diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-08-27 00:20:10 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-08-27 00:20:10 +0200 |
commit | b3a46c4867aeca056dc99ab8a44bc782932c4613 (patch) | |
tree | adf7ef2289431b2fba2b9301df74fbb233fc3264 | |
parent | cf4dec33e62829f40240f29b484ea2f4c7c401e7 (diff) | |
download | SciPostPhys_18_158-b3a46c4867aeca056dc99ab8a44bc782932c4613.tar.gz SciPostPhys_18_158-b3a46c4867aeca056dc99ab8a44bc782932c4613.tar.bz2 SciPostPhys_18_158-b3a46c4867aeca056dc99ab8a44bc782932c4613.zip |
Some work.
-rw-r--r-- | topology.tex | 61 |
1 files changed, 39 insertions, 22 deletions
diff --git a/topology.tex b/topology.tex index a7b68dc..d0b986e 100644 --- a/topology.tex +++ b/topology.tex @@ -199,16 +199,6 @@ is the vector of partial derivatives with respect to all $N+M+1$ variables. This integral is now in a form where standard techniques from mean-field theory can be applied to calculate it. -In order for certain Gaussian integrals in the following calculation to be -well-defined, it is necessary to treat instead the Lagrangian problem above -with $\pmb\omega\mapsto i\pmb\omega$. This transformation does not effect the -Dirac $\delta$ functions of the gradient, but it does change the determinant by -a factor of $i^{N+M+1}$. We will see that the result of the rest of the -calculation neglecting this factor is real. Since the Euler characteristic is -also necessarily real, this indicates an inconsistency with this transformation -when $N+M+1$ is odd. In fact, the Euler characteristic is always zero for -odd-dimensional manifolds. This is the signature of it in this problem. - \subsubsection{Calculation of the average Euler characteristic} To evaluate the average of $\chi$ over the constraints, we first translate the $\delta$ functions and determinant to integral form, with @@ -574,7 +564,7 @@ To make the calculation compact, we introduce superspace coordinates. Define the \begin{equation} \pmb\phi(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1i\hat{\mathbf x} \qquad - \sigma_k(1)=\omega_k+\bar\theta_1\gamma_k+\bar\gamma_k\theta_1+\bar\theta_1\theta_1\hat\omega_k + \sigma_k(1)=\omega_k+\bar\theta_1\gamma_k+\bar\gamma_k\theta_1+\bar\theta_1\theta_1i\hat\omega_k \end{equation} The Euler characteristic can be expressed using these supervectors as \begin{equation} @@ -584,8 +574,8 @@ The Euler characteristic can be expressed using these supervectors as &=\int d\pmb\phi\,d\pmb\sigma\,\exp\left\{ \int d1\left[ H\big(\pmb\phi(1)\big) - +\frac i2\sigma_0(1)\left(\|\pmb\phi(1)\|^2-N\right) - +i\sum_{k=1}^M\sigma_k(1)\Big(V_k\big(\pmb\phi(1)\big)-V_0\Big) + +\frac12\sigma_0(1)\left(\|\pmb\phi(1)\|^2-N\right) + +\sum_{k=1}^M\sigma_k(1)\Big(V_k\big(\pmb\phi(1)\big)-V_0\Big) \right] \right\} \end{aligned} @@ -597,14 +587,14 @@ Since this is an exponential integrand linear in the functions $V_k$, we can ave =\int d\pmb\phi\,d\pmb\sigma\,\exp\Bigg\{ \int d1\left[ H(\pmb\phi(1)) - +\frac{i}2\sigma_0(1)\big(\|\pmb\phi(1)\|^2-N\big) - -iV_0\sum_{k=1}^M\sigma_k(1) + +\frac12\sigma_0(1)\big(\|\pmb\phi(1)\|^2-N\big) + -V_0\sum_{k=1}^M\sigma_k(1) \right] \\ - -\frac12\int d1\,d2\,\sum_{k=1}^M\sigma_k(1)\sigma_k(2)f\left(\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N\right) + +\frac12\int