//xS+99RbPoWfy2k3f1ZNuwnOjX+p
+pt/w12r69XCu+1teTb/2b/DuGT/7ezXjp/9TzbgGzk8+r2ZeDeeqf+TVzCv/
+kQ2oZv74n9XMK76oZv4IzuX/qmZdhuff1axL4VwC54dfVrMuxvOfatZFcC5c
+Uc26YEVezTp/Zdavmn3eympfOPvNW1ntj+fcldUBeM5ZWR0I56CzV1YH4/nB
+yuqQs1bm1aH4OOzMlfDP4/AzVlZH4Dl9JfxhjjwN33bUaSuro05dWR19Kr7t
+mFPgg+ecvBL+Fc05aWV1LJ65K6vj5sKbjz9xZVGdcAL86sTj4TH3uJVZ72ru
+sSurk/DM0edkPMesrE7Bc/TK6tSj8ZucehR8wmlH4i9PP2IlnBXV6YevgO93
+xuHwBzvjsBXwjjMPW1Gdeag68LuzDlkBVDnr4BXVD/AcpM/ZB+H7zj4QPumc
+A/CxP37UufuvqM7dj5x98UvP2xc+YN7sFUV13iz8rAFrrbORpGCahnxS5Zwm
+ZWFI+W2g5GD4bsBL+DhNzKGKl0hN/B92Qks8eQTMnVoAc7cAmPAVpy7cE6lp
+mVl0ictc4bKE58wQmQv2zTQze0XM3CNkZo7AhC8bIRM+FZgJ5+iAmqMcNY/P
+EZnZfgaacwGaJwE0T05AUwNzOwfMsw0wz60GK2jKwBzy7iUOmEMVMK9w0ByO
+0AyA+TMNzbeuI8C8SQDmbSEw37jbQJMD834CzIcNNFPAfNpAc3UAcz4Fpubl
+gI54Od7zMkdYZms7XE5UuPzI4VKh8o6PA1xO1bhEWFZTb/7UoXLaDX/JkZXZ
+hkhLhKVB5d8NKuFc7XCJtITzT5mXlpWXfGl4aVh50QrDy5WIy2o2HgTmPAXM
+HGkJP5qUlQdZVmpeelz2obisjsSDqPS4rI4+ZSUCs1DAbFJYVseduBJ5WR2P
+uLTMhH+6Jx63EsFpsZkjM+GfYJfULBCWmpUNzspGiMkGktFDEVTmebNXIBn9
+mbnCMbIkfOzRxOS9vfbQOEihcTC8PC8oFR6/NjoqMZkjHOHLCnjMFB/hywIg
+FR4JIhGQSMmZXFQu0KIyRzbC+/YM6ZgjGrNjlZjcTZHxMCCjoiOyMSDjaCDj
+Tk5PHqv05Mj5Vk+e0JGetHi0aIz15EVwKBovJXhkaHR6kqPxeoXGEQqNVk9S
+NN7u0DjSofGXERpH1aLxcY/GV1qh8RWFx67R2CRoXOLR+MiyHLkI764lY+8a
+MmoqTr7tYyxobv0EgKLIaKg4lYhIIKMRkX9FLObIRfix8mT8HMmYIxbhzQyK
+OVIR6zCnIb+EbwhUhA8VNWQz0JD7eQ2ZIxSBDAESf6CQWB165kpFxRypCH9s
+x8TTRSZWx5yMHwtgzJGLOUIRXo9BojqOigWlInwScBFeY0JMfrVU7CVS8XxP
+RgGM3GtIg7GXAuMmAMb9Fm0PZxACEvFo4Vgo4djjCm0NRgvHUUDCUfDnBDbi
+T4EnI57cwHFG53CE1zp54XgrH+EbAB2BlYaPSEdg4mQlIFFGToX3ET5a+Qjv
+AzzCKzCARD5S+ZgjIeEVeAV5CAISFeRh8BW1egwYCV8RCJkdItfcwMjhrua2
+8pEz8jTFyO0cI1PyERlJ5OO7Fxs+Evn4LpWPbdbbbwr19hu03r5bqLctHx9g
+fLT1tsDHV1Y/H0fX8PE37fMR/mcV+XgP4eOdH2GRnSMcs/6AR1pjWzx+FtTY
+Ho9KNWaaj02pyEbVmCMd4d0J0ajZ2Itoxv+EmlHDMUcyZn3r62uvGT0cc1Ve
+9wSKsQUZVW0Nr9hgsTrh+JVIRsvFXIGx6epshsUcuZh7LpaUi+qcoflYj0ZV
+V8Mnn33ACuSjPlhZ74/VM3ASn/uuQFjiyRQxG6q4Lh0mz58hi8heGoOBI9pK
+QWpQbgffCHCpFGQAy1z1JptGUEadSd2YLGhjEn9wJFLuGpOyoKRUDclx8Aqm
+KEw6VK4aKRsBKYGSucfk8RyTTkfu6hjptaTXkZyTcV+ScnIQcJLqSF5mx4z0
+ZfaQhI4MS+yQkcOVjuQ9SaHEfuO2NnqS95OeZIqRTzBG6p6kZuQLq8TInSgj
+1w0Yuftvl4SldbK8tq3I/w5akRN9K1JTspQoCT9FwEjgmNCJpLV1jojEH/cA
+klZB/jNHRKKcCCD5ZQRJLSDDotpCstCQ1ICE1wWIhK9ImpC+qO4VFNVHxEW1
+akHCZwMlkZG6qDaYLBQmSwmR2epjZI6MbCAjc8Qj/OlM51HxMe+GkqoFmSMk
+4TMtJlOolEznEIvfAiBuq7C4HfyFopb0aBxMnRtfaBeBaZN768byUenK0Vh0
+KD25izljcuQjfCghJP7kwbMDRPaREGkKbaHYbqpCe7xyb2JCwru9e3OQc2+U
+lgRCwrt3lWvtHAEJ/wFsI5LISHj5AMhsQKLU1hKSIpLJyBz5mE1MqMhLhSak
+cW3e9lX2cKHKHtlGlT3qdakByej4GnNsHB2f/CrpiHCEs0jh0XceHR5zZGMg
+IX+v6DhB0zFHNKKEFOA42cJxILdplISU5eNfw6YjkY8zaNMR1GOObMQ+VKwf
+TXHdQ0yaFVxAYtfrPMQRqa6VejxQdxxzJCN8eVZdq9o6RzzC+wQ4IhVOwSeS
+0fgzmUej6jRik9FzEanYfkXdioqRLXNw2pZpcFuGlNmlVGbD9wE05shF+GIX
+TAc6rtkJHRuEjtsgITUgS6nYVl3JIdrXbvByW9OxSelIq22tH0ujH321PW3R
+7vC6EmT0hbbzaFShPRG+kOXiRM9FeB9QUclHLx21fJwF7wMswtca68GYaTIW
+tAuZ6TZkr9o2pMIiaEf44+4UKUeFRk3GgREZV4NwhFcIYMxGd1Fc38SKawGL
+yeYjMbKVcPzasYiicRH8jY95PEnF5fDusZSK9/3e2tcxFYOmo5WMcVGtJONN
+n6GBHRfVSMUckYhSMaqplVxEJn6BdXXERGXC5AhD+MaCXAxxaJHoC2qNwwav
+p0k53fTltGS+FNR8yTwMdYOxF7VcJIWYIwvrO4vw6s5Ag9qb1LmWiMBCeB8z
+qYvaNmPDONKkaM4U93LEHlrVa8pWdRp+pYHfN6v9F21tAQgfiQQsqETUVrXC
+n0r0RLVzFuNvR4q/wuCPoQ/FYVoYdoe/HkBeUDnTVI+xqHucPR1b1IdkuZeF
+xyn2tVU2zw/LZtte7FATAv00+UJR2Ib1okThNUwUtiqZbVuR2y73/m8inxOD
+IfqcFZ1p9g1U7Bv3YBjdsbVyG45LRD8slSn9wmL5755+Azz9vBxEMdjKg9b4
+6yupQeW17Bt6Lb5UdlrQg49qwRB+p8XwU21E+LdFbOeM53SaqYzOqpKvoOTT
+GrBA7MEnmarYy79z99UMhPfNQ/nnJaAqjb38a3SNwSbB4FYKhfsrFG6Tex5a
+PaidaZ3caRJrehjVg7k3pZOtxFIKOHbDwg0kFpLyOMlC7rVwQ7qmi3hkptON
+J7qcDs3qyE5LXCK3EoKSE+1TjTUuS7I+voHVx+mAzsiEwxKisCacE6Dw+a8L
+hQhCUxgvj1KMe2sZ+AdMdFkS3vUR/hjd+SdAmKXg5LrK+KaE79yrrjBu2TIs
+pZYhZuHOQ0+EBheZqZJpDg6QauLaFI7xVNJm8wnEbM61n4IFceOrZaFuFDbD
+RqFvFuapXiHqQk/GTHcNG0HX0CpFqJKndcfJgnByS/geQMusN5WO5mzHi+cs
+5uVQystCiccGq51HFz7AY32XDDuLu2H/WncVzaH29Nh6XPZuB5fKbJkJP3ok
+u8NxmWnTpeT9RKUbUT0ens1jDcWjCC4lw+UEZrjIpvS2iMqulWOrPGNdK1Gu
+mUeqVmK7RouEyqdDVL78gjKjhylcfh2ojGxoMew9kYa9bzec9OlFE/TubVj5
+l1S9jF3ErN5f+ULDsn8163Ka8m6RWtSSMQvcFSoZ4Uc1aT/DS3G0bN9a0Q50
+w/HyRG2vKFwWCpcFRWX2VbCyoKzMdBexoBISfheEukU2Tg/ZeOHUTvuINqWz
+PvBwC3O2dHrSask8VVo7Ng5ZZTb2b8VG7raIcNynJRybCTgaM/qyaFImnJKJ
+Oook1Egi30FVXRfYkWTk2UxGcpsF2ciHY64QK2oVZnyrVVCnnSBjKy7yEOP/
+Pi7uk+CiPADzZ5roxvrmxr9k30zYzlZA/k8oIDuKc1soIgtIbjGuo6njzGPc
+jok0q+ir6DxlqLSI5HAmniwwsUdyUywTs7wmipPr9uHZuo42opEKx4L1EsMA
+juGgdlFyBGGOHOxKKfYoGn4faHjA4s3gbE6JqJTj1tjXFVQjUJFU2A1OxEI1
+Gxsk26iIqGzo/CtBYk8dEs00TC9XWnMkBjHGXkFlTZFocKiHYAqqFOE7AA/h
+L4vHvI1SzBGH2WzRYEkPv/BpQSGV8047NXVde/G2uL34RgtjpVUapyUMX+sc
+hk8sSk+5PIyuykPKVZFTODmCMNsgmgfkwy1RTlEymX1T0WPwJ2yyxWMw0wnu
+Zkof5shBLKxZRxHFoZ5oaaYmWtT0H2gBVUfbWprV0YaEdPhP2ynHUTsF/qUy
+DPpSOkcMwgecbExlc3zcJkcK5koaFu1B8GwDwcJ5KHmHTUSiApvVhdNWKCWo
+zhSnCNsThByBAQZN8dyLFM/bSMWzPAYzDC3o4blCYUFRqOI4O6lBGBfxtjjM
+dCZnAM3kdIJDTcO1WgjEsNEohHFI5dxMNBoPzz0Ljwiq5lScOz3uEirD7QMY
+dqIMO6yY32LhmzfYuPQbks9Cm4utQGibizIIh72op/5agXDHdkCo84ghCEng
+RtsrGoTN2FrWPUU9ytKfmyutwzZQJOdIQfinIpTJVA7mCEEsmWU1GHKQqkFV
+HmORXFAGZmQEugy7iZqA8AGYrenlEtpzaIHsB/pyn7EphOxhgzvLRccQ1IHD
+Bg0ctnJUkIPYPpy9wvIwT5bGFIqqMoYPQBpe1CkRC0PE9YCEm8Lrx2dTEohI
+RQTkNiqGY6Ho9KEZDmzy4UCrETUYmw6Ms0I7WsvEJpGJY2iaWzsw/dvFosoo
+TlJMjIcCGRftrIvF4lhJJMZU3JVQEV6YXDIfS6ekeckMLwywmM2MnBc13/K+
+0Erk8Zt3uUK0qUQ++1dTLr/Voo0YjERLUGSOy1cGxQX1UPxNPRR999BCkQ2x
+2OahhuLA0GehQKytkUWTxQIRa9/LlDgM1kM4iyVXBXJ/LgxbrYVQupAUyI2w
+QMZmocsb2oZhpp3mhnOajdvcARJZibzakcgahIWkBguqBuE7AQHhCyEDL5rc
+IQcbhIObwPm+RmEp1sqFqpXLSCDuG1rRUaGc+0xi1Dtsi4AlIaCb/MvkJTuO
+gG0CMDSgNQD3DAHIm4ZjLADLAIBGFcLrAvyBuK1XhXx4xanCHOmX7ROIQh89
+tK7zJUQUhtXxsCB6GFfHI9qpjoM0tmUfbxW2Ct74WT6JfUPbYd9TwL4nZfb5
+FqEK3Wj4xS6zh1//Fh3CT6SyGEuVG/6KM/s0a+PHmnNEH0YK46oY4YfsU0ow
+KopDNYgTKWwnDqqSc1DwOfj5YWb4p4hisBmXw9ooSaascxYs7O2ChXPlYCHi
+LmO8w5S17QVy5GVq7oTmq3PXD2zhJXv05UK8sHAQVP3AhukHWvUH5IMXgM9u
+eoQWg+tWBy7+HpxN8lYsjPuGQrFc8mIZaZjpvmEP7xuaxWOqUM50LqfxdePw
+OCGP47M4KRNlTGKiT9iZIxgoJ4s5nO1SkcREBidVIisavpMukUfUlsh1GyAS
+xknbNHy5JQ2HwxkR0xD+SwMLsyHiuF6LzE2NYZLuEsrbwqLq2AtBXh3X7glT
+QjDTLcIBUoswqQSjhTc9UnHcuj3InRJjHYfTJ2VbZGxKZHTOMW4F82DMCBmJ
+c7y/cY7T+Ro2fKIhqQGJ03nTV6jZE3VQJ1oXWQvFwglFg8xJGpnf6BCZTYLM
+jeBsrNB5gEGnKqY3lciZGxG5f2y4KBE5SLUY6RCgHgBUfUbsIQfbJMjkn1aS
+/ZSSjKLdi2h/UVggsWrYPFbqLAYzflKEsVPfWe4sxhrSL4k4RxSRYhaHWyy1
+BfRNcQGd7CqGyBxV4zWPiOKKiT1inSNTE/MbSWKOJcSULeY/cl8l02Mq6zta
+xhHFv9RMNYt7H9K9xAFp9Xh+rB4JLLWzXKSq5h4pZmPbiFkujKbU5Ww6IWWD
+kzJvA5MlxaSbWo5IOTucWgY6iuqxQdUjnsLQ8OJJKxwRO+snDgQKfhd7uIs3
+QuXuqYhQdL3GzeBbH7BIwGKD60lNxKY0Fu2h2OBQzJ0PDaUH8V3aZaLRkqUE
+RdNYRCt6SkBFm+72+yEGdIFF4j0PrEkptue3CEISXhowMdu1YyFJ14mlg9yt
+pvlin2VUZDhL6ZuviIgDpOk9QkR53QPoxxxxiO1E66+4VqKaXMmRhvDzo3gY
+LlDM9AbFQoggru/biJG38i/DQ1E9aiDGyx3kmE0RVNJiC/HIuIU4J2gh9oQ7
+Ek8MIjbwGeHICmPh6kAhmVMOE4bKWy5SVbQdTiYiMcudm8JbiepMgjdfrB4T
+u1OKvRwbD1q8AfBwQ2QkVY2IxE2UYvy+V40ej9qfLlm4myhGXWz3VoCMU4t0
+O6NdPtabb/qWCGkGYNaUCJm0X3yg29FRjwIWAiCbkvWCgMyRjvBuOa5o+Dhb
+LLRHJpOK8erF7WwwZ7409VwXygkTisOihGJq1WJdy5GktsUVi/H6sJHRcMtq
+ZOPIGjZ+ILORrsFxPgsLacthxLZq6xZKMb1TlkpFT0advCmEEZa6Ub6e1PiK
+p2OQx5YyNygRYzTq+KFoNzd8Od1OEDtpN68qGqXiuankIsDRHYPISDkqOIaJ
+nHWAid/mXFT6cWOQbgeE2pGU05FHbevpTMe6+xljhi7WiTqRFI56QrAPm5VO
+slGviejXKRb1Eu8eUkkHupEshyglLGaai73EDiTpPuq1iwcaLkYLITrI6Ph8
+TrgJgm7pTk20tFtFt5qBtkykiW0+/+xzOTITX+iOiXrNrLJgalPaDy2H/zSA
+xGxzIZBDZ53jyZVw53YcS2xdPv+jDSgqIGZ6wnlAJBcT0818U6LOIvaNZ/rk
+8pkBEUBxHNWKJ7TPREDZqbjq5qiVyEXHRuU4o+9M7h0QwXh2O2Bs2Vtss3zu
+CXm4z4rqh/v4clrd39RoJRn7GDx+A9D4LYPI70jyEUn5PSUdN5HkY64Cjv3o
+7AtzrkVA6o1jPYSPiZ6jMq5jQE5fpJya3VV0Z49OIZlpSpZSv1ELR43I/gEi
+6wem+bD0QUJkJ94bYRnJJ/+2TenG9+Ylpv7ka198ftHykdfU3JhJrVXkEy08
+osP56Fdyez6+6AeiAz6+1ZKPO9fxUe9O1HgcEKzC2bsGj86e1noxRzZmA8Pm
+Ipvnm/4zQkc+t8JWQKhhvmgbWEIuzrODfL352puaIb4+IRpPi9BojWm19wF+
+2gUwZqSrKEzvwb8+hkU7r9ItGUtNRn8Li3JditpeopeHhfGfL0L+6ZOpsjlH
+DAL1EIQ/3DstEGtbi8jC9XF6cvG34A9umXigYyLhYSmpRmVZbwGfKqhGBKJe
+Uts0DnZiC2OTXXcQTr0EyxcVDtXMy6qzsJmIdhsSNgXLWjUZc7VGrCnV0P5a
+rAPFGnoEYWFqYURHWpEtU0zXz6kliiSy80aqt1g3zGLjOo99JRwc3R4HjU5s
+GmOag/CPOVIQ3h1Mr9wWcPBT5KBYNktXsog7YyWFaDjY9A5LqBA1AvuLApEi
+MNj6oPuJ8KUxpd2USmaPwILue8iC3Tc2nCPthIV/7QIBsxYIbFIE6kyidlYK
+0Xu2joounBt8WC9X03oN5zkb3zmvaSoWtKloVSLAEb4PPrtpNOoVYpuOXxvI
+uC6c9eB8kxEzoSB7iQryAO7PFFRBZpqYpaQgs7ZwWQhDMb34JYPtGtZBid0a
+mIIrs4cMzDEcmKcaYErCMS6u+bKxdoRjdF/gO3zJGLvbpbbZKBXWvNn4ADNi
+OCyfZLB8/quDJbvPSso0BgmeOM0drcwRCuosedkfvYNgAKunifXyw//UKUZN
+y1ISjPCdgZXwnW2D0dbSxnmxsBRAiS406S4W1IHOOCxPWg2wVEoRPukHPrht
+QZkl3RctGHUhrcApMpPNNheigpxoFCRl5D6GkfCY0B0o19WgHLd2dfDideAM
+NLBcH4HZquS2EcmoK3nAYlNvN3i9rXuSTbbom5Xb9azU6Z6+UbqnBpTJRGRA
+ynUiUraYGJRuEQyj4Vhmn5Y0Z0YI5kx7TchzEne9tJiFMVnw9gps6W6XlClD
+U4+rl5OjAk4mVkTU3pPKLyX4yFTWH7HG45+Dy/6E0lpjckA3itIvVVxH9GCS
+Lce4qA5nny0jG7ym5vZLEdjSIiDnMEA2JUAiHovQmc7DbLfyo7PCdxZtLici
+4ixDRD/orEgIkDWqkc45o8cyZUUuYLFQz5JKR30UEy/pkoy9DRnXAip+wxwk
+5LpwLCG/pSTlt7O1SQEu0ZETcguqJ2n1TfEYV9+uG8nxSGYJTTeyn9OTbSKy
+LUKu25KQXfQhvU1zdXJfo2TTRDslIuv6PEFJShZNnW3NIz1S+zFlz3DL2tLx
+cU9HY8+EuyMEOr6YoOMzLejIcjzjuFcdXdnyUWIsRvapE4vEBEtGmo6u86gT
+Y9FhtZ2rmehmqthWaNTJnQbvNXaMxpNXGxqbFI20vUiueG6lEVUp3VAwbFAY
++h5jM2Sh5iHSEJA4vjskNhwSD1m8Np4cuZhZ3egK7VXRjT7m0xR9mv1syKcp
+hnxm2/HCPqkrDzgUdUuy7F42NqXcIy2wNROjZbb6SoMrpeI6MUkt34IVL2SU
+ZmZSayXCi6W9JSPdmlpTWXdix1AevirzcITEw5da8PDZ1jzkuUbKwwmMhxMj
+HsrruFMNyBl2a46tqNvN7Mh5Hb12dqDDYTQGQ6XimWI5XZ/VycK123oSurcf
+fzFHYGK26lAkcy4N2mtsn4jiBKDMxhzRaJuLhooKijk+8+pSxcc1uuTjZsDH
+w4CPhyIfAZKg16x6PCiur5WC/A783R0YcNIxUs/Q9ErN0AR7HJVw3C6qrWfb
+22Ga7HaYMCWOo6t1iFwV12ZAipHSpkY6YaghKXYg08OFRDQOayEat49ueWmR
+64m2MZKSOhivrs85RncavM43MKauSK1bJ9EtIM0odRxuzJGO2TC3QiKK8dwV
+LdVJdxzt8oi6ecEkH6VtYvLlBGSFTmpbBDGnS2loOqOrFI+lU9N17nRiRQT1
+po8K2OiveW4bju0bMTV4nNINHicwPF467j8Oke3Z13pOcHPA4xGAx8PhBJhc
+n2ByXYJJLyUPVCeWknIwsiNG7vu/l5F2Cjtm5B6UkU0WgSR3YuHCxguEujq8
+A2EwcWjkuWs+QCjfexDvZ0zV1PwuQIJH7sy8Ls1Z060TfDntasIjoFHh8dHF
+YvbbdxqZfR1MCMaOjOs02tuhb/ysjVqatBpdm/GLcJY61o5632xD4ZFMBerl
+YmsEvrXYYUzc/OxlY+n2ikWmNUifE1Oy0UV3SgmNGWMj/HizZRLBakW2Wtav
+WKzrOOJKMb1d1qa8WX0N3zSwqrVd7dxqnuUxNbZqOSpUwucDK+H8p7psnD5r
+dJL36e2AeSSAEg8Dp+KmLsL7qyL84EQRfmBUhCtxmWl1uUaCnO7GGb7jh2Iz
+64KbM1YnN48y3AzMbbe9ImXZ7F7fkKy9EiEVGpeEpR69nhcLyyAExL2a1Fbb
+VsOFMjVlP5uHIFN7ejqmZo7IzIZDwc2gSe4A5NDc515+ASCzZ1quaOTAbLfg
+7lhQBrcWUF/GDcaUdPlYOEJN146RecG2aalmYgAWqwWV55KVOxqVTY3KWVHu
+O2+34i65pFSQVJKySFXc8JIYJ/Pq8nH/6aoGLxwzj1q8Fnx5oGa2gcRNYOXa
+xNaxDUxbmKe42bbiVJmgbZTc5OzsVm5G2BworMptPZCY3o+rsIljNwv2VX1L
+7uMoZKp7CLMmT1BSuTkn2ydh4ZwUVeNtS83kBtwr2R2rfCI7VYlLrcr7WKuy
+XWC+IADzjVpgknsPMk3MTeMRw4iYUvAHifknKSou3iAdl+DS/QbOrsn8Qm9C
+zHBno7rO4PyaOet+dM46fRGW70zqm1BLt5uHoFIvZ0SDhtyDym++0phspBuR
+WZ8UJGmwxwhJX3yTrmSWaEv6ODi8fr6r+yI9OVjPSV16Nygng8LbYzJTnMyr
+H437UsFy7Q5huYGC5Rbj16qOWbxWdfRiBU1A5lopsSlAMy7TD1LAjMRmYu8F
+263bk9Sas53WLAk0+Zbx/sk5bmp+T+vc6JkKBXqCmEZkUuebrkgzxDxCKs6J
+xrTVeZgJaq0xz3brfWjQfIjo7rRZmb+Z3oJW7+xIOSB+S8Iq4zJ1K0ICl5Gj
+o28W7C83LG1BbmkZFuRmPcVAX5AL2nKmaOa01JaZ20lxNttJkfV25TjfZiZP
+XGd9+SIKpywFYmYRMk8TkVlQZOoFFLjHMUamJ2bCy2FXvJgR68Iry2igUA9Y
+l9JAYRbpyrBV2VStSluAX67Ol4hM4ObY7ri5jeLmlsDNY5esVc1Z0j4/DyHs
+PDgQnJafGxB+dtbi3D9dqOs7sgfyW7xYgGinenYu6oadUzQ7LxJTQ/KKybYS
+Q/LtCy3jQnVa83ymNe1i3VbFOZ3OkZaJSy3NlCX+25ZTOV2B0yzObQecKhqU
+snqEFRb1F8i4qlyD8zuJovxfcVF+8ZdxGkjWmCmHB6GpC/K+qRamTQPRFqZx
+vvuI2GRJcnR2ugIniQP1CScNfRwovBRGvg+ma1z2cHnpSvBLla5EddmgtERY
+FtUVXRKzcMQ8bgmW5cBN+PKMnPXVuiQ6v1nVxYw6gGbm70B00My+XmraRZOq
+QNfUvLQlNeUkejvUPJZU6OkIurQbyLU0SZgoLTf5rYWhTx5ees0vvGZXLzgT
+iO28SEbOOTFfXXVikqg5hofGk/sVJjDzR9xvEfUx/5KoykXjJ1cl+YCazFBa
+ZjrTpz/fId5ORa7bl/ADy2hpDZ9cqMpPqqnKT/PXCarWJXwquV2VApPzssF5
+GdyhNSuFS5xJpNW48XiiQPkkYc7GzSI2U9QsJGCO08DMqx+P/XdX1NS7gbYC
+ah6/RB+gp9WcGFJYvBaAXNNTNIgyba3bDHsqpSmhM9KcZmp8LWIOSWs06nYM
+8eVrTYVPub25yLpC9e3NfTg5M43OZiJttG+O3MzuEA0hvpMXFwnpO7J9FJOv
+MF9lrfnexcI2NaM1oyK9VbpIiKO/Ti+sqUkW1VLzNZmaz3VGTRu5HJ90f/xl
+hZOiXiahZjJ6jr3Mz+nwYjpK9EMiMi8S16KJMaKWGUthsNuqTBc57x1sF5dc
+n9q63EGzlKCZ6XtmCjqqmNWys6DszPR9WwVtamYtEdpacXbFzsKwc82O2Vk6
+dp4IvDxB8xNDXPBsaoYu1urzGFe3r50jQOF/X+vK9hr1qbf9rt+p+Ey1O1P0
+pPD02tPemGPg2Y43lPKFaAwp6HJmmp5N4gsFmjNHdGZX1EY0Q1OoHclp73yQ
+8+vSGsq6qfB4lqfeDBIzR6+2AufLHYNTuuYwyKo/UAdOunz3T0Jbs2ZmR8xg
+knkdUWsK1bm8dtyLTV+ZS3uBaGVO57wdM9dpyUxWmPs4Orm6mlzGoIvzUjKC
+MnsXA0kVYfYyMoHkCwp1Q7N1gV5QXBKTPPcRIm2NXzYutMZzB0jQf1eM/TdS
+Up0r8ez1L8fLTm6F3RpYOXeJPq2YeTRn5nptVuw0k9RKcvKLaQe0AKaFZgKY
+DV6s6zUbvwFc7paq0wkw924DmJIthEX6fskiPeGi10z9yIF2SWraXRq+rUkL
+dL+gUt+TKN0TJuSN3iAtzdf5sqHUEvM0Lf2ET/u03FmiJU1mRht5P4ymHNEy
+n3yHkFqvWTqZvK8hGvwW777mizFqJ75TWUyCSh1SLykpw+kderFXC05mas8u
+XloTc9KvIG9wTnJMnluHyYRXrn0fa5VnGpilBmaYujST3g0+6a3XX5SStsy0
+uGzyTiaiE8Gp9WXTcPPf1VXAzqs8PzvZy4b4PEnh8iTV3GQYDSgaOUaB8ozN
+dl64857nRnpPcDOeqtQeuzxR6WbM9W2NTVaxM3w+mJyibM3PCW3wM7bVU5n3
+cNXG4WwoSJfqwRL0BdwWkiYmQ7U5mMWPdgj2EPHllXKZPlIs01N20H2yj/4q
+H/4Jd2kMX1V28lS7s4E+NBPiH4b+ObsljNtAtqkpbzCv314ehzLrVSYtz4lp
+ntMbEePKnGMztn76OtfcdTO/FnJqz7zZpv8DH8iqcSsydU+zKSWMakd7UjnM
+UiJnZktzgk74Mvgsqqs7lqB6dnKb8WtWpwAcT0ZenoQPoCgmviI5uqkA0mRG
+3pC0fS0aWu5tF++ZDFKyWh1BukHdOLqJKckgnVKT6Nw7sZnDgFRV7vtnVzKQ
+tjtZybemcxFqtwFTEeoXuu3ggu8XhyI02Hx5dThNGQWS4l7nKFeytwdRGkbS
+EP1d5xB9KoZoKrPpIUpCSKTH6a5a5D3O1D5LcbXGP9jVih2Iz3mC+KTXKJZ0
+05DVnhklKGlt+mUa8C8goOex6YlINy0udjVVaX7ICt/PTGOTT0ai4Gx6wRmW
+5n5db63SlHcKJavzyzUwv9SBzIYlpS3Oc0QlyHGqM/Fcrc4X1U/2/KJDaJYO
+mqctWbM6dYmCJ7y+k5XSPGmJWM+nhahiZ47wzAYmSnk5sSTMrQcqVN9SYcv4
+O40M7dg1Eg33r56dVoBSEZq69jYu4FW7cwHfIJxod75/VrQ5uLVPxIt3crPE
+m61andxZf1C4YYc666uJm4+14CYwM8wg/THmppTcbF20o/N41T8wJvxjaQe6
+LDxN8CjTqyybSnhyT0hi5umcmQ25tdlPumxWWvNrudmW5uxFr8PxZlAQbVcZ
+zXn7uXtlxYHymXXFejwm6VWnnpAsOUHNTrZLTJzdKU4dZy90NpMY51ZhwoHf
+eYVpoAmfhs9uTCJduW8LAD19yZqo5OFZGJCuqTCqq/mCQhTeRjAqpT8dRndU
+GOXd0IMFB0kOzG/Saqb9a0VozUCRvtlsQEDQ1GoPoQWaIz6zn7gKvm4PnLzO
+wwtPvkmYCs+0V5Qy2dvpfKZ8ohieIzqE58gEPIPRSh7gJENCe9/LhoQSHc94
+2yWp2uvuHEuNUl7YQbdTMNOPoCW7bAqxRUV9ZFeoTXQenkTn2cmpIHpZjkUm
+6W1GyJxKkUmWoLeYKLdaU4fZe4JpctbUzAg1G4Sa/8KjS/NGoDbhFNU1rdlJ
+risrHTHPWKJPPTnLQH76Gh4DoN9LwbPGS2oVX0oJUImcwd26g6EuR3Duq8A5
+dLWBs34Sc2qmyXkeiSpx80jKKR3SMhNP8/DDgxt8To4bn+/zxqeUT9LL15Pb
+j6LVHnGiUzKM2sbmyyE2h7XA5o4Mm7vWYNOtf5OMojupUSQ0O5XeTFvqCZNI
+X+a9gbj5kl5EVucPHWr8IX77GA+5y13OZoqYuQofNTU0xRr9cNR8Z8Q1uqnQ
+D0KGJYEJSGCNTX+xWFbQiyOynMU02b6iYFWRPC+pg+wFJWWm536avDy3sCzq
+QNmA5z+rn8JZcw0FzPZuMdPdze2AmmcBHc9csmaO6MT/FVria3dTv7vmJ2On
+iX8adjYlK14LTwBntrFBp8WmXaokjbeLU5qkbt+i5tI0WXTq29JGZvoqyYGr
+lZvGNDLcbEopJeRmjtCEdydanXo1+7lBtZ6aWBet9vep2AzXewyJxKY0dslD
+SdLI5Z3GJqIdTiQmn05fVWKG9962ImawMPPXH0YLM31n85NkCElX6Il7HIUr
+v9sSmYnUpruvseQLgtXqdL0guJmiJXHSG9xJ16QsJVJm+rragl5Xm0l1uSAu
+C+MDCR6Qu3WsBSmjiyNa1OFN3sgMhyS7g2XpYPnTPf5ZrbVGJ63NpiPmD5bo
+kyDnaZ2Sc11CzjrHiKeXrOKMblqzblGuptu/Sy8sN+TshJojzEC7XV5cN8wu
+jRUBM9VYEaWms9ptmS477XRFcZxScreN3ySU6PENafE6OT+wrnPw50XhJLtG
+Llmev+WDSSPEGKc11/llFRIxH2cTQ+0S831GTLtJsybzHqwYThvqU/iFPZyY
+NOtudnbIa+EIMRMCc3ZqkDIxF1SXbw/WdJwQDp7Xho+CxW8r0sgsJWRmqfnJ
+BDfz+i5meC9Z+yV505Xkl5tjynFVjcNLF/KZuo2ZIzZzWoUTXsKr+hk8C8fN
+9ruaXm2eA2A8G5kJAMWkq0ZoTem+VrJ0DyG6gYIok54tyva6hmecl98/3A6i
+linl+nZKdNoH1nQ6KT7F8aIEPscbfN6fwmdyAUirKy9aFephHn6ukIcXJKfL
+wsfb5ELJyXPw/MrxsLc5MgnPh5mh/oSQ6KyH5zCA5wgCT7pnc9fHlrgk5x5C
+ktOPWDIjnV0fHqY46/PuykRPDQnRucoLo0sgA6kp3f54WHhPD98HJ/UyHTxb
+ZI/0TFAPrcpDG8iBs7eoNYMFcOqusnN1XW7B6acos6K2kZla+ubHfsK6/FJN
+zf/QutzM+2RF3L10JnnhUJmzOtzgUtOyAc9/VNfCMdTsRGxuD8A8d6k+5yxd
+BXD2l8CZis8rcB6mRjVxYHNbA85OlGd7BTu/4TzlEHlujm7JzSkBN9eVJtlr
+Nr/LVwXZQUwyhKkvm5wXXIdBJ9dDzXlKG5ozrtJ1ID6cu/QXpQmjQylkvt4J
+Mp/vDplPxMiUApy4/CjY42GQOZkhM+5n+upc3SVukRmMB30RriCOd8MF1bk4
+TylpTY3LjN/9yHCpjfNmTMtjTWV+clCZn3pUO5X5qtHSdzGb4fW3PpkZ7H5j
+U5K6jVlKU5Imxc7bmG4+ssHz623isulwiee63TvEptaZgwCb85aqkyM78X4j
+TU91Vq10N+DE7QPwHMrDSm0oTr6Xznc7ecDzgJqafb8OwDmzbXCO4+U6CyVh
+uT5d9ThjRx2wmSMzs9OkSt0pzTAP7+/n5c1NSWnSRR9SmR4g8x3a2EyV6ald
+xcQKaguZmH1/idyS1jkyo8w72RenkBlZQDSq+Ukc1eSj6LQ8b0dhXiSu0iSV
+ea5uzO0vFub8Yh+WzMw4Lanr42jZjAYnA8enJ+X4KMNH3C2834qCOj6+FDcz
+5edPp6y8cJqQYq+TliWXlmriJ6+f+OH2uCGmqsULT8ywFi8QlzlSEr7wtbtr
+Vl63++fqdMnM85euUZ23dI28C3Am3CJBcRpwNumQOwWn3g+ydVJwHhTdaRkO
+aOob26jgTDFTHMzshpmkxykmOTU0fxqY6X455wF8OWeL+jy+L4MH3zsWmu3U
+5nQlUlvEDK2gVSKm2bTpA+6MmA/FxAwWEqcamvSuNLog7lq27ki6LzIpMPVU
+UGT90I1wssBMOuWcl7yRWcvLlavISx8pwgBmCMxC2sFhNWVT0pR+OLLBJKVZ
+ulHSAtxN9lhE/nivGJENlbVEZ+eLwN35melY/kNTsqCUhN9dr56dtzJLh8sL
+AJd4AJuY7odnQ8lOUrHnyE2cE/DkzDQ6C4pO3KsCTNwI0elC8mK1jumkJWK1
+3mGLk04UuTynviJ9h9RQpuAPrQo368cwWzU2eXaTFej+Dt8ziZUeLkjSzDy5
+ZU+zpdIMivNE6CjaWMyYmbTPu2DmMwlmSuF2YwLtzbcSkzvU7H27U8SiXFgR
+FxhAwhUXwm64hMSMbwLSvIR/MUeqYjzRv9S4HJD2fRKLOeg9aJ3yUtj9FoxK
+BpvYC2EDe4OrytzjshmqSjbfkxUEl19mYUxdhS2DQcir96Qx9aaETgRnIYCz
+YcB5w26fd+ifa505GMB5IUDzQtSZFyhmGtmpTnfK0wQ8/Xzm+DQ9a8v1tMN+
+EOtzdlKq1wSSaoKcKXSmJ9g76G3myM3s+mhmqB07yPY1/ZylNCtE5Oa7Uvoo
+XaAHySMacX+jbq5S8tCfFbD5asfY5DNB1Dvf29o/97A5Smm7Zq1vLm1v/xeT
+meIMUCQzhfVG0Z27vIcp7M+s9cqFZUbZ6oKmb17Go+VhQe73FjVpBtNb4xPo
+4qJedUn1eLqHYjOKE+VCnMhQM5OwqfRmjtSEr3XDbv9T3QinozK9cPi8WOnN
+ixCgQFF4EUaEGpCqvmfmKLqkTYquZWt3T9Gwfg+XfG4cTbdz/XlQ1PAMU/EH
+BE5RmqDeJYoImumb1Qe2RdCpCYIKUU6VScqRn9nlUpuzDUfd36PBb7hMuulk
+WigatXTXDF1OxtN9tT6c3JcxMupv3sGq9XYjSKuOT3d90CNLxeiRiE+yZnOq
+xefNcV9TV+k8pMlHz/8l32AebyJObYYTdx0dg7uOcPtwb+8AzXUXAnH7B+ef
+5+BAUJAySq2BsxM/BbV+vjJwlhI4M76/iI5EFuYmNALOGsG5yuTUgrOpBKcF
+J561O+9x7gDw/CEw8oeIzouV9rxIS1F1LsA3n6+IaijqS3lVo6dqeS5GGUZ3
+URitE6JHir5RneHOU0p0JJMidBvBaJfynSNXE0IDg10T9GxhgEjKJPnhIXlH
+Z2re0gtQ2u+M6UkXfPBlxnZIXZqx5L1OdvcvdYfaoufrq4eedp7yl+GiYmWk
+30boye87v55vP5Lr9XgA3RvoTHjqHe6lTbYL1082w9FJn9HUdwM1U+DU3Cwo
+N81yo1LiZtYxOEsOTmIDld4G8q3NrM4D8uV6YheHgiaLrnvX59/dEjNHWMLn
+ofVzvTmASyzS/6dAWMKH3bSrQ2ZHgnMIMPNSJTgvUcBEfgI6FTitBNWFfOEK
+eac/cwXORnslfCQ+hfIdRyNAfL4Yle/tCc+NmPCkQ+zSPFErh50TM+541hOT
+R5JSC+dst9Piknc7bc3Os0jHB/s9dqgVnNwe4tFNxOVVwk4PtgtJ3PmeMNMj
+XD4X4vKl1YRLZwn9weMysoT83ZRTb07cS8lXEgcj58IO9wvDcfPkbiPhrguh
+Rs/4RWo1i9o7oCVLGPF70/TlP1mES+Kaaxeo5MkiewVvy+oce5uhxrTFuV5b
+VEqjPmbtRpPD0vYyc0QlfBCFpTKCilawzIGVf4fPvHnXv3dNzMsUMS9FNF6i
+0Gix6Wp3eOVGc7ry3aCzUJV76Sr3WG++myKn6BvVbaQ7VNxER8WmDygdECU7
+/a3saWzWmeytsJna89G+SSTv5/R5JElljmhLZZ4jXJvhVaZdhTQ8cNRpjU6R
+mWpxmsHKIH9k3fRVQOaTNcgMNnbomKZC5t2yI+Su8+W1ed3VF8FeTYPMi5Lq
+0iFTdILOaA+XLVuaXwkumxIu3R52JEBISyUqL5qox3zsUmE/HKnnIstoLpJP
+kPPN60H6UsWInNsDn4dhotIikiYvMyTl5znxe7D8vkGpSaMp4ffASs9LeK7d
+5WwQUvNyAODlyMzL8HGp0puX6HrdApT0PRudg1OWnHNRcgI1s6d5rzNIxsdy
+c+1EsFMaYZcKdGnlnO1xrk5mToyYOSFgJr28TdpprCvzXaLKPLziUpKZegsS
+r8rpBiQrM38kD6RHVTmPuduqnPLS9jRjXion3Ww76p6X6ZwmjbVPFHuZn8a9
+TH5VUJ28RF6m5KUwNhncbtETLzHyoUyDyzIqxXX/EmAJ/3oIKmkiUxs//Z3x
+c2Zs/IiknKdJqW8u96TM8tQ4ub21wk9E2v3rRFN6w6dH0pTWKFdpdbMz2A1B
+5uEQpEqpB9a4TqmXUUqdW+OmUwlfEJ+N6sZd/0eV4AaXuaJlWd0Cv71lzN/U
+6UZrDgVqXrF0AOIfniXQcwDC0x1fuRe0co8kqKcoseDbIymTn5qkr9OovEst
+8bRn6BjZLXRcfcoxz7holyiqlybNTlI01eKkCz+keFJ8HdH4RH+zzmCXVOfQ
+pOqkmSR+g0a7hXqLvuZr9yVXeQT5zTYJKm14F4eDDEExg6TvD2JuUNTPBILe
+KPQznRP0ubyEmN9LmVCbB6XUZro4Dwx01smM8Xm0gM8BHp+H1uPz3P2DofIc
+2QmsIx1MqzOt9ePoKa1447dX0FFyPxRZx81/h17PnqxzWaQjmTa0fj2JZEb4
+xObl362+vGXXv1liwnt/Ds/uNefQ8WtUPwZiwskVRgvEqILo5QqSToeWTode
+HFA09N8JQbPWCH227Qr+WCH1Se2i1IgRX6YUV+91WzvFizdWAz/DjBJbCs9m
+L1tX7eFtGj4LHzY6ZQWqg0mXBr5QXLFfH2c535TZ6a8CboedLxN2vgnsfLuW
+nXaRR2pRnL97Ddh5F7Dzzo/MUmJ2KToLIdGs+8xWPlAHjU1y60WiSM+V7GxG
+1DxRU1NDs3cKmrQ8z/S9af06oSZCU+/I7Esr89Toj6WmWcPe5Ns3glFy+Gcf
+CE5jkuvJyDLYtm66l1kwGZmIYVJYqrJc9SytwiTFuONljphsGEr+YsxfO9SY
+mpLDgJJXARKvREpaVGrB2QgEZ227s6Ba08Tlp3OPnZPSTra3RcpYaa6VyMZT
+pRnbQ0G9TjJJciC+LgzfLSX5lHq8/t1S0tTpOSIy+4Ep048UdsjpmzLSAvMs
+Fj2yAlNygq4SA+9y7IiG3elSYnJxZYulHe0AcszjMiDtzb7R5ZSklTn5NrLd
+6JbPakvzaDmHFDEyO+CSSzmkBcPpupytyOwjtjB5rshtLurfnqjcP8BjJi4Q
+NmDMlZ4krUtfi/vlRD28HqfBdTMO2aCi0o9BlsGeDYvHgsz4yKGhkuLRmjoZ
+IWRB6+9MkpMalKUC5S920aebohyBebUqyq9CUAbchG+iJaar0bXALGijM9Pp
+pKZLJ1GBeR6W5/NUtvPcJSI1c7UMZIyU6+xYWh4iSks+SERKc7IjaT/X4EwB
+czgBZqvkEd3DWZc6Uo1N+BsEXGYXJxqb0mB6PJReJyl51GhwMCJ0qTGBTFDz
+bXuPUCe05LuIvWce0fLlbmiJI5RL5S2alpbcKw8y7XZFe00ZfrUQyHSRIjmM
+yaVkclRSGi23a4tCswfL72NV+S2ScqUmZSmREj4VI0TNFCkJKAsKyszN+Ezj
+yaGewApnhXdGlriVYtOyIJDkGvJrhGQzgOStcL7RSRxTz1AOB07+ZNkAda5e
+htW35SVOegIlrzDnR/hmawxhqgowSHDZJS2NvtS03CCgZdJKJ8uS4kYmHx7i
+RTgfudw80/OWtxBShgNDMinrbKBgeVxbtnnYvEzdKGSj7XwQPdyyKQ+hc115
+YbDBPbg1SCq8hcFzvYO4npIjHSWf7ZKSdvpHoKS68FwniuxNQKLdQ4Ylp9E0
+ES+4nZ78Qt6SKWwtqouri1H1/sFSzMSWosDiQS88R0Riuz+8z8cSkgLynAQg
+TW+SeeDa2ZGu1+Vrgu02daYjcz4vbjZq/FjNi1+pV2qYUlsj8l91VbZrSRJH
+J2l+q4xQA/FYIBVVIzJHJuYIxByJiI+/wEd/o+PmZOHo+NNlqCKvUWw0lPSk
+xDuCdfPSwdJ0LxUs8X9AdFGuWHlJ59JSKMY1LJvG+FmT1+LqGqLs9cA+56oy
+Tmry8fSNOCeFqFEdJ0fUcnJagpOTEpwMtrkvQE76u4P4cjhef7dWkz5SNIhM
+Tu7A1WRwywW94cIy8qaWzUmZkTR9SRn5iszIZ2sYKaUu2W1pE+9kjEysLAqv
+5iXLNwIzhzckfc2tVKRdulG3cKNma7AEyJNiQJoZnpWuH8kAmbVFyH6ekDMi
+Qkp9SO3c9HABSRlJ6uxAQ+bm5scwb07ikwjIMDr5Tx2d1DnzkgtIhcWGw2Lh
+sFggFhuOiPCXAEisbtvZn45Uo+biCODizxQDkY4l0pGqSFZ5EyX5I6IkCRwv
+jeA4IAVH1660o+kiHZ+LOpWpWXRZRtI0puTl0B2bYQpzf8EHT6NxpwCN01qi
+kaaIws7kuGTqUt4AJ+0xiuXjGUFbUvveFzjfxhfZVj7yayx4kU33b0h+d80M
+z8svrBIW93JYND63aUVOtHM7d5K5HVtc3xLvCnbFdWrBOt+t0Uo2/oANiMtD
+OhIS4Z/KXFVUJ5CYq4nwsoaIBSVipi9+7O3cmSA46W/JJVGgptR+RB4WdXKx
+6eQim8HJVf6nGV1/G8TJm46JLPujvesyGlK8ydTUJvDToKW0E47GmzHVNPwO
+WdnQrPS8zKvbd0Y9efvOnwE215K7kuRatIaj5bXL+uMpPDYVNK9R4hKwiSF6
++P1VeJYOsF5PrSsOb4u5KYtKFyd6K4XNVCiTr9yMJOURoqT0zk6KmQcEO4np
+pPkgklofWsPMXUQ5OSVgppQZYldRLkyX3GOiWUhj5cw/zmSF2pCSUdKyrtxu
+oyn52q89LwOPu0teqqt9FsW8JHdHTuC85IM7UZn9lxZlNkmgC/vUuYRMLQXm
+hna7EtI2IdHONhdNaFb2kVgpbf3lqLTJSV5bXyihkkwtunvKmpFLE6wWKmll
+zRI//NbbsLI2sJTCPnlbwIz8a8tIrScLxchbNR/hbbcZQP5FQRIOvO2O0Z/B
+K7LAtHV4+1Lz+mX94atct6x/jgzFde5AUwCpwigcXZ43aXmOEjRwzHGPvK/O
