summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-11-05 15:27:56 -0500
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-11-05 15:27:56 -0500
commitcaae9b8494032f8d47b7b4575c3836df07481a42 (patch)
tree7b29a58f732a20647b69148557e2fec5723f24b1 /main.tex
parentb7871f76ec948c0931637821a8beab5c4e4394c1 (diff)
downloadPRB_102_075129-caae9b8494032f8d47b7b4575c3836df07481a42.tar.gz
PRB_102_075129-caae9b8494032f8d47b7b4575c3836df07481a42.tar.bz2
PRB_102_075129-caae9b8494032f8d47b7b4575c3836df07481a42.zip
more plot tweaking
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex7
1 files changed, 3 insertions, 4 deletions
diff --git a/main.tex b/main.tex
index f4f2b71..9be54af 100644
--- a/main.tex
+++ b/main.tex
@@ -410,12 +410,11 @@ $|\Delta\tilde r|^\gamma$ for $\gamma=1$. \brad{I think this last sentence, whi
\urusi\ as a function of temperature from \cite{ghosh_single-component_nodate} (green, solid) alongside fits to theory (red, dashed). The vertical yellow lines show the location of the \ho\ transition. (a) $\Btg$ modulus data and fit to standard form \cite{varshni_temperature_1970}. (b) $\Bog$ modulus data and fit
to \eqref{eq:elastic.susceptibility}. The fit gives
$C^0_\Bog\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$,
- $b^2/D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp
- q_*^4\simeq0.0038\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare}
+ $D_\perp q_*^4/b^2\simeq0.16\,\GPa^{-1}$, and $a/b^2\simeq6.1\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of an additional parameter to fit the standard bare modulus \cite{varshni_temperature_1970} led to sloppy fits. (c) $\Bog$ modulus data and fit of \emph{bare}
$\Bog$ modulus. (d) $\Bog$ modulus data and fit transformed using
- $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is prediced from
+ $[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is predicted from
\eqref{eq:susceptibility} and \eqref{eq:elastic.susceptibility} to be
- linear above $T_c$. The failure of the Ginzburg--Landau prediction
+ $D_\perp q_*^4/b^2+a/b^2|T-T_c|$. The failure of the Ginzburg--Landau prediction
below the transition is expected on the grounds that the \op\ is too large
for the free energy expansion to be valid by the time the Ginzburg
temperature is reached.