diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-08 07:24:33 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-05-08 07:24:33 -0300 |
commit | 5fd9866479ec50051d2c9eeb4e217e9376e6f9b4 (patch) | |
tree | 30a96ad32a8cc89120e2ae2938b865af2d33a08f /log_integrator.cpp | |
parent | e3f311a91b9684924262108a4e0c8e934f5d1d70 (diff) | |
download | code-5fd9866479ec50051d2c9eeb4e217e9376e6f9b4.tar.gz code-5fd9866479ec50051d2c9eeb4e217e9376e6f9b4.tar.bz2 code-5fd9866479ec50051d2c9eeb4e217e9376e6f9b4.zip |
Made log-Fourier padding symmetric, and began writing regular integrator
Diffstat (limited to 'log_integrator.cpp')
-rw-r--r-- | log_integrator.cpp | 219 |
1 files changed, 219 insertions, 0 deletions
diff --git a/log_integrator.cpp b/log_integrator.cpp new file mode 100644 index 0000000..a8d9778 --- /dev/null +++ b/log_integrator.cpp @@ -0,0 +1,219 @@ +#include "log-fourier.hpp" +#include "p-spin.hpp" +#include <getopt.h> +#include <iostream> + +int main(int argc, char* argv[]) { + /* Model parameters */ + unsigned p = 2; + unsigned s = 2; + Real λ = 0.5; + Real τ₀ = 0; + + /* Log-Fourier parameters */ + unsigned log2n = 8; + Real Δτ = 0.1; + Real k = 0.1; + + /* Iteration parameters */ + Real ε = 1e-14; + Real γ₀ = 1; + Real x = 0.5; + Real β₀ = 0; + Real βₘₐₓ = 0.7; + Real Δβ = 0.01; + bool loadData = false; + unsigned stepsToRespond = 1000; + unsigned pad = 4; + + int opt; + + while ((opt = getopt(argc, argv, "p:s:2:T:t:b:d:g:k:D:e:0:lS:x:P:")) != -1) { + switch (opt) { + case 'p': + p = atoi(optarg); + break; + case 's': + s = atoi(optarg); + break; + case '2': + log2n = atoi(optarg); + break; + case 't': + τ₀ = atof(optarg); + break; + case 'b': + βₘₐₓ = atof(optarg); + break; + case 'd': + Δβ = atof(optarg); + break; + case 'g': + γ₀ = atof(optarg); + break; + case 'k': + k = atof(optarg); + break; + case 'D': + Δτ = atof(optarg); + break; + case 'e': + ε = atof(optarg); + break; + case '0': + β₀ = atof(optarg); + break; + case 'x': + x = atof(optarg); + break; + case 'P': + pad = atoi(optarg); + break; + case 'l': + loadData = true; + break; + case 'S': + stepsToRespond = atoi(optarg); + break; + default: + exit(1); + } + } + + unsigned N = pow(2, log2n); + + LogarithmicFourierTransform fft(N, k, Δτ, pad); + + Real Γ₀ = 1; + Real μₜ₋₁ = Γ₀; + if (τ₀ > 0) { + μₜ₋₁ = (sqrt(1+4*Γ₀*τ₀)-1)/(2*τ₀); + } + + std::vector<Real> Cₜ₋₁(N); + std::vector<Real> Rₜ₋₁(N); + std::vector<Complex> Ĉₜ₋₁(N); + std::vector<Complex> Ȓₜ₋₁(N); + + if (!loadData) { + /* Start from the exact solution for β = 0 */ + for (unsigned n = 0; n < N; n++) { + if (τ₀ > 0) { + if (τ₀ == 2) { + Cₜ₋₁[n] = Γ₀ * exp(-fft.t(n) / 2) * (1 + fft.t(n) / 2); + } else { + Cₜ₋₁[n] = Γ₀ * (exp(-μₜ₋₁ * fft.t(n)) - μₜ₋₁ * τ₀ * exp(-fft.t(n) / τ₀)) / (μₜ₋₁ - pow(μₜ₋₁, 3) * pow(τ₀, 2)); + } + } else { + Cₜ₋₁[n] = Γ₀ * exp(-μₜ₋₁ * fft.t(n)) / μₜ₋₁; + } + Rₜ₋₁[n] = exp(-μₜ₋₁ * fft.t(n)); + + Ĉₜ₋₁[n] = 2 * Γ₀ / (pow(μₜ₋₁, 2) + pow(fft.