diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-08-02 12:55:11 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-08-02 12:55:11 +0200 |
commit | ae9115876b609316ff02e0b596956d2459bc3448 (patch) | |
tree | dc3fe65f6974b9a81849a3589ea4ed9257cc6dc6 | |
parent | 0277238fb24804b04a08934608ab262cb12339a9 (diff) | |
download | SciPostPhys_18_158-ae9115876b609316ff02e0b596956d2459bc3448.tar.gz SciPostPhys_18_158-ae9115876b609316ff02e0b596956d2459bc3448.tar.bz2 SciPostPhys_18_158-ae9115876b609316ff02e0b596956d2459bc3448.zip |
Added some more discussion and moved calculation details to an appendix.
-rw-r--r-- | topology.bib | 14 | ||||
-rw-r--r-- | topology.tex | 160 |
2 files changed, 101 insertions, 73 deletions
diff --git a/topology.bib b/topology.bib index 31d8bad..1b19671 100644 --- a/topology.bib +++ b/topology.bib @@ -104,6 +104,20 @@ eprinttype = {arxiv} } +@article{Kent-Dobias_2023_When, + author = {Kent-Dobias, Jaron}, + title = {When is the average number of saddle points typical?}, + journal = {Europhysics Letters}, + publisher = {IOP Publishing}, + year = {2023}, + month = {8}, + number = {6}, + volume = {143}, + pages = {61003}, + url = {https://doi.org/10.1209%2F0295-5075%2Facf521}, + doi = {10.1209/0295-5075/acf521} +} + @unpublished{Kent-Dobias_2024_Algorithm-independent, author = {Kent-Dobias, Jaron}, title = {Algorithm-independent bounds on complex optimization through the statistics of marginal optima}, diff --git a/topology.tex b/topology.tex index 097c5a4..decfa6f 100644 --- a/topology.tex +++ b/topology.tex @@ -122,6 +122,14 @@ When the Kac--Rice formula is used to \emph{count} stationary points, the sign of the determinant is a nuisance that one must take pains to preserve \cite{Fyodorov_2004_Complexity}. Here we are correct to exclude it. +We need to choose a function $H$ for our calculation. Because $\chi$ is +a topological invariant, any choice will work so long as it does not share some +symmetry with the underlying manifold, i.e., that it $H$ satisfies the Smale condition. Because our manifold of random +constraints has no symmetries, we can take a simple height function $H(\mathbf +x)=\mathbf x_0\cdot\mathbf x$ for some $\mathbf x_0\in\mathbb R^N$ with +$\|\mathbf x_0\|^2=N$. $H$ is a height function because when $\mathbf x_0$ is +used as the polar axis, $H$ gives the height on the sphere. + We treat the integral over the implicitly defined manifold $\Omega$ using the method of Lagrange multipliers. We introduce one multiplier $\omega_0$ to enforce the spherical constraint and $M$ multipliers $\omega_k$ to enforce the vanishing of @@ -139,79 +147,10 @@ The integral over $\Omega$ in \eqref{eq:kac-rice} then becomes \end{equation} where $\partial=[\frac\partial{\partial\mathbf x},\frac\partial{\partial\pmb\omega}]$ is the vector of partial derivatives with respect to all $N+M+1$ variables. +This integral is now in a form where standard techniques from mean-field theory +can be applied to calculate it. Details of this calculation are reserved in an appendix. -To evaluate the average of $\chi$ over the constraints, we first translate the $\delta$ functions and determinant to integral form, with -\begin{align} - \delta\big(\partial L(\mathbf x,\pmb\omega)\big) - =\int\frac{d\hat{\mathbf x}}{(2\pi)^N}\frac{d\hat{\pmb\omega}}{(2\pi)^{M+1}} - e^{i[\hat{\mathbf x},\hat{\pmb\omega}]\cdot\partial L(\mathbf x,\pmb\omega)} - \\ - \det\partial\partial L(\mathbf x,\pmb\omega) - =\int d\bar{\pmb\eta}\,d\pmb\eta\,d\bar{\pmb\gamma}\,d\pmb\gamma\, - e^{-[\bar{\pmb\eta},\bar{\pmb\gamma}]^T\partial\partial H[\pmb\eta,\pmb\gamma]} -\end{align} -for real variables $\hat{\mathbf x}$ and $\hat{\pmb\omega}$, and Grassmann -variables $\bar{\pmb\eta}$, $\pmb\eta$, $\bar{\pmb\gamma}$, and $\pmb\gamma$. -With these transformations in place, there is a compact way to express $\chi$ -using superspace notation. For a review of the superspace formalism for -evaluating integrals of the form \eqref{eq:kac-rice.lagrange}, see Appendices A -\& B of \cite{Kent-Dobias_2024_Conditioning}. Introducing the Grassmann indices -$\bar\theta_1$ and $\theta_1$, we define superfields -\begin{align} - \pmb\phi(1) - &=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\hat{\mathbf x}\bar\theta_1\theta_1 - \label{eq:superfield.phi} \\ - \pmb\sigma(1) - &=\pmb\omega+\bar\theta_1\pmb\gamma+\bar{\pmb\gamma}\theta_1+\hat{\pmb\omega}\bar\theta_1\theta_1 - \label{eq:superfield.sigma} -\end{align} -with which we can represent $\chi$ by -\begin{equation} - \chi=\int d\pmb\phi\,d\pmb\sigma\,\exp\left\{ - \int d1\,L\big(\pmb\phi(1),\pmb\sigma(1)\big) - \right\} -\end{equation} -We are now in a position to average over the distribution of constraints. Using -standard manipulations, we find the average Euler characteristic is -\begin{equation} - \begin{aligned} - \overline{\chi}&=\int d\pmb\phi\,d\sigma_0\,\exp\Bigg\{ - -\frac M2\log\operatorname{sdet}f\left(\frac{\phi(1)^T\phi(2)}N\right) \\ - &\qquad+\int d1\,\left[ - H\big(\phi(1)\big)+\frac12\sigma_0(1)\big(\|\phi(1)\|^2-N\big) - \right] - \Bigg\} - \end{aligned} -\end{equation} -Now we are forced to make a decision about the function $H$. Because $\chi$ is -a topological invariant, any choice will work so long as it does not share some -symmetry with the underlying manifold, i.e., that it $H$ satisfies the Smale condition. Because our manifold of random -constraints has no symmetries, we can take a simple height function $H(\mathbf -x)=\mathbf x_0\cdot\mathbf x$ for some $\mathbf x_0\in\mathbb R^N$ with -$\|\mathbf x_0\|^2=N$. $H$ is a height function because when $\mathbf x_0$ is -used as the polar axis, $H$ gives the height on the sphere. - -With this choice made, we can integrate over the superfields $\pmb\phi$. -Defining two order parameters $\mathbb Q(1,2)=\frac1N\phi(1)\cdot\phi(2)$ and -$\mathbb M(1)=\frac1N\phi(1)\cdot\mathbf x_0$, the result is -\begin{align} - \overline{\chi} - &=\int d\mathbb Q\,d\mathbb M\,d\sigma_0 \notag\\ - &\quad\times\exp\Bigg\{ - \frac N2\log\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T) - -\frac M2\log\operatorname{sdet}f(\mathbb Q) \notag \\ - &\qquad+N\int d1\,\left[ - \mathbb M(1)+\frac12\sigma_0(1)\big(\mathbb Q(1,1)-1\big) - \right] - \Bigg\} -\end{align} -This expression is an integral of an exponential with a leading factor of $N$ -over several order parameters, and is therefore in a convenient position for -evaluating at large $N$ with a saddle point. The order parameter $\mathbb Q$ is -made up of scalar products of the original integration variables in our -problem in \eqref{eq:superfield.phi}, while $\mathbb M$ contains their scalar -project with $\mathbf x_0$, and $\pmb\sigma_0$ contains $\omega_0$ and -$\hat\omega_0$. We can solve the saddle point equations in all of these +We can solve the saddle point equations in all of these parameters save for $m=\frac1N\mathbf x_0\cdot\mathbf x$, the overlap with the height axis. The result reduces the average Euler characteristic to \begin{equation} @@ -282,7 +221,7 @@ these results. Cartoons that depict this reasoning are shown in Fig.~\ref{fig:cartoons}. In the regime $\alpha<1$, $\overline\chi$ is positive but not very large. This is consistent with a solution manifold made up of few large components, each with the topology of a hypersphere. The saddle point value -$m^*$ for the overlap with the height axis $\mathbf x_0$ corresponds to the +$(m^*)^2=1-\alpha/\alpha_\text{\textsc{sat}}$ for the overlap with the height axis $\mathbf x_0$ corresponds to the latitude at which most stationary points that contribute to the Euler characteristic are found. This means we can interpret $1-m^*$ as the typical squared distance between a randomly selected point on the sphere and the @@ -347,6 +286,13 @@ The fact that $\alpha_\text{\textsc{sat}}=f'(1)/f(1)$ is the same in the anneale replica symmetric calculations suggests that it may perhaps be exact. It is also consistent with the full RSB calculation of \cite{Urbani_2023_A}. +We check the stability of the replica symmetric