+M61AG0F53qKNOQ/fHa5FirQn7n5/wjGUtjAl3XlUUneGRs9BtSW5zM84e9ku
+P8eJ/OQDkp6f+0XDkXgRJdebo6NFRrHe1LvfzmIDkZ2W4UKrUjR05HxQip1D
+ODufltkZ7XX7tcDOuhZlsvxOmDjt6syUgSPcO0G4iRrzOKUxGTdPpdzsT4d0
+6rhph3OMxY2hyVICp4FmT3XR1HAyJ16N3k+TUx5ejFXmXv/WQ4s9vOKOA5La
+sAkbkXp9UBnyUts1WcPhUktKhKY3aFwFXtAKXCRmqYhZBMTspG05Eph5A4Cy
+QHIqcOIfRTFTHVO3F7RuhxdytarlrfS80vc0TbS9afXnaqTm6Zaajypq0l6m
+ND+ZVp10bpIuKA6zRGETk89KdkDMhXXETJs84QY4XqF7g8fuLmpXbYazkBey
+63ltqlKozmnTMmHsjHJNyzpavtQeLZ9I05Lb3qKhIzUro+Q5S09yM4eubkvc
+1sNXtimVWU9KCZSnrAZQzrag7JEVpne29W1lUiFeJHqS2rAJNq81wtwPdiLZ
+EI4VlJ6Q19ZYNS4aaTztm/XJcewmYOUvWrOyIOU3EFJRUqnLorpz9Kfwjjt3
++jRdl9fEK0cBMG8ENt6IuLwBy3SUnCWS01buhp/IQqc4Q0NINTzx74+YQS6l
+WUrcbFGzG3A+FYGznXr9+JZaM2X/8EARvXQN+5vdUXPawt0SOzR5iIjep2Yt
+Hx4gCmv0tN1TpzFpFv1CojHthebt1OepDDq1edon5tCImAsdMYOpR05MtTNY
+30rh7B3Xx/yzu/Ms2BXM9wSL1o5sfScmHJ22DHao8/vManRlhMtSwqXs5nhc
+FioLVEqkzIJbw0kR7nf89iWoDMa76W0RbgGGm1XEDb6kVRmb2vaCiMi18V52
+XjNe8/OoOVlGRo6DY4FMzJGJOSKxqO7a6dNVkJNIx5tVCX4T8jGEZEEgiQxM
+9Ddz5Qn1pY1NZgqtwQmpI+y4t6SuoznO5YnkbmYcJgpil+y+38MCMnr358DI
+GNdRy5CM3BTnufR2yMjjlXWOD7/BIqq+M31F2tnBrDjfrRFqSRoUsk6PsDZY
+xSn5dI7UteSTOdT8plR8jlHxNZGKOwIV7bqhIGz+CA8GfUhM74+0u3P7n4Kg
+ebBBHVcBkwvH9RpgYQVwKw1ppxbbiEvWdimTJvcKCYmrSkSUILTA5lAspfo6
+05uBBvC2ZGjf7CUW2JSLQhxS4CIKRpSJCMafu6OzPu0BUYvEHiUS7wrOn6t1
+uhCNOwIWbwHu3YI8vFn1JW/SGjLQkrmoJQd4LYm734l//hPfvNTueU8dKPVk
+ea5I+VaKlHq8x0QvJePnVINKqfy2F1SmRSTNWoalt2tWimYPxeSQGkyOYZiU
+UujSYCO/6AeblPwySb5Sw4jHBX6dhhWP8iAjHWIML6Ww5bafz8Frz2hzkhs7
+dB1wCpG/6x6RarVQmJ20TclJd5N0ObmYh5fZ03mZHc3gyAOKrURjaqA7MZZY
+i8fTGR7PSuPRD2/PwndL4UhApCbkGlILUhyvETRjRq8XI5HxXLg2J1iUptI+
+vKx2Q9l5aNIUNUY2MbERi2hkf9YwbcY7oZQGNCo8NpRWbCoo3m3Pjg6QnYSE
+kI8/V7Lx50hBi0mmIrNeyEdFR3t8p9K7O9ok761N8tAg52g07vijPKLeko5C
+bzJZYqdEZJiw5OW1QMZgDJyTkS5v65yMk6KRb9aMjJap+2VDfKelF4/HtyEe
+paXpoeU9AsVjcLUZbUKmqPgImb95kk0reioOJVQc/jxeX5ai4jJCRRILMtfv
+pFZfIBWnKyr+LS6lyWTiLB4HsqKRLQtKiEZ31S2rog0Qc1VG96cXkKUzkSEP
+kxW0BEQS/LnQAvEiJxmDnZJ0n2Qp1dBqbwW62Ww1GrKQjl+XgVY0LcaMwFA2
+rUUeltGYDGbCG8x20STURjXhIYrFHJGIjz/D+ywPzcmre3b8M3ziOl2W1sjI
+W5f1Q2gv6+dBiVYSAPAmfxQw8X8D4LfX66NLb/jzXRu64VGo6OqYl4UbHQ9K
+bq0jH0tliMTcZV25LWnII8kat9C+4ZONttSuo+SgDijJpxh9sHKiOME4kyzE
+4CW2tAyjXjvGa9j4AgxaXpumI72RJ1i9hqa2aTq+Zk1tsjDIEfJpRcgRjpAv
+d0nIDxKE/FNISNtsDMpqIOQ1fzfX3v4jKKvdQqCEZtxfmEKULmukmtHgMRP5
+GIZ+NCNXnY/Mi5H4yDf7kBWSRCuavT5N21/kSUh5l09YRl8XltF+e08e2tOF
+d1nkyjlnlXPJKmclDuHFWAzi4xNgyi93/KT65ahPOpOMuqTeCXB427J+eArk
+Yh5ikelH/F8Bj0MrIzMdEiocEq9xAzyl82sIDnUwKHsxmAmn0tFuWm8HiLz/
+SOdzeJLS7siQ9gCHXjbvO4aOjJycbAHDaKTbOzETmRPD+417JQtpOelD5eL2
+klw0t0QMUXKxroimW4BonzHcPzmKpntsknw1gHAvAkKXiMT+4j0fCSBM9BeF
+4tlv9yEglGRiiyRPq76i4LT4XbtfBQSj+2ctBC+hEAxNFl8srx0toaD+yjV7
+BL1EGtTRjcTdQgLm4T4e5aj8zboqWe5rZYtCMZiTMFaIKITfWRSWSMFV0Iaj
+AYZ3gDYEDiMEYyZiNxSYd7M/io04HQm/vUGfLPchoAaXihqLDY5FsiqjfzdY
+hO8JUMweSvYaEYvckgkHctbqvJIOkLhNLRJnJZHIB28sEut6i3GcR9aGetiG
+a0NnSs//gdGG84RNFtSQDnuKI8WeIr0kRzCjAxy+2CEOMSAuhByJCY29xEl0
+r48U2eFV8xX/TMd1EhfTRpqQRnUEFJ6Q7iFmdO24TYF3iMJENidCobQntw+5
+T9b2Dc1lC3sFWlD3DPtIjopEwTxEIF96a60UqJEzPzdtJ19YwxD+DLePdtEb
+Xyfv9GlD18hOECIETWkMJGwgCYvq3lEfw+/vHflxh3aLx+GdCod3IAktE3Nk
+oiqf4U/1c9COP9eWjEUjca3xArNYLyITc5WKLKlt7TZi6FjPEzzW07VclIZv
+bJeR+y91UvEQt0bN1s0yEw9g9nTnMlEO7IRMjCOOe0b1srx4t7VEJBeJOZ/l
+8mqoWCvXdRPppWE8nGNXkz/vF0OKPAxvvPEDM8L2HrvnjHkrtIuoB2XIxd28
+RqZhHHtFAw7I2E09bKcZjS0ewT0Vs53H7zFremkYslBCoVKGqw2FQlnst+70
+CBaKjdzQKw35cCAUww3aMHRXJzAG6qA2HDYC6Bfq3Oo7heiccCnomoVKCioV
+WAjsyx374DveCxUxAFCfkR83ql+N/LgrcdhwNLwLaHcXwu9OxOAd+Lgdf3ub
+YiFgEaloTn8lGAvVXCxoczEjVkyTMpFqRTpg85OlUUdRS8UnpRBPDRLljZNh
+9RybLnxu+/AotbNe1EY8wLYRF9kbbrfqCIfTgxYiv+GB289hdtHv0z1Q4VAy
+WFzSm8nDQcR2pskcvTv3omTC26dy6I0NfBZm9aKQ5xM9CvX6CWuoTOZpbptN
+5PPVksUsyELJXg4qZDNTLVrLwo00rk1Yg8FDvhYMlrwwJlt1/Iw0C9gU5m4E
+rgRvUPFsuqrWZ7ExWZPXYfA2dVYDBguKQXjHKoFQy8KdAYR3L0dZiE/4zhqK
+eOBtdyIPsYhuIBptb9HpRjSHPB6tdMzy2lqaRB79Dowm1YwxGx/riI3zBDbG
+JXSiq0huyqHl88GkfI6TjNxe8fnuumhOios6lhMuhqwvmw8Wy2ZJIg42ElGt
+NntfsFPeo3cx2F3ipmR++7qwg+iYSCdeUhGcDphoFjyKTMTojZ0HdPfFfmzy
+2p+Y22kS0y1Xfx7f4KXmp31O281OJ+I2fKKFdwyPT/HwaFsi95eA6OdYZCBm
+mojrikRMDPjxvd7VZeP5Qm+XxNaqsAz6hKY6zvR9MU2Jif521pIT0bcJ2+0O
+5m15JbpDiEy0fklaHzbh+afq13hG6NNFDmfn8QOqXyo23rO8n8JkgXTMnWz0
+xXRWUNmYJQ3pGzH9fYMqmali/BkdkWmFxF+3hcTIbBHC3p1IxTC1mKqc+dUM
+PpMj43C0CXOPYcOBYRZHj1HzNRQeh3qZ+IFBxWzXT9BhQFkihobK4GBz+GXM
+WfaXeo101bI2U5yr/Dp3leneW4PCl7tDId9OZof9gusSpCr5Wj8SPaOlNFzR
+WhqeHktDwGCuSuSBWhnKvoldW5ue5qul4MCAghfWUdCLQkdAQRUqTZiTuear
+Wew6CBWqi1f/QfLW8Z2rAv8alH9+GU5Jp/FMW/DTLHfBGZUo/DO1SLxZXCD7
+ckSfUoYKfHjgd0C/HMHXQOrl1X0j/gRvHNilRtwFCHjv8r4oOJf3zQGG8LAs
+lCRj21QUKmnSZAzzjAPaouLzLfuKvKeYyuPU9hNNlpsXzwcHxbPkr6SJOFsk
+oh2XjsdbZCL6gb94RLo7cTj4PTsWTZdImILZjLEMf5v2Dm9hvUPrpdjbs7uj
+IY4/jzaLyegFXIqG97NsDekZTsY8Nhl7Di+NMYWyKAq/jC7YwoU6taKwHRuZ
+Za9PTeRoKArPbqNCpne9TF6h76we0AYI7Y6Hf9PQjLo+EPMe0ehJyEASlvFB
+GXhVhIHeKDbTJikS8rlkSQd+qnRgrnRgg+pAh0NaIwMJS1MeEw0In+6Y2ITn
+R9V9wz+q7jdnYOcCEfH4a8AjUBfJaBmJ0nR5PwSlPQqYueJkAzmJmLRH9R4z
+1XxUtLxVkfIXJtvIamtcL+THZDLdfWwwLdkeMO8Xgdlux1GSkCclJGS8c4JX
+1Buz7TxbCrDcoRaW0xbxKHfYYdzHdRhnkIAin4wOpaOLb8+PzedQOuoqenCw
+rSysooe7HA4HJe8sPmjuzMYMzmMsrv0CgPIlACUuAX8DQPlWBMqdOSjVLYUM
+lGQT2RQ7uKI6ip8K1fPncfUcRbPbk4zWVJnDJpujTqKGZK7c5VJiJHYRD46u
+NhAYaTPYEiPX4NEacXiZzuiR5Q6Z3+4Q5K35llk6elLLSDuM5ydOTIXccOHq
+TykTda66dPrwHndsaRzy0LYLf8V5WCAPc0RhAzkIH/KAp2FHIcQxgMP7lvfF
+kyMXGwyLWEf3tUjMPBOVDwMvEIF4uzk2tGMajaTJ6DGIa3tNj9EAUCcYe6l6
+moS66WigjukgAH/VNgBpYJHPufAZF6oW6+vnb8c2y2qBH7dXJjv4hYHE/cwW
+8ANdGJHeJ4PJG7Xm1qyDCFXiGWZV4znVoEAl1tXMUvuQge+1NPiGdwU+turB
+WikIPlUrfxKsEEPwzVAJG1srfx46ygx8LdUhr5P5VatxuzBz1DM3BcbUG5Ci
+XrBz9gIJexdPQneEY8+vthkQY2+vAHtSbYyOca7W2AzgyGPLa/4mYc9dN6A7
+gw3qkliPBDd7Mf55PahHSUolBjE+bQ9Wx7nyS0pVH/+KHFCFWVAhEzWYUQ4+
+MOyPeOAL4bP7ShrZeL+qpO9HHAIiC0QkV44CIrEPsFzX2Xfqo6rsrKDGTJa7
+hCNuT/Ok9IbMcwEshe5jipbsggaPS8mFCQI7S2OtSItrqhVj94W70hsIzksX
+qDQjf2Ewh2/RCUf9wvsKudviNeKIqL0ohXG00yIV035Tzs1Ca5G6LKsHkzjc
+vFeESeo4sy21UfAmVUR/SYro0GlOZbFTrorThvIWRe+oBIhcV28F6wCRtoco
+jOVZRiIh9VLZQmgf9g7w6FXhP4RFX022BdHxUUesywCPvzCDd4XCY8nxmOga
+7uhUoZ4uKd10iUGjN5JVzxBpSNwSqwuRjL5G1mRsIAob1YO1PGyqt5T/F37z
+BZy/mXMNvrPRgpW7AisfVKx8AEVkAMzcAbNQwGw6YN5tjoGl70di+DK0sG1X
+EhuS/UgYPBgZ/FXQjkxy0uweb5eT/LZt24Tko9NcUnJLxt+enWo+2m3hW3TF
+yKkkvBg2HdGRnsqSOr6O3l20YLyUDBuOfqsYHX8ekqihR4g1NLdehGSOCW37
+PTkCH5/xfMSw9u6/NXxku3Hc4gdpizdtMv6MbO+2IW2+fZYEtCUJeTiXkCej
+PMR7p/u3bC4GbDyMsnGD1cbGuGT+MqUdTbncS2vHcDw5Cl3r61g642JTm8mh
+m5LyUhwVgR6jIirScE3YPdSF8oiPGBVzfJZIxRypCI+h6vGHvHpo6B8QkgPq
+IFmcNmfOnGfhlPjGZosiG+H4ECDvISTgg/h4AB8JSMKfECgZtCMVJ5fpyjuv
+lZO4W5LU3W5dT9P1IBkh9RKzG2JARkJS+9d1Lg31reMYT9hwpItuw3qbxncY
+HBdt6iKNeuqlXTjuTi7AHi/AUccY4zrbi0eb6KZrF0PxSJPcZ5MFtUKN/Q69
+m/VGFluki8Tuj+M5rcD4HAXjIgJGIZbjvGiyDUdqKtq09lUp58XHcYxozJGK
+2bZOM9aZLoleoh5e5kzUyWxvuKx+JppVX02xnqbX+REkul0NvWzQxu5pcEg0
+ZTTfAHsrjRs2BaX4mcsbxkRUAyd5TeewGxYWyEJ4KQBDZKE7hoi0u9hYrvB3
+OgHfj+DX9wIY/8t+aKk+VOFQwXC38RgjfHh5H3iRD2so2pMLcMzDklv5NH0p
+GHMkI/7V+GLbOdrwpyDSkZKROzM+8HivIeMAWTcKWJTMa19brxkMw6SiPHFd
+zXc08hYk9V84Ege1QOJuAhL3jrbSyvV0eONBeLtWqBXDNDeppZkxrW/SIrU0
+S3GPfOMehsNHVhGHbIiFm9EutS0N85kamm2SdTjkaW0hmXh4i1SiHdwzLcYc
+YQj/jJRENL6KCSPCj+xZqrsoofC8Vii0l/r1ig0VaqaMM8uyCwrBTFOwyZuK
+VhjqqwOaAgX/7ilYcgqatGHCYM7dBPKnFoKZbiT2SI1EB0NfLH9MgSi1EYtU
+G7EwtTOg0YIRviI+y+qhIX+oHlbnv51sbGpA9tJa8C74zY8tJFuV0gDI6jeA
+x6J6ZHkfTcoC6NjHUjJTmGwgJnMBk/i/BEo+qpOp8A96TlpC2uyPny7MGSgt
+LANQLgy2PcZFduegTDUhZb8m9mp41tFPTq9HruLaiJnUWwnT0iEkZyhIjhEg
+OSEByZnqNmsa8eaLIlpqxvfPDKahsZgeiprxHT4JzZqNZjuOA+Tr97HUjgXk
+s2RvWAxIdzXWEx6QPsbNLiowYy1TbvuYTfdJRfQ/wyKaaUW78IHvBJOyimTb
+jZtqFoOK8XIHH1Jsl46peHaw9PDLpNdMDJecjajQG0z1dMqAMIsdZnDoGi9q
+MFd37PxZnjKZ79bLu7y5jH3E3I0lJ3qHudA7LFzvUOJfgc8C0ddA9iGwgIDr
+DohdaIPBnrlz5y6FN4xup6O4+/j+1W+BfTk+CyRijkBsGOlogfigPkWIQ15S
+l4FqNMox0+mewqV7brcLKEi0h4UgX3NNRwmE17YBQrxWJuXGnG86jHx02qvF
+NQMXRiqgMa2j10d8KwnBeB6QQpCORVsIWpPaQ5BfV50qnOtVIp/5syrR308Q
+GtN61s/dS/DGrWQrDk3jkNVgL9vYYj0AR1MA0rjiA4IZfbvuIjoAks03ulg2
+91jZewacOvwyUofBSDNbEVtbKae6hyn4HVAPP5XMrnNUTIVsdGGw3NDsrTHc
+y+zdpaQ6JuEaM5XXTHFP5w5LCXtkayFl3p+Jp9wMpCCRgYVQEmu/pAwyhXge
+UL6JLYgl2Zdz7D2ygzrwZ8cnvG2HD0UU9taIO+foo4++Ag7FXi0KH1Uy8FFE
+oeWhKBAftAIxd0QsnEDEhCV8zL3maCZajdjQVozXh5ITQ9ShBmIzBUSd62kq
+cSjwUOd5XlbGC8ehpAm54XIq2apzglA4++xO2Es8wJnRMQrjopmO/u1Glohp
+FHKDJdwK4cf97AbFOi2oN0HorYl+9PkCd/X0sGDsmfcO+TYcM+7sQokmvf1K
+exi022/sZQN88402UwgG1Rgf6xnS61aUBvzCGymCBjywhQbkBXLQLDzmq0eg
+LY3DnOG/09pP7ez6B9lU48OFwQpX+DcZCT934WgzFn66KUgKYp4n/AQNkkzq
+CuYKgT3RnN196qgqWNvFRWvJV7Rg32/0gd/9ZjA+1631U8rZwMLmrFmz0E95
+HM7cOXPm1EjEhuPi48C9x1EWPoYsDPiY1xbQio+ZsqptAtJzsqCczPwUDYFk
+EOwpHSQ9IFE33qIainWS0RrUkmTkxjRvMFq5OG9peNuBlYuS36LD3WuxxmId
+H7dui4/TFtGQDt2cEzcUxy6ktbKViYe3IRMT3oqrk3kj8WbBV7Gzfik2vmh2
+a9excUnARhXEgfp4b8FPcSPO5prouD5mOcWL2KoHsv3L3SDAliAGwRtSG59M
+NsCS0E2unOVNRSzO43c7h3FEEYtBSTw2Gk9R83lsLkWqh82qf0RiP4bEvwV1
+8K07R0jMqUnCcKgnTUo3c+czhSgAnQx0BCxsbEb3/+zhUvBBi0MvBRvIvwZi
+T1GvUf3WoG/NOvTdAb/5K5zP4OCvEYMtq+M9AH1PLO8Nf19PIOMex8djiMFH
+kXuBQsyRgDkCUJXNrmQOfRZsCMDbfmWOC+s0eFBH+c9Zb5f8jpVhv3AdWXaH
+Ax+FnpTI4Wkc6qqESZzYUTldqI+PdfXxWqY+lp2UAx3wtuwAeLo5OCXhoExI
+GMrWPbGh7ToxuL0Vg4FzcplZB3ZVsP+GNwXdGjBqItv04SvPkP0O9bALr1TR
+sKO3lgb37/FmoK2Fr5JqYRbItiIwnaSJ62DhehQ7qXzmYQZ0W4Wg2z9hFAug
++6ENXUcXnnjQpbQfQu5nu4dhGZcgBLgxW9iPHvfm2whJQsYVvVnuyl41WvcJ
+DcWoAHVuuny/krp8DV7xNkxUGhBnAWfh9tAQLHmtv2FOiaTLkXQNJF2BpIPH
+oN+DBBv0+xrmtcpcI9eeAq4V1ZPLexcKcQ1EnNV5jnRe6+Wh1tOkw5xNH0u5
+TNJ6QYNQJ7lLFUx0gcTlxCXJFkkKL0htSwpPBB2LHbasfkmahs46UzfERrE9
+5KgTQiG3WZuQC5MzHHI4xxwuufEVr59MOVxd72xXZMeKLkzL0GpXr8Qm0yiq
+2r1Jdj1WG+CWV2MTdrBt9k27hSdjyPKuSMn9J4xSMyV3BFdypMKNltIIDsdZ
+dva4W7oJzb3LkpWtzUkTCbd7KOE02UgGcIwjm9k53SdevR+jDcGmd8eUrJXH
+3dyggFXTcIUrXrVaa9LiVR/t1Sq5VqhytUHLVafdciQaPn6fI9aaCmugrrb/
+ffXY9h9YvHUyabcnkO3p5b3xNBBxORIOH32KUMMVTsPlTsPB3wWgLcjLPKjK
+1AfUk3Atyx3ZUPPGQcKMzzTfTneEvRDEB9NYIz4HWZHoPY50wXoeuYAq9DZY
+sWoumvIpmHUSvkY7SKNhwD0I0vTuLhoE1F6GTb0cEK1k2JlcfzI80Gzcx6Dh
+v8tJ8+6niebd3e4SKGfidoKzJynOlqkpkSDdcs8f3E5Cu48wGKIL9m6Zbf3u
+mjt/oZOo1YxncSSdFqaTwgZlJ82pb9Zhqo+i7Nw2UVbjU3iRBofuEDTBFb0g
+oYxIdtOuWIzi/ugeFVrRe6P/lkyrkLBelnsftukqUTvLYRpyDYax+wjGciGF
+ortxpQLaQyHQstw15OqQVphyFJiGSMOTaa6VjmuEbR1tVdgL4PaMKkfhWSLj
+ihTj8pBxvlOnU4GuSaeS0vDSgHCKb/d73abbc1kvYmL0CwIud9I1DW8Q1dYa
+bZGFG9m3clnaSq25knQxqrW13UAI9ShaY43v46KBvj0Swx9TfbZ5Ad29JWdU
+6MCHH4iLy9AhURl6XdhzU9fFe1uW5lJGqDWDHGmvC0hbWO1i9mnRwJ66kITb
+sRRpPIsSBPUSmeUW6kyVnnRl4LHef4iCyoCzM4330BJn01k4Od6Q6j2HuqxJ
+nMELo8jeaNXhu95ituSOnT+LUQb/0vjKAkaz3JmrLmKn88YJczUPO2oOZ1nu
+Omq5Mhia1GAw50NXd+YC0kpEWo5E60GcwXsf3657qD2natFnEWrPINQs2Rqa
+bIFwy8OSFDGsNFsfwzVVmmIZaspSizYf4MvWcb4DHQER0BZVo7+QuabvQnkq
+whpNpfDRjnbUGp9zs102bit0hjSeUeZ2Au2u0Ws9vZWwG0ucUJU2OFBpZ1eD
+QaXZonMIKzpdVy3AmbcQRrqdL4+STdLP1eAsXA8YxevoDO/tQjdNKDaDKzcl
+dXZ2Om+cXGcQ2wUOZUHImKJshoAytuyZ2qfhvBm/8igYqqjDWBaHiOl9bhgU
+6eWu7SAbCAzHfCpOLSQNvIE8aJWNCPhV1KKLtcoeMaZA1tBSbLA7XI3pttmj
+qoO2/e9LRBcope0+UPjCx3J493pddtX2Gte/el7Js+cRXc/h41kkmWWar0gl
+oZYpqCHTFNdyUpE+5E5fP/8rVaRZvwBtbWBNb0ZoOsXG1JrOl9wTUY0HjtsV
+alL96Vtqazvf4EA3lJYm2qxFw+GMNESjWbo9VJh4siPaJEU020obRyZzuVfg
+2mhkucsgs/7PLnbx2wp4zalbaOEC1DvDCVxCs5GWZi/LNNvxGbuVgNHsfjJx
+a41Q6g1ArTnNTlHU1ZothNlRzBPg5ietM4kfEJLsQIFkM8PdUymSXRqQTLXK
+9EaB/vV6zNeWrvf/cwMyzHq42jJs/IfDD2RnFHU2yZYUor4iepFhhlJqjGW+
+jMyjZtig35eWU75ehO8BzwZiCh/Ly+qJbbtjle6TjQXV9bsPeuMpqt8hmiyz
+lA5rOGblyKzC6bBcKC61DmsGOuxhT6s6W4CMUeiI3N1qjEJgldn893RQWtKy
+kjuePOKBieCk9jIup50Zo83/45eE+/oOdSMQ65PRWb2mqo5S2PBH3cVdzclu
+z4rtjtEykjb7ueY6lmgue+mbafS/Zxr97wklpLrUiHfFbJMfCfUQuefyabJf
+7+UaQunx15BQ4eira+7f/Km56vyv7v5KXzoKIwwttBaPrfHkrjiyII0rpOjE
+r9zl3S95flXUWNcDlgSN5W3JASGZdg4G9v3idzp0oMtDta8kd6rKhi3o7Gke
+zOH/ISGkPJRyJ6By6jnKUFLaqRdCCWq2bZatgopCMr34QS94zfAsqhc+6JXD
+A+tDxavl6mSKV0WosfKwI6Yszd7U1vT1o6i1GkRrEXLN5+RiEsvLrLrKsRNs
++ZLRY4s2+OmKFKm578rFJX5tVOxV2guM6pGlgxjUo6Sdr7hMlEUV73r5ncpx
+I18qEW3HizfxrSfZDa5s2GI5mdT/o5+8Ip2u6Xa1Ew1a2NKQDByQyfxQTLEV
+nzRJxocMxIa9NFnVClVCo14qB+nKumsdpsRSUMfEdvlrrKB2jhaL0J68x9TH
+jlJRT167itiJNu34B+2xIQklmhyrMgYqr54aAqgKfKoiLzdF3uPbLkdaKRml
+xFQvxa2yemqbZdVTW+uzXhf9rHHAr5eAXwU+GwixBkIM/sC/+6CX1VzV86i7
+LMKKFMJyFc3AOrG3ZViW10MsLBh9NMMl0G4SEUb2QymEdYOvuOMVxi5obWgH
+UPmgga0LEV200+U9SYquLVqgi8YraNN+YlAP2k1NtGFPg7I0N0ZDsmGzntSC
+b1/tNjKF4VjqPdooBWLrKTM82gm29IIRurXYTdP/nGxcokMCtAYkCivZzWKN
+ebpZiW4QMZ2sHJmVbRCnJTokFs1/UWIFSzbDmadMb0caoIhlB+DDTZo00MpV
+lYl49Ui00iWfXQmsSr0/0Wa7alRhlTcsikDoKi+K6w/+MMtNXB+QZVtTGdVX
+jxps5RZe232g+utwVKd9eY8jVgNBBdTaeukqaC5k1iuKUS9/0KtEcJVOfSnh
+5cCVFa5QzJFaediwz1TH3uiu3q5gzNTgADJLnSBOFsiuPl52ldSLtLzSQwJZ
+Hye5yC4SiVc6GvsAw1XcoE8ViOepMdFQaUnFoW1heZ+xDlW4S2moQRVNgoX+
+4iTTugqKwoWzg0a8VlhHeIVl0l9BvFUprHlugZwf97zKxSR8y8o24KmfqBNf
+nWLKLdA00YhgnulWMtJJC8Gr2TJ1oqz2TSmrU8OGu72VG5XVybRFdSS5XIfH
+INpg1A8FRrnogy3+9gxiD34mySoqmkkNQvf2/q9S4pO53qGpATUqAlTh2ERu
+bsA6T7eh7DilaT/9t88wlBpLvmGOOMpUxjQXZJTEIyWomsijplJQjUBBWTj1
+qp7eqjtC6X7VeCDUq4ChVxFNgKomkqqBpCpUtYhCqzfWidULy9VRXS0Fq9xV
+iQpW8KEYEHvKHBudYAFYq7FUgwt9BXjbI+Y8HHuM99OxpheJujLWotB/51EJ
+2ninu5GuWRYmv7iqulBQVbQglDB1aEeYojGIuMMeFoLTo0Jwd6emjgzUVBBQ
+VZ11KALfp+NGtgjUPauRak36LVFXnaa4RqqdvzKiRiCinqZ7LA2ibHqL7q+0
+3XSb3IqKP7Nu45Jw5fl+82pUFOuiWz/wFBJtOIP1qJJ4mpHGk9Q5t3jiO8op
+nm6M9wdRPAXZBer3hTuCmsFAuG6Vf0x9vvtHuHyCt/h6osCVrfQesZUeoIp6
+e0Y5ZUFr6jGOKl/xtQRU764BVThAvaZA9BoiynKqEXJKt7IaClK/88eXgkpU
+ZaoWtDnWzCurPopRhlOkEGy6QpAwyu16I/EuIqf01WXZM0lAaTnVPyr9eIaL
+5rd4dos22mmT/XQCJ9ut8g12G2zoDk5hlypV6oVNda2fjo310/s2xDCPlXmm
+O/UW3RVkl+7qZvpI1UxHMD2qwfSK3g8UgelZA6YnFrp5cLc0zYYW7MI03AdE
+ulLuToZEeTebhBWSuomN+wilXdSNoil4NePNc1Ys/Y5QuoxASdhn4fab+Yyo
+3IHi3ac78AQBBNchN/PZPQxIpO9km+O4iII2nob+Ueo55a7npCeuDYY+pBhq
+UAyFELKm3ZPbLEcSmUa5LeIKh6Fe1TNbLlkFFk0AFr0OLCrxWSKQGg5IRSSc
+oMbTwklXeDkCKWdAalAgOVvQVXsSk/oGTGKddQ6kTLuBTaea7vajQTpjihbg
+HY5HNH/F4/KUR1ILyu7QDWu6MJZg1/34SIINWW3MWLQ9Y5GNIuxqTD7bdgpr
+ObvKB+ez/RofnRGlgSoqkra3Ikndw2rX9oTtphHuHhngkGo3WVOPcuiZJId2
+ehrj7TGHVNzATOpMtpM6qs2kV/J4DvH6rbU4chED1hWnEzliR9wyaL8aBhnT
+7hLCIGra0ambnxoGWVHkcwR/1xH1UiEIc1AEPyYD1dSayOafbH7T3kXq71kh
+9NEz0LnUQDIxgZw2kKz8MbyBZ8NmmvTZ/vcNHWgKeKNED7JlWe4KMQUYqIa2
+WNKsnt0CUbN+16jpV735QQ+8oDexKHsDKRNAp+Ggk7uGOIGO8fR8oaZ5U3Le
+KNxoW69whdpjth2OcVTdV6LAyfSQ4qMScMSYFFc/tPF9kzCcQ2MGtDS7hDW7
+z2VlGe0e6UZ3ijTfF0gzzIWeQm9uL3dlC/fluOLZJVI8OFxjGttqS6K9ckCX
+YrgVZzjpFo0IukV3+/lADDcRytgtOENffK2WMvq+UqDMrzRldDzTeHCkSxQk
+zXkJRhrZktIJmthk9asvv1bona/Mc+uWMNi5dglyO9PHfLZA4fg5PlZyfeYI
+E9PFWf96FzUZ1fvIe/44oGcmjll5VbDUpKmq8lT/x0uZwkqZbZmUyZ2Ugd8/
+vfVSxI0qrRqmwHpmy6VIHyVxSnyWiKAGPBbDv/3NFzeq5zZfvApE2ntcv+ot
+IFITn6WCU4FwQjbhASpYSjUcpXJXqylKqewBvLqAUppUOt2pUAUfAKxSpLLn
+afUBYSP8cSKNsgclUEXKqA5Sd7UJqWuVK9ffDUTz8qyd0sz2jY4MpgPXZ4Da
+kgBqBweo0IHbw+3Atv0iPwVoW9r1MkiPydB2tt3UcHnQJ/LZptt8KxsdN5tr
+etXmyNuAk9pOaNZymYDApLvC/pDKMuHKGdsfcmWYXzVDU5aS/KGta3enEx95
+OYxN71EwzWoHTN5Sw36Qyynt8c/ATkMwuavb10hUXWSeeLQIJbIJq0GrLW6Z
+MSCZ5Va9qVtGXTIrdNAh06a+mTwBJCljv0EjSKTPk+UCkgoBSQ1Te4E2Qi4p
+eZTjs0BC4ZTK5ouRUIpSTXwCsDYDdD2/2SKkVv/uqfUOoKqnehupZdGFrOop
+EFgNB6wcgVU4WVU4YHm7rjcyymTRA6cu68eb30FGypp0hE9qrw28LJImCHSU
+N+UeDjJQHE83Ezxd5/AUBsqtfrJZpwuEnJOt1E4gLW0ZTTbbtE0NmnZTd8jr
+GOYEsnA1bmPbW0AxFGB1UzjuchbJMV0cVmdv/Yx1iUz72gUBKJaer8GSD4IH
+S2JI21pFLG/i3SFSldmlMNT4b6GXTjy+RUV2sBylTCJpQrwH4Uoandzjn6wS
+k3VS0AVi+w2wLc14ZK18v8zAKaRe4QoD33y2w3DasW86Fj0asih3hRdwDVn0
+xLb0YNM50EZODG21xJEHOaR0kIgaJYsKRA1a8JstRt4o5jTw2aye37QlfhR9
+KHT2Aei8C9Bp4LOJ/Gk6/DSMcgL+OOWkGFQggwrHoDwUTTQy8PwHnEHAkWd8
+PRcgyEWbcFpalki6mf2oqJBchong51aGH+quYWbpmhbKKC7dwnilN/3XITMr
+G5MkuEUPTt8NB+zQRnXYHPJDxLxk8zFKroi8wX822ed8qTL3sVwbocq168nl
+wmZf1Wu/9sb+q493jh3MHeGCUreXijSDojKN5Y06VEKuRDtKl2juRktEzkHE
+HWsTOZezBrQz7A1yguYzbTzz2KO9Ocg2nHdiE7sxbqz80cTpw5s9usnsR2+t
+G++Lsdxmrr3ecaVYw1pbSu4stUcpnBweSxqOLqhmFveYKus5kSSN6nebLsqr
+330ff/X9hfAeChZkS3uqBgHzHmCkxGdvpEyJlCmRMoWq0hrw7KXKM3MaSJoC
+QZOnQJOpcJLrWRsvTRdmmYom0bpMRSqzhoFN2KnO7hdY0zdqUoeg8W4Zt/K5
+SyZrnDWcxrlIKL9OI1cVHWdcMQ+Z9SLI4E0bNPzoryAaE/SFpLLLdp9DbTOn
+GjH/eDJW4jPaeoyXlVxv051R2HW+J7TlOwTMuAeJHQ+AcVnsWwxgjBU/016v
+yzvNCU1ztKRpzDiuK7P8lZCxy9USLisCuAR9H7OK83qAyw27fx65WnTbiZ1I
+M3WV3m9SUCnjFgxbrtyPx1jqptFDJvwx42N0DOsg2x6Pd6xMpifs8ARmFZZS
+SsG4IirXiIEaqhBKp8IQZ/PFpRMwJXKmBzlTIGcK5EypONN9/TQRSDNf9aHn
+I2ne/6CnB5lTOuYUyBykTY/qBuWupspdTZUzzBQUM5nyxeAvEysrixiDmayW
+MQ87xhBjPqqlaGSoji83BSJGO17cfb8kqJ/0EO5ZrLUTsuUbLdii3a2Zxt2i
+LR2pbhoLdROGqbHfHIiX+cepoVq7yGl7F6I+3+ykszWTvYTiRsOV252b5Vz1
+V20i0awDePHVkCu4d44MztqNJv52HbPNxG5Uv07XSi6BaGc7SEjaDsla0cJn
+Oug8B5/liFyrLpniR8ssU7xTxV3y2+AE8xlsfozXRrQuytYCmfJR0Dh+mJVF
+v8Fj+zODPgz6M4YoKh34QUNASe4cKduFeVp1YVQnBjcc6V6MR4kDia+ECidY
+cgeSHgRJn+qFTVaVJgsUTRYgTeYjTd7H6ug9ZEiMFNVh7rFdZt1hLlJwAXID
+XRRbHF9MFMhVS9njQWv56aBYSvZqFFwSTZqof2zT0lJzxg6jUdFSVxlRqBxj
+Yjx4VZgMlW2NkTXEQUUbWbYZE1ZEdmLfW+WHmsiOFSt6MmNQshr6kWrC6On8
+G6Le8EhlXNUDZeSzuMhST+KrOdeHl7mdIt6wsj3hT83kRVgFzRSqILTDI5Fi
+rPAoI2guJrQVUNAHxul6syOkFUyuGMtgYmM3e/jKx47OB2bULr7REjZ91Y4P
+CSS+2umRQaI1iRmHaBiQOIiQpkpBmyraaNJapKRaRB1AiG6lJPBRID5y1Uhp
+0EYKniJkiRIlfRVLGtUL31sIZ4E9zerF7y1YRcQs/KAJf3Z49sCjpxfCpkTY
+NBE2qmYqEDYNhE3uayYPmzctbHKV91HtYRuTdtDJVJvYMkfP1WaqT2M7xYY5
+vZLMoYno7F7Wl0nhpm/gqdM0Ia+R7IJLrWHk+ugHrP9rvfP2UDNU6PvaKQu7
+wc3WRfuSQTC/FGQkaJdhRLvYfq+zod653Hvkb19Per13+VlVt/zjybYwo5dL
+csyQuVTbbIlqIT01oTTLuYJmMak/3ttVdZC9+/TQcEJinm2ymOmIVoi50iyC
+dNNaZo8trX+4VrHeEkZpxB7uqAgv4RZa6yVRjeLXl3myuEEGah3lyJZcjAhr
+jaKoUriyZrHtz2aF7dCGNMldiZMpnCBNTJmjny/A7wEuFjCbLMyRMvgOYMyL
++mQKNL2rFzdeUFQvbYzI+WaXyJkEyFkMyGngs2+16INmgfBpIHyaCJ8GwqeB
+8Cmc0smd0qHwsR3hQuBOWEQ1jMhxsNGsucexpl1tw/1x6o1b0HjTSS6WrKah
+4160UPJNmDUdZOYkIbOZuep0W2IujXJXm/r43/i4QFq4HwBGd3dxNmI0abz4
+jUNWy7Di6J2fkKbLL0IzqVPAPLTcXKvyoTORVLTvFmMiqfWO5hqVH5PADe/k
+ChqmriCyTZZgvqENuPzIwmWvGC6qucIKoWh2wRRBBCxqjT/8IxO44lZlwLsd
+V2yDVtc9uV+G6CK/hilZ4XlSuL7s01sb27nQETzbjy3kfqxGx6aLLD40Opqm
+vHlhkwUWFfjvTImSjRc0EBPwj2+jBf3hMV8BY42ugDEZgLEEgKGevZEapaMG
+PoAQlho5UqOB1MiRGoWTLDlSI1dmUqmw8To5ryk9AtDI+iA2nE55ydVGDhu2
+56Jt7F9G2JCR0acDZPQLTCLbu6W9FatLLjRrg2xfxeLiBBKXiXsqFhfbRbgI
++ym89LF9WlmP0B6tn1KwJtDVrI9yhzeA3JofMzL10gsGFW8yVJhRKYcKM8l5
+B8vnGa955lWfm3LHr0ycTXJ5VIeI/Vi6UIz3YikmzAhUPSbstUimB+vjLa7/
+6kocNR3+mRlv8uVNTWljGWF2Eja9b0x7rb7L+mjQZV2u9EZht05YPvAqRiEC
+k2beC9YH6pfcqQxVs+CKiU0XWpWBp7SggNrF6okcnyWCIjd6AkiBoFCwaBpk
+vPTd+dXL+mR98VlWL2+4qixZqliyFFkCQGkiUJoIlFIDZQFywyqQvJYlquiB
+F2sg4vSHgYiWHk3CEO1GBwy5QzGEpvQeE9spfSJ+3LM87s/iPSWi3DAXLqHc
+uITVNLYnezKcEwk79AQUZ8fWhB3aTPb53z1dLWPvDMFpcZQZ2kT2Cy0wuzLC
+RepOdYsstLdjxy6vIu0S0399/W7DjQcNN54g3Hgl4oYdsRxruKENY9om0Qsq
+nFnMvZwLViTlheu38trlSNIeofldzowpkjEs91ivM6tRw5olNILDesVPZ9u8
+f6QpjDejg27/HYTcdIVihoeMkshN1+OJbZcF/VPl7C4NMbFFgAg4izKbTXse
+dYQ+WkfkWIHkRExYRhT4zB0j8AEAADKAsN9ofi9FhQY83wcouNO3emXD98vq
+lQ3eX0VMLF/ek/XCZ14tW44VxzKoOJZ90MSTqV/1IESaCJFGqEoypIiqZVT/
+tnDSJHfdFFXQZKqiQZyoooYwpXRMITzJNFDuTgFFKGR6B4okRZNfMppYJXKL
+4CJfvcyn5Hjh4huxmiTHRiTZwMxRbk7CurQBu4uZnQwLFj3QHTrF1s2xkwN+
+Pkk3XlWx8g4N5V7vBrdHqW7Ir8heCaTIM2ZgGyjyIqHIk2RCwLrC1r253STd
+aBfEFCmziHODwVulPM4JoyZOeZBrM07hBDnYE+Rc6tZYgkzinY+QID/dIyTI
+TbwwsYqDEMR2O35pdjsEakPbu0Zt9CfliFYbYffU1iLLyaYrpIaJoWl0qFLE
+J9BIJYLNjEW+maEVxsJc1SAlbVxobmxiChB8brwAmYHIwNMwggK44QRFgc8c
++YG/BHq8og98ZXg2ESG94fEe/Bvc4L1VgMmUsRomfdUz5MiajiMlcqRAjuTI
+EXz0YFe2J3eKJA8VSYyQXnoAKmu6EqdWkTi3xysSNJDvCpogMTv6Mnb0q+4x
+TvHtzMy5kaiQnyQqGNrwaJ8b1A3eiSwz1U6wr1xmqvSsdoFpk0MvLXUOsJpp
+nBdG197WDY6wg2qc39dsZK09ZljH1xo0qnNKUyQuouarFev0YjwtUh1meuik
+oFLxDq+LpDFeXCjwgru6Pw0mgzwvgqSrSblGaoNEzTAOYqMgDznHJWpdmJ7F
+76nS0EKj4Yxa0wHNuUNrM/G591JMKHVTBYtMZccyFR4joHD9zRexHgFGwMmU
+zEBuqCrEnQaWIMiI+U2sPHLkRIF4aCAe1kQ89CAecni8u8qMwE4mPL9lVAea
+vstQYSxFMlg8wIsEPiAekA54VM2iIieALkAEEsKdd5WwQFL0cqQgLjGlhPZp
+fk19GucJSxKjE0TczRKxti96vVnhEBYpfnjRNjjONCuv5ibxgBvatzBp10HO
+bKGNDbvOaqIrTnTCFSXFrkxSeC/XhkNs6OxHqqGhF4LS3qfxcF/zYTM93hyi
+Qe990VfcKDRYU+XOj0zPkzQyhILEzvCglDiENzHm/j/avjPOiqL5en4zc3eX
+jAHjLiAgiFky5izmLGLOAXOOCIKAogKKCVGQnEQkiGAg57DLEgyIOSfA7POp
+3zpV1T09c++S/L8ferh74+6y59SpU9XVIiX8JnmWEoUMjPPl3GdLC922lhZS
+3ua3fEzWIG3wSHzNL7yCyafuWFI7EyqPElpWTQm2NGJNzDBhgiK3Y8YWV2c0
+q0xTQYXNNpQK0sUO4YHY5wF1Lhsi2bASAcBX28FSQAgKCEEBJaCAWkD/DnRZ
+/B8pYO3qkqAU1xA8UEgwxLhGaUZgwcC04CjBMUKiGQLOO8AE4IGAXYyg2DW+
++lyQzjde5aFWGang5RlpEnijAAn4jR82vyioEVYn8xK2RADXuN3KaQKQbjHZ
+oezcifKjOac4I5VTnOt21tgNf3Am2nvaIC+f4I7TrCsxWAsf9pz5SVsEv+sE
+G6W7ZqyLiS4wTPnt/41UU20e4TmYqKRaTXC1pwmse2mPQ8jLITLOJTdo5OkB
+6fKyO4btPBRuR9fdL37ukOzCy+/oSlzKTxLXweu8AOg9dzIL+iARAakSaOg2
+y1nY28JnUdJGYR0GYL1JeSQx33oJFCM5MUjsxgTqocO5ZgPsItAVl6URIj2y
+gSWI+YuLzdyyxTvQZdF/RP0Hq6oFe/A1MmtXVSP886LkCnzAkgBMwGyQw5VJ
+IAYJhFlZUM4rg/9gjJUCPgXYpCEFfy9ZyNMA71QB/UkZ6PsN67YJw1oLVcZ+
+TQ2spcDmpBY2LOxvTMF+Nx3L1MR0Wuk3WbRxVoI0nicpwSmUEiS7WtI2QluO
++bcm6cDSB02LJV35gGJpBlULAX1bbEQO41pn+zzIz8qDvN/8eYpfuHj5M5nt
+ptaB1DeTnSoXoOHT68/yY72ra2ZSAK5pXppvOtp+rEfPKAz3pxzck81ukP4v
+ZaS/i/Gp5k2J8SmDsQDUbWz3OjNTsT2oVqCNysE8XW+QsqSD+bvWQcxJNLed
+C+ICIJA1XB7brJ/DuQduBHJW8EuLAG7AfHEMcFcHuPegy8L/hPBa5sPK6kE9
+XHPmg8rqEWG9ei0APgTOiwvAPMYVkZ8QbmM9/WwrWfgXKdI9dzEocsI/g3Ap
+evZjgM+tAuB+cfPtKuK6rWRacI/0KpiDMw0Pz2X8QpvzW6/wwUzF0gJbmhs8
+YHP3lFQbbK4vO0p8MS8NDVKhzI/lSXXybpkoohWG1ksed00MPB57/iuuutCe
+d8O+yY2YbWa9kwb12x6o0YDJu1/tLhGpKiS5vTZe2h2v7AVuTFUhbQz3K5C3
+ZsQ7z4n1mixtTu8aFKoE9I+bAXR+7B5Oa4QXuxXMQcibOYoKgtmeXUbRyjZH
+JiHbArmyEJAZxlw35BS9wk/TvXDtVQYJvqEDceLXhQ7EAYdogJjz8dDBmR4g
+PAPOHK9zuOKyMDLzyhY2osuC/wDxsxjimMRK1x3NhytrFONWTcZ9DMgD8XYV
+21DPYb6E0R/jmoA+4JwfoHdLoc+NmsEQri0s11UF8l2LVNYITPU15MG+Gs/5
+T8M+m8/X4KloheJ5f531YfN43+a7b1U+5C/nBoXd+PwiaZjc1ysLtJOzili+
+H5+R7+fpBo+L03Hc7Uq9U5oRIN2XinSX3ajP6JjpQVIGmDsyBfe2heA+JYF7
+Bwt338pL5etpyQ4bb3Px2/ZVZ4uGVUL9tMJQ7+dBvZBM9zde+Hady8uTcy44
