summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-02-07 16:34:53 -0300
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-02-07 16:34:53 -0300
commit98788e2a3ad68a868ac13da3d012cf99bc3f933d (patch)
treed30f726a335ac6ba48cb10b1dd80db9b4fd45aa5
parent25b1a75b239ee6b88920203b1fcaa34e85251a68 (diff)
downloadSciPostPhys_18_158-98788e2a3ad68a868ac13da3d012cf99bc3f933d.tar.gz
SciPostPhys_18_158-98788e2a3ad68a868ac13da3d012cf99bc3f933d.tar.bz2
SciPostPhys_18_158-98788e2a3ad68a868ac13da3d012cf99bc3f933d.zip
Change addressing report #3, weakness #5
Clarified that information involving the use of superspace coordinates can be found in an appendix of the cited reference.
-rw-r--r--topology.bib16
-rw-r--r--topology.tex2
2 files changed, 11 insertions, 7 deletions
diff --git a/topology.bib b/topology.bib
index 716c8b2..bb46305 100644
--- a/topology.bib
+++ b/topology.bib
@@ -526,15 +526,19 @@
issn = {2542-4653}
}
-@unpublished{Kent-Dobias_2024_Conditioning,
+@article{Kent-Dobias_2024_Conditioning,
author = {Kent-Dobias, Jaron},
title = {Conditioning the complexity of random landscapes on marginal optima},
+ journal = {Physical Review E},
+ publisher = {American Physical Society (APS)},
year = {2024},
- url = {https://arxiv.org/abs/2407.02082},
- note = {arXiv preprint},
- archiveprefix = {arXiv},
- eprint = {2407.02082},
- primaryclass = {cond-mat.dis-nn}
+ month = {December},
+ number = {6},
+ volume = {110},
+ pages = {064148},
+ url = {http://dx.doi.org/10.1103/PhysRevE.110.064148},
+ doi = {10.1103/physreve.110.064148},
+ issn = {2470-0053}
}
@article{Mezard_2009_Constraint,
diff --git a/topology.tex b/topology.tex
index 328df90..47a6588 100644
--- a/topology.tex
+++ b/topology.tex
@@ -802,7 +802,7 @@ Grassmann vectors. With these expressions substituted into
whose argument is linear in the random functions $V_k$.
To make the calculation compact, we introduce
-superspace coordinates \cite{DeWitt_1992_Supermanifolds, Kent-Dobias_2024_Conditioning}. Introducing the Grassmann indices $\bar\theta_1$
+superspace coordinates \cite{DeWitt_1992_Supermanifolds}. An introduction to the use of superspace coordinates in mean field theoretical calculations, including definitions of operators like the superdeterminant using the same conventions as the present article, can be found in Appendix~A of Ref.~\cite{Kent-Dobias_2024_Conditioning}. Introducing the Grassmann indices $\bar\theta_1$
and $\theta_1$, we define the supervectors
\begin{align}
\pmb\phi(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1i\hat{\mathbf x}