d1\,d2\,\sum_{k=1}^M\sigma_k(1)\sigma_k(2)f\left(\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N\right) \Bigg\} \end{aligned} \end{equation} -This is a Gaussian integral in the Lagrange multipliers with $1\leq k\leq M$. +This is a super-Gaussian integral in the Lagrange multipliers with $1\leq k\leq M$. Performing that integral yields \begin{equation} \begin{aligned} @@ -612,7 +602,7 @@ Performing that integral yields &=\int d\pmb\phi\,d\sigma_0\,\exp\Bigg\{ \int d1\left[ H(\pmb\phi(1)) - +\frac{i}2\sigma_0(1)\big(\|\pmb\phi(1)\|^2-N\big) + +\frac12\sigma_0(1)\big(\|\pmb\phi(1)\|^2-N\big) \right] \\ &\hspace{5em}-\frac M2V_0^2\int d1\,d2\,f\left(\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N\right)^{-1} -\frac M2\log\operatorname{sdet}f\left(\frac{\pmb\phi(1)\cdot\pmb\phi(2)}N\right) @@ -636,7 +626,7 @@ These new variables can replace $\pmb\phi$ in the integral using a generalized H \,\exp\Bigg\{ N\int d1\left[ \mathbb M(1) - +\frac{i}2\sigma_0(1)\big(\mathbb Q(1,1)-1\big) + +\frac12\sigma_0(1)\big(\mathbb Q(1,1)-1\big) \right] \\ &\hspace{5em}-\frac M2V_0^2\int d1\,d2\,f(\mathbb Q)^{-1}(1,2) -\frac M2\log\operatorname{sdet}f(\mathbb Q) @@ -695,8 +685,8 @@ while $\bar H$, $H$, $\bar{\hat H}$, $\hat H$, $\bar H_0$ and $H_0$ are Grassman \end{align} We can treat the integral over $\sigma_0$ immediately. It gives \begin{equation} - \int d\sigma_0\,e^{N\int d1\,\frac i2\sigma_0(1)(\mathbb Q(1,1)-1)} - =2\pi\,\delta(C-1)\,\delta(G+R)\,\bar HH + \int d\sigma_0\,e^{N\int d1\,\frac12\sigma_0(1)(\mathbb Q(1,1)-1)} + =2\pi i\,\delta(C-1)\,\delta(G+R)\,\bar HH \end{equation} This therefore sets $C=1$ and $G=-R$ in the remainder of the integrand, as well as setting everything depending on $\bar H$ and $H$ to zero. With these solutions inserted, the remaining remaining terms in the exponential give @@ -730,10 +720,37 @@ as setting everything depending on $\bar H$ and $H$ to zero. With these solution \section{Details of the calculation of the average number of stationary points} \label{sec:complexity.details} +\begin{align} + \pmb\phi(1,2) + &=\mathbf x + +\bar\theta_1\pmb\eta_1+\bar{\pmb\eta}_1\theta_1\bar\theta_2\theta_2 + +\bar\theta_2\pmb\eta_2+\bar{\pmb\eta}_2\theta_2\bar\theta_1\theta_1 \\ + &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)\mathbf a + +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)\mathbf b + +\bar\theta_1\theta_1\bar\theta_2\theta_2i\hat{\mathbf x} + \notag \\ + \sigma_k(1,2) + &=\omega_k + +\bar\theta_1\gamma_{1k}+\bar{\gamma}_{1k}\theta_1\bar\theta_2\theta_2 + +\bar\theta_2\gamma_{2k}+\bar{\gamma}_{2k}\theta_2\bar\theta_1\theta_1 \\ + &\qquad+\frac1{\sqrt2}(\bar\theta_1\theta_2+\bar\theta_2\theta_1)c_k + +\frac i{\sqrt2}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)d_k + +\bar\theta_1\theta_1\bar\theta_2\theta_2\hat\omega_k + \notag +\end{align} +\begin{equation} + \mathcal N_H(\Omega) + =\lim_{\epsilon\to0}\int d\pmb\phi\,d\pmb\sigma\,e^{ + \int d1\,d2\,L(\pmb\phi(1,2),\pmb\sigma(1,2)) + -\frac{i\epsilon}2 + (\|\mathbf a\|^2-\|\mathbf b\|^2+\|\mathbf c\|^2-\|\mathbf d\|^2) + } +\end{equation} + \section{The quenched shattering energy in {\oldstylenums 1}\textsc{frsb} models} \label{sec:1frsb} -\cite{Kent-DObias_2023_How} +\cite{Kent-Dobias_2023_How} \[ \chi_0(q)=\frac1{\hat\omega_1}f''(q)^{-1/2}-\frac{r_d^2}{d_d} \] |