+bheAuWspCpP2Z4tx7XXOaRq+Mukg0ty7nP6kXe6djs6hlvSkmkfBWZV3gurY
+RzUWgL04BKSB60WRQ3IxkFyNLvNDM79sfhld5v0XYJ9Qy3y0EpPe6VqbLjV3
+wK0QEA8B8WKGeKTQrsbIjnHNAdBRunwooF7F7daI54NdPC/namGRQ/W2IHrW
+dqDZV+d+C9LLmpTbAN63ioQcSL5LR4glSN45g2TfqLeJ+DGaiJ+ccuFQ2JNt
+Wgjc1/L+cgRuOHAHLbtH1PhSq8b7aAL+vOe+AcXjvFaiBMWtCcXtGcWyDYtb
+iEZ/IOcWAsXWdePEWwt4dr84HDdtAagqYLPbVkiBa8LtEHz2lhFst1I9f0x6
+50NWedtWZATqtOr+OGW0+25a1kmjP2oboLXy5ncTJ4l0k4pQd197tXktyqeb
+dCQU0zVW+C5V3HLmvITxCl29KAZUiwDVYqC0JlAKqM79j1D9uKJm0BzXyHxU
+UTMEXosZvxEAC7xqRMY154OW11oGr7pvSLIJt9VSgTiNV4fVQAy2ZwtgtTgv
+8tpuQt9Is7sb3kwZaNVTQjsbca1x1k+dc5s9W4zerxi9NQ+ju+spzU3ZLZet
+lW10lN+Rnrg+1Rll+ZH2eq+AZk0yFdapbNkaZCN0AOgbGXzOV3zK9mvX4mcL
+ZkOsMaYFdr9YBke8W7K94FI/wmprjpvdkHHC/ew4247jO+B52ERB7Oh0Qcxu
+a/QL5yO9yGqH+fq4fKMwLq1ydpuZK4ManmJ2gPSUsh9Jl0ueS5FW4WgVsoVi
+AkMOm+iYL1sILNoVqhCeX7YAwMTir+YXaSAljJoFstCDXzaXLqVzm9JlDn29
+R83/ht39cM0Bu/RkAi+wy/jNuagLKAuMNfKqxE5DOQSWIxeCgxJg2XroDtEr
+kzIaF9kJwIUDb747LhJatky+kwJy9QyQ813wIZ4DbmVzoUz5Ya2M3+0F2qsd
+iPeQnryKZup4t0hXw1ku2z3RZ6WCrFTBr+XeXZS5nFReZqVyb50XZTPjVxOH
+2wF4BgF45uYB7Gwu28b/tZPI5/X6SSRyJrhylfv2wsEV8vjejDzu4jvZpyWn
+oqTAq6UrrmbrSbwYn/vKkXafj1SxucdW+2v9oJoAN3GrqwCubZqVPrgaEky1
+IG3754Fb51ElRnSQKGBgdiljVn0p0buc3C7SHHZhEKovNZewOk8WNsJA+c4r
+mwf5Oy8HvAK6cxisc2jNxkKbSNns5oTa2XigdI5D7rYcMXc2UFtei96Mrs3N
+uvJaRbiFLynsfswBuKJmnEA350OXF8GWxTPH3VUuHTZrNAYHHIStbAZoQ/a6
+hzoHrCq1vCC/nLVFwPoWl1PHrmadVsa2VGVz3C5apsqC9TIH1kY8RBc+9QV+
+bsvtbid6ilisLBttcV4J9uQkNtY9uuGvG+/F4Zx2oea0bGFh8InWobmtrWqg
+4tBJ1J/hR8O64lY2m8va8pNVwWpb2SZYtK9d70dZbX61ChglJ78FxfnPp8so
+/jRIf8oHqduQ91WV0dW1o8FrhjVlm1itx1wlQNNelG0ZKYzO5b7A1YjKyAw8
+aMYWlroWcCQNHRw5dM7j8AmZC3TOxV1zgMvZwODsErrMYjjONAtlBWW4ltBl
+Vk4f3d4QC7ASQukbXbeiVgldajcwn6yoXYRbIe4rxsMM5RzHYpbQNghzOFZ/
+KwGvONlJ1UqsrDBxsXq7UOub1lnILsoktnN8uKoz/bYH10leMjvOc6MLxdZn
+U0msQPWRzUK1lIRxY3WeD/KSVykn+cIYve0nrLgwFVPt1rm0KJYSEgah8fFB
+bD0N1ZPNtF1k1vTNwFQqxacNs5ZTJlnt/aOIYd9uQiy9O0lU01bTxrQQvjAN
+0W5bhGjSg+6XhRJrSbrAbLuHH0PZUnK7X1Hn3dmDZ6bm49lIrpzbWKDpKrg+
+NCXnDFMG0SKOkAtdhGRIcpycp4hUWUt/3PM5QuoqnRO7+DgLCMRC10TprGpA
+ZXW6vF/DLCp9vyZu1WK8/gd8Hl8beKQYSdfq5pPlBM1PltfZ1axfXifCrSK9
+T+Bam96KQAvMMqwjvRJ8gV5GcMjXnI9jXnCqo4xvhdQ3TPRynNLJajsXB08x
+dv1Qu7AgbktSuLWtYlYT+yF2uJaGrfnk6+En1XjqrlWjLGZlO2w9xWwTto4l
+mW3NJWDoYDmFp4OWf8/RffU2tEonqDWasJdeNHD3pAOUuzxe1o7xUdrhkcHr
+O4TXaTLnBx2ftsx7OvaZYBaqmksuefW0byfVvnkhVber+rqXuzovTJJWNpSq
+wKp0bUjVJ52sfiV615pI6UoPG0i+1uUkVY/ZK4xTr5yTwaiziIpSEE2s3EwW
+amXsfI6VofpBCkaHRQqWHA4JbgDj+5FAcFHpezvS5V1c3ivGfVsCY94cUobg
+8jpBdWBuR7N+WZ3QfLqsTi261KVn003ch4WnLKuTw/MCBiewiUU/iwVozIjM
++Yi0SAzClCklmWwIHEbOfQp65qWqMJ382OlLXVvd9fHnG8G+xPWNpWGeqWTl
+LUo4NhftoeUbnD56j5pJNyj2cHQfOq8uqhCzN2m/OIxbLu0+0qRc48dKKdWI
+gXS3J2l7K+7EPGrvzN3x0maBXRoz3+cTY4A7nFh1FONO2ytGfCRd1tY0Qs75
+9HeJlO22wXTsIp3VVcbIrIz1ck1r4nILhe62yGLu+RTmJMdM5GvSKpF0R3+c
+MmvfPKgw3mQGuG118mKiti+6KkouD2tzSaKGrvJpwTafFyJgAra5CrY5yBFL
+Z3O8izW2EdoALAZXDjgD9t6NzOLSd5vR5Z0Yt6rJffQogcEHYLDV8zoBRKCs
+iK+CPMIg4zDGdRfz6dK6NcxnS+vWxi08o25OAJsPyYjjKnRvbRsuAcoopXJr
+cIKKko5q2hckD4VrpM7RKs//XeFB0Zew89TvtTB814PhVN2MNdHrkhql3dE2
+BGL75vNehmk93cIQtN3PDQiCTbUDqqV2PR/hydXTeKxMB84qL3KhDzUW6XK+
+k6VqCydVNaNk68d6t+O4QsobHvLgJycUAH6oqYhnq00QyCS5npJI1AsLhDxn
+9VzvyVNbQ+mYdDAlzQ7JVsks9NDgwPbOEUnmaK0dbIMc48GOJamzdKqEXZIp
+prJElaEsQZcVwhwnhfN4OcyFvpOaBzVcZnJIiwVghKicxdaM0CwpndGALtMD
+PDId92EFNXCtjuf9Bwl6znG1GWI1gakY6KInf7akLq0dsIJ6uBaZz5fsUBu3
+6MGlO+Tw5FChuZ5Auj4Jk4LGnKBxRW23IF/DAoI1Uquosnpom6NKKA5aEK6i
+VSgWbhaAntUzRQuhVoPaGDhUWxNf1r3TNmd8Qr3YQuC7ksG3GxdSOrEHe6DL
+Fa3utJYOF1DKbey7itsUUDyxdo50F3f3ckSxctqx5zp2s8DjtsIxH0ixxHqt
+z2tuaDuPuJUwXSRJxTzVmTxvqVBOeGZh0PXLgs7LBYd6Vo2LdZ5Nw3uMdXdg
+QXsmqyltjKM1i9uAUGcs1sLGEq+5xwEtcEgrnesUZKg6UvI5MVlCwC3kiMUB
+DZjDYoy9EwJaEYBXDODl6PL2TmZp6du1cKsm7tNHAcT/iD6CXAjghcBdLYCs
+uvl88Q516LJjbL5YtGNovli8I39Jb0WPAIyMzRxfGZJ4G30rh82cYHK5LA2P
+9ARRq/lCVW0fBmPQTzuYPH9WIVmZiokJHG1qCDj6aeE7KUlaLS8WWgvHylGb
+CvZRKHbTozgsFK93UNydyyGJbdM6JUNh2djuXz8GogQiIwjuYgnacokvQZ/T
+jX/DFIYTpcs3A0Ns9OPOoNECQ7ZoOOX7WhoA+3jSU+0Z7iPIxD62Zq7aJLJT
+Sxw4VecR7f6xtckqIaiOqStppCCYsWFSMW8L8GucdkMR66wLWgX0nNfpglvK
+RlHIBRziGHGKulAjGMLaElnYtVI6HYHv7RCoo9SndFoDurxVC7foYboTj2IF
+gOjbxRogtx2JsUMiYbAADksAvGLz+aIddwAYi3AL9zHwFu/gAiWHzVikKSRs
+DUWdHwKdEPUyQ/FmBHRPOMDlx79i56Muzfgwc2yTwZrEf7HC8w1t/pFapIjO
+V7SZ4DnPc+llgaa7bizQrnCljMbqtRzCNUcWmxXHOp8Fu/WTXO8qr3xxB9cZ
+ITS5dME1xgHaxDNU64sA2Vs8zyMNMplDaOuK7KtgxKnN7zyBCU8FO2RcnNMZ
+Hc5PUXHJ8wQ7Ju11KE3gmCqcB/OEVzsc4AGMPRSvHIHWd98/Ga/eicS3D5yg
+LAQu5G+uHU7imldeYINEBWQBYEkxT/zIINZY9r4C6j3gS9AUaliCWlzC622G
+1NuA1DS++RbQhIU2ltK3gLCpu9FlSk3cqsaPAGbT8Ap+FYLgtGL3XtMJarUZ
+attSPmSYEVhihQwiGUe0xYhmdC0C2kJgrDbQFpkvFhLkvli4087my4U7FemX
+izgSLtrRvTbENXJvXdeGQwmGTpbGDo+KxVBLlhT2nrLFyTQGvSQwiz/RnokH
+ahvxpqn3aQOdrzn9hK+/h71HFXt3K/YwX1Rq/nuqz7m/JnrttRv+eOez+AGO
+6xErOqvHYnVmD26gkwTvJW2eG811fR93bQh3h1ncjdcy4dB1vEWVa/k2sbP6
+sstG1pe2Qc4FNuenbEq0Zcdk66n1LwVzvzLm+ivm0K1uPZSkBOhrSvUrW6QD
+mp/AZfFmgxlqBxZvScKWH8QWWKyVztYANtOzQd7TwPVOpChThDEyBGCxDzAs
+YGwq4DQlNMtKpxTRZfJudJlUHbfw5RQ8ZUoJngcsvsXYixWuFmnbE9QUIUVW
+PhJovpAVVFNxuZAvO1UHwuiyYKd65qsFhDW6lcN9AVC4k3tZJC9L5KiNgAic
+O7D+DJ5k78alhV4gdEEwsUadJVoV8CqqAJ405cj5mFZh2qA3ToPe8EyiB5fl
+KS0M+qC7RUGH4XlicDZ1CZ6oStTsxVmRYNeRg92RHOxu0KYaqygf1WJCfxkl
+wY7KSK3PTyXAvZsGHDpUUZfHPrHXPhEnhRK6c21C10uVpHVRNMjZOvxttpdc
+G2VcIucZl+g8zQPb0Qo2m8DBNWH1mHSxSfImU/YluAnQ/GIA19Kb+ECTAl3i
+jCz2ms7SAc0W2GZyQEsBTMJYzg9jHI0gAUMLEoIVoScGjgLcnGSWy8J5HKWT
+6tPlzRLcAvImleB5uEzhJ0/FG2DRh9O1SMPetuNNo9uxdRghJS50MbCKAaJi
+wCkEsCK67FzTfDV/5yLz9fyda5uv5+0c41Yx7gv4YTwPL6Cv+GX5KAz5ipi5
+ow9CdnAEg0UOg9aL8YNe8JDVnpzorc1Ar9LzW5Z6NQfrs6ChNT/WSV2edeYa
+Seist/J0CnJ1HORwkNmlFOfE0GymiVwbHuEg+vLkVIzDmR5cR1ihXorVlpiB
+vaiv1Nq5d22k1O1mT0nD7a0V3BDO9XXUDYaslxYY1Or6EtwwapY05QVdN7Cm
+xBaOqwrENq7PXaZ68gIZHYtmUgu1x0/yoHZMArVXbC3uMNl1xTrSq8G5mOY0
+pGylYjPS80YczFyj5xIPZgv8ZIxgNVshVuRimNgd72jWJbkWg2CaF7emcrSK
+8rD1JvYflr6Jy8TQrCidWJMub0R0mVDX3pqYw6NA3ptFDEd5A3orfrscrsUM
+xCIfiLwUf9siLM9V6IVp1MWATww0AXo7lwBhEbBWBNThUq/UfDO3XoxbEe4L
++GE8j9EYepj8MsHkwp3CjArNBMDHk8CnwJOsTwNfoYCnmV5VqLNt5NO9QDdB
+bRRWl7ReUQvlWS0lWMTBybxL5yxdzYjblVTlXl5G104dzBPUNjnbC3BX857K
+lqQoD2BF2UVLBk8ldgm7luMJbZN57yRO2mrzzmJB20RBG6p0OFGLBzwP0AzO
+KUmxSFAeuEazNwQ22CN3UWDDBimoSEyC75KyRmQ7xZNVIU23Toyw6tGvvFFA
+Q0enVY42oFnL/z0vmOUrRk8tsssoNsciUopeALPo4si1lNe0FLSCWAHholbo
+4DURIAKagsihi2++bspl0avpWpcu40twix8swfOK3esm8jvRkvcEFN/MVYXH
+UAPj9sY/gFAilYVe5KDHwS0EtnIa8ObVC8038+pVB/4i882cevS6b+fUo7UL
+VlAdV7rM3qWEv5ZHv8GaW4++YVwZwXg/WRa4C3bmSEtPYsxy2JTQCdXKySK9
+VMMl54lemBRvtIsH1BqbBeoSZ8WI72k9Tz80jndeZw1OAV9Sn1PqfWmQ3sQg
+FX/zopWNuMyO7lG0t5xNKlQslzO4vH6ChkSUF2C3oK1bFGh3TfmeFauFJxeM
+KwDQcm434zK69TFhsVCqx5MJSHleQMoT9TuUEVA6v05DIcrm1lpxqlPL5Wyr
+nLzRgbOfgvNFBufXqfI4p3aqNrHZ2LagwEZJKc1mlQJML/zNbkDArG/9SBv6
+5mvom70VoBRAIgLhbz9UMGic47WC10ScyFT6Bi4TQkLbhAiQAwLHF5uK0nF1
+6TI2wi36yygdV4wHcngKXvF6EV5WVACVYQaVsUPlNgXBXII/CVL8518IeAhy
+9WoweBh0FnJBMa4x4FbdfDd7l5Auu9KtWbsW41Yo99GjOX424LcL3iVZ8+rR
+B9KbU17pRdAkcgKFKmA/X2RR2I1R+GkKhbVd2R7x0naxfagqdY3nigKCyzwI
+ovQwy4uTU7X6Z5UpOs8GqwPznFb8fPhho3JnLrPvTPDbk7c0ShLYmh3Ps8qP
+Y9cFZYWTND6iWbvdihtZjR7MarQrqVFJ/trCbZn3mpYSAL0ZBaCHEoLnsmAo
+CAaAsQpVh+Ue2eKE6t3NWjaAu8IKVLc0WWcFbmYvH3bHfs+dKS872MmuB8CO
+y+K68VfiYeJc2o5MJHcofyeJXRZy2Tg4U1Wmhdv0DNwg8qbYwMcBL9QIRfgA
+UDjUhRLSCEYBruMALWAsAMjGxnQZE5mVpWNq0WV0jFs53FeCR3FrXJjGIb/L
+BPf2kUMkA5KjY84F30nb6G6K33Ie8DefsDd/pxz+9kl4zhPUETDmAnoc6ebW
+K9Fw981swh6vXSgeCbhm7VJEqCMkfjcTt2buWsd8PxP4mykPJEgMgd0QbxXi
+TUOWr9U98O2UD7wkWxSd+qDD3CcOc2lDxuJtpYe3xV64m+mFu8lqvozVjRRD
+1HipCms3cikP3ZxlXFFHJ2eiRU/UyoINc1dyVUEG9tzNOlQqCn1lKB9cTa4m
+TJINEIyzJTyX89g3VvEmfmx6wNZCNldQpntc9Ce6wy7R6gE26nN4Q+XA155a
+NWBDRTGGw0Awb+NZi7EjPYzZ7K6NrzkzYQ0b5x2+ynkQZUF8lfrhzGZw2VDG
+uhJhjLGVhLCJLnA5/TieccUIwUVBBfxg0QMVpaMBolG7ELBGhnQZxV8W4YEi
+fo68olwWg2ssRz4OiUUu6IUCseWlb+QU5Htup7o875g6NhnTgAYRyfgCoPIC
+WuwCWgzIRABPDgGtBIAqMt+/v2s188P7FN9+eA+X9wlkdF+MRymGfT9zF7wi
+WbN3wXupPGUhGjDuKIZlxKenOlOQS8U4H29+PriGZKbF2wovD5yvhie6PKfr
+rog31egcpVuFB2lloZ+HtQd0mNb1XFHYhZ0WlMwvqGghkrL8WO5a4ZhW3pFn
+6aBMjk5NHPMucrKHDMBkd2WwVg/edDhrqzhDJzSqdZi2j64U3r779PcyHENl
+5GVaBudY1lkrBVdK16WTkOqk9OywgTstLcZeUIzZbhProIh0/MiTjjaGreJK
+gM3nZrqKm29K+nJxZsodEWxNy2DL2SCaobEelGxsPEcqiVZjgaIxDCUEqlG4
+jESgGrGLqSwdDlANL8aXRQ5jwNSo2IKPXzsWb8uXcTkGLSd9DGNdOXwLOdWW
+QPue21GYA7gQPkIHqWKJKfl5Gb4iNFlchQ5X9Mj3s3YFfBhCRXyNgCmAi9Zu
+JBvpSpf3dqtufnxvtxLz47u7FeFWjPtCfk7Mz/4+WaG+EX2ERWPAnx90tekg
+IiujMC/wKQITlVnH5XpQmT76dBOiWbW2mOvtfnI3NxPpJqmqHO05Ly94yOum
+yMN0aykr7MLbAbFvN1GTJ1CEO417xeBtokcaTgtqd6IkH9UkboBu8xsptXLs
+Q3h/DqPuiKkV3IjZYdSH5vTX1vM+IUyhwp4DTJbGIAv0PXPJQCObbbi0/qUt
+FcBRwZ6CJzaDOFuHQ19X4qKs5fMhbOOkRDTt3VK0JdFsnmy5SaHtHe38eFsL
+Zz7SXART6WbD11iOUhK5ELVGAzsBgyxglBHIsIZjxXQZhsvQWmZV6Ws5ugyN
+8GURHsjZp4zg14/Ae/D78LvlgEzAc3Tool+sHy3hjxEv0ZQxGqneFIB6elMl
+7vYDtF6QH+nqeZEucoiMCyAyVwCRQNtuEdCXAw4jIDKky+6R+end3fc0P72z
+e4hb9ES6E4/KYrRayJYIZOVjEpwmEVMC5QMC0XkC0a9SEE0HyPVVwVM3BtuK
+4GI/MGrry2Q2RiXhG+ZBs78Hzfv16JtrK2WqJBK9jhUHifgsP5o9FpQdbEBE
+WZ23DC27m8sNONm37cL+sk0IU6DnTOBtCjiOxsISbZoooaNFE54KT3vElgQS
+nBc+LH4KyuZ+IISXgi0/EJtow7Q+Co6UwkRmDGXNg2R7SeREZEoAnIIAuP9q
+VwpHGRwJ3CxnZmbhOEurb9nA5wtKG/De8GA4zhOOo4GUIGTo5LIQBNDob4+B
+pxAcUsesLh0c0mVIEb7E5bUYTymyeB0eVQXL2MESDDA69mFZoUHYwTJ2sGQ7
+5j+qUPwth0l4jP3wiJWT7MyKzqgqKAI8uyYAjB0Ag4jB9hPWO7sHxbgWmZ9n
+ECh/nrFHzvw8fY/a5pfpcos+n+7Eo7x+mrF7zK8qSgD73m54f3xQEk9zglOH
+0Xr6Y0EF3MlxFDEUiSNKHFlwWvWaBWelbpRY6sXN97VWOFXN0LG0hqsR+mIG
+mPfRuoWAeTWPiNuTs0JRqofxkBpUJyReXsx9ZmjmtCpVssF+4rrMH871vxQo
+p1SYE15fLfv0Xv2U3RaeTYEqBKnTTuq0oLRu4yT2BFllarM/a2w6QB6TAHKY
+56xYM9NWGWx8xD4eVqNav7NVBVGic1yWBxWKuLjUZXdZIE7QUoAFogMhQ4WA
+EwJCAUc/wErXayHQFgF8uLwa0+UV+ptbU/oKrUFYQXVcY9zFjxbheTm8AvtE
+S4fgDeyKHWxdmNVoGvuwdbGU8TtaQ/bogKVuzkrdcdby2V6Ann90nST9i9JB
+kZEYAoj5oRBfpZAYMhLjBImycgwuAuI7u1vMEWpwjQSH03nhvul7REBpsfnl
+7T1C8+u0PerRZU96y1/f3gP32RXiWYAxXjrDLsRd+qRcGsYE4R9m7hYIhu9g
+DNuslHXwvHoaYHfOBFfVvhnsot8NMylXa8bpB1Xb0zZNXVTsIRypDupLGdze
+u0qqi1dyLb++Fi1a8x76M8tP5LPhTiy/gHvUMEhKNC42IHWXSiJvPBpKmB1P
+mJ2Wwewac8qIj3loG85tOw8ZZc+fTUfSthffL/V564xiHAUcG6trUSlEJtmb
+6/E/8V72NF4/5w1CNoPEfjzr0HA10NOy0gSdYHWBw+p7HlaToClZYhqnNliu
+ZJwyRgML0lUOpK8BVqENjq+GgCHgOQiXl3NmbenAGnR5KcStHN03MJYHgFzB
+8WpZATD7auTibJgGbOTkb1ggzobpOBu6OJuT9Bbh9T8ClZK40GGUc7xdVD/u
+GoQF4mZcQMKGDreRpJL5EZRBG7kIytiMgboY+KMnA5G/vr0nFgVOQml1s+Gt
+PWvQpTTGLXoGX6btSWCl5+QEu9Md3vG2gSD2XkHsewliv8dSZQy0uqwVaJ0v
+3T5fLNwxHWkVqR87pCbeUEVehE2kLzpOrR/ko7QrIfSeVahvYJpUPd46ge2D
+4rcew3UNNLYhsqLmz7uVlsFn7Sq7lFDrZ491HHeN4pyDtjOW8MQKdIueOuxj
+Hm5+zgDNPntA5m7kDhoXUa9Tr8dKXM06e3aQegXGraHr2o+m8Hewdc9JW+2K
+4UgKX8fV6JcmUbTUj6IiZxNk2giayNhEwrrIyZI1QSQCnYAxiBhbGisx+aT0
+ZYzuLh0IRNoV0eVFeurashdpvWA+KHshqMPXiK4v4lF+BhD8Ys6+YiC+fJlB
+Hrn460L0YI68DF7W0cDyMEZw5CvlyiTcFkRwzrNvtycTBW6/Y9xKNaLKNFPx
+WQijhVRuBqMaD39JVh5WpwGHdM0BoaHZMHVPenTD1FKzURZ9Kl1LzMYppaHZ
+NKW02GyaTHDeOLk0h/tiPDfgFwPdeCdZhO+QP6vIheSfZvA3aZEtae/NCupd
+0iGYpXM6/KYBLQUWC+jKtcUsmZd4YdfKZTT4jFYwD/TAjHE2d9G6ga2lXblF
+HI08kMliKyHcduRwC0sJ2zBwRDP2OXFPAFrk5o4lIE/lmYwM5MkV3KiDlm9M
+OD73Gc1XH93ARUgUR9AGh31LqPvDPsI8RZbFp0vbWx9txLEgxuGCthAyTosg
+bBehAKLNNhJeUVhcaubUXyw1/NK5Xmi1ALYSOB1WK1T6JrJ3uKd3EUoHAzw2
+kA6i/1XCF9CWAFZQGgKgwOfzuDxHf0wflj1HawBWUAvXEHfhec/l7PNewChC
+fgMH69gBGhRAH7ZGFvMEB/FX+Oar+Kbscnq8aohbVe1B3AGcRXUQq6weY6G9
+LfVLRrYYrP+HuI5VMP80IyOYI9bJkcBblDC+ehvQ/2XaHhDMFpMxAApwE0wJ
+5g7qENMbpuxJaMYqxcoB3/QgQd1smsSL/sdxpfveLDW/yQpKcI3Mb5Posokv
+k4kl6A3oefx2+jEhPlQ0AX9HVrcLM6hIv5kFuv5SElbwRblNqH1GWJa4XDaJ
+Xs3hXXZVLtTNJe9yy58kz2N0erNlg946h+5ONpp35LaFThX7cN86NoqgtGPD
+Oso66FM/hIQ3WviQLPNgqrmjuVEWTNBuxmLeZIyOIAzVYOcKpdJeIrjZtboz
+CefsWFmxfSaxwMmykapfARaAcQyXipNiT2TbMD6roS19LuSWgoVsEtsQ/rZ2
+6kzJhO9xTlBXptD/GuepinzNa1+2cZrjLgYQllJsLn2e1nMANZA9AJdnYwL6
+M/TfUta/CLdABc/qA/SUWPmBKIBwT6v0eXkzF/eJVdbIEnHAQV34B2F8kBXo
+WJFwE5LriOlKE+tA83T6WcQ5g2ONJRl95JL7ESrbeSXuGOffkmhXxQZ5A3HA
+AQT6gtUbTpDDrQB77IMdKy4A9dAC3kEd97HC/pXD+Vt7xhboCbwDxmgkQdxH
+dRkWPUrX2Pw2sSwyv08sq2N+f6Msh1v8QAi4B9WEFybLkvdVvCdKQL+92wTn
+79job400dbpn7+pAXhDgsLFtTwUBnMP9Gj7ChbNs1u5qW7+pfROwrFPg1vrt
+NZXYDdaAK0jYBQY3jMP8io7cAogpdC3Ynu7GW5l5kg6mV6Hlj4G9xBw1aSVP
+DkDXO7tfT33POr0T6XT03trwjs0k2C3JGp0y6B6UQT9+klSFnnOgls0ibD23
+/Fh6G6zLpWEdB/FaXY62vAV5gPb1+ASnxZPsOAHzKgbzqyq8/fj9IqFXUVwG
+FA/QkP0sdtWWPcNhvD+tfuajsn6Yw1TWL6ZL35p0eboItwJ83Y+fogvw748X
+PhPyOwHwz/J764osXTwPKuGLgB+3BPMvMdno2iL+Oa8YrPAXIhDoM/IZ5kP5
+l6Ercll76FAfKur3rFnLpeTBVozg0fB/VB0b67kTQiuxNqpZ7Hvm2P9BoPeC
+vMN+lKfnFfsRX1nBO/xy2CZA4wLkEwlEwD9Aj0XfAq4RmIBWfSzcR9fI/EFf
+/zGBF70tXWubP16vH+IWPWVCfX4VCR+8n1IM0w2IJ8RHU+Tnby5FHimBkCIO
+ZwI4ZZAmjc880rBJv1UES3UzgM0PMEthnFrpaLJ6RgnjId5CWtdcpSVn5AXY
+ToOaFpQATj49bPl1puXy23l7qCT3L2gdaxKRxUwmC+xKQzMHrHI0cqApEbkA
+GvVRt4ICQCMiZhegCRFbYJDMW2vcJwpsmR7T+hO22LCLbMr+ayTyN9XI30Bq
+UomthlqU1f2WJKzmT/Q+Qt8qRxCDVUr7BPGihPgyRw7CCTnmhI+EE0AB4ALm
+hqfoD+HjsqdoPWlXEV364N4niu2tJ+mPB8/6SBYTyNN4eV/mF3wIX/rzx8VW
+PbC2eI51A6uHF/i7oyVGAOcNrB4sb7wceMSRdvbiRDXkWfIJccQFuEIKaI4l
+tiX5v4A4YiulQKS1Y2jkfHs8SmX0CQmIBAjYbxO5/xaL/KnI9TcmXCBrMthg
+k+h91voE0UllgdBA7NMAVlQA9Yp1Qn1k/nwdj/45vj6tBlj8VYM65q9xDfhW
+iAfp+6An4hX2TRyl4DN/t1RB34tLKW6QrEVNBssOIEr8xpgZnKSAPbiL5AwZ
+OYG2MeseoBV6tbaILdZWzHe15RkWINovBykr9NLj127igQ6785HqMOdh+2E/
+KyQE9rG24gr3/byZru2iATywFg0nbWa97xgBQ2nZiMcOgcd/4k3gsPjQNsnS
+4apNbO8hH0CxrFeHDWy8D8iwwdjW65wbgDwAdh5LhobLeauN5ABzuUlEzPW3
+M0xgtX8iFaxVl5YJL2UY4FmAEaj0oR8CzaEDdh+A3awre4K+Wlf2eF269M7h
+Vqh34mF5Wh/miyf5DTIswKzQX9VHf8cGoigiVimiJiSVEDmR4gVJJVRT+Lww
+MEgJCo8XMglFYWpIzH+u1rGLn0iGbXHxLziqLv5+g21XBWzCh1LGrloLhOK+
+ixbw8C95QFYLqAxAxJ6URGxeogHylEDs8B8C1jFgHgHwsflrLAjg77ENzN9j
+eOGrMQ3pMrphiflndENKkugm7vNWA7wiwotDvE1QQ8jEZwz5aMcUm4Qp9KfC
+T3pFmiZSAmI3l3UIReycUMSyumIwVtR0ndsVaizO0yoBdg5O0DqepQcMWbqv
+UsxEHBQjGcahXLeDYMAuh3bLb5DsYkl3yi6e4UoA5keAGtoTNWCXH+rq6PqE
+XYC5LJ0e2sim4Y03S3MLDENkFKjJPXbyRnb80WOG3XrYqYe6OZx+zIuedKBk
+EjAIUSv3BUJiDE5XS2AS2wFiBo7NCIMhGVHwEsMLdKBZgqcEmAosmvtgPhaz
+wOOAv65e9EfwSVnPkC6P4Wb9x2j1wKL/aVxjua/MLff8XiAPvvTG5XFQyxPM
+Nkw8kVCQZZDI6giPNEKxIKvWEVpQiAroiNBVFTI6InT1BU5BHFEEvg0pzTsg
+2T1rbI9qqMvMELrusiCyBJFoBfb+bTdLUlljioiqVAqxrxQ2TxZFWbKwgqGg
+XnijTLKEnK8XZL2OcP8nSwZlCwY8PTVhC+UDYokIXEGXUXT5d1TD0Pw7smEN
+uuxFt0bxhZ8zqiGex7wS4hriDYJb+S3pE3gJlTSogkZYEHHClFIaMxIKQSHS
+zz8cfaDoqG7kR6ouVqlRsZBzDjEpJip1vKLU8ZjOZbuuUrbwS65xFLfpQFWI
+43g7j8QXU+JVoo3XiTbeM+2nLzbHgjaGf8yz09iMoPwCGzFQMEQ5/64rN3Ep
+H71wKOPDWUQJ/yWfMlqt47I9CoPWTcSoFziJqCVgYxIKgUvy6GK85hFWPbym
+bmFVVPFMhiaeYgmwLsURvYB2wD5kNojMemKH9fW7Y9H/6/r6j8Z06VZkPq3f
+LYdbkb2vuz5Z6OQxDOqrL+QBTqE3XseLiSjGJ2K+LcsQJ0VCp0SYR6LCSuQZ
+Z2imRMiAwCOV2CeVbU5NIq+ekbYxIscfWy80Ysch2oIT23ph2mTUEnxKVcRp
+IcHhlauCsdiIRAQRK4Y4qxgicQ0JYSGgFolO+FN0gmYG5q/xjMtAQj1LBqEA
+XgphwvaYBNuMdHoqQR8cYBfRwAi6/I8vw/nSKDL/G9ao2PxvqNyiF/1v2F54
+1PwrS19ELw9udATyt130oX+NrYo3spzhZSfqWzjJYfnCkxtoUuDqRXktZ2xW
+rJF2eWQiM9aKoTlKuQJmZnfe37yDuaZyF+63Pb+iDY9MPbn8bHPMist4w8nB
+yx5gP4L3LM8dz6erM0+8scqcOnQdb9xCTRJZBwxLDApgaXGpbBxBvyyMSpyK
+6nMEqg5oHuBMgyUFqg2UZdRf5GUZM7jntTA/DPMyi5fZ3JOy/nMFJMRTXgbx
+uMK2p8O0kAII4VHgn0mhK933af1HzKcNeGGCS4MuMV0ejsxnDR7O4Ra+7MJP
+w6Vr6MgjZPKIffLACp3uYKLo5YkYl8asE95gtZOQB2c0T+sP09czNYhDApDK
+M5ZFgiglS4Q8tIxqdUiodVBljaQOmiIN8T9fdU1PQ4IiFSKvuaXUsS3Ko+OR
+dZksQicwQtcAFCYWRC6beyT1xqrlRK6QnEAFYhKRRz6DsNMA84AwiHTArfHM
+H+MbWBL5e9wWSSR0JNIwTSLEH/RUUATxBxY9FdQRgUXMv7wa033/vtYYLx/S
+mFYTu+juwU3o3sF7061XcRm8d4T7Qn2UXhThDeSNhuHNiYWIe4iG+Hv4h0jt
+n4L8Iz+rmCVJ2mO5BxJOtIokjs4rnW11ijghn1kXBCkO8U4l8c4y7Zt4l9Zk
+rZCCc7AVBxvgbq/c0VyxcjfTaeW+3B+BA+RxhA9mJiClQdtw2wUvEN+M4dkI
+hxLfYEsNJnFhUAk2r6E1GBuwoUlQ8UQ7MMb99O7wK1c6Xzz6G3Y2HNcc9AFv
+QEP7IIog0tcgBZBF7GZMUyfjDc/FGMEeP3xMcS8Gck9BwjGiPz6WFCWVm3wi
+/MLwV14BqxBjdFVO6QJOaQg6afgQXfZ6MKTLA9XMZ40e4Ft8Hz8a4PowaAes
+A2JS2mGO6grh4nhLuAeXHmGaczjNYeJ5XBUSr9DJFGezPq1kk7JPhWk8vRIk
+CVCUZprEOWWmSbqnuG0yiCzBMMnEGVNkmygl9ikFKy7Y97vVrBJLZ1J+vwKb
+GFG2lvFGmZqM7GP6Dubr1pQU71KX1SUhYAjrgm65fETkwiimkpHISUbgAcYx
+kwfTiBJHY/O/13iBTJQmwB6v7m3+fcWupvTqQU3psZeb0kMvN6MvB+LCt17G
+A4OaBjfJk1+V9b/BTfB+9M5N+BOEVVTdOEaxbNIgpWYck0xUJpmSZD3ONMlj
+kZ15MyB7qZTpwEddTQxSvkayHGxUmJphEAyCv3kluqxKeXs6tstiPBJKrm2W
+38blVmzQQ6kV4x3AHse/vsacPvhTHuWA3T7omUCDMrqmsJUc2UzPUzZwlQTb
+xi1zYMMAmo+nNV+lXqj4oKiIwPCAB4r+h0SdgDVs5iI9Dpy1cCnUZix9XaYi
+jNHbZii0SIWUKVskTAHYE1c8BMZgnmCKaHw/LvfVMp81uZduNbkPPNH4PjyA
+FfBTIjw5YC7Ba+270BXq5SF5Z6z6XUKmFKiWR5iqZHVTVvmEFE2xqJmyHp6b
+0pOlFGyYxEdhJnlc86AnEoJJV2gSZyVV7e3vCr0BV2n8Oq8vaSgV8olmDXo1
+iWhiIZrVsk3CNXFse5IjE1w6HlE3lc0UqpyGbjtBVKBU4rqi0qUSZpnQFUu5
+XlKW7pooQDU26wHBFHkEowmFmBKhGqV/jXHWR8BEYzMd4hdYHrI4XxF2gUAZ
+1gjCBLwyFIKEeWaIsILoDpYhrzQNmF1oNQOjQHcMbEaXl/YBm724D63mWPjq
+heZEac/zZV98/dy+uGW/er45PwXvRy+jN+A34fcDO73cTD6HWYq/B2Uop3ny
+mCmfleqLvpmcsJLVNlztgQdDjIQty6j9wrpFLoVGb2ialWtKOI/Cnsa3tMaL
+rVIYoNGlso65fiVs2sY8hhvdXceXd+JzXQ5Z9iB3dOHYXmwRPuztJeb48Wu5
+WgNvBd1bmN+EvYbYIoEKTY/TNrAN+zyz0Jfcp4kaLRo5UJFBnjS7wWLeJ7iw
+bCZbrsJAE1m3SNeVZaBXtOZq86I0+9hcSICc6BTRKI51mDuIRWjdr+RyHzjH
+fI61N9Y95vOm99D/4OdN765pPm92F8ZgNr0LX3rrHkwY2puftre8mN4kEOYq
+SZgLH4IP2+sB+eCGIK0HhbNyylddwFecnxFZab5WrBrrUV3dQVmWsAJnDwtZ
+qW8MRRQ5RURcFeTJIWGrp7fEVWGBgnLSghI5jkrEEMsg28Beup0eDNOT58pu
+bf1WbRfipMj2cSSZU5BipEkeI4UgpNBlUR4ZxVkySoRO1oT1bRe2XukJnC4R
+jP83QuyU/w0TCmKLReXOvx4FBdWFEQbtLezwclNhioHNmEH+wQIJvbBPpNTz
+3L50GcCM8yxxz7P7mb+f2Q/1o2f2I27svx9lef331y/pUTx5v6AzXqKE1Rws
+JbT2kvLUQJ+b9na8xIndcOElUO0/qpb+1rwLZaeEkzTfmiZd9T+SSvo+w0fs
+7Syvwz4w1BG2hM1bIwO1xisXYZzrg8RF13Dv+b48sAc+DoZhYdMIxha0m/8a
+b+U67O3F5oSxa82ZA79g7wa5FBrNoIbQN4IqcZ8Tf+Z+kcHKQdjsgR6RGU0r
+uCIsKmg294TAw034Z5TzZhL1Y/OlfurTCvd8wtzTg3EqiidRO5853snyDXON
+UEozophmd5ovmt0Zmi/2uYP+Vr5ofget22Xte3s1utzGd9+W3N389hjPDvFa
+eozfxZLV3nczR4X4LAqwnze5rxAxIT97EIe90DcJgvREVCAqqshTUd08Yuou
+QiqnvJSIqE9UQPWil6ol5PMSfmdR2ksOitQL6uetpKYdpQkpzDORX3AKqhA7
+hWobbzsxRY6YtHF885XkQl1lW+fmBOmussgxEgpEzspxpBRwWYjChLOEx+ST
+UqhFISKlWmlCElJibP/vtUZKSI6UbOolqiiIHRspE4VOBdE3x3wyQEkoIaL+
+++Pab3/zd1+sA/DV0wcQOT2Fm389dQCtA7H4qwP1vr+xnj4AAo+fTK+7Vt6l
+v65n5FOY9qz0Yiaj72xgs0RhvdqUfxpmMPykyPlGNlRVJb8yVlSva57n5Xi/
+aH5nlRRyO+y2+XRJXXakUfyuWCPb495ZKwVvsBbmvt/LnXFlvKn8jIoO5rgV
+F5u2y2/lfvi2C17hHTGHE2OdNPpDc9bzX5kLHvuZDziAaoLLjC1rj3f4hcfq
+YdQX2Ar97HB7kLPNbrDUzC+dp/naNG5tRa4GpkJ/ymp2d16WllXO0fo7x9jm
+Zuudi9NVlAczlKoi4gbwRKKE7mY++QLMtM+dlpLovwtclDNf7nur+XI/rFtk
+7X8LRbMv97+Z/mrodnL/freEeCK9EC+hF/MbRHgzobtI3p9Z8C5RX+AsfA8q
+sDz+8hNB/tYlEYSfDdqKVU05wkrMJMtW9QuxVa4QW3kqKuGrKrpwvNpX7Dfg
+bLYtr8pyuq19/Vfa2kI2l8tmc4lltFXZ3ETN5mLb55qiqwae+Rz5dBWI8xxb
+urKWEasoLj0RayUSymesxvCKE7YarJ7PK02Zr0LO4SKfsQJHWft6lKV0xWQV
+gmbChKmEnp48EB5XnwNRe+tzkPnrCVqP86K7e/Pl4Jz5s9fBKNj1PhhfYuFF
+/JQnDgo6yiufPFAWvSvenT4n4bVn9hdOs+rsBVVlviIbsrdy2V5OiYHH/hrr
+ZYYTPQX2tmwrgNP97exduZkHDjeq8DgXY9VqyQLRtIORith0/8SqOuYOHuPW
+2JxbcRg35xy+4no+wLrtwheJuyabI6YtNh1GfsRDoDp13cCVdCgtjAh97JRf
+uXqOw4wwcRct+6iYY3P73PoLeQrMEs7wJnMzjeWsNZrZJVmdONAJX3VnV1j8
+I+KqvR5SrrovEG1TA1rH4ymVTUQyKX4CHxEzEREdcBOI6IDO5qsDedF9Xx14
+I9331YE3mK8O4kXsY6834lFvdcZr8QY3hXlcB3K7NcSHh8yUOfl+mNssv92N
+75v4LU7xG/087HJhdrSTZw8qx7E2Y4oLPYr7NM/ZkkK/R3GcLPbkZNHV+Jnu
+tEoXexX+Jx3JRSzKchlRxjQXePsW0l2GnjarssuwyKc5XqXbXna7kIhty8lg
+LLtwM/27jsHy+nc9Eot8EkMzjvbh0G8kLbikBUcbalwKGCVqi1iMK+70g6f5
+q0k6Baxm6UskDK1/EvoSSiC5xakf/bn/PWA/n72ESvoJrfyVkBdTl9BQTonr
+YOYpYizzZ09mrccOoR+vBy7dW5SYPx5tgVtyX3AJHsYTZeFFvQ8C8cmbPaEf
+8qR8KPNavwyfPe9rs6bC0/i5UeVTTWZdLnQQ2EwSUQj/q+xqMYftwjuf4Wah
+Qre2srpZsUZcrDcpcwR/9Sb9dXPlzjzU58zyE7ix8ODl95g2C581bedMNEe+
+tdicPGwdj4zELgMc4IZeYlT1+x3/I4/0B2+hZxiNgWgKRPUe24ngSqU5a5BW
+zwZo1exJzQJ7avVdXSdkfo0eVF0lmuoL0lR5PCUcZenkqwNuotVZ6eaGkJmI
+7j7oevPVwVjXma8Pvi6iy7XVzdeHXEuP0dd8vzx+PV5yPQiNyYyJi0muc5jQ
+VuQoC8osTBSZyDwSZZBmd0KGNfP8r4SywL5i1LuMMpB0Mpaclz35hxLWijzW
+khJfN5wjmrW4pJWBuCu2As0yV0Jcm1dlUbazMbWnqmp6EhVWuh1NiMxJb+mG
+3m3uKC7cHxQkzcR/vKGbCXyBJSuhJ+uVey2CHjcRb0hBv2G+Q5WY5VZeBVyV
+D+KsvBJ1ldsMPe1A9LRvPj31PUB11QGWmoRBiEn+xEpoiVgHEgoMRETc/RCw
+kvmjWwv8AroSP/3xCC5dWpaY3x9uSbf40qUlPxBciefg2bz+pFcSneG9Ei6j
+T/mrV4bDnvL5az/OZhMtZnPKvTlL/od+Uf+MlE4En7cQYhCFYGFazsK2TQxH
++qi8pllJeeP8NSV8agP4qgfprRsq9zDnV7RkrdVmxU2mDU5KnzPBHDV1sTl1
+yCfmgt4/mivvkoGayA2x1wHnaY1u/Qm76O/uXW7mNFjIHUbiXE1QjnpN8kDu
+LuzP5i/zU33VU3DFUYZvpK6UdaMI6JLnpXgJdAHeSEiJaUXYCMzz9SFY19K6
+xnzd4hr6n/q6xdX0v/d1i6vM1y150Z/SNy2vDM03ra7M4RY4q+WV9lE8U16U
+wxvIG+END8a6Lkjx2YGOzw7oTEnCl/vfJN+gJ8JclpmwmS/CVID5CeZ9SYLZ
+6H4uS4LFkgQTiwUYa68ujslssxQLsKBE6b9HoTTTNWjndS708az6yHUuQIN5
+XZaRn2kG3maPwrkmty+w4HJtluxgbo/gOrxuIq62q1upan+rqJC/leSMWcXV
+wPYrWdfddikF0qkY+aTmtSdZ252JbXATeO4JqTnPvQCrCantUSWp/ZVHakIt
+GUITCkrITGjqkZZgLvM71sO0HmpFKvTBVvj9PNDK/H4/L/zu7mtdbH67tzU9
+el9rbAO7Tx99gJe86Gx6fUvQIb8nv3fXlvI5KRrU78nKuD6aloKg8XNZa+0F
+lW1IPweLZPtnRCMn1/C/ZqUaCpBo6ATlfblgRy44rl5ZwyxeI0VG2GPdVu1o
+rlnZyJxVfoy0NyzpbtrOG2OOnrLYnDboM3PRoz+bzjdt4qEvj3f4mbdzYVPn
+1P1Wm/cbLzPz6s/hAiHaE4TihnAeIRKsr7QfML09StRG2NQ0UewsS21Wcvm0
+5nQWc0zIfFPs0dnVjsaItsBfAVjsCrq0vhyXy4jP2lwam2/bXBrhVoDrZXgA
+K7DPa3UFHmDKY9oTkgzxIUFkiQ6MGji9d6CS3QGdE9VWK8VxX1bBcUnF8h6u
+U0qiHJnPGzuOC8KUi/ZQ4qJxf6gn1j51Yi12Yk1pLtOXJWVIa6EFhZQa89vT
+WobsG2y3k5ZL9ZBvm2TLJawmc1h4nlP8/8WpzzRJoYA4JmV4wcwJEtdL0sWW
+qsdcc5RtWsjqMa9U2CzpVWDq2jdtzhcQY+y3Z3iLPSzLWz0OFt54lBbklMdZ
+zDPgmwdbJWR1X2vz+7207qF1dxvz+11tzG93tcFv7842dLmjDX57t9Odt7fF
+gu6lq953By/35LtwubsNaO0efVu8/f2tE+ajj+ZvwdGdUuujSnWs9nya8xTe
+AFF3/OvDr5N+xf+QDP6b/kPQbwHhjT8AzA9haptTjwfoQcktX1XdTFfX/2HK
+OC+t2M+cvOJs02rZvabN/OHm2EmLzRnPf2kuv38DD6Trefov3C8+ttU6Pm5x
+9l6LzMKy97gXHF1WcO3xR/xhaX/JJOv3MusbdBcas9kjMkdLYazMMvQFYQT+
+YNq6VkQUqAtkw5T1NREQaa7WlyszXQquIl5qcwmkWdtLaF2s6yK6u91FdG+7
+TjnzbbtOEW7xfRGeEeyOV+HlluT4bb9ufQU+JJF1YE18C8Si+La+OkRTVAhH
+1nE3mC/pW/9S6C3RccJvQZ6Lhvqo1EmZ3JIWDGm/UEcQFlrk22fSIybarcjT
