1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
#include "hadamard_pt.hpp"
#include <fstream>
#include <iostream>
#include <chrono>
class MeasureEnergy : public Measurement {
public:
unsigned N;
double totalE;
unsigned n;
std::vector<unsigned> ρ_dist;
MeasureEnergy(unsigned n_bins = 1e4) : ρ_dist(n_bins + 1, 0) {
n = n_bins;
N = 0;
totalE = 0;
}
void after_sweep(double, double E, const Orthogonal& M) override {
N++;
totalE += E;
double max = sqrt(M.size());
for (unsigned i = 0; i < M.size(); i++) {
for (unsigned j = 0; j < M.size(); j++) {
ρ_dist[n * (M(i, j) + max) / (2 * max)]++;
}
}
}
double energy() const { return totalE / N; }
};
class MeasureTransitionRates : public ParallelMeasurement {
public:
std::vector<unsigned> nAccepted;
unsigned total_steps;
MeasureTransitionRates(unsigned n) : nAccepted(n - 1, 0) {
total_steps = 0;
}
void after_step(bool accepted, unsigned i, double, double, const MCMC&,
const MCMC&) override {
if (accepted)
nAccepted[i]++;
}
void after_sweep(const std::vector<MCMC>&) override { total_steps++; }
};
int main(int argc, char* argv[]) {
unsigned n_tuning = 1e2;
double β₀ = 0.1;
double β₁ = 10;
unsigned N = 16;
unsigned k = 2;
double ε = 0.01;
double ε2 = 0.01;
unsigned M = 10;
unsigned m = 1e4;
int opt;
while ((opt = getopt(argc, argv, "k:b:c:n:t:N:M:e:m:f:")) != -1) {
switch (opt) {
case 'k':
k = atoi(optarg);
break;
case 'b':
β₀ = atof(optarg);
break;
case 'c':
β₁ = atof(optarg);
break;
case 'e':
ε = atof(optarg);
break;
case 'f':
ε2 = atof(optarg);
break;
case 'n':
m = (unsigned)atof(optarg);
break;
case 't':
n_tuning = (unsigned)atof(optarg);
break;
case 'N':
N = (unsigned)atof(optarg);
break;
case 'M':
M = (unsigned)atof(optarg);
break;
default:
exit(1);
}
}
unsigned n = pow(2, k);
std::vector<Measurement*> As(N);
for (Measurement*& A : As) {
A = new MeasureEnergy();
}
MeasureTransitionRates B(N);
PT p(β₀, β₁, N, n, B, As);
for (MCMC& sim : p.Ms) {
sim.M = walsh(k);
sim.E = sim.M.energy();
}
std::cout << "Beginning simulation of " << n << ".\n";
std::cout << "Beginning " << n_tuning << " tuning tempering updates of " << M
<< " sweeps each.\n";
p.tune(n_tuning, M, ε, ε2);
std::cout << "Finished tuning, beginning " << m << " measurement tempering updates of " << M
<< " sweeps each.\n";
p.run(m, M);
std::cout << "Finished " << n << ".\n";
auto tag = std::chrono::high_resolution_clock::now();
std::string filename = "hmm_" + std::to_string(n) + "_" + std::to_string(β₀) + "_" + std::to_string(β₁) + "_" + std::to_string(N) + "_" + std::to_string(tag.time_since_epoch().count()) + ".dat";
std::ofstream file(filename);
for (const MCMC& M : p.Ms) {
file << M.β << " ";
}
file << std::endl;
for (unsigned i = 0; i < B.nAccepted.size(); i++) {
file << std::fixed << B.nAccepted[i] / (double)B.total_steps << " ";
}
file << std::endl;
for (unsigned i = 0; i < As.size(); i++) {
file << std::fixed << ((MeasureEnergy*)As[i])->totalE / ((MeasureEnergy*)As[i])->N << " ";
}
file << std::endl;
for (unsigned i = 0; i < As.size(); i++) {
for (unsigned j = 0; j < ((MeasureEnergy*)As[i])->ρ_dist.size(); j++) {
file << std::fixed << ((MeasureEnergy*)As[i])->ρ_dist[j] << " ";
}
file << std::endl;
}
file.close();
return 0;
}
|