ν(n), 2)) / (1 + pow(τ₀ * fft.ν(n), 2)); + Ȓₜ₋₁[n] = (Real)1.0 / (μₜ₋₁ + II * fft.ν(n)); + } + } else { + logFourierLoad(Cₜ₋₁, Rₜ₋₁, Ĉₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀, log2n, Δτ, k); + μₜ₋₁ = estimateZ(fft, Cₜ₋₁, Ĉₜ₋₁, Rₜ₋₁, Ȓₜ₋₁, p, s, λ, τ₀, β₀); + } + + std::vector<Real> Cₜ = Cₜ₋₁; + std::vector<Real> Rₜ = Rₜ₋₁; + std::vector<Complex> Ĉₜ = Ĉₜ₋₁; + std::vector<Complex> Ȓₜ = Ȓₜ₋₁; + Real μₜ = μₜ₋₁; + + Real β = β₀ + Δβ; + while (β < βₘₐₓ) { + Real γ = γ₀; + Real ΔCmin = 1000; + Real ΔCₜ = 100; + unsigned stepsUp = 0; + while (ΔCₜ > ε) { + std::vector<Real> RddfC(N); + std::vector<Real> dfC(N); + for (unsigned i = 0; i < N; i++) { + RddfC[i] = Rₜ[i] * ddf(λ, p, s, Cₜ[i]); + dfC[i] = df(λ, p, s, Cₜ[i]); + } + + std::vector<Real> dC(N); + std::vector<Real> dR(N); + + for (unsigned i = 0; i < N; i++) { + dC[i] += -μₜ * Cₜ[i]; + Real ΓR; + for (unsigned j = 0; j < N; j++) { + + } + } + + + std::vector<Complex> Ĉₜ₊₁(N); + std::vector<Complex> Ȓₜ₊₁(N); + for (unsigned n = 0; n < N; n++) { + Ȓₜ₊₁[n] = ((Real)1.0 + std::pow(β, 2) * RddfCt[n] * Ȓₜ[n]) / (μₜ + II * fft.ν(n)); + Ĉₜ₊₁[n] = (2 * Γ₀ * std::conj(Ȓₜ[n]) / (1 + std::pow(τ₀ * fft.ν(n), 2)) + std::pow(β, 2) * (RddfCt[n] * Ĉₜ[n] + dfCt[n] * std::conj(Ȓₜ[n]))) / (μₜ + II * fft.ν(n)); + } + std::vector<Real> Rₜ₊₁ = fft.inverse(Ȓₜ₊₁); + std::vector<Real> Cₜ₊₁ = fft.inverse(Ĉₜ₊₁); + + μₜ *= pow(tanh(Cₜ₊₁[0]-1)+1, x); + + ΔCₜ = 0; + for (unsigned i = 0; i < N; i++) { + ΔCₜ += std::norm(Cₜ[i] - Cₜ₊₁[i]); + ΔCₜ += std::norm(Rₜ[i] - Rₜ₊₁[i]); + } + ΔCₜ = sqrt(ΔCₜ) / (2*N); + + if (ΔCₜ < 0.9 * ΔCmin) { + ΔCmin = ΔCₜ; + stepsUp = 0; + } else { + stepsUp++; + } + + if (stepsUp > stepsToRespond) { + γ = std::max(γ/2, (Real)1e-4); + stepsUp = 0; + ΔCmin = ΔCₜ; + } + + for (unsigned i = 0; i < N; i++) { + Cₜ[i] += γ * (Cₜ₊₁[i] - Cₜ[i]); + Rₜ[i] += γ * (Rₜ₊₁[i] - Rₜ[i]); + Ĉₜ[i] += γ * (Ĉₜ₊₁[i] - Ĉₜ[i]); + Ȓₜ[i] += γ * (Ȓₜ₊₁[i] - Ȓₜ[i]); + } + + std::cerr << "\x1b[2K" << "\r"; + std::cerr << β << " " << μₜ << " " << ΔCₜ << " " << γ << " " << Cₜ[0]; + } + + if (std::isnan(Cₜ[0])) { + γ₀ /= 2; + Cₜ = Cₜ₋₁; + Rₜ = Rₜ₋₁; + Ĉₜ = Ĉₜ₋₁; + Ȓₜ = Ȓₜ₋₁; + μₜ = μₜ₋₁; + } else { + Real E = energy(fft, Cₜ, Rₜ, p, s, λ, β); + + std::cerr << "\x1b[2K" << "\r"; + std::cerr << β << " " << μₜ << " " << Ĉₜ[0].real() << " " << E << " " << γ << std::endl; + + logFourierSave(Cₜ, Rₜ, Ĉₜ, Ȓₜ, p, s, λ, τ₀, β, log2n, Δτ, k); + + β += Δβ; + Cₜ₋₁ = Cₜ; + Rₜ₋₁ = Rₜ; + Ĉₜ₋₁ = Ĉₜ; + Ȓₜ₋₁ = Ȓₜ; + μₜ₋₁ = μₜ; + } + } + + return 0; +} |