+bo/4dU2Rb5EmorLlrlCfReiloR+nOk79hjBft4VVlTFtRQAcVlqj5rannMRf
+ydyK4uzcitSe9Whze9Di9B403awa5Xc+eAXGVJHR8+xr2A5PITA/qXTVRVth
+ZK9+UFNUJ9MVRqu9PBIjxDKB7WerilIkDHYUs8vLJtmfcgR2SIrAnOhS8vo9
+Ia8QFEP6/fe7WxP3tAYJCSWBmm5razbdSuuWtpSv39w2MptuagdXsXM7s1EW
+okdnex89ap9xczt6xS3tgnPkDfBGt8tiDsQH3MkkSVxHH0pM95tjOmG4332G
+w8/QXXNZ5LHKbEzm+N2A1dB5Nkjqn8Joe7GkhlhDfgo2+2buzjywdyWJtPdW
+C5PdU7mLObeivWmHA3AXDDLHT1xkzu37jbnulk2m67m/chcXRvHM2KfczGsw
+l/fLYwcL2As9oYjo6+r3VubqouLrXvHlSZ5Aqrg8khlLnayUyLqSKeQby1LQ
+UaCZNpekqIl+s0RLtC4037a/kP4Uvm3fkf5Avz20I60LvHV+UNN8e9j5Eb6k
+vxV6Gl6gqxPeipalvUsSWmujlAY6a5VHZyH4jN45zWbEZFIaUDZLMtIvJBsN
+U+VOS2ZEZBETWU6J7L4qDLUH/f4M31BTGlONVuQZaj38JlepBBRnduv0rqLY
+WUXLWEJpUQF7LZChZdvGZrHPZmCxqMqhG1WWHQs49vSTag+prLRxHxTuVs/Y
+98PZvh+2F/3f+HpMqSwQ776Ftm81LUBjHpXlVx2TBolCOSTT2EH5+eNmaUyE
+EtPI3W0SDrutjeUv0BfzE/PWjbRuoHU9revaUyp/LS7X0GXDNe1RH766PW7x
+V3wfPxrp865rD9a7vr28/gZexHY3pmjw5rZowbulbdDB/EbfAqiUKVVZD3TL
++g6MRz8C5CT/WI+0ENamH/svy3RPSYrKv8qXRLfBjftr9F7m99cb8J8P2A2V
+gg9X1DZzmdlqmWtX7mY6oJq5sL858fVF5uKe35m7L9tg+h/7g3m9xUdmZpOl
+ZnHZDN7ejz5T9Hd9XP8J8wkz2cOiv+DaI8lC4kXQThjsWtVZVwlTtLLMdWki
+qohlPLoSFnJUdT4IitZ5oflOLudG5rvDz4npcnZ1890RZwW16Xo2vtR1Dq1z
+8US8gt7iPHkbvJ0lOP44kCXJtdoZuXY5ktF8mdZCLDdXRTjoBi6LomLQGb0e
+aXmWlAu4d+MOS2hirYk0K8o2bqSbziK/6YybzaRvX3pgi/xWs4TPynpUURvg
+3ldOQF2XWZDadehRWWFTrb9vqhX5m5c59VRW2xZS60Sk5o8RC3J+H2qVo0Oc
+25+MDgmdGovyRoeoyy8d8SWFHf6kgSLkvTbV091eBRJKv9uLfht5HCb8JT0T
+zZKeiSpTSavE0tYXY91PIbP0RVyxycovS11MW+2Feq5VhgJTXXWo2XAlrSsO
+Nb9eTusyWpceSpr010sPi/FliPtDPCHEM0O8hGnuUI/m6C2Do8Bu8gE3yAcK
+mbUTDr01TWK/+QT2sCai3VWi9TmI82387niDAQiL/uvwd4CG/c8X7WBWrC4x
+Q4ioLqtoZY5c/IjpMGqhue7eH82Tp/1gJhzyIW/uw0gilB3x1wsgwN/ipJCg
+x5BEIgg7/hAhJED8m1Y20bvEfNtWScgRkJDPd4edzyzCbAJWOfwc+h0Qz+AM
+F7DOEWfJOvJM8/2RZxKOvj/yDLocdXotupwW4laE+/B8eo4837FUwKxGfz/f
+FWIolnNtL6GHfXbykkipCdRMcsis4jrgxrTiEnKS/rQiscacLeZ6Yx07Ja0X
+vuZKWmIfrKIlNvJbLwLJHXNpzSU9scFWiy4Z9KTe/1NbntbCUmtAQalVJCZX
+6TXXXLOA7viG1jRatW+55RZpINtMUtnpsLpqeBXaJGgNr/yUMaqCpLKlSDCJ
+Ne3T1Ug7mWBYIzR+Dc22pdqNfU2rIqogn6lSSkuYqiabXlWa9flCi2uLwR7w
+5hOddZ+IFiYp4P+OtglJ3eKRFPjjOktQhwpBXWGJ6TDz6yWHmV8uotWJ1oW0
+Oh4emV8uOLzE/Hz+4TncinFfSA8eTr/MXzodLk/tdBj9sPRC3Hcxvc3F/Fbo
+h7n0sKAtvT19fflhwoFXKCfio5XmHLXhW7xJKQ267E6lsvuVxlA2AIWB2+mX
++vdrTcwf4+ubH2fsbj5csoMZvGoH02HFpabDoLnm4Uu/NxMPqTRL60/i2QXr
+6j9mPm3yoGR+B9ws1GRpibKrb0kXCR0JFSU0dI6KnLPM90dgMe2AYIhpzgiY
+bzAs/KjTzPdHY52q6xT6bXx/DK4/HHMKrZOx6Pm44r4O5odjeeGcyGM7FNPl
+pIi/LpJH6RXfYx19ir6jkFuwp3y45TanwM6Tb9jnNVFd/MOl0kkQm59Ktrza
+OWNfp1lNW9GKCuSRSWsZASTNbHd6LRr3pLtmE2oLwoTcpEHDI7bIbZjs6uku
+uwNbR0+5Uib7YVGyR9KqLpn1EBXwwwrxGPePPbs5Chty/fXX365U9STd7obb
+m6Gwg0FhPTvtbnlrc3Z9OmVM3K6t6aoPIo+9OG/cHH8Nrpq//inIXwVde8tf
+XnOXSxQT/lLn+9EMf5UJf3k+PYusu0TDsCXF3CUah3PDGzzuUmHFhOLz1oWH
+g6TAVubnc2mdQ+vsI8xPZ9E68wj6iX4644gS89PpR9AvjG7iFn8V4hrjrhye
+GOEVofn5LLpFr8eUrnOOkHejd/3lXDDgeYcHjcwv58sH8uqopEmM+OtF8k3x
+NwdyvVIUITMdMtFb4a+1Mr891MJs6nmg2Uhs9g39zw9a0sj0ffBVM6nNu2ZN
+sz7m0wPuMV8ecgMB9HJ4TQTqC1QYqRBiFjo9BEGAbpgqEqLpAD45CWxz7Im0
+TjA/HHcCvjruBGKb444PzY/HHR/R5Ti6dfxxdehyLN8K6tPDx+EpeK6++iR6
+w5MSZuKPOg2fTlR0unCio6NzHR0VkFgeHVkqshlgpucilfwpE9VRV6tQj8Vt
+SY9FYSpSiz728sD7XX9FQSZq0EWcrVy2h581lkdHkU9HQWb4nRte5QbQVN3A
+n0uVHW/f/5CqyOhX+qLuFVdAJgX7EhmtdGSUw/Puwa1i8+NJR9P/aYeja+IW
+fZd0k9YxWDg0scMxObocS/effFywG12PNz+egnUCrRPNj6didTA/nnYyrVPN
+j6efaX44k/57z7zETLmhpxn25C1mce/TzYZbjze/XnO8+eXS4wgAtDoeS+A4
+hvBC6xxaZx9DmKLv5Oczj6Zv7+czjiaw0Tod6yjz02lHAYOn0RN+OvVogt+p
+R+FbPfUo+iZ44Qc55ShC6MlH1aDLkXfjhyuSXwf/aoKiEvpV/OlxMOTlz/R1
+1fRczArzlt2OsQXe1Oh0VzGR4omVwU8GiR3pBqfaNkBO+ns5L0C7baQs3d21
+RHfjuk5XLfuIhu9i999K4VtrRQ9oUby22xv8eaG9ek2lBpV0cbpOzhAGUVDP
+K8+J4f3lgdnGqUKluowB3sa3kS6Cy92uE8UWhjZgnsrcztFs7UxLUiqRRBqF
+kDaQTUQn34NaPILaQbiJboK4TgjxID3z2BNDPBU0R7qJX3hMB36jDsG+THvC
+SbqOOlU+UPkJ30SSCp4Lf0u+aeIkyKKvW15Bv4jrzOdEJOubP2TWNu1n5u43
+3jx95jpz28iHzcAF+5oPpu5hfh7W2Gx6trn58/H9KaIdTCGsJZdnNsHSvLmt
+aNjr2sGWpDDVPsn9Lz0UESGEOKZLJ2jlX1li84J+vgBh5XyNLRRyztMgJgsx
+iDT4z2cfXosC0+EITIcHB8ij9EyJRPJ+v3ZyGpyjz4bLVXNfLf4Ef383tBNP
+VC0E3wf9/S7PA9Xa9h+2leeRFq6ubf1Q28KT6sTuI6rgb9vJ2Fft5f77BbwJ
+mP5w8vf/7sNtA//6O+deSfYAq8U9pAnsb90LLFU9O8NFB8Rpg2kuNZ1JB9YG
+oZtWa6dcv27FlzdkBhOseJaVqDRvJH6gu7U3cRlzv11q17Ws4m+GqoKUanbu
+3HnzpCRp7zk7HpKc6aDlDR0V1DdMj3DWEgl3tlga4o2uvXQTsDKRDEyK3Pi0
+R10k45ZBayN0sduEQT0NHyLuUCpKjSn4vPF92qOYT0VfFKYi7XLiTqdAeoea
+aPEtn4u4/SjLRa2ulHSttWdps5N0sWQ5npv0HVK4Q/P5iFM4m75BtqR5ibjm
+6FOQnJ3MOVgJbkW4D6rJZXYstY46ja9W/XAmSNc4UULCNiE7WC34uxDSOZ9l
+nM3PIOs4L0PXApEQflr8BpBv4bf2ebN7zPomXczHDR83a8peNMvqv27ebbbA
+DDzmC3PNvT+aoyaNMheXn25eqdjNlFMS/N379fjQhj9GNjZ/EoD+IpD99fT+
+IsthIwDAD7bklj0u8Vq9rbUYV4eRGozZkDY02afExJUrhFdY3bKReSkuynAR
+FDAMAlwuZF8A0rwjLxwnycbChYcH+4mBcJFHWCyZ1SywRsE1h/L3wfJZ/U8x
+CtpJnmBL11q2TjXncMnaFnG8ppzuLZI27F6yD0XI6yBHXpntcajRPbNfsKNs
+J3GTVhLyctvkmLyaZclLJ8/JdsH/DW3sukGHizH+74ika5RTuWRoFdx0aTR1
+o6HGai+Xx2K51Jx+HX8ZbB2RobhZVqfa1ojN5tdcc83KLWS+zGJnM4sNCNw0
+M6EyLXJ85J1R01dHuKIyklPjsY+vsAKP3HLe5FlHbkH+tEnR593AbV250+YR
+t8HYk1pO9qensLgxBXlbj7klXcrmOY/cbsuQW4MqO9S/SnWnZ4RWhuC+rYrg
+2mcJzhddZ4GNjjgTDOXI7gzK1Ymr2C+3DxzBi598Vpiw1Ympel7iKqmzdGiS
+znHDAtI5ZrBLudzIP0qLq8Qfx48MX5y0Jw+KoN/eZ03uN+sbdWFLDp2y2BhQ
+XjbOzG/4nnlrn0reUHD/xRvMhX2+MUe/Ndkcv/QWc/3Kg8wrq2uZJauqmfWL
+d+ADJNAnib/3v0fuZf4evLf5m9DHXdEkM/7qcwC32gHhjHaUdh7KuKV32Y6a
+tpmSTtu8avQGLFSkN1ybLkZfxQtW55WHxnA3a4C5KF2B0cn85cxO5dFruaZz
+fXv6A+FPsIVprePwd3KHmp93e7Ucv8nw4VbyE3Vtmb+txG4pKcRnjst4pkH/
+/bF3z9/qu1k+4/YoGU6V8Fkg5bsiT4w18gnN57N/fD7DTuvkCAGsgsIsTlOa
+yjK0nL+RdI7xAWhqrk3SIwYm6Z5xulpay2o0pbbB9MVt1157Lb7oQ7cfwe2q
+qa1Iqa2F7f+1h3AlLBdEOumAV5C0E/d1Bd+PU6dwZJPJJxLXoLev5CJbak7G
+bLukUmgul9BcfX+23Wc84Skl5YTnAtk1V+RJubvdBBg7/SVMpixkWK6+1OHd
+3mXb+el2BRZMKYXlMlJOuxMSpttMcfDw8yKu5kVKerxQ1TvinNA2K8ij51kO
+48rf+YTM7w7zO7I6ek1YnTinvYj4jy2qNgmvOcecy4Bec4LyG3ZIcmcVwgH8
+Jooa+CWjZRb/Wfjvxaw9tHOgSW1J2TQzu9FCM3n/tbxBHUfKXn/rJnPOC1+Y
+o6dNN4cv7m5OKT/JdK7cnTdn4USLD8prmS8W7mR+mLkrj3xBGEcjHY+hHdqY
+1Qaj1nIgCkuUimFnBadoMGG7tnBlblZG9wu7/MZl7jbOgeUKks+L4sSG3EYY
+s/hyFHkjem9uQBfO9dKFE/lUeV17ylJdhYcL2J6I66xC7uY0Abr+67uUBO9V
+UXd/a0eCvz+c32mdv6nEy0r7JHvr/sqbebBfhgibq/1dsxARFhR2//NFXTK8
+3OPBhvTH9+8or9E+lZ3yBIqxdiqFtolp61jsZgrr0So6HYyLBxB26UPb9ESm
+wG7mTJ0AmRz8ugVe3OOqq66aT1z4Od35Fv2L3HUrJF8Lt6XVHjBKtOia8/q7
+kbd9I/XWvPPHgoLJbFbv9bSV7ILTxbtp1cjjwUh7rRNjLTV0L48B974ny4B3
+2sEJ6VyWSfAWVMe0kfTLtNyLwIKws/M5UDvgi/LSWeXBUPqlYLHFCQ9Kp1YN
+bh+NPPbqiK/aX+iez0W/i2wfqXTV5/JbrqQRv+VVwfFJZ7yt/dlOeO5iuFVd
+9Tv5F8OhAwNPGwi7oXkAwQ29lhjNik0EGKuBIWbvNVnOozcw7Ozxk3/hgdIX
+PbDJnPbKp+bI6e+ZVov6msNXXGEurGhr7qqsy2z33tpqZuVqUnrLa5uv5u/E
+BzNiDBI6yiEDMOwNAGKtAfihcoXeRoIuw/lpLanbcpQto2eafVI19Pv9Onrr
+iDeKRF7bNfcN3oZe61vbhq71Ogfu4sZqTaFvwf4RekpQpkxWuKv697yu6laZ
+rXJZj02k3V+FpF2SpgY8OAa98f0zO4ef3zcp6Cmj/ZNmNNZ1mBeYIrRGSZIa
++kTmneBSgMh4exG36lslF7qzJoMoOc3lDdtsVpQmsETFxXqMPTMWJgOV1qme
+l6RuaWsCWAkDjmK7EfU5vunOTnUUxbu7+vvpaSHLzdNrH/t6LXJ6TbZm2Ekn
+zn2zBSPbn6Nzy71aQGTHkCd1gMBtjLPzQVOTZtKKTWf25ZlvX+7LZJXMdMiw
+lWxoLkmUW4Hthl9jv7Rs2+GSXUJcQjCRSCbZtoOv2l4Ug4Zi7ZOnO3OJqnK9
+CLxBsfVldOXsMcVLZ8uHH3K1t2PH77bqLPKTe9q18tdMOIr7qFiBPcTjnjHN
+Af87iDYo9WCDE7YKYO8mjtjDWA2MBZrRrIJHnOEwjadP/JFHCd100ybTscfP
+5pSh68wRM2aa1gtfNIcuu82cWn6auWxlcz61GLz19prqZtnqEvNhRQ0eLIkD
+T8Fd2IKPU51ZsVEAR4DnOcHQB6+JcuPOIcthz+i2EvCY3UrS2+u91sZFt4Wk
+S4v0/rcUp7UKZC9JkXCb8JusuzgLLkntcLObTpJdbq1SySdvCqZPC+oqWcn3
+8WeBPb1CVgfl5aFcFOh7gHBV7aoUmKShL+xThQKTYxvop8oIMMtZoaMsTI0Y
+uZefgkYFMlD6T4n1TAoZs+rEVuzEVpUuWsHMU7ZupiaZTRUWw6Z1y2NZ9bWl
+baJn79jS2z+PoW18LIAlNt38kDLcMporOfYkZbPJAKacd7yT5bKeymWxrWfq
+8kuaVYiuXCHRxVx2X1ArX3E19RnMm0nTXEv7+6VYLHK1zC9l/sJBNwSRP5Ym
+kJ0xuUR8ZQTYlcw6V8hewdaXB7w5uprSEfd+ypKnYb9iqyuNNydC+hVi+hSv
+H1TG3dwQXJBsJ+RedW2aws9i+9N5gA26olRQNXzYI6te/D/Dwqp0AG8uxyZz
+EBbmamDeIgTWrL2W8Fwz7Bx47dAv+DSgbmdtMHdetdFcddcmc36f73lG2uEz
+Zpk28webdksfMseuuNicW3GEuXplmem+qi7vt8JZqgtpraqszucFYD4bZk1i
+Yi7mHmGvFhIIGC8Ax1/ADo51Gt5I5icBhoRM7IQAav9+rnnSmN3X21Biyay3
+HUaQ9Aj96YYRtEx3ZMPweqiVFWwhyKgaskEYQcncAZBfiCcKQZWk1FRCUs74
+D3nqVJGMX8nw1N9PHig7+oq92qWnqYSnApk7uqvjqX83lym6GeuNC9Uvk5Mg
+RjTM9/91MqFXydwWvyzy/bJk85JHWaGaZR5lBW5G0NRStzOdVqTTGredwWKP
+wXBS7Utu1pHHYNxIHMSpw2t1t2p/1mf+MdZ9XfuMVw11Z1naM2Med2Pmernh
+ALKTtoeOedLj6pjGunlHNDxit4EQl1VXVfZgwZLoZ0lJ1PVzO1GmtCaUJm5a
+7BLJL7xpW24aoJCaHSwjxKbazBEbLtfYsQ0trioGI0XJ6Bp6BYqJTE3XuFfQ
+i893PetfHnSjkNSBeT3rqV4q10Nlu9Pxg/NmmS5EWN20vbwX/9phb4rCep69
+/YS0XqescCoPi51Xf4F5v/Fy89a+q5S4PjfPHvO9eey0X839F23kYWgYnX1u
+/2/NiWM+MIfNmG3azhtuWi95zLRfcb05rfx0PqDkhsp6fCwj1NckUl9z15SY
+CsocMc4bB59gxDe2yqNegCG6GJGMv24EbwAENgsLAHhow+XMKJ5sAKi+TGQ2
+UHfMgcwGeMrMjo+yjY+PHxTwDE6M5vQbt2WU3SEQFSrYMLSAVg0QE+BKVPen
+paduGHf3aAs827KUZaq/iKnqFk7/nmS28lotDqiKroStirxuixRbib9fpLbW
+3qkDIWSnjsqqIPKJKuBTddBuUZWpJTu2Yzk5wp7QN75+QcqasCWLXxkrEVo5
+LztUigp0/jVPwpapjP+NrXDSw8DQUVYQ6ckPvIKM/AoiP7EMNl/55MKAPWDz
+qSTHjHRKcp9M+VMPnPJzyx7Z3LLEyy0f8QqfOl0Z23VRECjJENkDLEQ+zxCZ
+zKaq5vV1ZNLL5rfJZmqbYrIf5g/psmXQzraZ3Jtr6s3tuh5jZ64rwvQuvgXR
+xdme6/+k62Vu6Cm/Z7YP1J9B40TWXTKQdW9tP2+UiC04WPhVye+wF4cKaRPv
+x/4AhipilxMGmIHDypnDJvPxiRBfOC4Eg7Axvh+b0YcSjz139Hemd4df+IjG
+O6+W413P77aBj3M8Ydxa4rI5pu3c0ab14idN6+W3mxNWdDJnVxxrLqpoYm6r
+3JkHR0KQ4fjZWWtLzHLitDUkytatqMXD275iTtuFT8cGp2HaEf7sgQlAxfHa
+WHHJGKk4yuU1FWm6O5h7vZFa6f4UtxNYdwFnJnfK4M7In44XhG5sp+q4xw4J
+eFJezvzB4/KcdSUPPHawvCJ2LRd/uvnF9ObV0ia9M+pT8guM8ux+FIz/9lPF
+TNXynyypVU+RGjdipNNFPUJQTxXMuYzR7gxyQizUY9F9hysqrL2iJGeMswZ9
+IW9+i1wWbTeX2dyxlRt0S/lEEG6G1Z73WC2IPLfM7+coVOncLlYjUviEByx7
+Rn997Z1dT+SW831+27UWuJP6Gri2jiCP2tL1TkttbsYBNlKnutbuDJITL1Ls
+xiPjmeEiL/1Uegt4/F+JG9xs+UkeuEleca3LAm3D+pfNsw3r9rSMe5L9Mpaw
+9npIf9Ku/JsQ0dVTSetJVsQQXrDhEbFgxWM6LM50xVR+zPfBqWqYzji3/nwz
+c69lfGbj5APXmHGthLxeOPpbPp8EGeS9l2zkkwCuuG8jnwt51sAv+LS3Q9+Z
+SwQ2zrRZ9Ixptex+c+SKq8yp5WeY8yramStWNjB3Ve5k+iiJYZo37HxM964k
+YYZT6GDrY3IuplEykUGcvbs7W/zIMq1Ag0PMdtm4+izSIC3+VdtMCM3bMWwJ
+7aVkxEFqRN4z3oi89Jg8VNz6HBgpvbkBoKzo/mRqepwfeEI7W5/QV+CaUBXk
+H2WL1RO6km5X52xhkJ1HWWLG100Y66VmWUN+c71jGZdLTkL1OCvQQTiWsKS2
+WOTXFmXZE4W20D9WVZnRNY9J/lhUyPICmdk52G/ZAdnpE5Tk8Eg99G0bLf7Y
+o7ZBcvqTPa97oFVuzHR8ZKZkm3paC5Ciaxt4rl+Q7NV3HR2BDipPSC6/c01m
+0uWyPblMcMm5xgnFrdfGXC8H1UnGLgdNnVhI1AbFdq+d5O6acu8OQSzpQmbq
+MB9wGc9PSCbU34qTM0jMRd5wPxZ4fNJG6tQf4a6APyS43J7243GYNz7eba55
+RH/E7jqW1IqvPppA9lcB9gJHK1j1q0qHqQgbxyeNYMIszpedXzqHz5x9r9EK
+8/Y+lWbSQR+Ysa3XMZ/hxElMqe1++gbzYMeN5g4SZNfdtslc9NBGc96TP/B5
+ccdOWG3avzOPJ922WfiCabW0q2m7vLM5sfxCc2bFCabjyoPMNSv3NPdV7sCn
+qoDXXidew2krC9bKiZprV1UzH5fX5KQTzhmsfxFpu/K2ehyaysnnVAn1v8nA
+K+U3FWujVW6MEFftf47j9k447mV12F5Kj3JRrtMW1eJkMlU/b6yLJK3YUEjX
+XJIs9k21hfXbHyxmT4LQ6ekY8c5Tr9L+fIj5fiG+myAq0CoWZynMHqvMDCbd
+YkFhChuZR2Ha/KpefeAm4I9vkDXsgyivzsg09p+8+w3Wu6+axSKfxYJQz4tD
+WNueouVZxGg4KIpP9g23ntjkqPYXtoPY+hcktiir3iyxRYWb1MRcyzl2+yRp
+VAuSGet+2dNtg0qXPqVxTSkOzGcVnKi40GWokQ5R4JN6khT1ziCyw60StqO/
+fpl61fwOkXmdU6dhfNG08L7lz5wOszzmtiqrU/ioOomWy55IcZkctgpD7CUO
+UziSudLjM5zxBnOME8vSWTxiAxP/321SYd7abxW3UFhOw+zGvsf/aB47eYN5
++NyN5p7L5azuK++mRLPrBnNuv+/M6YPXm2MmrmJeazfnTdNuwct89vchlHBi
+3O2p5WdyBaDTymbmupW78Pl2Tyu34dy7t9dUM3PXynnjOBcPug1VAZQ10YSW
+5jepENhEFGjhsTITdXwMOG689nnalgE7EAYl0KG6OdluTC48vso7NCdORokO
+YG7KgaSY+2Kmwcgnq0BmJhel+1uTbDGEzYeUz5dfUmMMQtcUkdfpFUS21Stp
+8wJ/RckOpMi3w8CtY/jI+7ENfB0W6QlqeQQWbUvJsWr/Pp1Minmf89lLF47w
+BmMVMWP97C1lr22RY2ft2NoeQx7pcXdyzDsrtCBmJos9JuNyQMxZaOxnoVhR
+4Y4NN8Syf17e+VEm77QjTdIlAU09I7+/jEudj4U28+zuDoTo5suyQDZMVU9v
+KOD1UEahPaACjXcZN76feczbPCUUJulorWQYTDXvnLGCI6uSSaLBVXlMxKqq
+DI1ZPZWdn9AM8WkjJ6w+w53LUkMeyG2psLhwui1OuRVGeoPPGZGM8X0+e2RO
+2WLz/l7LOWucuv8abpQY0+YTM4xYaSCxEmqPPU/aYLqetZFtfJzFhLbWS++n
+DLLHr3xO02lDPzFHvwlmmk/MNJmYabBptbiPOWTZveawFdeR6upoziw/yZxf
+0cZcsrKhuWHlDnwSME4EBjuNJXbCEG9YY4tprST1hTPwcI4UTvL8nBjqywxD
+4dwptsqmiwoDIDYhy5xUmmIpHvU+tkFqJLIe5OydUtg4sdKS2aHJYRRx+qjU
+l/aJlL1ebB46zRTjvkjYR053plcWyeD3vOxvb3cIvWUfz5DPtGZFGdHk0Y2s
+0LlWXlvpH1vbVprJ97bMN1urliJ7pKXPPTP2iBBZtsvxijweGhzwWeWxngi8
+mpmI2SioQljJ2SsirKogpK3obk0mjLtOC84Tn8ijIp4T0Itn+3KCmGqzYB6q
+Yvu47tp04qmBTrBryPPsZG6UX6mUaqWwEJ8PHWNWcYRbfOR9JKlkehT7p3YU
+e3AFO1DrG/hTWbq7Y+vXaRZXmG8G6Hh0q4AGO86pSHHOZOYcZHYLSmeTElpg
+ZtdfyqdzI7ubckDCO1BDGMz/7LHfm8dP+oXPTnqIsry7rxBFdPWdlOk9TJle
+75/Yfj91+MfEPZWmHXFP29lTTLv5Q02bRX1Ni6UPmzbLbzbHrriMldE5FUeb
+CysONJevLDW3UNbXdVUd04/45xXinzFravCZKe8T9yD7WwGFRBwEhYTzOD9d
+Vtd8vnjHghxkM0H80QMQLht80+OhCTKs3Q0JHaOqSUazS0dTziWIbia7O0oi
+c0YON3YO4gsfQ/hyM8syeOYgrvdZtrFLmhUS1mksPQvSt+DOjvZaFywFJdrH
+TtfKNC1YNooKsZDf3B6ku0RFBhUXanNPS6BQJrbqIOo0EW0ud4tTDhQtPvM7
+Ag9hM/4MOdJeV4Ro8h9ZaVXpEPpoXGPOBoAHXWCoV+0pwatFMunhm3qGsGfa
+S9oXcbld6Mk7+m4AJ36ujyLI9IRVOeMisjNKnvDdK3uEsrfxUo+3z59xEYp7
+tZ6nOKUrkNIaFjOr4Apn262cZHyf8jzOT+3EO+Gf5MjBBl2CG9VDyhwDXWbZ
+yA7j7G3WpU4UTDMSJkVDBckRgK9oXgbPfIRjpeXKSktLp3Gb6MKyWaSG5pk5
+9Rexh/7u3hVmWvNVZvKBa82EFh/xqW0+M8FP737qBtOFcjWc8HY7qaIbbtnE
+J+12RL725A/mrBe/MKeM+MgcNWmlafcu2Okt027ecNN24bOm5dJHzcHL7+Dz
+xk8qv8CcUd7BnFfR3ly0srm5auXufEpmd2Ko/spQo4mhJrE/VcIbh5DDVVqP
+ilQS8jj4VOzBL9iJT+Nklpq1K58yjHzupxmeWlJPXpiqzHlXzFSa2xViq391
+hDE3YI7Q/qbh1rYe2ijmrYOkX17TNoMhTQjhdI0tzTTGpAfXJeXqdHhXr7dz
+hJt8BYJUAfS3bJmWyX/2vFev9yCoyvL+fYK/ZTrET2tPaNz0piWbsi1JoI1Z
+CRS5+l3OsUsIdglBLqHKHPzaIVSFXvRKQWP7/KM2KP/QMyjMRsw0uDqWYU30
+KshH3KXYHvLrkUvkWrOiwpSS6W5ImrP8fd2Z9ixRQKCYdG9Wbzc1qadNwsp6
+uBOS7YF8jyZ9WswxOeYYf3RFF2z2xuCm9XxszPoG6ZHkcj5WcK2nXhIFk5yt
+0Nv50aJknlJTzB4HM0DrbJY7Bmm9zfo6I3mjH+puUDXLSyexXw1/ZxFlUwtK
+55i5ZQv5BG341jOais8D7/r1lsQhbdczhwwiDhlwzHfmyRN+No+dsoFPXXug
+00Y+xwMKB80FlzywyZzf/Vdzbt/vzJkvf25OHvWhOXLyStP23QXEI9OIR0YR
+j7xgWi3pZQ6iLKv9ihvNcSsuYaVzdvmx5oKKVubilU3MNZX1zN2VdfkkOMsl
+o4hL0IgwnTKuOWuQcRWz382eUGV14ZPltbkxAb73lwus6qlnvpsltb0fNfuC
+pGflM23PxCea7HtFiPNyqOCfNhsbp0mLWCf/jG6QJGZ60IMd+8KMMLxRMWqD
+EDpo55KuSuEfiCaPKpQu8KZpp2a0DgqN/GxJxArP5UvSJfWZY3CGDkvmbqUo
+aVfK+e1KttgfJCIl3kZVEjneCCJflQTMIDFTRsyU8WOyQlD6f5IrYJJhLFeG
+enSSJ1xiES4USCOXVkXpHoPItasro3zot6tzf1SBLoKnC7g5kW0jSKpsUbpB
+ChulH0OyJGNv6roJkpxB9fA6pzBA4kY+jjANfl84POWlM9bQVRIoe5HWQC1U
+vaKpzVC1U0aliGCZEgGOnkYnJKc4pQu4gDWr4XLuJpq+D+yV1ebNg4kMWn2c
+IoPniAyePv4n06vDr6bbGRt5f8q9l5GouHaTufEWMYE7IeXp+bM5p/83XODq
+MPoDIoQKJYTppt3cMabtgoGm9eI+5uBlD5rWy28xR624ksTF+SQuTmFj+MKK
+g8wlK+ub6yp3NPcSKTympDCISGEkkcIbahLP1CLYchUZa1ZVc6kQzl3LEsM3
+IIbZ6ZQIUc+Rw1tZcvBFhz11tIiPuXQE4c5TcMXuvLMUIAv2QqPiXkV2JAF6
+PnlpqYnnRcW2Ws71ptRO3Gy9SdfrDURL6DYRlMxzkrdMTPUvBpH0/fw2yXUx
+TrZ0YPe4hRAOod9k/f+bE0DO26MuziROoL9v+gwKd/T2KM7ib14XswSnN1AZ
+QyKX1qTsl1fYAh4UOp5ITJcMT0RuwoKaLR+lUxg7TyEWflinu4gj3+VNGoxk
+c57YLbX0yLj6PbkHyZ/h75hAtsbcsQVCeCafFEoTUljl/I5htEYoMYzllsKE
+GKYqMbxrFpZSllE6j1TCIlYJ75NKeIdUAvZ6wAOZeMgHZjzIoZ2SwxFfmeeJ
+HFAZ6n3Sr+bR0zZyxnH/xaQWrtpobiG1cN3tm8yl90nWcd4TP5pzBnxtzhi8
+3pw05gNzxBRLEDOIIMaZdgsGmTaLnjYtlnY1h1D2ceiK60g1XGxOKT/LnFV+
+vDm/oh2RxL7m0pW7mc5EEvcTSfQkknhGSWIEkcQE9WrRAYRMBF1A5eqXWM92
+HWUjQhQ7CFHAN5m/M+89wQGOkpUkKsKRxTSPLPQA0E2TvcMM1E/5PRkKzorf
+bkkdpyVkN00J8b5hTdvd15B7lnN63tT4ZCer22jx54RM17I/nWSiB/83RQtw
+vcYKgsmpHflBvPmdFltVak5oINpCNiEUsFvAHMAUEIKL/4NCOHPHtvijpmcQ
+J0RbRQmhJxj+a4EozqtxPxtkhk7lMQZMj9iXFq5/xw0h6MMubV2rLGRznBvh
+almAHd2ng9s0P+jn5QiWDZ7TwyETRljjZMIQTyqM9JzQ13lbqvgOU9kRZe+h
+dKaZXzaHXdE59ZeYWQ2Wm/cal/MJ8cgf0MsHd3Rcq3VmFJjhsM/5JHn09fU7
+7kfz+Im/mB6nyunND16I2rFIh843b+LdYhfZXOKpH9gxPX0IscNYjx1mgR3G
+c9Wm7aL+puWSHpRT3GParujMdeWTVpxvTi8/lR3UCypamotWNjVXrNyVXdQH
+iSF6eQwxnBgCteYpxBDopZlDDLGI2AFSYhWtNX6OUYAlvvJYgnMNX1K8I05r
+Kud4Syo/TlokbOG6Q/S4E//IEzlI4HUp0UrHHC1RAswgMW7lMlVcpZpCsyUn
+2PMKfk9WtJVlXt4OH8TZ7hTWDUl3SqpZOK/KshXeQ4hrCLKARBC6YMqIHVtE
+8IqCiLl5+wREW/zF00etLB0BFTGCySMGeYAqhsaOL1gzuEQj8Egj9kljy5Uc
+t9PMUxaZ1hg/F8nfsRG70g62mD1VDA7gYQA5e0vmOQd3pdggfZBsmhU+KHtR
+2S2bQAxhvbCK9cLITCIxoQp2eJ+3Jcwvmy+6oT7phr1IN+xdQUlFJScVk9il
+/JC7SUZmGAL12z4n/MJOQ9czJbm471LSD1erfrhtk7n8HkkwzqcEA47DWS9+
+aU577RNz4ri1whLvLCSWeMe0mzPBtJ//mmm7cAA7Dwcve4ASjVvNESuuNcez
+jjib67znVRxGOuJgYoq9zNWV9cxtxBQPE1P01oTjZWWKccQUk4gppq9F0lFi
+5queqFhbxHpirW774sRjeW3zaQG2SCUg1u2ErkBd5h219/MYg48Y56N4XUKS
+aIwgEptQdll6p5DAWkQPB4G/utMHUYHdmFV2eHCSwIKhNE8wFNonEG9HY5qW
+WoP/ohtijwng9xAP01NwJUFRdzOCgsnB7xoRThiFFTM5RGzEV8oKYqcu4jwn
+wjM2MyWUPI6IC3BEtp6S1x+c8j+zu7skKYkLEAaP7a0JMsi5wyZk0kiRvoN/
+lvTzwk/QOLd6UmFQHikkSYRIhiSRmMCtsVliEMsRxVRNKEg6zGy4/P9x995f
+clXX1uh555yqbkWCyBgb++JsTFBAZIQQOQpEMmCCMcEXMCLnaHKOAkQWIghE
+zhkRBEotAQaMTTBcG2Mw/AWv3op7r73PPlXV3dzvG+P9cGogdau7JWrNPdec
+c61NpipShyd+sYSaiodEfrx37IcADn8DcPiEwAFjtFcCOKAM+adt/kPKA843
+nbT3N7TR54+/Zwrxu6nftvY5URqM81GB+J/WTjd83Nr+jr+0Js16p7XRYwuB
+RiBAPAsA8SAAxB1AJa4jJWKdeae31p0/tbX+gkNbExb8FqjE7kAltm9NXri5
+NBu/au3Tt1rr4MXLtY4GgDjNgMQNb49o3QEgcS88D4ky8ZxE2OYKpVgMQIGU
+ghoPAYoPCSiWrtKKOUItXjbUwoBF0IiEgJFrzOox6wqEN0h+qzdIUtUPc5ph
+0ykENB6UuwU43bkM0jB0e/qn1IJmRS2gcz997P+TH9zj/sKKOSIq/Elb8VjY
+3bMBeCMTG7gba38mlv5dRA6KBDlop0IWdU2Fz3pQ8Reuo3Aeqq93QoBrysos
+Oj3L+muveulj/l4+X8psLUo5HyW5h7ikb66UdZ+UdZ8r61nSDcyW0n5UBMQn
+xU14jhKjmM+as9rrlNHC5CjpBSImcmfwLqVIsbwxOxGX91VU3l9Sfgu1g9Mn
+c4dw/L48xojn/yFw/u9/LI9mTzkLSvyif1Gma6cbP6JsxaT7ocQfX9gaByU+
+jkr8odb6c2ZAiU8TLQGdzONaYxf8gaaGJi3YW3jA1q1dF23S2gM6Bkyk7tu3
+CgmPU7HMlyzdusCU+e3vcAbjQdIWhraehTJ/SbIYbxEfgO6B+AB3D6oxJEv9
+NeEEUOrIC7iTWDEodz7wsCoaAT+Qks+o2rJCuYLUIkn7ULJ4e9n3elwwoekK
+d9WwcDue3U/EJczRhEYcTUBYgt+tHtrI46GE/0UlHB3aL/Ch3ZBDG6nRP/iB
+XwH+dTrI2xb2eKSt8Bnwii9c3aWrbk/9C67uxd+7nc7z24X+0lNW/EtWEjld
+isV+k69ukg3o3J+mwoErddIOKC1BdwMv7aKlXLDyFL5yC8PObyAIuTE7QSCl
+WsHcy/vDmav4HnjuMwf0g6L2PeqsAD6kbSW/Bgf1XGLwfFAvJI8Q1T9l8djn
+owKI1TwDqvk2W82bf0FzL+dt9XXrbOj3MZF56u6iBh7wTesoOLBxrRX6h/ud
+8G1rz9Ogos/9Cvr+f7Z2ueaz1k7T/0Z5hC0eeLu14eMLpKKfg4p+GCp6JuXJ
+13vjcuj/zyVmP3r+UZTexAQVagDbw8G9y8KJwO43EHb/X63f9q3UOhTYPXqM
+Z5iqngZVfds7nFt4gPSAoa2nxVqYYw7wPlEOMcegugAORWPqE/MMWNmYvPrk
+jVGtT6GyHePXgzyqbtYK4HlG9IJn9CD8ikI/VOFU5fQU7nTHbntVZOCrDsd6
+xu4AP/Doqk0fseZK1pom0X5V/UpYzc06El66Yxhp9sqF49pF2+M3KtucXksi
+L/T35qdAiINPXXWA1bwjVPPC791L1Xxvie/s0pU0Hdj4X0zUZ5CmJQ8d3DmV
+dmFLmyzFRHFLk1+64qaT/CYdXs58mTewyom9L2vKlccspmWSlVIt8SZKU8nJ
+SwJkdmKidO+MuPU95iB+QOx8z7ExFmRLmIR7kui4CSeZbnU+kMndM3z74bWg
+jNd9j8Zv0eWbsb4t488pPoRu3wVbft06B5ryM3fyvBulOwxYYwzg0CO/bR0I
+B/NvTvq2tfsZ37R2O4+b812u+3trx5v/1trmrvdbE2ebUn7h+db4lx5pjX/l
+7tb4V2+mmNGYN89vrfPWqcDBj6Hxt03NAb3jwm1I0puyaD3i4b/pW711QN8K
+rcOhnNEdPDMq51vFJbyfmnbPx182B/VCdQzFDHhv8bBESXNMyR/Yo8IDOypr
+LAlzcMMBuJJIWdzZ/vspjjV99ZRvg02J05ELFQgVOxSLuBf/i2ZTc1ezpVLn
+p1YOqXOOR29/T97n7clb2hLGhw7f3BVuA/++A6rehlTv+iQu4wMHUoa1e2/D
+Hc9302nVpyy88G14SQrUYt+KN8j7o6oWmZ8e35ZT/d4mzJyehrUA34FjUy1A
+ygtgGd/U4ATSu9+7cRjNtmEt3+hqPlfiTif9dPoOegDTISy2An73k4Nq9pR6
+ZqKiw0OZ6bWt6mepe8aqxtAOV/XrIr7Pa73wQ65qPJxRYnv8l28T1UbvHsOA
+9439C1X2net/5Cp7GlT21VDZaNVduOVXNMiFG8DRrkPKTZLbgXBIHwJdtRzS
+KLvteQpU91lft3a74EvajITSGwr029z9HlT3ktaGT/jqpnjzK/dCdd8C1X0N
+ddho5a097/jWmPlHtDZacDAf1gun0DalnRdOIt8fw0B7Lfo5ef8H9i3f+m+o
+8BOWYIUv5Sr8eqjwW8TiQ1nuIbH5npGxjDlGyEd5Dum47by1yj90Mp05vF8f
+RVkBe3iHlR4c4mpccZ+6MinWudYgMWN6skKq9ivH3lelcadVR0D9r0q0etWw
+T+7Fz6Xkb6ng8UwkixVtBfLGoOscQ1Ra6/2R1rnOZ8H3gdccyz3HesdKv5d4
+OP6S6jtotaHGsa5nlG2Km0R5Yt6uuClHeGsTK7DBjByqeziVaGFL1PP1W6Rn
+9ycv6fy3c5bg5ErN9gU1e5+p29lUt/OpblXx8q1xbe2u9iYQ63mOWLM8zqcy
+kmtqlYFc3z/6A5LJZ2r9buTr9xqo38uhfi+C+v3T1tIy78KSOZJsPZ2PkNP5
+oGPYet8difY5X0Hr/EVr8pWft3ZGdey2D6mGN4ca3gBqeKyr4cfYiicZ/Tpo
+oS8Bwn12a615J8Ip/cfW+vMPbW224ADaILTtwsmU3cFAH5LuPRatA3X8E2il
+V20d1Lds60g4pU+A+o3r+GaR13GsCjM9j0nYD8cb+LTuIZl9AdRxn5Pao1oW
+JQ0NupCIYz0vW1fPOZHRBhfBC3qAr0Rlw3VdykHuUiulKz5f2iu5OaEcS5So
+MwlY+Md9ZToZyx/COdZmTx17zl1RNvAHLeRHfnn5HP8CBf5NBsOkR22A5w7V
+6P0NfEsX+N6mg/g+eqfDk+WOZ/uSbdTJ476TbmIhNbCk8OW2pjPdh+shTOfk
+rU5Fuz2ngF8zIMC+h51JhCA7PDo9uaVdKJx4AVUi82I9Rd8MuPGzbFA5foxa
+9GskWGGbi1a2cmQcMHxSTtNHfy08Gdtdrcjxf23dscFHrVs3+pSCLzgS7Spy
+0lcsYmnbuxtHZjElN/XAb1tHHsJa9cF//La1/3FseRNnRkML2l8MxWCMdvvb
+/9La+p4/tzZ/0FblC1yVL8+CNvh2EbYua42Z+yfizuvMO6Y1bv4fWhsv+F1r
+4oJ9Ka6//cIdyeiavGhT4c+/hnZ4DajMFVsHL162dRRU5olRZV4HlYnxW9S0
+tS1+RHj0s9EpO4+4NPyve5e5NFRnjv1xNoK1LyzOBXFx+gJVWi0FCu8ieGPn
+egK95Pi1WDpNOs++4DL1bTSeeXL88Smsz8ruoPTtbAM/v6zjwk2nJheuDMvk
+2Yg4glXYwz/yZ3MGX5CzAY+wLAs6YPjtfX+GZ+j9dJpipd5HvLmZOEgbiaos
+HF/uxepahqtSlC7SvGbkKobNzHpNid0jMHCfPfRy+iFPknPPVtvjUm1PwqNn
+33MUGEHnh0UlrjgUll5eDSru+/PJHn7WnYGLzRn4juOws8b8xUnGOOqbqjp0
+hkhs2haqbkfgsrsJl93nm9axB8BZeLA5C6d+29oPh19OERn5/C+5W73m762d
+bvq4td0df6FI2uYPLpbKe0Mq73GovPuh8u4kAQoXUI2dewHw2tOB1x7XGj3/
+yNYGCw6hIAqeidvAmYhhlJ0XbQHcdiPhtr+E7vWHUH2jWr8HbvtHqL6ToOrO
+kuq7XKoPAyq3S/XNElcJOe7T0dk41/FcDK00tQJZepbz8QMoQZagl6qckR+/
+4cvQnpP4ZqZSxCtChP/6alyBK+Of9MKM8vkVbWVSdfVgnfVgxQ3B/2rg7zUT
+AlJv3RFIvLSIaq/0tcdPE3/MBv7EBSFIQfm9/hHX0tUgvrHhKMEynN2UI9LU
+Ij5NV4kN18EW4fnYgyVFhTiKT8U+fiGBamZWCqd0pUaCVla4SsOqL+i7/9GV
+mtJMLTduEXEmjA84Tze15JhyoitDWi7QzheJdi5g2rnGIjJfUdNFh0YFIaae
+71OG6251aqDsbonK7ootUOP9N6U9SRzagV0boqAiEKFzc+ShfOBh+hPj4WjQ
+7n4q57wwBYqt5C7XfUpRcXRxtrr33daEh2zpvchzJJjoIDfnptZ6b1wFpXdh
+a903zyI6ujbQ0fHzD29tsuAgd/DhfAk6O5MXTaB5NaakP4Py+37rt33LkRaM
+Ri7mwmz5XQvlh6kP1ITvohaT3Z5HhZo++64/AF8Xesr6cDMoQaGoOdYgHIZV
+lpo+DKkKWT7OcnpD03ubmatnr3w6In01XSl1plA9RCoLLK6RWGk5/tcw+b0X
+VyxdbdG5VibPtZeXh7qE71fiN2+Ywvo7P/Arfh3MgQdva/g7wmsD3+X0jn9Q
+yNxsqrvZdBzioXN/EZYeFcu9jqn6M7FJRm4hYhKFObLl6BWLTBWYu1lyyvUU
+vbfgPpX7VlVl5EfJ6acrofIeciLNvO89lmMZZsdJv/eU6fmeI6ZJfR8UIZ99
+vhCddoP9348W0pKdZ4BxBj3gmnz+oTqLJsu9pON8SAotRqaoGDeRXnACFOPE
+f7Uu2QKKEZXabf5Do+jYD546hdknaToHfEthS1VsMS1BcSq0U4mBfkVLyagv
+vB4K8hY0YT6gaBUW5PpPzKeCHEsF+SQU5OzW+q/MFAX32ta4uZdQIHPteafA
+cwzNdaApE56H25PWM3nhJsJG14Ki/Glrn77vtQ6AojwMinJqVJS4euMaKcpb
+Rfe5l1jpMGKlT5hz8SWKZvU4ZrqgpjDfc2ejaEFIUf35CO9KqE1cZDc36CVz
+LE9867/mC4GLtNn67BVTpK5QmctSrynVBnU3CisQO88Vmvh7zTan2xD8WoUr
+whxrsAe/b44/BNQ/kudP5RmIWrPDqA3xTQ2fAQcM1uFDTSnG+fzup2LE0pyN
+hfEAHopchz18BEIZUgWt5GoJy+he5Kv3FSoB3V9TVVT9/L31cMuwrh7LTpcD
