1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
#pragma once
#include "hadamard_mcmc.hpp"
void swap(MCMC& s1, MCMC& s2) {
std::swap(s1.M, s2.M);
std::swap(s1.E, s2.E);
}
class ParallelMeasurement {
public:
virtual void after_step(bool, unsigned, unsigned, double, double, const MCMC&, const MCMC&){};
virtual void after_sweep(const std::vector<MCMC>&){};
};
class PT {
private:
randutils::mt19937_rng rng;
public:
std::vector<MCMC> Ms;
ParallelMeasurement& B;
std::vector<Measurement*>& As;
PT(double β0, double β1, unsigned N, unsigned n, ParallelMeasurement& B,
std::vector<Measurement*>& As)
: B(B), As(As) {
Ms.reserve(N);
for (unsigned i = 0; i < N; i++) {
double β = β0 + i * (β1 - β0) / (N - 1);
Ms.push_back(MCMC(n, β, *As[i]));
}
}
void tune(unsigned N, double ε) {
#pragma omp parallel for
for (unsigned i = 0; i < Ms.size(); i++) {
Ms[i].tune(N, ε);
}
}
bool step(unsigned i, unsigned j) {
double Δβ = Ms[i].β - Ms[j].β;
double ΔE = Ms[i].E - Ms[j].E;
bool accepted = Δβ * ΔE > 0 || exp(Δβ * ΔE) > rng.uniform((double)0.0, 1.0);
if (accepted)
swap(Ms[i], Ms[j]);
B.after_step(accepted, i, j, Δβ, ΔE, Ms[i], Ms[j]);
return accepted;
}
void sweep() {
for (unsigned i = 0; i < Ms.size() - 1; i++) {
for (unsigned j = i + 1; j < Ms.size(); j++) {
this->step(i, j);
}
}
}
void run(unsigned n, unsigned m) {
for (unsigned i = 0; i < n; i++) {
#pragma omp parallel for
for (unsigned j = 0; j < Ms.size(); j++) {
Ms[j].run(m);
}
this->sweep();
B.after_sweep(this->Ms);
}
}
};
|