solution by calculating the +eigenvalues of the Hessian of the effective action with respect to the order +parameters. While for calculations of this kind the meaning of the sign of +these eigenvalues is difficult to understand directly, in situations where +there is a continuous \textsc{rsb} transition the sign of one of the +eigenvalues changes \cite{Kent-Dobias_2023_When}. At the $\alpha_\text{\textsc{rsb}}$ predicted in \cite{Urbani_2023_A} we see no instability of this kind, and instead only observe such an instability at $\alpha_\text{\textsc{sat}}$. + \begin{acknowledgements} JK-D is supported by a \textsc{DynSysMath} Specific Initiative of the INFN. @@ -355,6 +301,74 @@ consistent with the full RSB calculation of \cite{Urbani_2023_A}. \bibliography{topology} +\paragraph{Details of the annealed calculation.} + +To evaluate the average of $\chi$ over the constraints, we first translate the $\delta$ functions and determinant to integral form, with +\begin{align} + \delta\big(\partial L(\mathbf x,\pmb\omega)\big) + =\int\frac{d\hat{\mathbf x}}{(2\pi)^N}\frac{d\hat{\pmb\omega}}{(2\pi)^{M+1}} + e^{i[\hat{\mathbf x},\hat{\pmb\omega}]\cdot\partial L(\mathbf x,\pmb\omega)} + \\ + \det\partial\partial L(\mathbf x,\pmb\omega) + =\int d\bar{\pmb\eta}\,d\pmb\eta\,d\bar{\pmb\gamma}\,d\pmb\gamma\, + e^{-[\bar{\pmb\eta},\bar{\pmb\gamma}]^T\partial\partial H[\pmb\eta,\pmb\gamma]} +\end{align} +for real variables $\hat{\mathbf x}$ and $\hat{\pmb\omega}$, and Grassmann +variables $\bar{\pmb\eta}$, $\pmb\eta$, $\bar{\pmb\gamma}$, and $\pmb\gamma$. +With these transformations in place, there is a compact way to express $\chi$ +using superspace notation. For a review of the superspace formalism for +evaluating integrals of the form \eqref{eq:kac-rice.lagrange}, see Appendices A +\& B of \cite{Kent-Dobias_2024_Conditioning}. Introducing the Grassmann indices +$\bar\theta_1$ and $\theta_1$, we define superfields +\begin{align} + \pmb\phi(1) + &=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\hat{\mathbf x}\bar\theta_1\theta_1 + \label{eq:superfield.phi} \\ + \pmb\sigma(1) + &=\pmb\omega+\bar\theta_1\pmb\gamma+\bar{\pmb\gamma}\theta_1+\hat{\pmb\omega}\bar\theta_1\theta_1 + \label{eq:superfield.sigma} +\end{align} +with which we can represent $\chi$ by +\begin{equation} + \chi=\int d\pmb\phi\,d\pmb\sigma\,\exp\left\{ + \int d1\,L\big(\pmb\phi(1),\pmb\sigma(1)\big) + \right\} +\end{equation} +We are now in a position to average over the distribution of constraints. Using +standard manipulations, we find the average Euler characteristic is +\begin{equation} + \begin{aligned} + \overline{\chi}&=\int d\pmb\phi\,d\sigma_0\,\exp\Bigg\{ + -\frac M2\log\operatorname{sdet}f\left(\frac{\phi(1)^T\phi(2)}N\right) \\ + &\qquad+\int d1\,\left[ + H\big(\phi(1)\big)+\frac12\sigma_0(1)\big(\|\phi(1)\|^2-N\big) + \right] + \Bigg\} + \end{aligned} +\end{equation} + +With this choice made, we can integrate over the superfields $\pmb\phi$. +Defining two order parameters $\mathbb Q(1,2)=\frac1N\phi(1)\cdot\phi(2)$ and +$\mathbb M(1)=\frac1N\phi(1)\cdot\mathbf x_0$, the result is +\begin{align} + \overline{\chi} + &=\int d\mathbb Q\,d\mathbb M\,d\sigma_0 \notag\\ + &\quad\times\exp\Bigg\{ + \frac N2\log\operatorname{sdet}(\mathbb Q-\mathbb M\mathbb M^T) + -\frac M2\log\operatorname{sdet}f(\mathbb Q) \notag \\ + &\qquad+N\int d1\,\left[ + \mathbb M(1)+\frac12\sigma_0(1)\big(\mathbb Q(1,1)-1\big) + \right] + \Bigg\} +\end{align} +This expression is an integral of an exponential with a leading factor of $N$ +over several order parameters, and is therefore in a convenient position for +evaluating at large $N$ with a saddle point. The order parameter $\mathbb Q$ is +made up of scalar products of the original integration variables in our +problem in \eqref{eq:superfield.phi}, while $\mathbb M$ contains their scalar +project with $\mathbf x_0$, and $\pmb\sigma_0$ contains $\omega_0$ and +$\hat\omega_0$. + \paragraph{Quenched average of the Euler characteristic.} \begin{equation} |