+7knp4J52Doc95Li+5tTWF3V0xC/7qoedRBKYY0KNwWE3k1yQj7jGNv6UZp6m
+bfY/psbYDTlXNBfs8BzXRN1lf9Zd6ND7A0cW0RlB7WXPU5VvQqd3KXR6V31G
+S01RQ932rvdbW856p7XZw32t9Z+M6+xBqLO7RUu9nju+N8+Dju900lPXnX8U
+aTEYacDBSj78dibXBE1Q5Z57LlpTOr9VWgdCrR1eU2tXQ63dIBrrnREHVX1G
+u8BXxFGZG9fbOz1hvVX4qK85jEXgifg3PhFzLDp4Szj55vVRma+7UeYAwror
+oT6Ws3VH8giVER2RnKrAo3KlunOuwNeh4WEX1Rl95xJ/iJJ+noEfe1xuj9Bp
+8gi+PIwl8HDTFR7+cjaVWw9WS492XVRus0ZhVVH1lXwowqcU0jjOd3qkI4zw
+D4e1PTRQRfix/ZqrrxwLLJtK5RUeX3MoEzBntTeCEntRSkxlTC2x4Bhb688k
+niinvEfKTC0JLDPcVXC9lNmVrsxY2sT8ABqPp+/K21WQW6KYghYFBv9wRzDu
+M/jd0SyokAlJMidaFf/yrd0NH0OpfUhm5CRbas9Jqb34VGv8Sw9Jqd0m4soV
+rTHU4p0JpXYi7UFAgQXtCwwJ8rG2K1kYLLJsJvLnaGr19u77EZTbyq2DoN37
+A5TbMVRu3O5hePBSKLeroNSmiRSKgstM4ZyzRXSJjzfmnZw+nidGZp+kjqKS
+y7Hm4GhSlVSDSFx1S+V01DWIhn40N6Ci8MaB2stKQ0npyfFGROZ+xAa5BIUd
+UiEu5zWRYVhYI+UAk1Osx1VXr6uuEr9yA79NE79fgS4M7r9+nc9dKbX+HWob
+0VFS4GuTCg7PmEfonMG6wGp5uMcdPg8K83yQ9JcHe91ph0X3wDKqvzzg6w1L
+8kF/hFERY7E9ktM3vpLWKXKbFlbam3KSMVP0Kgm7BC+RU4CDd+wWvMYevmiU
+L5lTzZdc6B74k+09Otmo7MQFJAVFyu5maOXiskOv/0Itu22/oZwttnQY3UHP
+H1mkqimurTuKR3cwxrPXKcwkMcqDDsOul/8PjfFgQI9chpnvUUgvLL2XTOnd
+S0uRKN7z+lXkGqLjgIxyrfnHknOICsum5qTDgcAdFm5LQ4EY4kNWya3ezykn
+sF/fiq3f9S1LTiJGf05ZUi2/60XvRMXlLscuOTuAF1Nx29dLwf+XJfyvrZ/q
+n6lT789w6iHTxJPvfWWbIohqHSLj/KucgB+9tYwtxgyPwmX1KMRYER+FVB3M
++ZZjKko19Kq2aJ+9ujwJOE18hQNyDhdhA/+Lfg9flitcERbuiKMi7MHvkFMR
+NlwRmkLsdyUinSNSh7XxWA8WSE+iJvH4e3io1OQCOMC0JpfCV2oHh9Ov+aN8
+xEkDWYb1R98ou8AddaqVhEX4tDMGLK0MChHOPqWXryi9JPvurYBixsXoaabY
+8XoGKtWUgpwhkiZae3UFiRbfeVCQ50BBurbOyJuss3CmDs9CHMM/WM5CCsMr
+7cRQjrR3qLfsNP0j2oa4tRTlpo8sioryaSjKh8kCXH/OHay7vH4N2YBj3jwX
+6Odpjn6OX3A4Tdbombj1wt3EeED9BS1BpKDjqN3bG9o91GD261u+dXDfMjSb
+VynMJVyYKoWiFoNU9B6hog9GZ+NzUJAvmuJ8w+gytjjfligAZvigQNmoaITM
+lOsTR7Tnj8T1m9oV+hqFNyBUaREVJzzw6cwOnYjzGh6P8NrEOqMjc1hYcT3h
+sUfH7hA6gQsSZwdec4/DTwOvTSq/gs4jFi4ezfBEfLRXq+XhXiye1VwZ0Sdr
+O/YIUchHCq4q+FIFfenSdGdUUjnWE748k51rzjVfUq8nSmqOnG/qCLy02jxy
+BSpl9RNfVsE5t5Z2cBG9HM9ZttvFLZjerrS2gtLa5hvfzcU08wAeUT1CzjsM
+oaObjuuzyLs77Ruhml9KVyfqyc1/IycBt19scf/bXF5PxeX1CI2zsqMwnVUU
+8vPOk7TMSXDuTW2Nnf/frQ3p3DuAz70Fe1AujtyFhVvCuce003V5i34MJfY9
+KDF2GeISwzFYXCV/JZSXyp23RPTTnn9PyoisUtBXxH2Iy2wR+YDN1tuh2sJl
+1pSjcLiho1RqXGmFrbSMqGlJIkzheCnWW0Nqg4I6/DBLpaNreSypIfhfQ8OS
+GmpKSr8UqjvLFtJtDrSf237UxlgC8BlwvlBV9GKB9CaqDruwR1fFamo6cqrd
+mDsg4c/iyxM5fr3cfemnVGGEX2GNNeuOrRyLLDs7UWY8m4Gnlyu1H8wnN8CW
+Gu54wIjokz8LS01DZbPX+TOfYqO9KIm08k4RTeJyw6CZK7dJX7XO13JDexy6
+utOUXopIeawIKBg++4M5zdA52PdEDqHhlnGimBdyd4eW+c7TPoGS+ys7CPf8
+mZLjYcm93Br34jMcTCMT7y4WLl/DYMvlZOSNfvOs1tpvndz69fxjyMwbv+Aw
+stLDU20nCbpMFLo5HujmumLs/Vdrn75VoeyWpbI7Ep7jpOzOlLK7GMruChE0
+b4CSw67vdhE175GJdD3dHlfq+Q7PnKZKz4oucem9+zaUHtRfNszpL1p+etJh
+CVJX6Bkpbimbt1TpCpAqRJmo+oVYTU1Xipyb+4SOPnhdCmuv6WpvqUTtNfC1
+R2oPdyZ/xA8frYOux6cyLJ2nerF+SqwkPAWfGI7V9T2ssx5XZ4WrszI8xlAK
+eZb1kMtMkRl+SNpI6kB73TVtjit+X6rthwto3xpKkiz7h5oJBU6k2nAXW3i4
+feC0k7vgcLtzA2zk2AqYvsnfWzds+hlNUYcVx/4cRjzP3l50lMlsC5y8l+GP
+oqWgRR4fcqin7IET18Ah8R4m19ippnLLX8kmwD0NE6XqxkPVjalU3QM8u/Hq
+raStrEf2+UU0w4FcEnfD4f0AqK+gbRAfdjjTwRoL80lu9NaGyvsFVN6PoPJW
+ae0PB94htvIWLx1U3uUib06Thu82qrzhTuLUQw93Qii3tNU3p6b6FhmbwVRg
+QdVXUPVJH5ixH9h0vaDTZbgC6RikCsTlpKqM8oOmxNIk12D5LNMj59cbyw7H
+Cmvifw3B3xuKHx3BWir8CSipt5YeZEnpyUO18VQTS2UIFs0ILJ/lsJqwfB7v
+wV82KqcWliP82SKqq2uglixJDHuvbuuLTjOqL+nHqMYWsuxfU2OWQPKp5nsz
+FEs4bsJWwB0biE65EdsBuGne19kXVGcYPzlfbAHSK0U4QWvglD05kqlkkuyB
+Q3j+KTjdTmArbvfTv2FvHGMpGAi7kv1xDIWRVTDjffLIMXK9yaNxrT0rATGs
+NdUxb6AtCGjPoW1giSUKKjjwjLtd7Sm3nRNVJommuSGQy7Fi1/1MIiwrtQ6A
+ejvU1NvJUm+4iQnvYFM74Xrp44hkynDGvTKgoaedI5oyrKH9XFxzb0nNLZR4
+92Jv7xVYdFnhtRegnaSBFlR0hT32sMFbAOUWdnn6/O2tpXCNJx+BS/fyOfgR
+VhWUFv3XcmF9jSAtdbBF9gz8KPA6FKulx1XaqomCKvG14ZuuAipKtYxnM19k
+OdYXvrwAn8LlRSUGnwIFBl/mNSovV2I51lh2qasyp3hQlWml8UlGvJEMbM8d
+w0qL+GOlXfuARv1VmiQOiS0byZNdVhvKlKKKULXtYaTK/VkZqZxsU706UuGT
+0sLtAi3cTjexbEnmHFTc5rUV97iY4feIfKlKCbZy51NKBSXMX88/ltQS3Fa0
+ERnjfMJtSSfcZHIRvGmH3HJ92mKEkc29SDX5AVXdgabqjpWqO0Oq7kKoOpU1
+r6twTD7ptL17SFItj4up9wy5DHHl9QaVN99UXnTiZVx+JZffkqF87C0exi5E
+yQqocE94cqxE+DNqBaLoUkatIB+D+FrQqAaUJdXZSDkO36LjcOke/K8V8Pea
+1D3yJ+sXaMgXWGWZgZbmJqjW0xn27Aistl6su9VRRcQifQZr8dkSqw2r8Hms
+sxew5F6Eb+1OM5L1qdTgC0GxZb3uRJsT1JqrtxyLLbtY2jQ+2LRV8yXXFygj
+cckFB9zo8ICbactOiKSKkBjyum6CL7vLlEyaskMx0ikmu4eEEs05dQnwoMO8
+CR505BSIcrLHaUIq/ySk0rVyHAZDcXLbme9T/gRT0Js8urCm9B4k54BFyuky
+q3AFBcQwj8Lk8gQy71BJ2WDBoRQUm7BgP5ow3HrhFDnwmGDibci7OoKJrd2v
+Wnsv+gmJlpiarpQflB2W37nkoXP5qbIyDcpuuuRW7nyHFxrrwTfbkU0vZD4r
+KosvwR53+M2VEpwn8xAqbOoB+DaUYI6FmHMIm7mnnIP+LMyxELOCS3ERlWLm
+a3Gkq8VctRnoBR0nLdir4IfqbGm6dbC3bQU2u6lAs47H1x3SRNQ6nmvgiTYc
+C20UltwIqkgklM+JCvIcHXr0ec/jf/F5p9rjixkXZFN0SF+Ur3FRFlSTN5ma
+fC06A+05OM93dKvLWWhZpzkLOxXng1KcbNV9wGfiOD4TZ8pIrmWg002B4r7N
+uEAxnEL23Ta+QF3HZ5joscJE1TWoOxuVjU4BNrrbxf90nR8GV1DixDEFtPUw
+vIJFurEp0jEvvNIa98JzrfVefIJ3cVCR3imBsevhuZKuIceb4ZCVrgWs1Gsv
+h5PLjuExPiP3FKd9R9JfQmY6Tiy/X1LA5Td9q5Htd5AU6lGmUE+H5xxyGUa2
+LnkbtZgRpMVYhoo7PmZI8AUHDD1LHeJYarpY+bx8PeoQ50vBLgoLFifXoGRL
+o9f0pit3GPwKz9CG129M8ZbtipcruIkVPMQepFLBQ/E1x98ahR8dwpUOfwK+
+6irLDHPVmnW9Sme7UZtiCWY9+LoMluQyXLp6PFJdupaPq5SoKXwHX5wveTGz
+sBxVDs8mLZkLD1Aq1hyrFeq40h1Kvb5I9Zo+TJ/uWLNsraOb9yDVrD9U700d
+qsJlMeGCdYsKzfVStzhaf0Vct9aKsEqN4bTH7c+parUkUocrKzbAa88UXnvB
+v1q7USf5OdnxO0MniXt3cS0WDv5Notpd3NoY12NR7c6t1C67gDMohDb+9Wlk
+z6MTOBb4Ld0QQvz2OFFw/pts+k1cV7m3WPW7yCG7NXHcycBx2bYYS1s69ur7
+BW3q2IesixVocPAwU78nSf2eLfVrFZ3rxMa4WVSdO8XKV011dsB30zWs+uqr
+pobnGt67IOK+bet4iWivpaHCng7jy3Cs50W2nokb45pXR4yxpuHB3dALRjaw
+npEiL7UC1mkT/2sY/h59dBAMF2sWa3E4vg7D8sRyfX4I/he+vNDA+iypbyyd
+OMMPnZyvUFUWvoEszeFJUk2O1ZiNEO9BrT57hpqeUmryWT5H4d8XqjK7smNd
+2vM0Jrt3a7hzvJ6n6FWw634Tqaefk19ha/PSdrWp/abxLhzxFf+C3HiJyOi5
+ih4GqTyW/Nq+8zquT1R6trsT7UN25zGATfX5dF19zhJP41aKz4yX/pN9jXNo
+PHCt+UiCWfUZP/+wyvm6NZyvODWhtiIO8+JQPnscY7gP7fs5pdrY51guUaNL
+Q40uTTV6nlGBrjKE2J6zd7lztkqKu6lTJMevS52+GRBkb0lGtfpu07JkV6gN
+S5VpHch7fXrwFnTwSrHi3uZFw3Os1R4s1RwrtYll+gOsw178L6peZdWDKUst
+uRd/iiWIB+KLPe5oRPXmZaq/kk7FwpyKr2ZUiQUWIh6Kb1Dx6aH4Jo0DaSHy
+ATm/QmihGOGrQDnCVya7gg7JPinIJk3sJWTVHNktNK4PRfx2FvHbv5DmY89K
+Vlk/Jo57qzShNNwQ1OQXFMCuq0l0Ns6IavLEfUKuqzpQfGaiy+G1ILbzme+a
+plT0IEyQosfItn5dXT4PdfmkpGfuF9eDdaHxr11Lm6vHzb2IUjQ4PMi8l7Uh
+dD/SZ6fXhzz39U0qh7t/5pyQZG3KPjuNAKhWhBxYVdobJYmqZ+hMOUMtD66v
+T3ZK6vjw3EhHMjWKO1/gtfDNLPyqdJpuwTECKFAyU8hSkVhdokaxv+1RxZdJ
+Mh2spP/+DIuylF9bitu/ytyMqCmW4surYj32uHrswXpsUD2Wth7xKehwLAxh
+fT0rqDjLoMuEJ8fqhN/29UmHZY4FmmN1ZvAPDg0nHpahIiQklojsYviHhQqF
+r5Os0QsTPag/N0mbNeemCkWYVrO9qGq013SqU3FGVDRC31970pjbonCkaTY8
+P39nXJK9NeHt+C3U6iVf8CQh9qbTPuF0G2q3MyQP0LFWH5FcwN1Sq9NpNSz2
+qOOoRz1PUuDMc1VMwsGLjSvn6G5GUEKuuwWN39tedU8SlX5KTgrX66igXjEp
+jndanLrEOyoXSM9qOe8N4mTeavpWFZlmGZ03WbNyN4atWX+u9uq5il46vDZM
+L6s8uEfqtrR1iw+VLhawb2vxaSREKVvRapI2ExVNutWvpKwHU7gowfbi68ro
+Lw536k+JYw6l47B4aNKLHJ8lVKW6jnMdpS2oTHt8idpjdHU6RuEnx4N0KOlD
+z4nzT9yWj1PXc8pxmmOtZtcERiVSXA0FoJ77YLJc/9LmWFVLBaiu6ruShquW
+7FeuZM82JZtsRy3lNTYLHa9/9CGCQE6KaS+2pSopTf+blO37EuPBtPhiWuvq
+y3aOlO1TUrYPiPWC+u/NHC6g9vRSbk/fPJvp77wTgAKzvIQb5jBkgDNTqANv
+QcfsHjSjuN3CHSMKjFYMt6kcOPil6MGrQ+muTKX7uzale65pV0MqHB63d1To
+8DDXtmooQcv3KWOUvhDR4jmmhM2xm+O5K1VsKticvpUqpsa2wFJuiLMqwVkq
+Y6dTQX+LBQ0PFAIWc+mKWZ5lsZ6XwnLWE3ugBbwtFfCc7Af42sSKHeIOVjxJ
+Xys7VSydqcp9ydRko2VIWL+SjTNUuPU8EGGmw8OiGg6OXMrOPfnzJdqnwp+B
+Ms6m1RbybKMj3We0JPJF7dkrxXyL48ifUTFfvylw5M1YC8ZixptWLp1UU8xG
+E3Z+qRg3ypVrz+CpfAbjqIfTmJQvn2dMnKs+l7GPj51GjB4qphYwl4fjH1zQ
+80xBvyAF/ajzUlkrvsUnGKifvRDO4nMcb8axENSc1NjBvB6fxftKmmGKpIcM
+d144wfW1HJldi1JEHJv9ART1Sq3fmqI+Uor6BMrysdd6julv1fDpdCbf08/C
+fl5GTl4yZ/Mcp0/1xpw6x9LGyabaAvf0egn9Ckl2g0PxwdObuXp/e4jWPBzK
+TMKXDKUDfDiWOtb7sFFY4g3RqQdX2K9m38dXPIBfRYP0tR7kysSY31A5KaPq
+JsJc8BH8MhzBhbNmsJhzLGb4W9CQojuOSWbKmD0XFMTDGwieo7IG/oxdri9p
+6XILJzshj+az+WZzNvOQY11Z+7ZXzmgjRalMjHIURWc3rNJqbX/V5sFdN1Ta
+W5rS3tqU9k5haTvLR+IQxxz4rZen7FmtrbBYPyxRGYqt7fDl3A5rIMnJyDMl
+lOTKe0FrHJX3G4nyVr92hpGruC0eS23xnxzVXmv+8SJZHUkLPjgYeCC1xniN
+C5/ZKluxf7sz0W3bHmuE4hd00WxdiU+lHXW+xM82bTLT7hHB2X2Tys3vcHLe
+Um8rZz0kV8ekyhynyrTMXzSl7s/wHm2fMX9A9W1lLql1eJcupAPcyl3wFL7Q
+qczfppQGFHnT1Lee5w1X3xFDH+oqfRms9OagK30CtcEr4+vQRH1jab/RxPou
+XX1zO9zr2mF9XpTkn3g71B7DUe4sHgncSp23nltDpWWseah0+GZ6fAsNL6jQ
+ZziVOSh1ozQ/lCh1f4onVC5X7iElx+zujZt6St5VuWv8wijRrpvem8u9Qs0P
+9ZnDQxKnOalfRM+/5lUgQM93A3qOXfXka6wC9lcabCHX9753abFzquTHQsmP
+oyGXx6Tk7xOF+jZ4boKSv44ywJxLtDT9RKLprIaxk5Q+1Sc7N3gnpOqLMDXF
+XfYU6rLXlbL/ubjC368t++MlRXW6DMjYbvsyOd3VJdbTXRXsO8RputuV/tCg
+9B9JnPCqmD2XKH9/yvfY8ufqD0XuqCHHRXFU7ooCfXTyL8Z2fAmCwdtI5KH6
+exLVPwxficyTEL6CdOWDKXJUt1bC16HBgT23yfoWVHUhOafV5uH57VtoqErV
+uuADoRwNr0TC+cge6o5sJ35VO2qoZemqG844Mp01fFEo6Oz2akmPfr+WmOuM
+mTvBDTmfLuT8RijpuKzZ9MWy/jfNn7FA9rUva43p7+JFMhdqDEg6z6UdWXOS
+B2aTmsG4+ZWIOnbe//CdNw7PaGnf+QGZwlve907H0l7PlfYsL3K/isLZ9aYD
+v8ARdrztGa9rRPGMTKgFh7kTfXM50VVA21YENCbtWN4TqBNnw1hFNBW913Dp
+LC3vQ2Xu7Wgpbxa/l6p05FYAj0/2W2Um7s6oxNFQfkDEcF/iLK49YQQ2PeGf
+S5zwcaeup3yROOWlzuF9ugCBYCF25ovwpQ+rWs95OuZ7JIkJJF5FNyhtdrre
+HhJ18CtLBz/QIt+GivyNbCl87cH67sH67nWnNtU3adjYdbv6phovsMTLuMRV
+LiuIlveYA9tXOIYevQ1V2EqHX2GZF/bkhs+DQs/udZkrDUWq7u1L/YNEqUeC
+muvDP/YnuPbiSNgx3+G0cF4ahBmPS4JyD09xmhbQcp9S7cmPi4i7zX3gVj09
+yXVah9YwpMi76c1x8TOKbTug2EZ+Fpc8Zrg2faSPl7kHJf+iTPI8ZvxmLXkV
+3a6WWboLicSPBhK/DpL4ecfTtAEKb+pv6Ym+uZzoeN2aJfI7LtzaEXns1Xej
+LLQKcL+Ssv8vynpx2S9bKfvjpOxViOOefWSS0OvJrt40k/pq766lPzvS1R8z
+pe9OeNHXUwQ/Ln856THESOVvvTKBAVyXgOWPfL+k7l4N7kVY/H0ICIoFbKAh
+Iri+Hlgxud6ADKvJ+T/gul9uc6zzbEUs9AYWegMLHV/m0TkOf9aJaXqaw1/q
+BduJs7gGnwk1zwp54RRytZwXZs268z1HuY2KXwU37c598cMj4lthxTc575sB
+CDzgQSBHFMimJxv2GTJ5Fx/5N5sj3zXum/0jENgdDlhfLMYBI7RTA7+Xz2wy
+o//WMXqnz0l2EwV3e/TvfbLR6M4WVi9ZMMxxBo38zYAFt7PwjmunJ83qBgse
+pxuZ2OO+mwV4p9ddSzc0jRXvDDNi68w7LdDseProMJqF2ESa+okBBVDdzjN8
+9tE2MtpdPR4c1AYPtMFXpn+xMP0rxFvzAv1wx/ZvkxD3XTWY8GAXmPCMw4UK
+888RGKBKQmhgWCgIFkoHCwINBeJC7mGhcLCwkKi/AkPpmoBe0fXf7VkF4aAk
+ta9orTwoJEADDF6HIggMdSBAGIBC3PwG1X8Z1T/x+wXR4V8Iv//RQlbaS88A
+mAUU1LU3AqovdB/+woAGuffQEkjAXGCGH45Ayu9of+iDKx/ABdTWYON5Ja/L
+32mwgDhB3AIAFgSdvWj0igcXymBFgAfbR8ab5FoCv/y3kV5/iBhwNdygIuzh
+2orz/l3p9HX2icS9AWMCTiDe01r/VdXwvchHG2TImDtHphG5LVgL2gI251Ic
+YW+aBGaOYFuDSc6k485/PYMLmAf/KWVicB1GjAv/LQu4jxXDToU/VQCwRSB9
+X3KmV4kKcJ3hCtom3F6LDcMqfEGnHU27kCM4wIn0TFoYyBEf0M8KmUOO1CFH
+gMh976D4kOUJhCCAIPbgmAM+DQSJBoIEWQNLJdjDUGksBoMU2AcQPjQdPvS6
+VoDoAZIEJQfyPA8Y0fDYwHLejwgZCB90ll4cOcaHpjYJXg6gZzFBBHw9FvTZ
+o/M+HcLEbJEH3iHKEHp2RvVb+z2WCbrECy/4exXQiv5kzkfCv2ZqnBooJn23
+mHGawYxAPkj1E4d7ZTCQECRvY9XBuKfY9crPWSHE3A3KCIQb4vkhbtyvuLHI
+48azgBvPK248yzlWY+ajObA+mQOoFKqccJkMdbFBsM5bpzhTH9VCyuNU+ARm
+clgxZHOf863cX6gXyLKCNwvWqsEOzugcYrBDfcGTl3j1UOUF6jOWqILoecX1
+MpepvKJb/HjQ4MejsozVqIpVDBlSxZDCYggOU1gUYZpBIDKXfqWxAbIWqf0o
+EEWo+yCdsUcRJPMQsjRCyHCBkIHDxURqHYbiaw/iQxPxoUB4KIU3PL+65w2M
+EKWbSZaHQaIhIBEABXyyMom+kEn8dDH3FfCqVj48mVMQf+E4hUIFSwycqbs7
+7RBYl2DdBFaM+zDIqbtew2CF0xwCfvGZz8kGuoN3Dy4mvPiqO7yYEuGFMw59
+hlb7DpUca3mG6T0o8IPbWKn3sDrEJ6GroDmB+99uTXiI5603iDHjecCMF2LM
+uJfchfXn3GYkSNUjLvI9CG2t4x5EZUgMA3m+cQBdTLeF8A3fh+xIGxFoQLSi
+S1i3AWdYfkK5vhRu/MGFhJYxsqTVJ6QfQdxI8I5UT3LHO8MDidJix/0GO4B/
+wBsV0ANA4rFIrpT+JEf0wHqpShdZTEIERDyG4ACXifu+gWgxF8FDYaR0ZKTh
+yAihCFkW5FcMRwQZKrblQMFjawQPIBMj2UV4cXVAEO43fojgoaoDh3p+ROBB
+r84l1GcNIhiSDHAiJCLHTxbB7+G6R0EN6j36fAOC2PGLxUovuBNhKWIYOYme
+V1hu4XVJ6UXgyz6w7nvZo2xDGCsijRnck8yQnsQ5jYZj2HCB60swO+R0CrYn
+LumEG1HYwAUD9/KBg7r+xLqQMddwTmSiR9lVexTRLayGSbbFzPcMdiyOsGMu
+YMergB0vCXZo5ne2cybpSi2nZV5DQ+Sc/Y17leNbv54/NeIcBwecgzTNhbub
+fmUHb2UsZKeSh8xV10zjxz6CHwca/LCuZaxnnGv6Fs89RlS4h+1dbIDBYoha
+Hfcn9A11NaM+JtQ53vX2RwVISO3IEUTQ/Re541X61WsIEtrUEIR4JtJwTKQU
+xUNH4TkAsRAtEACTYY6ODAZHlp9I/sQw51LwbAwjCLyWCCM9Il4+/18+T1Sy
+QwkAQjJmjtBBeQOGjjIgHKxmCnpw/KCJliWjxy/5ESWDMaSRwhCRNQuPI+v8
+GX4PUaTJ8qYmFDyO5NikZPdEbYqBkYB+IIww/XBy5yaeflw34R/criQkz4sB
+RjpCyS4eSk4xUGKljjjQYGnIwTU0hCRQGmM34wIUVQQ4udJLHgQnN3P+uH9w
+8pzAyaOBG0r7KAI5lMMObI+c21r3zTNd4GFNaGHa05HftLZcuKcJPnAbs5O2
+MYtYAtnVSaNjnUPKkPLjAFL2E0jBNYWHG0g5zkghpxu3FG2TCwLHNIw8Ki0J
+JJG2sDLMwUqqtbHQQvLIU9Ta1CBLjtCSE7YUzmF5mZDmFfzAHOImqqfKUziI
+KR3ElI6lNB1LiSCGXodSyzMQYCk9sDCQDEEIGeL8jwXqgcA3YhfE6J/siRQO
+TArlIV4L9aaoi0CILkrAUsa66K9EFyWDBL6n5SOmh8mRlMCHbdjJpSPQMQEs
+ye5Lqx7rKZzE3QxP+1lmoi6qnfzTjubKGFK2/IqW1XeElF2rbkqohAhDkc7G
+MpTfC0M5SBiKzUo5FdV2N+qykiIik0gUk/wbKanbzVCnlZPQDlae7BZW7jap
+6BslQ6XKCEcncYspXw1zEk0qsfPKWSpVRzhCub8wlb0DpoKOS9jpTDDqKrsu
+Hlp+3hFa1H051iglp8nKnLMjpdUyFu161Jm90eSuUqxlZgQvylxmV5lLjtgC
+iBARFxZQSkKYZzzC5AgxeN6LVRNSGEwriiI7xzRERGOsrfs6QozymdKBTdOB
+TS+CTZNbIo5xrbzswGmLa2vQS4mt1SEJaMkFWtZYlDsZlchKjtBSEqo0DKos
+VucV/gEAWDh3UVrDBZ/CeS45Ja2aKXBBbMkRWrLeUCeJMhn3jfkL85UyllVz
+RBj48eIw1q0bfQJ/MUCY7DbBl1hh/UeIMUZlvdglNr5qndcGY85QjLEOzd5x
+esN3QUdJF+ScWwltWepCqqulLmeZ8BZ2Qpd80ZpsVZRIebU4M/GBJV3gzFOS
+09Rkh+KMKLCBmhJ2RKrC4uYensQ4grb3KIXZ1FKYBXsC1kwxWLO9d3cDVWUD
+cXJGu2nJNNYsy1jTtwzlOY8wjs4Jso3gVMGaswyVudBQmcuTHVJVZYnpjMWb
++6JOKUFpGHMKizkZ05oeR2u8OewcoMxzG485haM1jDWlwxp5PNw0HNw0EW4o
+SDLECbmDAJmtVpjoaQp1Oj3S6ayxiBhKwyFI4RHE8hJRWQuVS7wbw1JrTqZM
+YXTWgKsUnqu43qe0kIKIou1PgrMgrOTIWODD91o1JYaVhyJY8aYNLvapoy7Y
+DV0LnRB2Q1daQTaGlq3aQ8vpEbSgMBsLLJWu6LBQnK1QGJzGDATaqDPCqcxA
+aOGBahJpydj5gAxhXPqFa2g3w8Fqgpf5AC9vdYCX+9kYJoNHxVovuIylOPgF
+QYe0tixIWFsMYgyRrT/fGz0+Gr43dEkq2vouyQovPBkSQ8zabSBmVOsAgJiD
+A4jhgbDjE93SOSZUYinNFQkhN4YZ3zWxoKvhs7sDmKl2Tg+9UzWGjDCTE9j0
+OG3G5lDEKMqI5BDHweyWBNWcYeQBh9ookmhQ7IUXxZgmYkyvozSDRBbb7KwB
+KAJ40kQ8aTg8afgQWCOgJEpLyONteCBpWCDhh1DEcZNhATd52AZDRJA1Rg4J
+s+8D4EQkhRGlx3VBsf+LgJKjtAKMpL4b+nsNWxGRBeDk6qAj+u5gBcWW4w2s
+TLWeT0K7rbCWk/hi9Up3hBkT7Y6uiEQX1HBxr8od7BkH0PIw7mzgm4mq0MJD
+4Jw5EWgh7zjWclV8udRnU12XdHLr16TnGvYyP2QvE1w03Wq6u0in5EUYXhzK
++TT0hXAKZXfSdTmj1gleNJNyFIkxyzgxJu6YzjWDaSkWE0PMTQmvGSAmR3yB
+w29mUpsZliPEZP0EmcKCTEZuUo44g82G2EmO1BDOFCGpKRFjCuNKK9A0EWia
+CDS9fpi9aK3UDmMqG0W3XGELTYcIlGSFDYpkeYgspMqWgRW82LEVypobzlLT
+AZWesZStR4WxyMOkZaibGtUnwhp43ke0yRFs4IeflciZAHvJEWwA5izcSGwd
+/mIANtkMhhsTVSPIUbhx1tBnEYvR0XLfILEIIxZRPyDHRVKsvttFoxRYzcYy
+QjZT0Xm1WcKIyoXGchZRhmBHR9MJdj5wsDMpgJ2FbWDn6TDqhvbzKwo7rPmS
+OPO6EWfmxk3TiVVWs+BQYTUHuegbWtEciWXtFyMsvnFSkcZDzxRnSWuUJYae
+1WgQDldEHUCx+WUia2mZ2gaqE7uxTZSFn5ur8IMMJ8dOCt7Rd1d6KSI5A4Gg
+3Cs5PZ7lyER9pbGKMIi0nMLxHOqrssK52hyReR0ZzxsIRGpuQ2VbIMq6WJZa
+ekCiiRaAI4Ce3jDZ7khNlEcxIIRm8xJiOWIxA+Q0EHJKgZxHUpBTBpAD9KYg
++aVh0UbT8PAPdf+YD7IhbrDVQI6znwVz4HMBcbKRzju6E7AmjTlCcwBvjI+U
+I+hk01mTcSxHmieTfsObpFT7RdjBleS04aIN7LhBur0S+oy41HGyPmY7ByXY
+jtOCXdJFGynjWF/1mdFpYpvpfbo7x0NPX5fQY9zrV6zddGNFr+EhvHMlNXda
+oA2rix1rNt7JtkmYyWZCR5uqlEasjvZasj79Z0n42V+mdg4xNtTRbZor1Ytt
+SuZSl9z3mrGFoBvbQhBN+OTIgQBnamAo7rVyBCEolhCGKE+DyoUFIjRnvLiT
+MRdqGCzirXlOYM4dHhUOj0qHRw3Eox5HhzrxnzY91pYrEvBkHnUiy6iRAJzS
+BVsipaY0Ss3jotSQ8ouUR4xqebjVariMnJeCUcMBNII/aNot8a8bgX8tAk7G
+czoNN6/HPRf1XfAxgCX49upASe/FPOgJj0myovnWjT6pGFE3ynqdaab9UmBC
+f5tj/F+0LqsA09fOlGoLTJNDv/tkA0xBvF+iutSGybRvt5xo94ATmbi/bcVU
+5RER2cX+nQcuEd5acHoNwOnlDuBkxWRVe+KW7GzXkqmgvDaNCdVxo/1q2rId
+TVvmVR9e+bNBAqB+KQC1RgRQy9OFYgcZgFL1x3rltj1LcSQcLbpUxg2tsXVd
+AFLDKyCFBtftRgm6y6hBNcJzjjCFNq2QpSitQxp0jjhFMIWlLJGdpwicXACw
+EP+LHtx5hXikAhFhVIkYVTqMajgxGps3gCc12AeJUc7RJnQiTkRrZ3sSonGZ
+YEEIQx58fEyXs7pMhkZyYCYkRJUe7IEgvGvmBEv1phSDuA8b5UaHIwgKczWC
+QamYnpN/NvkMfnBAoWxmYIrruq8r3DhRKAOFOPSNWwGWxKHIJD/J4BDJQTYC
+HPdmHUjSb1IkSUcILtJxRN1G4GUhVJx31FGCGe+7PM6k+9+mdfUWi8YCFo2u
+YBGOIz0RGuiv3C17h26TFZ/T5NbdK6lPo7W8c88zcb9TpU+rkqUNiSwd7PYR
+TXS92h7Sq3lDfUcrEy3c3KnQU5wKraZ6HR6t3NoX8EijxGiuH2bkoqMTpldM
+ms6XDM9FZrHJFR0waXoNJkVGWI6gBLjjYWloFZZ6a2DJpX3IHEMdRSx5Z5EV
+DplyBKTSufKl6+E8HjUcZ2qKEY+bVBSE+nOP9qQVJ8m0UJULNfG116nLpUUc
+Q3kM4qBf9W7hInoObbLc+9+F9b9ZYmbRp3Sij4R/C480Q53igztJ7hpfizQ5
+wkz2pBCeWGvmWYJA/HFgY/XmOgHoa+eSDwhsVHuOO7KDEx2ZuuY1xEedc1o2
+KhliTuiYrgznn8U9V0Fop5vZ4sKFZgQ4mtTpADhjAHB4JUoMOPebWabbRI++
+gS6o4tTO5fDY7uws050dT3NNOifdjgD5rPFuSYEo1KY7gY7t0lYR0GGXXS2w
+P6Q6NVmcliJC50eO+2UJ112B5wbTscVpHwWeNoQIagYoEdSRQZ+M4aeRgh+s
+T/HmDS8qLS9yepJXswmFRNL2clKAR40Qj5qUQRw4F5q00iQPO0Ncz0UtVxNh
+pxkym7ItznBTVXhXHMCmEHHZDyYFak+Ocg9AeCT4COQo3Eh/VRjN5+OMYadp
+eqy/2x4rR38re6iS+VN6g5JziDq8QYFQZ6uvneyMqHN2t6izZxgv1u0KxxrU
+0XZL84Cu3ZJt5G1pjpGhaTPqhTIteek/IuTBfOBHvH1BJ6Bw2jpCnk1xCVNb
+5MGr8HxWEJ2w8YETpnlB1YWukNt7fOvFC5o0y+Nl6c50Z0+ZrtzVTEqxPoS5
+np2dPuTl6RB9fh2hz49kVxujz34GfQ4V9Klrw5T2nBU5ZRcoAr3t3bJYsg5N
++QQCma0wCQTKEYLgnW+0I1RO38FtyKofiYaU0yRW4ShQAoewmfEsyMlJRIQK
+66rpoOdzFANSCCoRgpoIQQ07ZjEY9MEOqwdfGw54chR7GiH6lPUspyruFAkc
+yhM4ZHgPBQAL4j0FdViB8px7DCotBiEC5ZQGbKRarIwxaGaS+ajthXeq2zZL
+5R60vs4XHDpX7S/FIdnqQji0cyT57B7h0D4hDumEtmu3Upp0BwY05fS6lkvl
+H8ChWP652UxUkS2Gt/v5vDJuf8Dtzes/BVj0DGDRcwkscrnlhwSLdDrzDi8D
+vW5kIFoUF7Ze68w71TGhXxsmtJ4wIVwctzExoQNkeZxMXQVa9c5Vl57koIHh
+0T59KxAeWdvMykJxG3YKYI917mNGZC20y6OQkMGkHEEp85CkHdltImXHmSED
+S1k9LhUWl5Ad0O8pOXpYh0U9MpnEtDxFApkKQqbSIpPTjxoITk3Xr8G3W3EQ
+kISiM9Egivb0IhD1hDQIQdYLzZWQoDw83FCGkg+xpHXfK6zx3hGTcoSjHPGI
+jbA3aerBm2EfxaDkDbEIlXw/xnOaISrF7Ohfjh2FOaCvQ2RSIboOmXZNI9OJ
+Fpn2N7kg25vFLOmP9SwpEKZT/ZnupxJBaGeNIJI4bZwzlxUaCDppHPEBQScr
+Uk8Pc0No4L9xEV0mgX2anyM/me5UC038kC1t4iYt9o16NWZL3k0zvZoTrNVR
+0yyRRhXrEGpVQahRDqF0CsMKRdZdY9a0dHvWFKGUFYzaMafYcauBqSxWj0L7
+bRjhFJSnOnDSxhF/4nH2wq3bcijlfbjSNXClJ04Wnughjbt0GKXDZP2HpwbB
+0xYET2+7GSsPTphb9nObZNDXdGuKTIVv2UpLlfApRB2KkKlI5Jp1m6UiVDbP
+NW+6bMIPjnuguj0GKsk8R12cW3xXBat/GrD6V+uKLUIKZQWk8wGkKq7ZAMDK
+uWcJIUmV6z+IgxaHGVNUyg2knyELcFxbJ05aJCjtXFGwvZvmwo0RYI1vC1ia
+n35YAMu6alVhaT0SlqrtHS/jZDUbB9jXmX9UklJZ+79zi7dVoGrbGED3oLWi
+iwPE6vaRJm99XECt6sWmC5ZURzyuMMDVSXS6OWr7ALygHgG6oNLuTCnfPYEh
+Z7CLiFbeCcCIYqFVZVDMy1FEsgpHsgjFykSQIGgDc4lyD5RfIYA99kux8aG9
+kymuJoKXjF48zMvwmWOhpa8rLNzzZxTdqOubrat2naUPqL6Oc9WQkSrNKng+
+nQEto8nS0ovdhahPH0rTh6+NQPSWDVv4P2yDj3LEMPgX0akN0aByhLDs4SD2
+eGM8wGE26lxtQIzY1hZxH/gdgJjJJgVJbAUxs/nT9oMKYnYTTx3rop7QJrPP
+9TFJ7Qndhg0Csk9YGZ/O+hRbcSYWQEC2pJ9AJrHJl2cLkBlLjoDsRrkd/mrZ
+Fnip3+BDvaHJMElyO2Rfh0mO6eBAKZ+o7Ev6w21Mf7ijDImoXoVqeTiLlgaz
+vQIw+4GAGWebdGtHnW51rGVhi6uW3bkEaCND2y7KOwGgwfsc4AzOegto0/yW
+jxwRLRsSylhvJ8X0jHNQpRPUBdRIU89RUkemIXko6R2pbSxcKorgrAizBmTo
+lQkQK1TDegc6RH5IVB8Ubq08yQ+K9SJklc58a6bbvyLUxantQ3iqE8dHVxpA
+g0/NUB1fzxlyuY8fDQ8JlhkqszGkm30sOyeRqrDwBH9BAKjs8bYN4aW4yEcb
+wiAy2QVExbJ5HUSJYRckldo0ht1wrVhC363SHGqaOyFdOQPvg9bWFqZmK0wt
+qoGpV2QZ4XNVmHp5ljPyeOH5LWYx4TV8SSilvC+WlLc2iTbN5BMEuuXDc67f
+RbK6jsqqqaeNokLV1gaqJjhjz8cv20HVfwlUfY+gSlMFClWH1DSMyr1OTnAv
+3zR67qUpA8+/RgQDKim4khQUvLeBgaFUWzX/cJIBXhuOg7XTuu6j35tF3Mrg
+FhuCBQlepRW84o7yUb61KctdOiHCstJhmexMk8iUg6/+xA0mrryljomsSYD1
+TgNRi4hVjqBVJlpCQqvSi1SFxShJSBZuYxh2hUZBbzgyZew8yXA3g6UdOgF7
+B6YIXJTgTQ9YGwWA5fOTTsKypIoRy4nrUayASFU0zsYy1n9IxnLxApOp1DWG
+AWrZWZM9DWolhHY3c2JNv7hDVHJ1TAdyZQX3SpcoQ/s4h2JlLRHdt9cRuLt9
+7lJD4Zv0C7keYSPQIdddJiCu4vu1Mp9yOa054xgCXttwdijAm/G4ziSLA+Pp
+jpFXue8Y5DKtEO+zmVX0+rmsRWP04vE5n4myclfcOU6NRPmTo3xUu+4xhWCx
+9JVAMNtFQj3dSmjmUcxJYFCadxGa2RhDEGVIwVdBgn1h8wwZsa8y1OvLBGI1
+bMiz/ySrdEglAlaZkNlLh1gNkrLKIFAJTymh7kjMwokToVqNlNaeFVW1nW1A
+x7YEvAoHXvBkPpTwkUpa8CsEsIYDMBNMgM+/aZO/Q09/o9XgQ2cQPgcgDP58
+hXZt8S/4GEAYULOqvOVB7JwBgthJFsT2jTR5k1wIOkTJTNl1AES/jm1Hv741
+2nxNl2jkrp1Q7pLwOLmHDsj+LKFNA2SPLmpt2A7IZGXAegGQWRfR6vQie7lu
+UWWvuFs82SUbcM+8o2EL/uC2IqVoWLpj3LFGs9cpmI3kwuj1ugCz1YOAJ7qL
+LIMxmNnO8SgBs2OizrGOjjGgmSB6lL+6okbLt8N7EaDhNh14bXpp7B0/SUMD
+fTMIz5SVGVxjXoY17Bc0JRMS2lVSTKIMRbLSMbHS4VopgzYDbRkRzfg+mAC2
+YldQnjCz8J60h8q/iH4VCdZVBLmFYGKOJayEFp/5JEOgxxdRoCraGYDw9Rl8
+OCloTfgHI1fTj/SG9IvB62HpGU240/aMiahVJ/DSJQMntQMvE3cIFg4geLVh
+YftFLMwlzc+SvSamf6S0eUXm4ktwVK/Hi3CcwYgAplGsAMAWdACwp00Y9CED
+YEa3f83KXdeI2XipmRb+k4RCTzcTw6rdt2NjBzg2pvo9XrC1dRAQ1VjENt8p
+iKEBua8DMV7NdGhf+57ypMX1rEzNyDoZrA2QQf0AlEG9GTDLWA/rdRp/oPN7
+dlZEQHZ3DGQ+aMozgi5RkYeymFf5SwSwwhGz0m5NGCx2edgqRHE3sJWVXtcq
+ra6FT1nbNvrBFgExXr7WCBxFyYNmlHyAL6OZUN9IrlhpJGstxjgPEe1C8Vaj
+A7aMJ4Z/aDa5/TOyHK1i/yXtw9fc+kW6QVJ42Z+2luZSFhg4eDOqfQreJFEK
+PwsAXHazsyDdhkkjjR0dNZlWwT8kyk1U+NlJCX7WrtGMJbJAyffTx2RJykZK
+vKdjcBCn1mRK0fdSWdBwvikNp6x6wv3aa0qmggduPE8L5TLbdCpPmxJlK/zw
+jZPMAqsyhrl1kzC3N8HcD00SbEWAueVMNn7Z1iF99c1nHV+LG1CFugstZ1vS
+LdQ163gb07aeAOki6pYxdytj7lbUiGrDCreiwetp3gko1QlgzlbKbM8KAwS6
+zVfZ0sciCONKx8YI2RouDpHT1oJmINQHKyR1fKYdlDEtawa0zFAzZma9DsYq
+sS6GMt49ObwNkn3uKJqRyHJqMZtuBUJE03JEMsBVvEK46j4qln0TCGUpLDu9
+I5bdFmBZIPMfFA4lx+lUJ/X/UbAM6dpxhq7p0pZTIrqmcr9Nql5q+k0Vzswm
+BdwdpVsvyZmsw7Mn2uHZ8wk8eyByKG9PCmhh3OI8kv9d3/mWl/+rtI03Lmwk
+tM3HLvb1g82u99yVrkQOe88Upm1sMmOdMG0Ng2mrBnbAAbKZ4fdm5ueIjvSN
+c2SKa7YPtXmyTr2o2WHVDayxvla4NCzmNNAlQM3NpjU0blaQV1DYuBlrbUTm
+8hDVyrATLRyqocLmlnoOBtVwS3/hsKxMYFmZpmOlbynLQMh38FVY+Mp4m2UZ
+R1JzEfU3/DgbAa+fmLRXuOVSAWx6CGASni9sn5kxgq3uqFh7OvbvwKEMpDKh
+Y22DFPUwxig2M0Qxu92uTdNZx8oOMKxsX8vKNG9/ZiT/t2k83aizMy8/dOal
+Q7JZ7wwAyZ5pi2Q+hz/drKqK8hamAaXwGF1VcJLcfnJMyM7mW3Z2sFvKWbUE
+do+y+Sk0myj5i00DNGvP0H5KaLY3odkPAjTDNGzQjBqDsxuWVt+QhojWrimt
+MT0511/Y7FnV+6xk0AplbMTXeIVWGTSpOo6UB+mNYWQj+G6VQK4IqZsHOc2k
+DQ7aMO2lgn8xaGj70ELbXRVoa6TsyowjYE3XZd7mchY+CpaT7l+6lQsinfHW
+hZF0qXslgD8hyc0ssuUIa9nDdPHJBU5GMzPSHYAt7jVP3T2cXjwpjmFEclqc
+0Y9NTZ1m1KUNGseo5WhmkUyQHLMRWOw5rzbbrnDR3nTvC7jZakK3dw26cYKs
+Ht3wrsiXDLo96SOxlCSLjU6Dbq9dZ+S1uPfUhXyxR1DP1TZOcDXO9Vf7T5XZ
+dkzIbN0h3K/kAhdFuB+Z+AZ6Bis4hDsQ0E0jHN1yNjuh1EZ2gyoCjMuGOkP0
+soQpalAup6a0WeeN5r4nLWxPisVKKVtNpgnKEcjlLm/rwa1Q3jaUeFsRQlrp
+BLgBARmbnRNW2Uqjq4RgZhmV9S3LENNyNSw9qGVl1QP40Mtm2HlbDyCYZhzS
+usPsIPeiWdBtylUHjZCtccuZcYas6RMZoTPAhG0do535ycdKOMMRNr/80/Wd
+MbZtN0hsi2ePKM4f7YYI+0/4qwK6ZTdQ//n72C6oY26nfePj/YBtU0wPuusl
+4eR2rKlZfNtO8I0DHFV823ig+EZBDrUP7gi0Nd72d40Jc4S9KO46DuP/dQyO
+42gbBQwujqTt4e7SjTFuJ9oI2B3G7dEVxq0WYJxqbb+rYXKKcZbJxYEP25t6
+zS1M2drgRwecyxjoytgzzX30thGMEwjYQcknga5IAJ23G2qBrpCJ8jqMa9Lv
+NP5f+MWX8Hwuz2X4wbIDkZuw6lay6lxeR/stfE5tK6zaFsbOxmjszMluhZXd
+sjwyRT0ghuqbT3R8VBAmNpMxWp70TmQ7CBIzZnrNQIUzkEh2Akdrh0fRWr/0
+74q4iWVMzBEQs56EFOfiHvDtgexlz5AU978CibEkFzWzwY0Q1mKQLNs+lvLZ
