diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-16 12:41:00 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-09-16 12:41:00 +0200 |
commit | 9a2dc6ae681139b5a27b1b1b467a5c744fa4778a (patch) | |
tree | 6a0421f108ea477845e273de52499918ae62263f | |
parent | b5105804f0d1c7483d09cc8f770eb660c409a134 (diff) | |
download | SciPostPhys_18_158-9a2dc6ae681139b5a27b1b1b467a5c744fa4778a.tar.gz SciPostPhys_18_158-9a2dc6ae681139b5a27b1b1b467a5c744fa4778a.tar.bz2 SciPostPhys_18_158-9a2dc6ae681139b5a27b1b1b467a5c744fa4778a.zip |
Started appendix for squared calculation.
-rw-r--r-- | topology.tex | 78 |
1 files changed, 78 insertions, 0 deletions
diff --git a/topology.tex b/topology.tex index 3801eae..65cede5 100644 --- a/topology.tex +++ b/topology.tex @@ -1225,6 +1225,84 @@ orders in $N$, since for odd-dimensional manifolds the Euler characteristic is always zero. When $N+M+1$ is even, we have $\overline{\chi(\Omega)}=2$ to leading order in $N$, as specified in the main text. +\section{The root mean square Euler characteristic} +\label{sec:rms} + +Here we calculate $\overline{\chi(\Omega)^2}$, the average of the squared Euler +characteristic. This is accomplished by taking two copies of the integral, with +\begin{equation} + \chi(\Omega)^2 + =\int d\pmb\phi_1\,d\pmb\sigma_1\,d\pmb\phi_2\,d\pmb\sigma_2\, + e^{\int d1\,[L(\pmb\phi_1(1),\pmb\sigma_1(1))+L(\pmb\phi_2(1),\pmb\sigma_2(1))]} +\end{equation} +The same steps as in the derivation of the Euler characteristic follow. The result is the same as \eqref{eq:post.hubbard-strat}, but with the substitutions +\begin{align} + \mathbb Q\mapsto\begin{bmatrix} + \mathbb Q_{11} & \mathbb Q_{12} \\ + \mathbb Q_{21} & \mathbb Q_{22} + \end{bmatrix} + && + \mathbb M\mapsto\begin{bmatrix} + \mathbb M_1 \\ + \mathbb M_2 + \end{bmatrix} +\end{align} +where we have defined +\begin{align} + \mathbb Q_{ij}(1,2)=\frac1N\pmb\phi_i(1)\cdot\pmb\phi_j(2) + && + \mathbb M_i(1)=\frac1N\pmb\phi_i(1)\cdot\mathbf x_0 +\end{align} +Expanding the superindices and applying the Dirac $\delta$-functions implied by +the Lagrange multipliers associated with the spherical constraint, we arrive at an expression +\begin{equation} + \frac1N\log\overline{\chi(\Omega)^2} + =-\hat m_1-\hat m_2 + -\frac\alpha2\log\frac{\det A_1}{\det A_2} + -\frac{\alpha V_0^2}2\begin{bmatrix} + 0 & 1 & 0 & 1 + \end{bmatrix} + A_1^{-1} + \begin{bmatrix} + 0 \\ 1 \\ 0 \\ 1 + \end{bmatrix} + +\frac12\log\frac{\det A_3}{\det A_4} +\end{equation} +with the matrices $A_1$, $A_2$, $A_3$, and $A_4$ defined by +\begin{align} + A_1&=\begin{bmatrix} + D_{11}f'(1) & iR_{11}f'(1) & D_{12}f'(C_{12})+\Delta_{12}f''(C_{12}) & i R_{21}f'(C_{12}) \\ + i R_{11}f'(1) & f(1) & i R_{12}f'(C_{12}) & f(C_{12}) \\ + D_{12}f'(C_{12}) + \Delta_{12}f''(C_{12}) & iR_{12}f'(C_{12}) & D_{22} & iR_{22}f'(1) \\ + iR_{21}f'(C_{12}) & f(C_{12}) & iR_{22}f'(1) & f(1) + \end{bmatrix} + \\ + A_2&=\begin{bmatrix} + 0 & R_{11}f'(1) & 0 & -G_{21}f'(C_{12}) \\ + -R_{11}f'(1) & 0 & G_{12}f'(C_{12}) & 0 \\ + 0 & -G_{12}f'(C_{12}) & 0 & R_{22}f'(1) \\ + G_{21}f'(C_{12}) & 0 & -R_{22}f'(1) & 0 + \end{bmatrix} + \\ + A_3&=\begin{bmatrix} + 1-m_1^2 & i(R_{11}-m_1\hat m_1) & C_{12}-m_1m_2 & i(R_{21}-m_1\hat m_2) \\ + i(R_{11}-m_1\hat m_1) & D_{11}+\hat m_1^2 & i(R_{12}-m_2\hat m_1) & D_{12}+\hat m_1\hat m_2 \\ + C_{12}-m_1m_2 & i(R_{12}-m_2\hat m_1) & 1-m_2^2 & i(R_{22}-m_2\hat m_2) \\ + i(R_{21}-m_1\hat m_2) & D_{12}+\hat m_1\hat m_2 & i(R_{22}-m_2\hat m_2) & D_{22}+\hat m_2^2 + \end{bmatrix} + \\ + A_4&=\begin{bmatrix} + 0 & R_{11} & 0 & -G_{21} \\ + -R_{11} & 0 & G_{12} & 0 \\ + 0 & -G_{12} & 0 & R_{22} \\ + G_{21} & 0 & -R_{22} & 0 + \end{bmatrix} +\end{align} +and where $\Delta_{12}=G_{12}G_{21}-R_{12}R_{21}$. The expression must be +extremized over all the order parameters. We look for solutions in two regimes +that are commensurate with the solutions found for the Euler characteristic. +These correspond to $m_1=m_2=0$ and $C_{12}=0$, and $m_1=m_2=m^*$ and +$C_{12}=1$. \section{The quenched shattering energy} \label{sec:1frsb} |