summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-09-16 12:41:00 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-09-16 12:41:00 +0200
commit9a2dc6ae681139b5a27b1b1b467a5c744fa4778a (patch)
tree6a0421f108ea477845e273de52499918ae62263f
parentb5105804f0d1c7483d09cc8f770eb660c409a134 (diff)
downloadSciPostPhys_18_158-9a2dc6ae681139b5a27b1b1b467a5c744fa4778a.tar.gz
SciPostPhys_18_158-9a2dc6ae681139b5a27b1b1b467a5c744fa4778a.tar.bz2
SciPostPhys_18_158-9a2dc6ae681139b5a27b1b1b467a5c744fa4778a.zip
Started appendix for squared calculation.
-rw-r--r--topology.tex78
1 files changed, 78 insertions, 0 deletions
diff --git a/topology.tex b/topology.tex
index 3801eae..65cede5 100644
--- a/topology.tex
+++ b/topology.tex
@@ -1225,6 +1225,84 @@ orders in $N$, since for odd-dimensional manifolds the Euler characteristic is
always zero. When $N+M+1$ is even, we have $\overline{\chi(\Omega)}=2$ to
leading order in $N$, as specified in the main text.
+\section{The root mean square Euler characteristic}
+\label{sec:rms}
+
+Here we calculate $\overline{\chi(\Omega)^2}$, the average of the squared Euler
+characteristic. This is accomplished by taking two copies of the integral, with
+\begin{equation}
+ \chi(\Omega)^2
+ =\int d\pmb\phi_1\,d\pmb\sigma_1\,d\pmb\phi_2\,d\pmb\sigma_2\,
+ e^{\int d1\,[L(\pmb\phi_1(1),\pmb\sigma_1(1))+L(\pmb\phi_2(1),\pmb\sigma_2(1))]}
+\end{equation}
+The same steps as in the derivation of the Euler characteristic follow. The result is the same as \eqref{eq:post.hubbard-strat}, but with the substitutions
+\begin{align}
+ \mathbb Q\mapsto\begin{bmatrix}
+ \mathbb Q_{11} & \mathbb Q_{12} \\
+ \mathbb Q_{21} & \mathbb Q_{22}
+ \end{bmatrix}
+ &&
+ \mathbb M\mapsto\begin{bmatrix}
+ \mathbb M_1 \\
+ \mathbb M_2
+ \end{bmatrix}
+\end{align}
+where we have defined
+\begin{align}
+ \mathbb Q_{ij}(1,2)=\frac1N\pmb\phi_i(1)\cdot\pmb\phi_j(2)
+ &&
+ \mathbb M_i(1)=\frac1N\pmb\phi_i(1)\cdot\mathbf x_0
+\end{align}
+Expanding the superindices and applying the Dirac $\delta$-functions implied by
+the Lagrange multipliers associated with the spherical constraint, we arrive at an expression
+\begin{equation}
+ \frac1N\log\overline{\chi(\Omega)^2}
+ =-\hat m_1-\hat m_2
+ -\frac\alpha2\log\frac{\det A_1}{\det A_2}
+ -\frac{\alpha V_0^2}2\begin{bmatrix}
+ 0 & 1 & 0 & 1
+ \end{bmatrix}
+ A_1^{-1}
+ \begin{bmatrix}
+ 0 \\ 1 \\ 0 \\ 1
+ \end{bmatrix}
+ +\frac12\log\frac{\det A_3}{\det A_4}
+\end{equation}
+with the matrices $A_1$, $A_2$, $A_3$, and $A_4$ defined by
+\begin{align}
+ A_1&=\begin{bmatrix}
+ D_{11}f'(1) & iR_{11}f'(1) & D_{12}f'(C_{12})+\Delta_{12}f''(C_{12}) & i R_{21}f'(C_{12}) \\
+ i R_{11}f'(1) & f(1) & i R_{12}f'(C_{12}) & f(C_{12}) \\
+ D_{12}f'(C_{12}) + \Delta_{12}f''(C_{12}) & iR_{12}f'(C_{12}) & D_{22} & iR_{22}f'(1) \\
+ iR_{21}f'(C_{12}) & f(C_{12}) & iR_{22}f'(1) & f(1)
+ \end{bmatrix}
+ \\
+ A_2&=\begin{bmatrix}
+ 0 & R_{11}f'(1) & 0 & -G_{21}f'(C_{12}) \\
+ -R_{11}f'(1) & 0 & G_{12}f'(C_{12}) & 0 \\
+ 0 & -G_{12}f'(C_{12}) & 0 & R_{22}f'(1) \\
+ G_{21}f'(C_{12}) & 0 & -R_{22}f'(1) & 0
+ \end{bmatrix}
+ \\
+ A_3&=\begin{bmatrix}
+ 1-m_1^2 & i(R_{11}-m_1\hat m_1) & C_{12}-m_1m_2 & i(R_{21}-m_1\hat m_2) \\
+ i(R_{11}-m_1\hat m_1) & D_{11}+\hat m_1^2 & i(R_{12}-m_2\hat m_1) & D_{12}+\hat m_1\hat m_2 \\
+ C_{12}-m_1m_2 & i(R_{12}-m_2\hat m_1) & 1-m_2^2 & i(R_{22}-m_2\hat m_2) \\
+ i(R_{21}-m_1\hat m_2) & D_{12}+\hat m_1\hat m_2 & i(R_{22}-m_2\hat m_2) & D_{22}+\hat m_2^2
+ \end{bmatrix}
+ \\
+ A_4&=\begin{bmatrix}
+ 0 & R_{11} & 0 & -G_{21} \\
+ -R_{11} & 0 & G_{12} & 0 \\
+ 0 & -G_{12} & 0 & R_{22} \\
+ G_{21} & 0 & -R_{22} & 0
+ \end{bmatrix}
+\end{align}
+and where $\Delta_{12}=G_{12}G_{21}-R_{12}R_{21}$. The expression must be
+extremized over all the order parameters. We look for solutions in two regimes
+that are commensurate with the solutions found for the Euler characteristic.
+These correspond to $m_1=m_2=0$ and $C_{12}=0$, and $m_1=m_2=m^*$ and
+$C_{12}=1$.
\section{The quenched shattering energy}
\label{sec:1frsb}