+Ec2gof0X3xJhG1oLizeINIdWwy3eatBc25YYB9HBAYXFxxgW13tqXntYfNHC
+IsdC1g9c1dsNLE6DxvbaaOHFRXR5Tcp2+DVQvzUN9eO1OzH1S1kPewdpXYbG
+uLlVaFSpboJcAaoDBt1A44/FhljdredhG4Kh8QBpcuMUr16KMzWigAqPSgFt
+oxtKdyNrc3H9pIGRjJc7LgifEze8EpfzPS8reS4151GyCHtdMWVnOVNWBb3S
+ObMElcPbQGUx9ZBDDnkKngb+Jv1egz5OyKi4SDE1RsBGupFtIOCVElaz8+EV
+bS7cXtE0JmlglOYe4OIAiON8nF9rpPAtMwDXcABnDFP4BKB82fKVoXJL+tQ4
+bdfQVrIhOyH6nb7LN9mD3aNcPMdZI9mlGttkVsSQv99UyN9/fHP7p1Rz+w++
+LfTqz2ukO7l6yyHdnz3SzfYjUp2RThaJEdKlAnAJMyIp4eEsAje5Y1wQTlf8
+6EbDY8yaHyvjeVNiM2l0N68E4naPGt1Qyts5MCYmuAuP26Hdng7tfhahnZ8T
+RdNVB9wt2mnDG2dMlAzG6d+6ptci3oVVQgjvYcA8qJ3Lq/Ie1DRSwkYqRAcf
+u4nIoJ0vFchj74IpITmy6mBwnC5PoF0lgjKLNy4y2pUSExaMI+Bi+Mp6GN7O
+h1/MAHj7fwjZOjDAzYAB8iL4WarYhdyu6I7bcbNrMLCM7VXW8ZphWsRreQVJ
+eYWV8jJa61NQ41tGg+lBEs4GeWVGPfeNbxk0vkDycmR5AIOXV3lekB2Je18H
+gR1h8JF+waD1X3VgIR61sgtZ7biVcy+OSRO+vesI3zlfhXs53AYzHmKwU6KY
+/90RbyA0I1jBjo77fAbYQuEGHaHw2Wiooc6XVb3Pb793uztMPzzG9sPuajEl
+fke7kXi/Ef/QIBvsXQ2//Syt++1odL8YDn32JIZD1v54J2MaDtWv1fEtq//V
+98bqcqT641NqvNsQEpeq65EZEZt1pkdOoFhYUMy88cGS4E0umFdYcOTRiTyB
+jkUCHYtQGiy979Fw6yDxWV6Yn53N6mW4uw1+caHCYKfGGGEx2e2OkW6XyF+j
+jUGbI/4VRABL29+6hAnNsFPMxIt+CeGP4a9HYiafWt1PSSDqf5uy/leJm+At
+PwyDjWq/OxEpIZBBwcIYB/Fid0sHvXFbxcKzTAblTG56BQsfqGxGq8PCOItC
+XseBkddhsnWV5jfyO5QWKhZSjPiUaJjLeh7dNMBGF9zhFj/YpfkUj4dvB2Op
+uFt2cHho/Q8fL07rg6lGWD0QjRn3hx6mm+FtpRmueiGDxEQcZ11kMyzWE/HZ
+vDqa6H2RZSqNsfdGvAOcwEV47wIq5mSPlAMBxbR2CL99IzFFO0ems2SFB8TS
+AiJawhFjLEJMLGPG2AYGe4444ogl8BsbdaMPbrbq1p4EJiDvr/oUdX1vMK4l
+Uw85NsDwjxBLfMHslpmYlxYY7XNsgL2da0LDHFRpBPAnl5xlngb+wwZWuBte
+Klj60ZYKVjti1Py2+QbeCjrqpbqfQCAj4MiuEDCRY8kRAuGr1wx/5eSITEu2
+xQe24YN7tuODda0x3nJkB1tv9CKg90ZsRu+d/mHg8yEGhgmX2AO+M8JALwam
+WmT0gUdDi1z1SVQQPMoLgvPTvHACYKBtk7d0eWSLgzuaTLL3hCn1snBCEgen
+JHFwTT/W73DQ+iarBO3y/gYHLT88wvDDpH9isn0WC88KsZCgEN6FccTvEo4v
+d0DDoi1FHGH2Akwn4LP9cyIAeDv9Stc1DbfSISFjmeil4Q8sX6MIDmGwO+ng
+gw++AB4LgLWguCmA4r069hU1xTWRvbJLeCwcMaTkXlbYGQpZtl3YWQqxhQvb
+HWf9hcjNBCJxeuyfbu6Voy8S6oNPwOnX5QOAvCTgiF+Hxogd5o/65cgcEZ7Y
+rEPJHGESPpwEyf0FJO+sFQ8tU9RBs8AmiUb+u2eKfKG23f29q0nIsIgYLS8h
+u8TfQKBI6QfQFlNKxiHl04CUz3aJlC/FaRm7RC4lJkYd9Nzz3AZM20HbhPPa
+kpoZU8MYY/vED6jFXXQqH+jd5Tq0TLPGNX1WkNDyx+Iyq5VSzQtqN31w1E23
+Y46KmKcYxLQio3GdsxRkXhRDZmEhE/7IVaQvqsPSfgBkhMXO2Iuuyo+NYEen
+cMpYhixDa7oNaorlvDsgZnPKlCnoozwCzxGHHHJIR0q56fcYPfP/TfQ0G8Lr
+vBUdRDP+SpFMCgpuNiVRE+46cTO3y3QIDabMFk8txWyBvxXgZjY0nO6oR04H
+nLu2Ac5H64CTbJdKUvr3aeSMe+zfGeS0HBORUzlmFT0jjlnXZ+t2uooFE5rN
+uv6Jb1L4LtEzNp1vhUfT1DrOG/bbvD847rfDTI7dTVDlmna811oyvufmdDVf
+hOd7bmvL4IXBgqCLBoigzoz+UWTPrBRkddr13nWcM+6/49xOhKKkS0b5HaiQ
+i6klj0zqHF1qAABDPnGNhyqUPYFtozAqwcUsD/1qM3jStG61wc9hhZsj9v04
+D58ke28BzFvgF5/B8yk8+N8Inl0BJsNi4DQ3ovWYJkqTkdlMkemPYquFVqWE
+xFJucUkazx4cU+EaY0BznHq1ACBtpJosmAghg/3m9vaFrhrwOHgzMuXHVIZI
+amFyJO+Q6g9MshSZI05m97qr8irOTA3HRJRUjukS2F1045OvTCuStODATswF
+SMlmtZ81YaTcKImUrwtS2t2eT1eRMojnGKcmSC7qGirflYfpbDSu/ToqTWjb
+aboq14ynhMOkdqxQbldJa29rrg/FJXuaZmyHlqM7oGXs3nCy0XboB5o1VinO
++ceIc3bq0tNxnmqkx4iXuL2IDO7EHAtAwtX0WiWeDYOY3aBm4VDzNo19U9LH
+Gzu8GqueYHbKbQsmKhgyIqY0yCJBE0tPExshTRQNkvvs0vTZNFGSJ4xol8gZ
+kgJF02qbxZ4sRw6N5ueqF2IJceSlLcOTvPF8cwuEDepAx82gON8bM/0DRb68
+L7UPVFCRDJrUXlCTTgxa7yPD1rtCIE12p5ZAUlLx37yf/YIvg9uO7YDK5Gv/
+Hpk1kla0Zk0SGhe3gcY3BRpfFWjUrXxP+0D3SzbPc5/kee4CSLwjgkYdML7a
+3U5aacPJyI6Mm3nHVYikmtlhwLtq3mArXl2kwKN6KFxWh1lieNy0n/AYJxut
+kbOKGDnLB4RSDe4UodTcj47zVZOOPvsTQ2RsdreBSEbIMkZI6s55G3MjmPYT
+XsmLaODP6TCMtOZFAh/V8za0MovwcUDQyHRxE4DGu3nrVG0SkSHRjwp37Jw/
+jqVHFh3xtZmaSEEwLPwFgGWsOUY46G2Z+GJAE8VmHGzShpcqO/w6RyDMRlQG
+VQLx0WKhT2ajADkZ++i2BLFZN5OXIxZmT/rojnFq2rXSbltyYkQvIIltIjy8
+TuHf6Xa6nRhp0HDbGX4blkZ5PBry2B7uJt3gyUGi4St3h/aNEyWnRaLk5YKG
+cVvtU45ru2HlKlnE61THz+etWRtWbBwmixMjsphGxO3TiCiW9sAQ8Wdm5Yy1
+dHyLncp8p0hjHP05zrTZJ0Zt9iBRUYhjM4BFkwsnZKR+G2o9gkaPjCPaIKM3
+v4kvFpIEwhGa5UdVG+puUFA28I2v65IJAmlnQtAle/slDyKJdR6MjOaRBUPz
+eRUkzAwUFhYK0RZTHCwsDqIaDK/NaptssXD5Ljnhf6rh7e2SdjXJif0FQzOx
+cpyCYTNsmD0Y5oiG2R2c6E40zINjhsaYiZvmK9jC5qbZ3OKTwsO7wtVZA8bD
+F1J4qJGehJ2NeJiUGaF5nnupGW0+z22h97ucPUNcM8EQ7Ub6eCWNjzzGmMir
+aapyYydM5JHANCauC3gYz78oJqrNvXpNI71s2Egn0uF1TLFGfswRFOHdWpOM
+VBunHVdMeTlF5OVca1rqItpbeAO12TciAt5EtNDEgrIIGs2iaXyWGxAwbmMa
+Y5tMJDZYJhAwd3tJCx9ITDnODbc+xrjOWZHAPR5SKTGdQwqhqIQ5Yd8w1w1f
+NTFEPxvWlu0yGS9iKOOgYo5EEBCyExWsXThT3xpnSQjctz0EemuFIfDWel86
+keiueNMdKeGXfC+13bKFDfIVnxsY5AZ550A7NB71Xe9HiUYe6xscDD5eA4Ox
+hjg9apRVQ7zMT0BTo1x1XPpLDX2zzL71Fm2bZVx3X3VeuoXCKREUxqOA7GHb
+SWmrKWrqZ/mkC9MNRRQnBt7BAIb4Dg7SkC4lniMYQk0l4bCRgkP4ipcsQWWx
+OjyIH9MOGr5m5G9TTpIxsQxkRg1LRjJjEcuM/QNBlg83BhCcYfYwNKLYTRkE
+st1W5jLYYnor7pdx942FxI9xkLfNC/3TIZUsjOH8j4nhIB/0Se1wW4MO7xW2
+Lc54W+DwKJFT9ZaDVM5W/8kpu7hsGN7upBN2MlCqeChZbsbDh+o9lA52cyWs
+Y9bYdM0L62znyxN9crD6oWqoBGsIg4gjj73QFbVPzk+C4pgAFJ/xce9gmdes
+yFhJqYdhv6zzz75ftlOBpwY3Fa1p1kNU+WE4C217ZuSH6bEYv/ArZUlzqMdG
+wbsHRo6Es9my16KUmqhxyJXkelyOhld4Yl97npjqn3WiUMBRuWLsVAfgWMbg
+yH51g5I/ETbi7AVRxyvlZvCr3I1vhaWNvIeCrJg83izm05NVM0bW7wyEJRJA
+qlVS1DTEn9Q2xGUdRWSvpIy9ktw7yGWMiSlIDOeZmx4SQ46Y8+YG5IeN1CCL
+xG2adQMtOQJiNqIjJJ5ayxGfTWOitVAiUAyEw0PrhcNOORzdKR3u+DJ7peMk
+Y5z5djtZEwIizb5ww7zdHQYYJZMzOGB8vgYYMZujjvPdBhh1V44VEk0+J3Kd
+x9jGOZiJOb6yG8wxxgXKGON9rjbpmG6ebdox5UD7xGM9OMYNdHfguLoRFnV1
+/3Jp5mhSkKkMT6qRjucLT6PUYxcIOTRAyDhPbiAyJ4wspKm2IcnCksjMj9v0
+CyLho4qM/bVYNl5tG++afIfoiHPkRjX0N0PaFQ/BIptCl0lHSwvFQuFB58Kq
+hxlLh6UZ8qO9DzmCI3xqFR4bKQUxY2xsegUxxEcrIibgsS1j/C0yxv3jDtq4
+KjmiY/Y0L8BJCYlHmS56athFE2lsl1NMJXBoJtB20rJ/383E4D7ExMoIxccZ
+gI8zfWZR94YNFh/XU3x02UXER2u03JFIf9t5waijfvO8itmCV5OEyZw68lhN
+5yh51K56kpmdqWLkToKR2yfmCDXTOBCMXNNgZFVo3McIjXF3Had2VGysJneW
+DjrsACeXdDZiUvPYYsZkPIJYxL122qi+ApHPCZCEkmEQMoJJcWWMZ21FyAER
+R4TGDeSC7qI/Jopb8+Aih5+mxv3kyZ2jwrSxcHtcw5gNh7PLuJnOFR3/hYNL
+E+OA9peeOI6o8VZcL51SF6vouFMCHUfWoaPL3nSCxwP8fHQFHu9r6zunBmC6
+oo8d/JbdUn21WetPYmMNRG4zM4p1fycQ+QQ8jwlEWi/aey/rz7ndeC82uOiH
+ZNL99Vlmx5gfrV6zlkZy3DumkXGPPakyNBMHGXlwpg4mJ/cbJtWjVhEy5cf8
+wIiQ3qdWT+YAudbuYOm1LZ2s67cFKlmLHBm02/1ASmSVI2v6bgJKIDBWkFRR
+sugMlNFyMxMbz/3anwHB5EYAk05oxOkcs/dBdj9kZLbQpkM/qBJMQhfKGcNN
+ECw4Cme8QTljEcVuCtdQ48wfGy+l24IopkuO2IgIaX0XH87mpYgjkjsiPDom
+W2tByJ6KA32G763hcwAg4V+gvr/uwCDnSHY7sVKnUzYnuk7zIIORXWmPZ5qB
+wYBGfuHbbDv2EuV0KjiJpswdH8iIdTW52A1Ojg5wkvcu8jaypxM4addOzDQ4
+mdIhef32epV2W31qppPrQru9jjFo1uwHneSVtamW296AF+uReEWUYuW2kWcd
+Y+UmXWDlOm2wMqVLxq23xcqqh101bpZur092kfGxKy0KGk1spHI+MlZTtC5+
+O70NTfM+kvlJNuLxpPf19HnT0N7hbnyg/TaiJeey8bUMkJIHVzail0+LWj+G
+PRn2Y4Q73mh1R2qpK2kcYY0Cj40IHu1gdBmP+OUCkNBUN+voY47cEb5sIp3j
+GGSN9sjQ2GQ3prv++oQ0gUy4MjnCI/xcCf0Rfi6Ax+zx6oTLscaYSZFIO+WS
+IpEWIC+Jp10AHK8GcLz2U69D2is9b7MGjezh0buJaRktT1dPeKivApDjACDH
+GIAc3REgHzEAGRo17m4Co0euZ/RI3U3h++3QrPFT1/0nk77ntisduefeMui5
+4ylsvkdPTZsUSPpp7HaEcgwAZBx6jF3tGCSrzjZeL2p77zqN0pLKjjpld0AJ
+722ASuAkyi7j3WgX6l0J8RCiVSzJ1El14UVqYZrDSPi9UQOFx+9vI/10jdbI
+iFhYRPSCo++rs/gagRvCG+y6wcieaLjvi0h7vIwi3KbLdnY1ICVrkM3EHgnq
+stm1bqTWScBXBqCEjyWgMguwcorHypP7hZXJa6UUKx8NTOzDzbXGncKNSib3
+qSOTp8dk0uClNt2X1jfdu0yr7uuhpvv20LcJUz48JWjxcsOu8fLZBF4+FM1W
+25uqVJ+0wcdrDV6mmu9zTfPdLankCcI4+aMNuA9B+j1naZ1SN1d4Lye8/2WL
+QWAmJoHWjDydaiP+G9OI15PLZSvkMh6niZNBx7l0EKBm1tupI88ROAEFwrVp
+fyILyMJmxQ0vrNWToJnRUozChcsZPUuHnoKY/Yn+bPT9bRkghTeW5p6oDnJj
+1FZTohFzPKFfTet06k1rjnZ/AR+LAdLleaoDf37Qxa3Zqa7aYXgcEeyNCFKO
+aS0yDZG79x8il2/vZ3cxDGM9bWm44ScDlMzu7jenrHg37ZruduIk4OS2dTg5
+24TCHU4uaIOTryRw8skOOCkiZYCT4QhhGAKqa74tt9SNPiluyXspMAxkL0bA
+BjzteafFynjLj/W9+4OVHAwaF2Gl93b2rGDlj+Xa+h8KVtpGvM7fCTmmDQod
+keCYFi9PcHjZrMPLHAETuUmiJ89dT854aalmQZ15I7iTQZgm583FHA96cg+W
+3I87VtkfeXJDBMmAPSYFR5dtNCa1Q8bCD7joBe6yiLEnBYua9zYxxxQsUqQH
+fi4bcrwQmSOAIiZTDSTKje9ZkjYyLgptbIYKZE2XPcUs8h4UcxSrJkdchJ8r
+gYoZ33L1SLjVMWHXxOxxryR7/E91d1kchaxJ/excJ0eajY9ux0S0CdznxPto
+mLo7ZHwhQsbHI2S8P4GMqcz4deFWXNt1GwtndGDhyLaeJIv0W3LHByzS7z2z
+nbdNBG1FLLKaI6+zcnaKIpN2k09ndAyd7z1l7JBlymoHHmbLV5IOvD2b7KYL
+j7b+MEA2IoAMQ0M1qiUDZOluZRWAzBEh+d7CMg4P5Yle3Mxvc7ayf7BYOlgU
+F6bblprhsbTE0WmO3pJBmPSTMBmb1o0URKJt1QYe4/Fov8CbEbKZIo6Ijzkt
+0imqJrZFyOAyK4uQZZwKz+1enRp45DXfUQxyan/wsZnsroE55kQdDwruhHHE
+UVfupJLiQegnCkXaBtteVk+LyvhWrJ1cYtw6Nu+H4Z//FYgMQ5LtnRu7BvIa
+ueTeBoEuMgTyHBMGOi2xErIbAknNNvwvA5DMtq5ptvmC1bDZ1klsP25TC5OL
+OsPkFIHJdEDIuDlOqAynEe0qyThM2Y5I1jXeNYJlmksu3TWXjGPoQiYZKgsL
+lVkegiX8IR+19EsvOgmTBJeWPG7AKJl9FxCZyvX0AyyZSzZS+XD4KpqD/NLk
+IEWDLP3kDO8c4yjkkOAmrJrVttkgIDPrTWZ/AlIJsJkNrYKmMbfN4gleTjan
+bQYosHDaDBymiaWPkk+JbZyL/+nikrUtt7lP0COnSJN0lTTOYVdj5cEQIiLn
+EyFyrtsWOZ+JkFM87wpyxpZOJFEmW297FU2q9fZR86pMaQlmnBM6MNroE6+H
+TKPn9rXouWWAnpO7JJnV3FBqeNFKlvVteDU/xJ74wYZoxq14HEtPRi4ldlnT
+jmeMoWWMobmnm6FHHlg/QjfVJw+nwHsiEZP3Yyh85oSf3VFNBFEETrOVVmYK
+FTeLuqQPjdD47d4D5pjNCDKDsZovcaSpqk9iXBVee9oFJTPimryerLAKJfwK
+IBO+cGLOJlPUPHUQqNkMb5XxKmWOsIlUszqNCN8YCeeccAFuh3bcJoOIb54S
+8U07hJMwdLglr0HO66tipTPB70ghp1xUnULOx/uDnM9VkTNIC6XM8Ei0fN2I
+lpW1kL41H0O886zEWHd73qnJoQ1k04U3eWwYfd/EwI4XL7epiJc7RAkim7bs
+D3qmUpeKnqmAeixixunLKv+0o+Cx8dOpVU8hqCWgXSBoQTS0GVyzaATNogsO
+yormQJrzDb6/XbCRMXcgWYYdd+EHZwq7mtaEIP0OMnio10bB1cfEszwaLyyt
+GOm3kTVoCU/Uame1vTbg2JlmnCZh1BQiSNaExrnjbqRQEL4D4CB048eZ3Y1x
+MpLMmnQ6kmGwWbewJ0cczF5I5sg78kdn2diLFQwSXvYPcw3N5+EOn2kfhwss
+7JZHuaJQd/kEmx5n8/3Ug0PCeH14jIR2DCe+xjAUKeMOfIx04BUeaXb9+CUX
+VaGSF11UbRzlkfZKm4m2Cwc03NrEhDwa7tQVGk5OoqG97ma8dOJqf6/bxv6O
+RUu7G6h7Pvn7iE+mO/KlOyJi3JJXLJ6imiYiUgkVmdixxkM97PIwp9TRHkzI
+SGJdn2X743RzH74+ACJOWxd1BnYZQqKZl2kGtDCemzED16m1ZAVZNM1YgNRu
+mpGxmRyhAVwsiBf2JJ3rM9wdq3hrTGFX2CI/3K0jMraxaoQf7p8ERuWHiY2O
+wg+frt1kRmt8OgR+gnU+KU3SdtcXRt11vO0x0CU/rq73UevGoeN7VXR8kNPk
+FXR8qh06vhyiI07fvPhEzeaz+2osHK9Prve6Xx9e3XIRdtlVG+ekYNtFmiv+
+IeKK3XfaW0cbI6sIaYNB7RBy034jZGjrxCvI447bhiuZM+5bxxlr7B2DkvBe
+P5rEyYQJjgiZY9ISPtwWJEPtUphjlle9Htd8e6/HLdMwbviyA/C3ERr9tExa
+esxd5NEtK9vMLytzUFlYqHRrGw19tOIjZ8Ub0SyN3WPWDNI+F4T7zL6G72bI
+pDjbPZ5IVneboRgJPfUQxc5YjPQrfXbDzwXkhL9oDas8sZZVvuO8nFSiXFll
+ch+u6pK6BC3RYSuC7i/XucZRIBuZ3D02vZ2rk1h1YWYVk/typ/HV187ZqVzi
+JQgqsaCt7uuMoOMHgKDpeBAiaOzw2FUYN5JO6a5FfP3KaB2GvyJ2TOzyULcd
+c8ypXXDMuo47tSKDO+602xNGhmwkfWeJDPUfRW10aK0qiga6ZWyQx/t5wwjR
+AWZM3C5ia999t909FCNph0SR6cGzImKc58eMM3bN+0UtS4+fm9JKs8IBZhlg
+5YQqVhYEkYVP+7RxaC6nJtv5NBFK9vC1g2HLrZpjxqsfmzY6bkcQWXlsestm
++yAbmRPF7AkEyO6Bcu86oCwIKJtJkDwaGSagZLbQRSVTNygcVuffTE0rkfvG
+LLNOiUx6OF9WY5N0wWF8TVeIkzvenNiZhmrkXe8F64FinMSYeb9xknaoPdsG
+J3UdRuznVFXJdm54bS8uns7aXbHNw8nXSe9YY7Zp+3FdQGn3k1dj6Cms3HqA
+WFmNpO8RYKX3eOKZx72TLrntyzlQFLNOu5uts1seXic2ALzUpZbWNncdemk6
+dAoa5VHKqHBEM+mCtwPLH2wXe9rGn8miZT4dGnC2ZsoYLwufAIo3+3wVDyFe
+YPaDn4dDiLrkR1DSr7KAnw21yXQzLuqkNOPDQ0LpsTKIk/cLK0fUYWUlV24s
+m4zvxG7Wmd05oiV8uMa1yREss/sCuXL3eArHBoUqTXmUMq805ea+LrN6PJhg
+nCFNeRQYCuFyUQe4fAOe1xxc+pWTEhyqgUtnf7/SBi6jLUK+Ob/UN+c2Y1kx
+ck4ObkWspZYLPLWsN3PiBj2cdNy6YuhYO3zbLiHTypgbtoHM0Njx29ni/KXd
+7Vtv7uybpJhBwChHzMxGpnp1h5ptFM00akZZozJmmTW6potnBiuLBtKdj2fA
+zLpGy546tMRBRKGYachUdrmFYZd5HAMyFyoUHcGykQJL7MKJWe6MrDFCSqdc
+tgPKZgooW8ft9w034GUcpMwRLHNESpQtq4t2BSdPqS69MM23ky9ltrstsYwj
+lXHqXC+qucCgpV0WdMXn1YCQ3gF740dVg6cDWk6M0HJj3VY+ILRMhIVokZAY
+PcHFNomoZWWh0OWB7R3M6xBa1hHMY+X6LyWYipj/7YJDMcE0M47w/xzwEuAi
+Pbuj4aHdKqaPIGaOcJmNDxaedwbMmGPGYfV1OgBm3JPbuyFWlfshOvPMOFNU
+o3AiauYImfCvVGsDRVbQKQB7aa5ZWJlTpsuHVKbLbdSof3BZOriUXeJ+QrtO
+ruxALFNRyZqpRJ/8SeqVIb1sphpxRE0CTTa/C7tLMqM2vBYxsQlvpBAzCyzw
+EDLhY8crYBYWMOEDAJlZr1cs01uCGDPnVjAzGaasiQWlDPFghvHM0PYJGWZ9
+HL0arGSGGVs/YUTovSBcaWcaefabcXPDfuGmmW1M4uYD/cDNcMHQuJqYum/M
+zUz4W6dEezQs04xvhFCm6S/I2Rhwc5PICgqjQ/Ei9N26toMGAp6714JnvOfS
+2kJ2HtIucqtnnAqgBzgAXaZiD6UA1MSKGEB7OwFojggKhWh6dR4G6i/vHCho
+CqcsatORZXBrNTxs7xTW3sl4x24jFZZkdskji4WNSiI5FnoZjHIzvSxjepmL
+Jx54O6FqyXiJY1QqW4b+joXMU8IpxsFAZk/Qk0cmT8bh857Q6Al7cvgcQM1s
+RnrJWoJrhpgZLVuzs9/nfRlxzWi3+ZXmJpzo4gfCzZvNKI+ZdqSLEo1lHkcr
+/8/iJnTo7nKIcDa8KmiGy9nGVqYgdd9vOmCknHPdGs7ZXZeeFjZD7GxnAvUX
+OzeoYOfuFey0AqcLHuUIntnyiWY9xT3bNewhfB5GLjqAJ5RqzVTQ/z580iK4
+1jKjRvQbNtcD2OSB7v8pPalspEgl77nI/RryNhBJYfIvY+FSULKZopW6Pi1o
+xreJm/FmnXJZQcvJCbRsptASsZJb8jIGy67oZUW/VHqpszoj62d12qeKcsTK
+7Og2kcsO4fNk7NLcGXZ1fH1iqGOGg4/2Wllvj1u0VHuc0PKxCC2fGQhaxtvZ
+rP1zVxs9c1rXHbplmutUtg+d0IFpxgH1ZJeOiAnvGMDLbLtaXXObyArqjJiT
+utQ2N4ha9TiE1Enf/IlAZtyuh4xzH7HR48jmAFt2iiUxbva0w02kOgCaZTwW
+VFCqveFm0G2MsxBXXeGye/unEMjcXrLm7TJDHizhbxD04BFechteOLz0pnhh
+05YyiFM63DzftOO5XxdUxuGhgnrxMr7XoaBOvJG6DQy+MbrhjVC4ZKTMCCpz
+REn4mla6dFDZDKVLH7xU9TK+Ecczy2bdFqEcsRKQtG0zXk8sc+zGs2M68Mq0
+Qe54Zbz4XHRMGnREtLw14frcxXsrvzO0fL4btHwogZYp96eTnnmZubT7gsAB
+quvLQ355tOOXo9vwy/Suy/3kUu+qrimICe8YwEsgdCFi7jAAxNw0Rkz42oCZ
+2ZrJwFHoCEU7MU2PXh/ftGa6Es1lK0SzU9i9PWo2UqiZubUd1fA7FP1pBJl2
+j6bAJpKv7wQyO7JLc0F2bdIy3lyOEBrM7djlarImI5xfjNZQuoVClflvN8fT
+aOOUFzZ+mdxNWRlvLPxo4974R74TNK306TNCNO1EPqM+3d2rY/azVQZ+EoGj
+3eJ1G+oLtevV431tgqk7xJiq8XbBVBs8GhimzokwVYOaKUyNAkjkqLf3iMYH
+W4ukZ3cXf18Y9uxREGmdRBBJWWhdGMnrne379nR40w+bW4e9G1zdpTtcZVj9
+SQJW2Wjfow5Wa832eHYoTUZ/W4HVZEI+R1yFgqsx3jsDazMFrHwr+Wm0h1ix
+1a5GGljXvr3e9BBnMK90494Vgzwn7ycKq4tRXrRDTyCdW7WPGPnlGRlrm40g
+jRlm18twEHJnvD1nF3KFTNroVGrapxAZ9Y5Q1m/8HBHgpx0DChr336cA1NPR
+iJLmpHRe3jas2YGSVncBB5w0sesy6OD9CHmd3hks4LA+kcHQSnjzO8VQHaaM
+MTTtF/mRoZTuWe3kx9V28memPaO23NQmlA6rcNP4Yh8NwE+UC3Trgp3x6Lm/
+THe7DM33bbJxXeLoJg5HUQfdLQjEVz2kPYLRongcPe7q7R5i29WHHDUVkG/T
+2Q8aTMsYTHOiqT1uabE+Z/QbRJmUjgMQ9XvOUwjaxjz3RlCh19EG4XXSN+HL
+YHy99BssmXQWbfimtutnhu06U80hiJZ1IXammVMQDwEtMcweXj7Wr849HJnM
+ESyVayY9oWadJ8RQ2ayDyhyxMjvaI2WCbe4ea51xCsmOAXXrqOuStxq03K6f
+aInZzf8VtBSXaLxDSx0PqtE9k6uM7Mb1CxL7Muvj778OWOdRlYFLk1CCdwLg
+ZbZC1M3vX9PNp/TPyRW33SAmA+bS1W1HXQCmSSzlSD2z1QLfqBqMT/vuYU8f
+B5fqyaeEl+BfCBATiyHd1zNmFtaChz8CiIm2rMwWpde7n0CAGYWZckRNND0k
+AarAKWDZHVb2MFauvn0yitmWaZYB0/w/i5csbzbrsJKo5YBxshHhJAU0M0po
+ZlfXmed++qfmdjLbmAeTkse2Dx4FxDIV2IwnJpVY2hse47lzvQg33uxmZs9j
+e2i7GQYu7/lzbdS9ApdPdoLLV9JwSZH3tKkewqUVPm+tET6jC3QrO4zsbPqZ
+6fh7FwQz3mcUEsxKow7vKQBMeBtXL7CgWfUc8RI+bD12j5jbMmJOIHo5CMSM
+jKN47jIVVQr79TDrGceVqjSznYGkm5C6kUPNDhD4lwTURBu3DjeXRLhZugxo
+v/Cy4fCygpO52TukZLIIF6EXbmb8q2oGs24JURsRM1z8exbfqFO9NgKVzF0s
+XJ6WgEv4sBpC3yliDk8jZoyaHjHpxrIc8RJ+pJrNHHzLxHHVxFEnbnm255aV
+EXOdB7IrjOwyNwXM68PEZtIhitJHWylgzuoAmE/0BzBTo+cxYM42gBk7RR0S
+nNGs0DgZQ+eOPJ4Xitdm1nFMVTaNYxSOpMPbBtcPN+u6co+Ze0Wm0W4WM7dr
+h5mrfMeYmTLbSePMETThp9k73ZnniJnZ8uZiNU80960hmna0KIWagpjYuMFr
+WU3LhytBIrJpMfPEGDOL1tL9dohKB5ji+lC4KIWVUePtZ3vQKfeaZaaipRcs
+jWhZ2CymbG4rY1YZ3GWbXuDG24oi0RLgsoig8uQEVOI/32++aZ24TypplIbK
+gqCykYJJ+EtgH96sGy1PIuXUCCkvD6lljJR2yJx8H0st4/t57OXhnTrxxPrL
+6bL+suKnm4tyXVazOhs0MLR8qR9oaZcKx3l3Wdjx6k2J3GakX9qO/M3zzbxQ
+txQTEdNTzLQXFCeSDowQM+zK2y3zqCaTXA5etMwRXYPmrh40yWtfHyoiAs0c
+URPetb49D+RMxM2fU5zTjq6vEXXnlmpWXff9qh069ec5wqZ06YlRdsbNRr35
+Xk81m5VVxkv3h1uybjkWoPIKvTKiC4ikHBG7OhcROqqvk+saIoHGMp7pyX1W
+vQz9nB34Ggn2cwq/h4ioJOBi7veiD/VD41O+SQYwv0NojIbIq9AY9t0MjY1K
+242rL/nKiavaZtfbq5SJRZjRZHmAj/F0ueBjJZkpdz5W8dEolfe8m8THzR72
+izkGho/PRxPnHfCxMg8kiuWr8eT5te5O3VQLPnZuhI9vpvLtJwE+AqOcV8co
++d5IPx9U5/Ok1sUxRnbOutemNy1E7twVRG4cQeSvanrxWMKMg5zVfnzvSj/e
+nl1iPCnto7cdJWoHlAU15WWSXbL/MxAuqQC5g17kPRFVSLvtPNhpGcPjhQqP
+0XUR5+Oc+HlEHqsddzO4n7FCInuD4GW8BfiMXb7xeIlXSIR2To7ed00Qs+gI
+l7Gd4+6W4L57RP11jvVKZebYZGor5rFyUU+zbjFmjpCZHVMllGfWEcpq+71b
+p/Y7tnfMoLnqlWkz/F2/8S3are62GUWgORZAc3S/QDMVLHqwFjTXr4CmJ5br
+GWI5LmjD42HKVBseEksNbq6ZIJZjA7sn3g53MLwjADazkYlW3A4IpfRL14/v
+AkyuXeo93OjRX+D8cZvtHu3znP76oDqG+f0Ouc50a84s82Bimd8xeA4IN1m0
+HAO4yavaKlPidfF0d2djlsejPeF4T2rPhiaGCpsYCsd75AaJ9gyzjFcTsbHT
+jCFTA0OsVBYWNe1YZBnDZu72b1iW6RNDzDLZBx9en7lML3hjwLy0bWyoK5pZ
+Gf6JHZ42bfi1nyZEy49MBNO4PAnU3LIWNRcF9/ls8OR8QM15gJpvDQA1Y3P8
+QRclauv22P2ZHdvxzo6P39cuAmaSbh4V0M1qPNPTzU26bcmrZnnG0Llx25hm
+N9A5OYBObc3X77jnI4bOeIBorwp0puJGddnN2gYdlc3u4DMtbnL2qFnJHtX1
+4pUL0RAoawHy4gRAur678Da3ImOmuiRfb9sPatms0yfjLRvyMFoWNpqO46b/
+t6By1fQezBon/MDYCU/cSRFgZcgwkQqc+Z/szCrDrDN44rY8iqu3i1tavNy2
+4op3wsuFwf1nHi/fBLycG+BlcIfFC/3Fy3ZmT6o9v5rac7dLE/CyGsEMF8R5
+w0cHKr2EmWKaQbCoqxY9HS6qcX4QMxkyV6skMr8byGxrm2coaa4DDSGnM9Ot
+uptUH1kbOKoPaVK3niNkQvVVDXQFzcKCpgyvD3Umet3aOTHSrbipRLO7e9As
+dlbHHi8OQuhfWUOnCMVKXO3puvD/+MnHIp4X70AqG3EnToZOQZ14Ud0OTKQy
+9zM8DYuTOjmOOu8++MeNA551xsqh6bXqVQuc76a4xKFlp2nyeNFbfHduZ3YZ
+5oeCbcLBvRXpnnxykCFKjZgbIZPYZWILu0XMB+oRcwNBzPX6gZjjOiGmyxPZ
+Qcp46Mf25lGm6I3YIo9Nn3Bb+7rBCHo6immzRWqTW5aZ2N7OV/U26+aAckRM
++HCN9cOYuUXFLa/f5NE9Zk7pGDXqrkvvTDVTSc0V3cW/bTr15LjQYcglD6e0
+pkkfQakDbALE122F75fd03SAGV0tUf7/BSeHWJxsHf9bc424x0m3mUhvxT26
+ipXIKw9FK6h6kc+QKlhWO/GMrztb2H5bUZwdSk1CBvSyzS4ODVzG7fg13I7v
+bNvxeLfwrR9Gl0P6vRzojG+pgHl/zWTkIAFzXBIwTQDzZRUz722FlwKZzHpt
+pijKrc+N2/I/SVt+jrskqB3N9E55ancHgOaC9oHMtKhpaWbdSnd2g1LJTMXN
+nf6v4ablm3W4GV+XYQlnJXyUI3Bmw2tXG9ekNmOR03DOLBepc6CJotGAmwFe
+NmK8pIUa3gmnK8y+DrPnW3XAzWZlhZtgZ3vdEiXL2kB6I2WOm70bHaFz/w7Q
+aSNEhyh0NoJbfKQzh48BeGbPpxdjTg1v84mh092b2+7Gin5zzUT8sm68x8Ln
+9Hg1e+JuXYXP+94NYpjVwfKFbvHwwOFTx32sga4jPwY+K4vhLHzGN0/6e3jX
+q5joOvpzXmLg/IzELUHh0HmVcx5hOOfhyYUePp7JnXpK3VT4rK54Txvq3yWE
+2oVyde36utmwLiDURTcz7N3XgN49TrxX6Wd105yB0Tr22RZGe1Iw2lpqAJOR
+o3+4Y3sZE75X4POEXk/mk5YcJ/KKZhnH03mtWxlTTwoW0Y51+JjBUETQolvn
+J0RQxM9C5EyXUVc5E/5IDYQygo5sh6Bhsx765gygzer2Dd4snBP5nFY/59Mp
+ul63Bq4ySP5ljRsUBo+ChRyKoTdGjpBb2J5YPlyDodXB8sFiqI5Mxos1O2Fo
+vKwjNTrZLtrul3ZUlxTHizv0Sox6GjrW+Orhsvfq/ZWWhnaDo9vYDh5AlFTP
+ylRlRxjl69A37wJG7V7jGEZ/WbOfM9o415aNxpvnVnVsdJ+asFLtEFH7QSKk
+RIiqR1J/v9QAY0geRTGi3oyZZ/X63K/juUcEzuTsox/rUS+ojL0gs249XlDU
+DyuoG+xUeTMJnJ2oJ/buTQecUYLdgWda5cwRNuuu/jkBPgzICf9yCe6JbtBp
++EeT3PPcr3IETvhwcgfHpf/IETezqf7utMSFQNXh8r/6VRwpL90onXVDQANF
+zrEOOZ/zyFlZSWyRc1ZidVyEnFbxJOSMh4KuqDTwdT7ROpJI4nUdJ3VkoGEq
+SZGz3VRltYk36JkjdML/7YTFjgSUwbNZB545Iie8zRLYCW8zQE/4ozXbOXMK
+KTWTPvvui0Yzcq7WZR+finh2JqGReaTICT/5/jSpXoOeOUIn/KVrwXMQuLku
+4KZfqV44rETnPHdZzDyxWf0catUlsp775ZeNlFGeeYTk/UPNcPIx1Zt7WZNX
+rPe668f1MeiI2KiXRFZu0+XdGuz+DEvegVbjALGqycg4sm24qNKXe8ecofGc
+7mnlWSlaGd/980WaVta25olb0/CSSQXIO1Mj5QiQ78gezercz8AB8sUuAbLO
+EpqRyLjHY+a2Rb+ytkWv0ku7z8hu6EjTy6Q1JCpnfZt+ILyv8EahZp3SySC5
+fASSfsURC52pkcrtjKmepJgJmNy0CpMjB6p34qjQL7MVEguQLFR2QzKTwU5G
+yjJASkBJMtkBIOpm1Zfq/+DP/9feuQZZVl11fOfsc07f28Nt5tUzDBFCeJgq
+KyE8Q9ARDCEC8piBAAZFJVqAJCDIJAYFQkkeEEgoUxW1UkmwtDSUSmKVkjIm
+ECOQhwGCsSjBlFbQkqqgCfniZ9u999pnn7XXY59zb3ePpMoPfWum70xPP3+z
+1vr/1395MH6Ib/AYm2rHvvkmuzwRjF7n4afFjZVLSItLSOQlAtXHva2s+YbF
+Hl9F8pRL71S3dD98FCFtXBEXg9qkFXHSdssHfaDtXuKmon5saYCRH9YjNqRb
+Fd2Nn+ySZK/8UCOmmoVZGl/+QWy9/7Aklz/TG4zE3UjCyL8ZYuTfZRvlIiOp
+CpQxEu8B6WPMcgv+YdKCf5ApQeVC8l1iIXkKs7d3piN+AL1Xg1SzZuKkskJJ
+OXnhujmZ1imBkxOVkzHxCGxIx2SHhnwzDtfTaUmZcxKSN6msfgQpKTtWjmnI
+AyzdR+ZpuZTRsiPmIhPMHpXRb9lPKE2VJ1i+RD3pBq09WqzvmAHbpU21ZOix
+LU4C5ndzKz+gnBeUlWektxJJlJyOoaSBm2f3Jo+6ZrxkpSTlZFTHaRSRXEvK
+WcHiiBJf3f1IX0uyZjtj5XfEMWW3Hykp5YyVyVqUHzAfz8rHR7JSUMwflRRz
+LPlo48qRTffXESuLNeV7pJrSfc84WprXFu1GJZOmlun+lhHyjwxM6tYUgQm8
+PEpZERo2bQIwx/rd1erSh3i8OohC8xSXKW2z8sR0TaK4dUnc7/OxErLdTnSs
+FDZ2TLpddk6GSDtYSI4A5Ohm2x8z5jpOb01vsDW9Q6UZZmVNHZdpFDmHjkOv
+kFvccxsI1pgMaTmVJ6W5c7CmVFmp1pRKzgZ2FKGc9QsYK3tZHN9G2zhWPjbA
+ypK7SLib9tgf5RnCmSWTO4x0iTzvv3OX0e2Zy6i3Zuq15anM0F7kZRXOBbVs
+9TyqPL68/Fk/q5S3z2FWOSNn0UfB0leX3zzLYWqIlpfKtPS5mie7GmQELA2k
+d+xieg9vxXUHUmFRCIg5LRJzPlK2iZTiXuMPOyQtDkg3yJiuYLKRMIknk8vy
+ZFJLH7qPmYbUilK8PhEz2+iFXZIJzNYg/R00sfuOqz3Ee5mlqccMt17CyQ1E
+npLYQLQ5pMRGIkrKzwqk7CeVpz8mLZZ/vGAmkrrwu/MunCyY55cn+8qSXrIY
+WjTHgvhP5iuTQMtd6kHKUFjKmvigt8jxErQdObTDwbKwf77X+G78J9xPFiow
+jWfkGxyYSEcu8TIw8rXuBykL8hAKzJ/HSXFTJc8jE3rcm3YlpnvXEDINMHMp
+nQjGzFxZoAMPrOy6bbtZ3bZ3B12cJaJbyRjEXen1RpNywld48gZcOinBooi2
+5e13KQVY3xV375bDpblfPhQppWzQnXFqVBfkHHa65+MImJ/Mt3t6vZtIOg88
+m4Wq58D8Fokr+mYKV18MmF8UgKlp33/Ktn16YEo75drYElpxeU8ydw+JJvYn
+x5WXfMdcb8c1F9HZbG/y/5CardaWe4Ce4n548dUgB83KU9PBq9CUG1ir3DWy
+ztQ7c2WcCdHuNnBzEV6e8Op9qOtuJVR6UNY4ja23nbNsX3SlTBxLjhBvECDj
+THJj68hrfR3JIofe6dtobz2flZcc5bO5Bu5JzNTdHW8CUmpJbwr67ZfMzeVU
+y3vIhFLruqUs4FBLymZ0GY//NIDHf5gTj19dAI9/OWANond45RVyfsWHXkO7
+R9zxOekbpKZ8YnRNWXk+um8xQdxxX2rHR9fr6lvlss8yErLyeBS78ABH34Xv
+c0/Pwcf9G8nHVptaVqGyrJF7KG2cv8aHEMsLlL60fJX7ZA2UldoeZRVOX9jQ
+iS9Kxg8EYdtfB5fye9u8z6Y5GbYvIdMNMtsvNWaIhL3GrucGh6R8hyx3Ak2Z
+E2j0XPJA5wW6OaRmeK/kTblX0gAtW4mWXvGGRcdWO/NYeWK6p+n5nbgYDshs
+pNbbNyG3+r+q7OwAMVeUjccX9e4baFl5XJp3KP5JOK/Ls4hw813O18g2eFiS
+28YCs7cK0eM9Dwrb43hcSY/4eGDis2cf40341wpN+DfoyJLWlL+RakotgyPf
+7kkSD0Cz1a6iVZ6Y7mn51E9ipnIfbRQzG4mZcXDZass+G4HMRiorDXBzz+D4
+Mo+IO5yUlWWVfFFiws5NaXmRrd6wYN/8UKN7sSR5zfZVZLb+DYVkN5Q0qsot
+pWUMM7LV/ORhOAmRvw1dZfR+8rjOWNPhZAKk3G8DIFfnryk7FQdHtOWxQ/7/
+8w+9aG4btdwoOYRCTZkwKc0o/zlTvqVQDW3Rcf2YfIRg8q8FTGoKuDarJK33
+VwqtN40oSnfPsLKDa0uyAPmEPq/sliB5orDefjNWrkgKT0rhKByTBFjOBhKM
+zt1EWiqTS6BlqzXh0IO32ra5LzSPNIcqco8P61hV2/BFOfm+tJuoIrKRFrw9
+HPGWzWg0kuVE6YqOLWNR6LLH7NkAGK0m2dTUBQRU3K212sFPPkq20fe9fct9
+5/fNx+S4DC0onRonqSEIt9sejXQaydD4nGoKSuHpEho/t0lopPlDo2QcOpWk
+B8hJ2z1kqMxMQryKhLzgoSryekXOgQPlQ2YhbToJms7lpX3xTefjqxAfx3mH
+6O0fvv4Y5Z1hSdwAJ2dCM57L4piTi/Dx9Ufvk6/kQIcd1g8tbbEv6lrshlaP
+4cYYCe+tPCbdH81uRECfDT22FeSahThpAydbfvqb1Y4CIl31h0MqixNJ3mGn
+1Rsi2PgGwjXZe8oV5GjR5ru6x9y12ZUHpfumgUZb9gMxnzmkDLm/60BpfpEp
+3QmVD8pecxGVnxdQ+TBB5SMIlXTlW/Wca4p3J+BIE8pPEFQqqvfXtCVG2SPE
+ozTKynfnQVd8lfiw7hhaMmvlZtNyItISbOnIml5TWsIt3lbb4gFZZ6LKOjG8
+yFeVx5kdysY4jhnW8t96XM6HyabH5Hl9njkqHdu8dKT5QKMQiWaQNZ5BFug4
+prmW6NhwOl7TTR8tFrMNqNmNpGabcJ/RLOf2H91RDhagVdUnOWwB+oEAyFBL
++vb6rv8095BBZHlRUUr5zU2TfBmnswIxdRsbJx0gIfFXWFrEkIy3JURIPkwh
+iXIxvvRFZAvSzOb9SXFZ5cZJwPcTSJLz4mq7LUs5uT2InhunG9/5QuPJLHeo
+b7lLBnQa3waUVNOC/Yzy8jijFETvDZ9RJlZWQdxpNUf6KE5azEkDhyUPUX3p
+MiiPrDwpzbSw0LNzbbZgKZnYaDe0rR5HxVt4gkUKM7fkuhgH47IERt3lM82O
+jSnXIPzS001++1td2ubbNnEr8T6+uR2bbHnjZqSTvBQOFBtt0SfZgZH4JC+k
+URcCHHEUOvVKhm3FLq8ywvH0ueH4twNwpBYgCscHiMaNHebSLFJquO9jDfcp
+qIrsAoDZFiMLAc6ryLIdCDfd6RJkfjqX8bEKR8dXspEkD1NXTUGj+DgZ0r0r
+D0j3c4fwaEbx0WI+GlhznC3SeMcYt0M1SArVZN98z3asLFRBysE+YOxpc2MP
+vfTQ9iZIZIa8fRGVJsu1+DlVzR6JTa2evFGuJ2E1scmuNOZ3x5ZkP/kBfLKx
