1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
#include "hadamard_mcmc.hpp"
#include "quantity.hpp"
#include "matrices.hpp"
#include <chrono>
#include <fstream>
#include <iostream>
std::string getFilename(unsigned n, double β, double θ₀, unsigned m, unsigned lag, unsigned skip) {
return "correlation_" + std::to_string(n) + "_" + std::to_string(β) + "_" +
std::to_string(θ₀) + "_" + std::to_string(m) + "_" + std::to_string(lag) + "_" + std::to_string(skip)
+ ".dat";
}
class MeasureCorrelation : public Measurement {
public:
Quantity<Orthogonal> Q;
MeasureCorrelation(unsigned lag, unsigned skip) : Q(lag, skip) {}
void after_sweep(double, double E, const Orthogonal& M) override {
Q.add(M);
}
};
int main(int argc, char* argv[]) {
// model parameters
unsigned n = 2; // matrix size over four
// simulation settings
double β = 1; // temperature
unsigned m = 1e4; // number of relaxation sweeps
unsigned N = 1e4; // number of measurement sweeps
double θ₀ = 0.05; // standard deviation of step size
// measurement settings
unsigned l = 1e3; // lag in autocorrelation function
unsigned s = 1; // skip in autocorrelation function
bool loadDataFromFile = false;
int opt;
while ((opt = getopt(argc, argv, "n:b:m:N:l:t:i:Ls:")) != -1) {
switch (opt) {
case 'n':
n = atoi(optarg);
break;
case 'b':
β = atof(optarg);
break;
case 'm':
m = (unsigned)atof(optarg);
break;
case 'N':
N = (unsigned)atof(optarg);
break;
case 'l':
l = (unsigned)atof(optarg);
break;
case 's':
s = (unsigned)atof(optarg);
break;
case 't':
θ₀ = atof(optarg);
break;
case 'L':
loadDataFromFile = true;
break;
default:
exit(1);
}
}
MeasureCorrelation Q(l, s);
MCMC simulation(n, β, Q, θ₀);
if (loadDataFromFile) {
Q.Q.read(getFilename(n, β, θ₀, m, l, s));
std::cout << "Imported data from file, number of steps " << Q.Q.num_added() << "." << std::endl;
}
simulation.run(m, true);
std::cout << "Finished initial relaxation at " << β << "." << std::endl;
simulation.run(N);
std::cout << "Finished simulation of " << β << ", writing output file." << std::endl;
std::string filename = getFilename(n, β, θ₀, m, l, s);
Q.Q.write(filename);
return 0;
}
|