+zaeT/WSyCj33fSO2FOWCMgRS4q4bK9ty190zkw0on2dbODk3441wxs3cE6Ry
+E3nM18fNhwk3NeuktPH9aVnqpv4gdpYHd9/3Cd13qbDsPELaBjhPyqDec2Wz
+Edg5GUoVgvPjjSTnuG9QR073nMBOMwqeSyV4+hHP029ydQ8xDgE8Gwme0ZG+
+VBpbejvx068PEjjLHoqbPG1p9fFo9x7hOGHXjvsq80fcW8TduMpNdn4n0BIW
+aQSLz0Uxt1ytIcPIsZ5Hq46xu7dcKeafrQuDsE9jsw1tGzDYahvaUDY2rKX2
+BLSBgI2UIWkAf41UNsY8tOMGy8ZiJm8p/AcdtC0tIgoajXvfHADNrwACk0bz
+ckUgPQ6OtZrSAFLurU/Lyke0pPj3d5EkNWmpe7h8hDxKxU1OJG2k2Ri4+Tgb
+XPJmuo2DoF0vBFsNglWgYCOZJ2MFWVMI+guRpwEEWy1QiPKPbzJuF9Mr+wy2
+4Qoy0m+eSzoeg/0+oWBylPJzO5+jFVvqy+ZqqftA8iIZLSaje8Kxcbg6bKSD
+tJGMFh8Ni9PGadJjpGljzPkx7DptnmGRCMkLRJIYyQrEyuPRNygyICtPR/e0
+0lZXHo5em5EMkJ9Ee9r8hG3Co9dlxJM5Ah7pFuJ8eHy0gEfNPU5vgw+NHjEe
+pSUbvMONL0VQUyS9FpFXiScWq8RfL28opuhzFjwZ8dgKxx3DCNK32Ve6p5UY
+DKgSLTb+GLjBc2havSnd4lH0GvcW/SSyjYm+DJFyj51KxQFI2sEisZGKxNBq
+HxP2FjVIvnLOlhroePwx+9AWoZwAafMESDhp00gL1979LWRA/tYVYqkIunSN
+rd8SDg9kOCwuyvTWb7J0DbsyjXTjxqRCka4Sdq0yKC+HMOXlyt8sHrypwkHF
+QnhuRGEWEJla5RyFrFMGFB7gV7w75QWjkA0Yn8sk6jIKvyWjMLh5DgIK1V1D
+mrXrVZihQeO8DTN394wZNnI1Jq8WlTighEOlawYcztSJ4zlBthaNkLFgXImB
+F/Pq12dXI5AIjp8pmzteFtw+mePHQGTvJIkzSggGiDOtdmMcmDhRmRh5OA6H
+dY/DC6nB22L9GW3BWLVZrql7kULwls2DoMUQjAr0UklpgaEhxSDulxEGraCz
+rOQi9K2jZ4aVB6F5zYJSC9Whcc8s0FAYG+Y0fJZ7Gx98xn2IjoXmF9Rt672f
+e2oDaChtyTwUaVjSpB/IaFgeH0rmHU16uRtd9+bSy0lZgKSkTesjRN4/XzfQ
+P7da/zwvEVkLXXkYuv/ZL1w/Di/BOHyrqxCnanYaIqIBo7jFZWKg4wnBz1OU
+Y6qwXHOIGNTbB1D2WFwHDqVVl/yGNomXqHpZRciYuA0I2bfNKeMxANI9R3QV
+gGRDIRkYWflM3A0jZZXOx4Ldu0mlYvfiKQme75o2zhUdK7Kc3K1qWs84RTqe
+XLC4YvQzm3u/a45iBxNL7u/ydFEJ8CGkzF07zwAo9204KE9loPwCB6Vq3tF2
+ZfCQ8X5BZyFd9Fc/KuT78J2ZcnqkVDpmpxvcl9Kh0iyTA2LXa0YecDy2yctz
+hrQ+sxWNGoUVGsJKVa/eggrHQVq6D8Tx0jGsD7To9JcMlzYMHRsJlSbMHF3l
+QgtIjsoGoTLh0kCgeavFToJ43SLnOOByLkx2TfR+tDOtMFI4L1Nqor3ZO58t
+ekga26vPG05JKwwYa9G5U3XSC1egvfwCIvSyHtIjLQ4ekXpraUOmEEjB54zj
+DTzuo3S09G12ODDLYsYrD0tXYYh3ZlUxJuRT+FnUnzzn3nQRl29D64Qbicsv
+CbgkXscvc1zy1cIhv6MUskuN4Thol+7R9LoMry0132PZIE72aSrPS7NNtD4C
+LnX749m5PGMgtHyZrB2qwT9QXbYaM2UfZMgAMlBh1hSZvrI8oyow0wZmNhIv
+Q5F5YmAla7YjK62wtj0htWVviZwLlGDgOf7Y/fy2DOmnraa2iGPFGo8V+4Cy
+tnfiSHcU+itckYULodD2KLQYg1FrmWRZ4YIZB45pN2lTEJWN7k349rrVlqgh
+DXcLVI04DVfcgsEm761sE0YWpV/QjN6VB6H7pwMK0TLMRZ/6l/zwQm9njCj8
+1Zg+QeMf47SRLcXgyJ6chW/YUBb+VWShdLhGmjpSFvJ9wtNYKkXeZ5+qiDB8
+5drz8HZhr7Bbu343mTze5Hh4YzH5DFsdCRCrcOGm1QLQwLKzQrSYt5EMtM3D
+4RahgsRLh1n+bigfT3ddeN91q5uH0QRp8RzSwI72BHXdYoI5bNXUqfOe7Th0
+7vLRUzHTWXCx2IXtSHPGESILVZ2Jm3uIhJUHofssdj7uwtktUXa2WHZWMm5z
+X+IrxezG0tZ0MfD2zqKpOwZLfFA+zVUKLMt66OeVrRfpinYfhKu5dN78GWn7
+ZX4anqzS8JGchtTozWhI5OhHJbM3nTpix87vLdBM0y3rcnV4PIoYL1eH0hmb
+PEB3BBEzE+OScqQhENF9hzkeBh8PI6KZA4n7AhJ/miBxZR4k4vuz0Fy3hIip
+WKxirZgLMzhxt9HTIwGJtkMhzBPn5OEdYMnBiYx1YZw4UnVJVPS5On2B6F73
+nmjWrmDzb7BZnpuLsB9tM93Fhj65Fg623uxfLbXJlSei+7rpVxJu9SWlcH3L
+QApZK9WGHodV4GGrhZH5Y64v+EaZDhUBhpWnoXmHfjqB8BDPFM/bMB4+OcDD
+ryzIwwF7zqOaCkNPLJS65Y8KurTeLZ+EKsQTBytErMaECrHyQHRfTaVArEL6
+oxXU6QlSp0U/IyCxVXZiLvOmnUv9UGRMjXjB/EBsCRCTTg1dc4t4qBkca9o5
+AwwnEYbqmgyo1VZI010nCveHRplVhX1MLaRD1DQdAl0+sJiKAMQ+RwcH1opX
+q0fzsM54mHzbdZ7GyFWWqaSyUHuigUPWTZauE2tFA1xc6b0589WKMhv/K2fj
+AaFtpmqL2jbrI8T7KR2/LdJRc+q8+TP/yDzdXaBER8cfH03H7jgXpyP3dks5
+PEL8LQ2YeJxIL0IeDz+toK8IDskvNBI3EtJ9xzg+ui+5GoubE5IoMEDIRjkR
+e+ZTbw9FI26h0+WFMYT0ReNb3c+NiMeZhsdMhRnm45sYHxX3N0wVa9o+29A7
+13K42bK4QYg1mLk65RrjcO29uC70twOxitIrKUFIseSkQdubs4XTBiENIpSD
+7t1AIopBIGwwCPMdloyFeP/5xiw6p83uZrGDrHnGWPLmWNw5RxrO+hAd5eqB
+0DkbuHywUj7UyuIYv9fttQAOG6lUjILKNYPNc8Bhd7+V5OoERUVWVfrmmdl1
+xiFx78JI1LJ2NCRqarSARKpGqxFl45topWisPBPNsUpamVYz0j5aOkJzHTtE
+I6dMiKNFi5hIlelUNU6RrTG/sHB+UKaDOu2+AR0VHX5GcnEAiyBQ11Rssb3a
+Qqw8DdKnk+s77ga2qGzM9mPA+W0DHrtScd4J4nuzSJxaOV9wG2zylQIWbRc8
+2yvL5qBgEUnLNZWWq/74y2xokJgfgckKxEmOQ+pY9A203/NrpFmigRTGVjvL
+CqPEVtNVKo9D9+lAzbMBF/dWcsyaTxMZEPNpYuVp6PNYaN4Y3CCsPAzN2+U0
+nYfAy70YDr88Jw6lJWgaQVaaKdJF6N+ds4e+S1l14ZFkWYLjE+8WPN4dD8Go
+IzfSLOjWwHb0lGxHi8NF000X++1Alnpr5idjI5HR+M76HPfdiRdhAI0NO7Zw
+ydNnhtyJM9yPKbl6GESXKsCxJYpLaqnB/N2gspGKLkuIjX3tuB4w2jwmTElS
+DCvO7jkBisamwDDFsb2RJLQ4NqwP5kaKSqvFhsHw0GIOGnBu17Q0BEvi6gif
+TUFgLuoqK/xM9WC3/O+9yDwrBIqp0ophNPyz5LnpafhLerbYRtAwi9HRrIp0
+H1r3db/xcZpfq00U5+2Zc5WFLf8h26JUIb6u6PGmS4CpQjRwImErMePQvIjS
+rnQgIvhx7AAQL94UIF4sAtFiIBoe54hWBC1molF6aSucVViEg687bn9vOxw5
+M6wpB6s0NixxEHTllurKHQYpBduegnlUWEUsNjWmoJdQUEk4USNmY0lIndl8
+h2Upt9nk7uy41txIlkP/3Pu+b3bl4Q9jrrtgr40erCij8F+zbMVhFIKqIqLw
+3LTkl1D40EaisLDeoorNf07ElU8XxJUh+40c6c0jGLEFB6fl3FF5FpojhNqQ
+OxJ7F458AIEmRmhJ39HJ7b6CjoXuK0jniJGGlUeha3Zz8ZkeRUhSC6xHN+Qy
+IYahxTAMEDz3IJOw6nmYt88Q39hkvfN6WFhrRsN+YmjTTgpSS4i3UEz7Go2/
+qYY/rCLLqylLWVIiEU3cX3EYdB8dN9gsyWcJsvibiVwQph0Vv9x8xw/MjrH1
+IDsKKIDQ/dMOg+7nTLxWgLrj/eRAYNrs66K4RX35WaYvIxIaQOEVGQpBQXk5
+oJCODf+4oKQM9MlsB1o7Vv0BUhlKakrHQ8mRqFaG7nPtaOiqv75X1hJ0tJRa
+tN1iMQ4N8NBiHhpIq22QUzvx0GwYEG0HRLYSeKYJrm1vnch65TRLrHo/DpVY
+TgEYNiTJNpSHBnhYJx7Ods6tp3gURs3EyvUgVU9qqp4gMAqeGjIt5EerJDK6
+P4bSbrz7+hpfJypwJGy0fZPcKSgG5JNJXxzyzJt+wXklz0TsfDbDSds+78H/
+y6g+jCPDKd7g064SxDW+Y+WMxK4+xGgkC8/ShYK0m5LQKInLWElhxmwg4y/D
+Sp+SBHFwyfhZQkbtiMGQK5HcfWETxI+QKeLdQqF4Jy4UlVW/UqWo768UjxzM
+GByltvmsfO8v0rHVsmrBqdhmvpyfCWBUvDnnM29OEY3cmCOgUZBZGmmSaDga
+U+dscNJ3xOJiXAwacjwrEFrjwRGhN9PwQFgT7gvYNCe0m8BA9+Y6RTmGPIQ6
+EeaFjeTA9kVicBomEIKWbAMIWyn7y0Ow8hT0i5WRgaQ8hNybRthiDr3y+7/n
+R8NyeQgIbLXMBziE2mrnByqPQB97Jw8MK09A934JarKfGj0QGmU5CgcYuFfZ
+09ssBpIMRfWIyxgVJc4NMyciPTnNmuXKQ9CsZr3yqWKvLN12KRWI7/L2mydv
+dp/xXExJ4nLlGeieln3ayuJzComoPALdjxBXU3rbDYFg1RPQYgKaKsRFNLQ8
+DMWhLxHPdz8/3fAQNGa1Y44s7EhoeIT3GQZ8ijZbZbFhlaUlB7RSoViFTJ1a
+jhqzCYABb3P2ybdDEna00owk4Ejp2I4DYU2jD1nyIW2UMQjfOQDCvlu+We6W
+p2xmKBxfMXChalk5wMKkZFYW6tvKRmbiCxITmb+mY+JMnRxeoO6nPBuheL1i
+saFJsptNxS+MpCL0zadn23vavoo2Qpynb6b5YaCopMScOarDXGMubzdrOvPe
+jo2N1DobD0Y8TiTCShXWnFvJgtO5Ekt4PF/Eo8XaCnTQ7ieUxOoAHluSE5Gs
+OGjxOffidJpzKBLZol8YLZ4SrNv0GgxILAv2zPFIALt432nIfUqDle9MsfjX
+TeFgSznYySe2l05qKp2kmvAAb44hqaHJUxCzI31LpVMrBqaGNS0L+6pQOm36
+og0EPKKQb6NcOE0zw+8IFkM+M9QZeKrKwLOYzXAjGahsL9N0bVVRpjsq2ezQ
+fWyOguZMfXZIL6NKqrJ4zYrPD9n+3hNCIA5RlvU8RXLARcxUlGeIpE02MESs
+6bWrKpOXn6LycimVu6YY5BQ8r0zBJZGCfpp4SSwQz3B/RpomXgpZtAYcODXt
+m8GhuCQ5FB0Jt7I2eQrw+2/3m8lVV12FK8Ri1ShHNnQjRItHiFAywvywpmso
+VVJVQtPsOJ5UlSF1RcOlxbg0RGOGHb06u0LVgXKuGWKbySssOnv3sN2GrjEn
+M7Y2R6QF45FyE/07/6Heqbr493NkarPEIDazWWJCJhDzGmREXA8xnxhBzMfm
+IOawB+eNjJjSTFG5TVDMWMSV471EceH7K5IXR1Ogx1WOwY9TeWQ6gAlNteFd
+dQZN6KpbMSKHMZNacmCjxW4sMN8CwGzobazQV1cpMUcZMF4K2guuHS9n0Ywt
+u/USSbk4KGMd+aMX9yvMAialIwLjlZZNAOavKcAENbrlajT02JCV2OiJD4DM
+pqBGtzT+pisuwZazBzkUXxqvSEsHoXXpxcBh6FZLgKg8L80qt20nYn67HDv7
+ABGmwbsdBo+VB6b5qYOITGripsj8C4LMMTKMtAw9V7NdeWaamZBOy5UY4mB0
+n0LHTD9ulOvMyiPTrBTDxGiADrt51UibLoZT80pGzdByi+4dq2ET1JhGUmPc
+H0i70goxW4mYHS/PDLxkx6k9M+1gr92PIQVOhl+bpb3uNy+6l+fjy/+4l39z
+Lys33HADMLIJfz5MK0/wsPQvK9t21muzbTsPdw+rdm22fdX9k4dsX3Uvu/yL
+2e4fJ2tbwsOO3YesLe/Y3axNd+y27uGw1bXpzsO2r01XD6vWprvCw57Z2mTX
+nmZtsnvP8trSbverdvee1v9q4h4Om7gnDpu6h93uV7t2H+oedq24h9V6bbK6
+uuQedk7d29vp3o3p6o61ZXhx30XusVrbsrpj6h62u4ed2/17utO9fzu3+RcT
+Hre4h62t/zS5Zw8/7hj/yQofdoM/We2266677uvoP5buP5la+P8lvm6rezgq
+vpg1/3ief2jRVyL82jRXXX311XfEt5D+9yq85ex1+4TX7V/Hn8PD6SV4zeev
+vfbao90nYMQHfbDftR9z79qD7hXzvmvbhNdtH/m6l/vfPRj/Bv5STOD5u9xv
+1ub97n25fy5/mL4O0sz0/z/nB+FzvuZ/fYV/eEX8I6/4X6z1M6w=\
+\>", "ImageResolution" -> \
+96.],ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"]
}, Open ]],
Cell[CellGroupData[{
@@ -10212,30 +12413,30 @@ Cell[BoxData[
RowBox[{"4", "/", "3"}]],
SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, {}, -7, 4, 3],
Editable->False]}],
- SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, {
- Rational[1, 4]
- 2^Rational[-1, 3] ($CellContext`\[Theta] - $CellContext`\[Theta]c)^
- Rational[7,
- 3] (-($CellContext`\[Theta] - $CellContext`\[Theta]c) $CellContext`\
-\[Theta]c)^Rational[-7, 3], 0, 0, Rational[-7, 24]
- 2^Rational[-1, 3] ($CellContext`\[Theta] - $CellContext`\[Theta]c)^
- Rational[7,
- 3] $CellContext`\[Theta]c^(-1) (-($CellContext`\[Theta] - \
-$CellContext`\[Theta]c) $CellContext`\[Theta]c)^Rational[-7, 3], 0, 0,
- Rational[35, 144]
- 2^Rational[-1, 3] ($CellContext`\[Theta] - $CellContext`\[Theta]c)^
- Rational[7,
- 3] $CellContext`\[Theta]c^(-2) (-($CellContext`\[Theta] - \
-$CellContext`\[Theta]c) $CellContext`\[Theta]c)^Rational[-7, 3]}, -7, 4, 3],
+ SeriesData[$CellContext`\[Theta], $CellContext`\[Theta]c, {((Rational[1, 4]
+ 2^Rational[-1, 3]) ($CellContext`\[Theta] - $CellContext`\[Theta]c)^
+ Rational[7,
+ 3]) ((-($CellContext`\[Theta] - $CellContext`\[Theta]c)) \
+$CellContext`\[Theta]c)^Rational[-7, 3], 0,
+ 0, (((Rational[-7, 24]
+ 2^Rational[-1, 3]) ($CellContext`\[Theta] - $CellContext`\[Theta]c)^
+ Rational[
+ 7, 3])/$CellContext`\[Theta]c) ((-($CellContext`\[Theta] - \
+$CellContext`\[Theta]c)) $CellContext`\[Theta]c)^Rational[-7, 3], 0,
+ 0, (((Rational[35, 144]
+ 2^Rational[-1, 3]) ($CellContext`\[Theta] - $CellContext`\[Theta]c)^
+ Rational[
+ 7, 3]) $CellContext`\[Theta]c^(-2)) ((-($CellContext`\[Theta] - \
+$CellContext`\[Theta]c)) $CellContext`\[Theta]c)^Rational[-7, 3]}, -7, 4, 3],
Editable->False]], "Output",
CellChangeTimes->{3.827831598311305*^9},
CellLabel->
"Out[192]=",ExpressionUUID->"096c6dce-489e-46a4-9e05-19a17f9a5133"]
}, Open ]]
},
-WindowSize->{955.5, 528.},
-WindowMargins->{{Automatic, 2.25}, {2.25, Automatic}},
-FrontEndVersion->"12.3 for Linux x86 (64-bit) (July 9, 2021)",
+WindowSize->{630., 1010.25},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+FrontEndVersion->"13.2 for Linux x86 (64-bit) (January 31, 2023)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"c08a3e4e-4726-4b51-96f5-38c9f0dc1f4a"
]
@@ -10251,50 +12452,50 @@ CellTagsIndex->{}
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
-Cell[580, 22, 2253, 59, 59, "Input",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"],
-Cell[2836, 83, 2912, 68, 242, "Output",ExpressionUUID->"214b4f47-73c2-4169-9a4d-ef2b4e5fb5f4"]
+Cell[580, 22, 2253, 59, 76, "Input",ExpressionUUID->"c0a33ae3-38dd-4996-a6db-1046c247f003"],
+Cell[2836, 83, 2873, 67, 243, "Output",ExpressionUUID->"47b1d716-2908-4128-af4c-2c85a1c62384"]
}, Open ]],
-Cell[5763, 154, 336, 7, 24, "Input",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"],
+Cell[5724, 153, 389, 8, 24, "Input",ExpressionUUID->"92b6b8b4-4b9d-4606-b12e-d1503be8044a"],
Cell[CellGroupData[{
-Cell[6124, 165, 4367, 113, 128, "Input",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"],
-Cell[10494, 280, 4128, 95, 242, "Output",ExpressionUUID->"d190cc8e-c3ee-4623-b28c-c47d1a8228bc"]
+Cell[6138, 165, 4367, 113, 196, "Input",ExpressionUUID->"4b23646d-66a7-4f99-9cd1-77b8bfb048e6"],
+Cell[10508, 280, 4087, 93, 243, "Output",ExpressionUUID->"ffd47d51-d7e9-49d6-8d88-f9c2685bf164"]
}, Open ]],
-Cell[14637, 378, 388, 8, 24, "Input",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"],
+Cell[14610, 376, 439, 9, 24, "Input",ExpressionUUID->"2a30392f-4cec-4410-b883-5f9d8fbb9b77"],
Cell[CellGroupData[{
-Cell[15050, 390, 6301, 168, 178, "Input",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"],
-Cell[21354, 560, 5113, 116, 243, "Output",ExpressionUUID->"55ead135-59f9-442d-ac33-7c08fd310e39"]
+Cell[15074, 389, 6335, 169, 246, "Input",ExpressionUUID->"3cdeb246-19f3-4cd6-9c3a-ace23d2eb4e6"],
+Cell[21412, 560, 5148, 117, 243, "Output",ExpressionUUID->"cd4d61b2-4474-441d-86f3-942c313cde21"]
}, Open ]],
-Cell[26482, 679, 439, 9, 24, "Input",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"],
+Cell[26575, 680, 483, 9, 24, "Input",ExpressionUUID->"080e0724-5e26-45b1-a939-86c8b13b3107"],
Cell[CellGroupData[{
-Cell[26946, 692, 11790, 327, 394, "Input",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"],
-Cell[38739, 1021, 13390, 272, 241, "Output",ExpressionUUID->"db8055d2-fbcd-4066-a806-99ab1f7161ec"]
+Cell[27083, 693, 11789, 327, 497, "Input",ExpressionUUID->"286de95f-e12b-4640-9016-25c81cee6ada"],
+Cell[38875, 1022, 13350, 271, 241, "Output",ExpressionUUID->"27b04507-3c39-4d5d-affa-0b88d32e7be4"]
}, Open ]],
-Cell[52144, 1296, 478, 9, 24, "Input",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"],
-Cell[52625, 1307, 2989, 88, 105, "Input",ExpressionUUID->"9f090f7e-7e79-45c0-9494-a106e69278bd"],
-Cell[55617, 1397, 851, 27, 24, "Input",ExpressionUUID->"0656a984-2665-4821-a057-7cc45a6f7f5d"],
+Cell[52240, 1296, 528, 10, 24, "Input",ExpressionUUID->"121d3bcb-c71c-4ec8-a01e-74607255b0b3"],
+Cell[52771, 1308, 2989, 88, 149, "Input",ExpressionUUID->"9f090f7e-7e79-45c0-9494-a106e69278bd"],
+Cell[55763, 1398, 851, 27, 25, "Input",ExpressionUUID->"0656a984-2665-4821-a057-7cc45a6f7f5d"],
Cell[CellGroupData[{
-Cell[56493, 1428, 841, 22, 24, "Input",ExpressionUUID->"91c7d63a-9e48-4594-9dc8-9fb993246fd1"],
-Cell[57337, 1452, 26678, 463, 179, "Output",ExpressionUUID->"3e4bf6b9-c5d6-4015-ae0b-bca493ce1b14"]
+Cell[56639, 1429, 841, 22, 43, "Input",ExpressionUUID->"91c7d63a-9e48-4594-9dc8-9fb993246fd1"],
+Cell[57483, 1453, 26678, 463, 179, "Output",ExpressionUUID->"3e4bf6b9-c5d6-4015-ae0b-bca493ce1b14"]
}, Open ]],
Cell[CellGroupData[{
-Cell[84052, 1920, 1115, 29, 24, "Input",ExpressionUUID->"0466bd7a-1e6f-4e14-9bd6-ee3768a77e31"],
-Cell[85170, 1951, 83431, 1384, 283, "Output",ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"]
+Cell[84198, 1921, 1115, 29, 43, "Input",ExpressionUUID->"0466bd7a-1e6f-4e14-9bd6-ee3768a77e31"],
+Cell[85316, 1952, 217643, 3584, 283, 83182, 1379, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"c1bd7de4-9573-4cdd-b54d-0392f12b9516"]
}, Open ]],
Cell[CellGroupData[{
-Cell[168638, 3340, 1249, 32, 41, "Input",ExpressionUUID->"81f1e5fa-e6c5-4a58-a1fc-b5420cb084e0"],
-Cell[169890, 3374, 203431, 3459, 283, "Output",ExpressionUUID->"5a4ab01a-a4b0-4ae5-8785-e1ce54c5c277"]
+Cell[302996, 5541, 1249, 32, 43, "Input",ExpressionUUID->"81f1e5fa-e6c5-4a58-a1fc-b5420cb084e0"],
+Cell[304248, 5575, 203431, 3459, 283, "Output",ExpressionUUID->"5a4ab01a-a4b0-4ae5-8785-e1ce54c5c277"]
}, Open ]],
Cell[CellGroupData[{
-Cell[373358, 6838, 832, 21, 24, "Input",ExpressionUUID->"69a93418-6008-468c-b9bf-eb51609b9866"],
-Cell[374193, 6861, 70501, 1182, 181, "Output",ExpressionUUID->"84af0ed6-daab-4ebd-8ea9-ddc7be3c2d84"]
+Cell[507716, 9039, 832, 21, 43, "Input",ExpressionUUID->"69a93418-6008-468c-b9bf-eb51609b9866"],
+Cell[508551, 9062, 70501, 1182, 181, "Output",ExpressionUUID->"84af0ed6-daab-4ebd-8ea9-ddc7be3c2d84"]
}, Open ]],
Cell[CellGroupData[{
-Cell[444731, 8048, 1894, 49, 41, "Input",ExpressionUUID->"146039f5-3d9d-4db6-86ad-d58679665956"],
-Cell[446628, 8099, 122026, 2015, 283, "Output",ExpressionUUID->"718a8e27-d39b-4c2d-9cc0-1b2fefba1f89"]
+Cell[579089, 10249, 1894, 49, 59, "Input",ExpressionUUID->"146039f5-3d9d-4db6-86ad-d58679665956"],
+Cell[580986, 10300, 122026, 2015, 283, "Output",ExpressionUUID->"718a8e27-d39b-4c2d-9cc0-1b2fefba1f89"]
}, Open ]],
Cell[CellGroupData[{
-Cell[568691, 10119, 502, 15, 24, "Input",ExpressionUUID->"97973954-954b-4d8c-979a-fa0e01edfc92"],
-Cell[569196, 10136, 3330, 96, 46, "Output",ExpressionUUID->"096c6dce-489e-46a4-9e05-19a17f9a5133"]
+Cell[703049, 12320, 502, 15, 24, "Input",ExpressionUUID->"97973954-954b-4d8c-979a-fa0e01edfc92"],
+Cell[703554, 12337, 3364, 96, 82, "Output",ExpressionUUID->"096c6dce-489e-46a4-9e05-19a17f9a5133"]
}, Open ]]
}
]
diff --git a/ising_scaling.bib b/ising_scaling.bib
index 4185f2f..11ae107 100644
--- a/ising_scaling.bib
+++ b/ising_scaling.bib
@@ -340,6 +340,42 @@
doi = {10.1103/physrevd.95.085001}
}
+@ARTICLE{ChenPMSnn,
+ author = {Yan-Jiun Chen and Natalie Paquette and Benjamin
+ B. Machta and James P. Sethna},
+ title = {Universal scaling function for the two-dimensional
+ {I}sing model in an external field: A pragmatic approach},
+ journal = {\url{http://arxiv.org/abs/1307.6899}},
+ year = {2013},
+ volume = {},
+ pages = {}
+}
+
+@article{BarmaFisherPRB,
+ title={Two-dimensional {Ising}-like systems: Corrections to scaling in the {Klauder} and double-{Gaussian} models},
+ author={Barma, Mustansir and Fisher, Michael E},
+ journal={Physical Review B},
+ volume={31},
+ number={9},
+ pages={5954},
+ year={1985},
+ publisher={APS}
+}
+
+
+@article{Isakov_1984_Nonanalytic,
+ author = {Isakov, S. N.},
+ title = {Nonanalytic features of the first order phase transition in the Ising model},
+ journal = {Communications in Mathematical Physics},
+ publisher = {Springer Science and Business Media LLC},
+ year = {1984},
+ month = {12},
+ number = {4},
+ volume = {95},
+ pages = {427--443},
+ url = {https://doi.org/10.1007%2Fbf01210832},
+ doi = {10.1007/bf01210832}
+}
info: 'Griffiths_1967' has been autocompleted into 'Griffiths_1967_Thermodynamic'.
@article{Griffiths_1967_Thermodynamic,
diff --git a/ising_scaling.tex b/ising_scaling.tex
index 2b1fb62..7fa1ae6 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -26,10 +26,10 @@ linkcolor=purple
\begin{document}
-\title{Smooth and global Ising universal scaling functions}
+\title{Precision approximation of the universal scaling functions for the 2D Ising model in an external field}
\author{Jaron Kent-Dobias}
-\affiliation{Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France}
+\affiliation{\textsc{DynSysMath}, Istituto Nazionale di Fisica Nucleare, Sezione di Roma}
\author{James P.~Sethna}
\affiliation{Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA}
@@ -46,8 +46,8 @@ linkcolor=purple
the low- and high-temperature zero-field limits fixes the parametric
coordinate transformation. For the two-dimensional Ising model, we show that
this procedure converges exponentially with the order to which the series are
- matched, up to seven digits of accuracy.
- To facilitate use, we provide Python and Mathematica implementations of the code at both lowest order (three digit) and high accuracy.
+ matched, up to seven digits of accuracy.
+ To facilitate use, we provide a Mathematica implementation of the code at both lowest order (three digit) and high accuracy.
%We speculate that with appropriately modified parametric coordinates, the method may converge even deep into the metastable phase.
\end{abstract}
@@ -67,10 +67,11 @@ universality class.
The continuous phase transition in the two-dimensional Ising model is the most
well studied, and its universal thermodynamic functions have likewise received
-the most attention. Without a field, an exact solution is known for some
-lattice models \cite{Onsager_1944_Crystal}. Precision numeric work both on
+the most attention. Onsager provided an exact solution in the absence of an external field \cite{Onsager_1944_Crystal}. Here we provide a high-precision, rapidly converging calculation of the universal scaling function for the 2D Ising model in a field. Our solution is not an exact formula in terms of well-known special functions (as is Onsager's result). Indeed, it seems likely that there is no such formula. The critical exponents for the 3D Ising model have recently been determined to high-precision calculations using conformal bootstrap methods, which should be viewed as a solution to that outstanding problem. The universal scaling function for the 2D Ising model in a field is a well-defined function with known singularities; in analogy, we tentatively suggest that our convergent, high-precision approximation for the function can be viewed as the complete solution to the universal part of the 2D Ising free energy in an external field.
+
+Precision numeric work both on
lattice models and on the ``Ising'' conformal field theory (related by
-universality) have yielded high-order polynomial expansions of those functions,
+universality) have yielded high-order polynomial expansions of the free energy and other universal thermodynamic functions,
along with a comprehensive understanding of their analytic properties
\cite{Fonseca_2003_Ising, Mangazeev_2008_Variational, Mangazeev_2010_Scaling}.
In parallel, smooth approximations of the Ising equation of state produce
@@ -83,7 +84,7 @@ This paper attempts to find the best of both worlds: a smooth approximate
universal thermodynamic function that respects the global analytic properties
of the Ising free energy. By constructing approximate functions with the
correct singularities, corrections converge \emph{exponentially} to the true
-function. To make the construction, we review the analytic properties of the
+function. To make the construction, we review the analytic properties of the
Ising scaling function. Parametric coordinates are introduced that remove
unnecessary singularities that are a remnant of the coordinate choice. The
singularities known to be present in the scaling function are incorporated in
@@ -99,9 +100,10 @@ With six derivatives, it is accurate to about $10^{-7}$. We hope that with some
refinement, this idea might be used to establish accurate scaling functions for
critical behavior in other universality classes, doing for scaling functions
what advances in conformal bootstrap did for critical exponents
-\cite{Gliozzi_2014_Critical}. Mathematica and Python implementations will be provided in the supplemental material.
+\cite{Gliozzi_2014_Critical}. A Mathematica implementation will be provided in the supplemental material.
\section{Universal scaling functions}
+\label{sec:UniversalScalingFunctions}
A renormalization group analysis predicts that certain thermodynamic functions
will be universal in the vicinity of \emph{any} critical point in the Ising
@@ -130,8 +132,16 @@ $\delta=15$ are dimensionless constants. The combination
$\Delta=\beta\delta=\frac{15}8$ will appear often. The flow equations are
truncated here, but in general all terms allowed by the symmetries of the
parameters are present on their righthand side. By making a near-identity
-transformation to the coordinates and the free energy of the form $u_t(t,
-h)=t+\cdots$, $u_h(t, h)=h+\cdots$, and $u_f(f,u_t,u_h)\propto f(t,h)-f_a(t,h)$, one can bring
+transformation to the coordinates and the free energy of the form
+\begin{align}
+ \label{eq:AnalyticCOV}
+ u_t(t,h)=t+\cdots
+ &&
+ u_h(t, h)=h+\cdots
+ &&
+ u_f(f,u_t,u_h)\propto f(t,h)-f_a(t,h),
+\end{align}
+one can bring
the flow equations into the agreed upon simplest normal form
\begin{align} \label{eq:flow}
\frac{du_t}{d\ell}=\frac1\nu u_t
@@ -149,6 +159,7 @@ matter of convention, fixing the scale of $u_t$. Here the free energy $f=u_f+f_a
Solving these equations for $u_f$ yields
\begin{equation}
+\label{eq:FpmF0eqns}
\begin{aligned}
u_f(u_t, u_h)
&=|u_t|^{D\nu}\mathcal F_\pm(u_h|u_t|^{-\Delta})+\frac{|u_t|^{D\nu}}{8\pi}\log u_t^2 \\
@@ -163,7 +174,7 @@ $\mathcal F_\pm(\xi)=G_{\mathrm{high}/\mathrm{low}}(\xi)$.}. The scaling
functions are universal in the sense that any system in the same universality class will share the free energy \eqref{eq:flow}, for suitable analytic functions $u_t$, $u_h$, and analytic background $f_a$ -- the singular behavior is universal up to an analytic coordinate change.
%if another system whose critical
%point belongs to the same universality class has its parameters brought to the
-%form \eqref{eq:flow}, one will see the same functional form, up to the units of $u_t$ and $u_h$.
+%form \eqref{eq:flow}, one will see the same functional form, up to the units of $u_t$ and $u_h$.
The invariant scaling combinations that appear as the
arguments to the universal scaling functions will come up often, and we will
use $\xi=u_h|u_t|^{-\Delta}$ and $\eta=u_t|u_h|^{-1/\Delta}$.
@@ -196,7 +207,7 @@ literature \cite{Mangazeev_2010_Scaling, Clement_2019_Respect}.
In the low temperature phase, the free energy has an essential singularity at
zero field, which becomes a branch cut along the negative-$h$ axis when
-analytically continued to negative $h$ \cite{Langer_1967_Theory}. The origin
+analytically continued to negative $h$ \cite{Langer_1967_Theory, Isakov_1984_Nonanalytic}. The origin
can be schematically understood to arise from a singularity that exists in the
imaginary free energy of the metastable phase of the model. When the
equilibrium Ising model with positive magnetization is subjected to a small
@@ -235,7 +246,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant
\begin{figure}
- \includegraphics{figs/F_lower_singularities.pdf}
+ \includegraphics{figs/F_lower_singularities}
\caption{
Analytic structure of the low-temperature scaling function $\mathcal F_-$
in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle
@@ -282,7 +293,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant
$\xi_{\mathrm{YL}}$.
\begin{figure}
- \includegraphics{figs/F_higher_singularities.pdf}
+ \includegraphics{figs/F_higher_singularities}
\caption{
Analytic structure of the high-temperature scaling function $\mathcal F_+$
in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares
@@ -417,7 +428,7 @@ entirely fixed, and it will be truncated at finite order.
[0:20:0.1] '+' u ($1*f(12*-t0/16)):($1**del*g(12*-t0/16)) dt 2 lc black lw 2 , \
[0:20:0.1] '+' u ($1*f(13*-t0/16)):($1**del*g(13*-t0/16)) dt 2 lc black lw 2 , \
[0:20:0.1] '+' u ($1*f(14*-t0/16)):($1**del*g(14*-t0/16)) dt 2 lc black lw 2 , \
- [0:20:0.1] '+' u ($1*f(15*-t0/16)):($1**del*g(15*-t0/16)) dt 2 lc black lw 2
+ [0:20:0.1] '+' u ($1*f(15*-t0/16)):($1**del*g(15*-t0/16)) dt 2 lc black lw 2
\end{gnuplot}
\caption{
Example of the parametric coordinates. Solid lines are of constant
@@ -484,7 +495,7 @@ $\theta$. Therefore,
The location $\theta_0$ is not fixed by any principle.
\begin{figure}
- \includegraphics{figs/F_theta_singularities.pdf}
+ \includegraphics{figs/F_theta_singularities}
\caption{
Analytic structure of the global scaling function $\mathcal F$ in the
complex $\theta$ plane. The circles depict essential singularities of the
@@ -541,7 +552,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes
its real part up to an analytic even function $G(\theta)$, real for real $\theta$.
\begin{figure}
- \includegraphics{figs/contour_path.pdf}
+ \includegraphics{figs/contour_path}
\caption{
Integration contour over the global scaling function $\mathcal F$ in the
complex $\theta$ plane used to produce the dispersion relation. The
@@ -594,6 +605,7 @@ Because the real part of $\mathcal F$ is even, the imaginary part must be odd. T
\end{equation}
Evaluating these ordinary integrals, we find for $\theta\in\mathbb R$
\begin{equation}
+\label{eq:FfromFoFYLG}
\operatorname{Re}\mathcal F(\theta)=\operatorname{Re}\mathcal F_0(\theta)+\mathcal F_\mathrm{YL}(\theta)+G(\theta)
\end{equation}
where
@@ -611,6 +623,7 @@ where $\mathcal R$ is given by the function
\end{equation}
and
\begin{equation}
+\label{eq:FYL}
\mathcal F_{\mathrm{YL}}(\theta)=2C_\mathrm{YL}\left[2(\theta^2+\theta_\mathrm{YL}^2)^{(1+\sigma)/2}\cos\left((1+\sigma)\tan^{-1}\frac\theta{\theta_\mathrm{YL}}\right)-\theta_\mathrm{YL}^{1+\sigma}\right]
\end{equation}
We have also included the analytic part $G$, which we assume has a simple
@@ -1101,7 +1114,7 @@ Notice that this infelicity does not appear to cause significant errors in the f
function of polynomial order $m$, rescaled by their asymptotic limit
$\mathcal F_-^\infty(m)$ from \eqref{eq:low.asymptotic}. The numeric values
are from Table \ref{tab:data}, and those of Caselle \textit{et al.} are
- from the most accurate scaling function listed in \cite{Caselle_2001_The}. Note that our $n=6$ fit generates significant deviations in polynomial coefficients $m$ above around 10.
+ from the most accurate scaling function listed in \cite{Caselle_2001_The}. Note that our $n=6$ fit generates significant deviations in polynomial coefficients $m$ above around 10.
} \label{fig:glow.series.scaled}
\end{figure}
@@ -1197,14 +1210,21 @@ the ratio.
We have introduced explicit approximate functions forms for the two-dimensional
Ising universal scaling function in the relevant variables. These functions are
smooth to all orders, include the correct singularities, and appear to converge
-exponentially to the function as they are fixed to larger polynomial order.
+exponentially to the function as they are fixed to larger polynomial order. The universal scaling function will be available in Mathematica in the supplemental material. It is implicitly defined by $\mathcal{F}_0$ and $\mathcal{F}_\pm$ in Eq.~\eqref{eq:scaling.function.equivalences.2d}, where $g(\theta)$ is defined in Eq.~\eqref{eq:schofield.funcs}, $\mathcal{F}$ in Eqs.~\eqref{eq:FfromFoFYLG}--\eqref{eq:FYL}, and the fit constants at various levels of approximation are given in Table~\ref{tab:fits}.
This method, although spectacularly successful, could be improved. It becomes difficult to fit the
unknown functions at progressively higher order due to the complexity of the
chain-rule derivatives, and we find an inflation of predicted coefficients in our higher-precision fits. These problems may be related to the precise form and
method of truncation for the unknown functions.
-The successful smooth description of the Ising free energy produced in part by
+It would be natural to extend our approach to the 3D Ising model, where enough high-precision information is available to provide the first few levels of approximation. In 3D, there is an important singular correction to scaling, which could be incorporated as a third invariant scaling variable in the universal scaling function. Indeed, it is believed that there are singular corrections to scaling also in 2D, which happen to vanish for the exactly solvable models~\cite{BarmaFisherPRB}.
+
+Derivatives of our Ising free energy provides most bulk thermodynamic properties, but not the correlation functions. The 2D Ising correlation function has been estimated~\cite{ChenPMSnn}, but without incorporating the effects of the essential singularity as one crosses the abrupt transition line. This correlation function would be experimentally useful, for example, in analyzing FRET data for two-dimensional membranes.
+
+It is interesting to note the close analogy between our analysis and the incorporation of analytic corrections to scaling discussed in section~\ref{sec:UniversalScalingFunctions}. Here the added function $G(\theta)$ corresponds to the analytic part of the free energy $f_a(t,h)$, and the coordinate change $g(\theta)$ corresponds to the scaling field change of variables $u_t(t,h)$ and $u_h(t,h)$
+(Eqs.~\ref{eq:AnalyticCOV} and~\ref{eq:FpmF0eqns}). One might view the universal scaling form for the Ising free energy as a scaling function describing the crossover scaling between the universal essential singularities at the two abrupt, `first-order' transition at $\pm H$, $T<T_c$.
+
+Finally, the successful smooth description of the Ising free energy produced in part by
analytically continuing the singular imaginary part of the metastable free
energy inspires an extension of this work: a smooth function that captures the
universal scaling \emph{through the coexistence line and into the metastable
diff --git a/referee_response.tex b/referee_response.tex
new file mode 100644
index 0000000..0f2ce95
--- /dev/null
+++ b/referee_response.tex
@@ -0,0 +1,240 @@
+\documentclass[a4paper]{article}
+
+\usepackage{fullpage}
+\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode?
+\usepackage[T1]{fontenc} % vector fonts plz
+\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
+\usepackage{newtxtext,newtxmath} % Times for PR
+
+\begin{document}
+
+\section*{Response to referees for \texttt{LK15589/Kent-Dobias}}
+
+First, we would like to apologize for the large delay in resubmission. As is
+evident, the manuscript has undergone a significant transformation as a result
+of the reviews we received. We would like to thank the reviewers for their
+helpful notes on the original manuscript. The first reviewer was supportive and
+asked instructive questions. The second reviewer, though critical, led us to
+some great insights.
+
+The manuscript now focuses on the approximation of the 2D Ising universal
+scaling function by a smooth functional form. Though the singularity discussed
+in the original manuscript still plays an important role, our approximation now
+encompasses the whole parameter space of the relevant scaling fields. We
+compare this form to the values of the universal scaling function and its
+derivatives previously measured in the literature, and find exponential
+convergence with the amount of data fit.
+
+We believe that the substantial changes to our manuscript merit its
+reconsideration for publication. Though the new manuscript is so different from
+the old one as to likely deserve a new reviewing cycle, we respond to the
+original reviews here, to make clear how the revised manuscript addresses them.
+
+\begin{verbatim}
+----------------------------------------------------------------------
+Report of Referee A -- LK15589/Kent-Dobias
+----------------------------------------------------------------------
+
+New expressions of the scaling function of free energy, magnetization,
+and magnetic susceptibility of the Ising model in a magnetic field are
+proposed. These expressions are obtained by combining:
+
+- an essential singularity at zero magnetic field (as predicted by the
+critical droplet theory), obtained by applying the Kramers-Kronig
+relation to a scaling ansatz of the 'metastable free energy',
+
+- a parameterization (in the spirit of Schofield parameterization) in
+terms of new scaling fields of the analytical part of the scaling
+function.
+
+Even though both approaches have been introduced in the late 1960s, I
+am not aware of any other attempt to combine them. This is the great
+originality of this paper. The agreement of the proposed scaling
+functions with the Monte Carlo data presented on figure 1 is
+impressive. The improvement compared to the series expansion (8th
+order plotted on figure 1) is undeniable. It seems to me that this
+work constitutes a real progress in the field of critical phenomena.
+In the presentation, the focus is put on the 2D Ising model but the
+ideas could be applied to a broad class of systems where a continuous
+transition lies at the end of first-order transition line. For these
+reasons, I recommend the publication in Physical Review Letters.
+Questions and comments follow.
+
+1. I did not find in Ref [3] the statement that the essential
+singularity is not observable, as written by the authors. Could the
+authors tell me at which page they found this statement?
+\end{verbatim}
+
+The comment has been removed.
+
+\begin{verbatim}
+2. Before equation (1), some factors are missing in the expression of
+the critical droplet size that should read $R_c={(d-1)\over d}{\Sigma
+S_d\over M|H|V_d}$.
+\end{verbatim}
+
+These equations are completely changed in the new manuscript.
+
+\begin{verbatim}
+3. The steps leading to the scaling functions (7) and (8) does not
+seem to depend on any particular model but only on the dimension $d$
+and on the exponent $b$ describing the fluctuations of the spherical
+critical droplet. I am therefore wondering if the same scaling
+functions would also hold for models in different universality
+classes, the 3-state Potts model for example. Could the authors
+comment on this?
+\end{verbatim}
+
+The observation of the referee is true, and these models could be studied with
+a similar technique if sufficient data on their scaling functions is measured.
+
+\begin{verbatim}
+4. In the particular case of the Ising model, $d=4$ is the upper
+critical dimension. Could this affect the scaling function (8), for
+example by the presence of logarithmic corrections?
+
+5. After equation (12), in the expression of $F(t,h)$, the term
+$t^2\ln t^2$ cannot come from the integration of (10). Its presence
+should be motivated.
+\end{verbatim}
+
+We have now clarified both of these questions in part II, where the
+relationship between flow equations and singularities in the free energy is
+discussed. For the 4D model, the presence of a marginal variable dramatically
+changes the analytic structure of the scaling function.
+
+\begin{verbatim}
+6. Did the authors try to produce the same comparison as in figure 1
+in the case of the 3D and 4D Ising model?
+\end{verbatim}
+
+We do not, though it would not be difficult to apply these techniques to the 3D
+model. For the 4D, as mentioned above, some substantial changes would need to
+be made to the parametric form. In addition, less data on the scaling functions
+are available in 3D and especially 4D.
+
+\begin{verbatim}
+7. There is no function $f$ in equation (13) as mentioned in the
+sentence that follows.
+\end{verbatim}
+
+This is no longer relevant to the modified manuscript.
+
+\begin{verbatim}
+8. The presentation of the Schofield-like parameterization (page 3) is
+really minimalist compared to the rest of the paper. I think that the
+presentation of this part could (should?) be improved. What does
+$\theta_c$ correspond to? Is it a free parameter? Why is (15) analytic
+in the range $-\theta_c<\theta <\theta_c$? What is the interest? Why
+this parameterization is more useful than the original scaling
+variable? I understand that details will be given in a forthcoming
+publication but more details would help the non-expert reader to
+appreciate the interest of the approach.
+\end{verbatim}
+
+In the new manuscript, the treatment of the Schofield parameterization has now
+been made central.
+
+\begin{verbatim}
+9. In the conclusion, the authors wrote ``We have developed a Wolff
+algorithm for the Ising model in a field''. The idea of introducing a
+ghost spin is not new. It is mentioned in R.H. Swendsen and J.S. Wang
+(1987) \textit{Phys. Rev. Lett.} \textbf{58} 86 where it is attributed
+to the original Fortuin-Kastelyn work from 1969.
+\end{verbatim}
+
+Indeed true, numeric references have since been removed.
+
+\begin{verbatim}
+10. There is a minor typo in the acknowledgment: I guess that you want
+to thank Jacques Perk.
+\end{verbatim}
+
+The name has been corrected.
+
+\begin{verbatim}
+----------------------------------------------------------------------
+Report of Referee B -- LK15589/Kent-Dobias
+----------------------------------------------------------------------
+
+There are a variety of problems with this paper and it should not be
+published. Since the authors will not agree with this I will attempt
+to detail my objections:
+
+This paper appears to combine the droplet model picture from the 60's
+with some renormalization group language and a computer computation
+which is not explained and it is not clear what the authors are
+willing to call an actual result.
+
+The two dimensional Ising model in a magnetic field has been studied
+for decades and any further study must relate to these extensive
+computations. This paper fails completely to do this.
+
+1. Several references are missing:
+
+S. N. Isakov, Comm. Math. Phys. (1984) 427-443 where the essential
+singularity are the phase boundary is demonstrated.
+
+P. Fonseca and A. Zamolodchikov, J. Stat. Phys. 110 (2002) 527-590
+which gives a comprehensive scenario for the scaled free energy in the
+critical region.
+
+A. Zamolodchikov and I Ziyaldinov, Nuclear Physics B849 (2011) 654-674
+where scattering in the Ising field theory is extensively discussed.
+\end{verbatim}
+
+We thank the referee for their helpful references, and we have cited the first
+two. The second one was especially relevant to our study.
+
+\begin{verbatim}
+2. Several references are clearly not understood. The authors state
+the references 15-20 deal with an essential singularity in the
+magnetic susceptibility whereas papers 15-20 are concerned with a
+natural boundary in the susceptibility. Essential singularities are
+isolated singularities, natural boundaries are not. The authors say
+nothing about this natural boundary which is a major feature of the
+analyticity of the model that must be explained.
+\end{verbatim}
+
+Our scaling function indeed does not show any evidence of a natural boundary or logarithmic corrections at complex temperatures in a field: we see only the branch cut of the dominant logarithmic singularity in the free energy. This is to be expected, because our calculation focuses on the universal scaling function as it depends upon the relevant variables $t$ and $h$, and does not incorporate singular corrections to scaling from irrelevant operators.
+
+The logarithmic corrections seen in the susceptibility are thought by these authors to come from singular corrections to scaling from these irrelevant operators. Furthermore, these logarithms are thought by Perk (private communication) to be associated with the lattice models, so they should not be seen in (say) the $\phi^4$ theory or membrane Ising phase transitions.
+
+We expect that a natural boundary in the susceptibility in the complex plane in the lattice model is due to these corrections to scaling, and thus should not be expected to manifest itself in the universal scaling function we calculate.
+
+\begin{verbatim}
+3. There are completely unsubstantiated claims made at the end of the
+paper. It is said that "Our methods should allow improved
+high-precision forms for the free energy." The results of references
+15 and 16 have generated, used and analyzed series of hundreds and
+thousands of terms. There is no reason to believe that anything in
+this present paper will improve on this monumental work or on the work
+of ref. 43. Statements such as "Our methods might be generalized to
+predict similar singularities..." have no place in a scientific paper.
+\end{verbatim}
+
+We believe that our transformed technique and manuscript can substantiate this
+claim, in a specific sense. Though the free energy computed point by point in
+our references by Mangazeev et al.\ and Fonseca et al.\ are more accurate, they
+are not functional forms: they are tables of data. We now show in the
+manuscript that our functional form approaches the numeric values
+of the scaling function and its derivatives measured in the aforementioned
+works exponentially with iterative fitting.
+
+\begin{verbatim}
+4. The statement "Our forms both exhibit incorrect low-order
+coefficients at the transition (Fig. 2) and incorrect asymptotics as
+h|t|^{-\beta delta} becomes very large" does not inspire confidence in
+the paper.
+\end{verbatim}
+
+The asymptotic problems of the old manuscript have been repaired by treating
+more carefully the parametric coordinates.
+
+\begin{verbatim}
+In short, I cannot find anything in this paper which makes an advance
+over the previous literature of 50 years.
+
+The paper should be rejected.
+\end{verbatim}
+\end{document}