summaryrefslogtreecommitdiff
path: root/walk.cpp
blob: 7c5d01c5fe5d9770cab7a0aa72266f8dccaabd0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include <getopt.h>
#include <iomanip>
#include <random>

#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"

#include "eigen/Eigen/Dense"

using Rng = randutils::random_generator<pcg32>;

using Real = double;
using Vector = Eigen::Matrix<Real, Eigen::Dynamic, 1>;
using Matrix = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;

Vector normalize(const Vector& x) {
  return x * sqrt(x.size() / x.squaredNorm());
}

Real wignerCDF(Real λ) {
  return 0.5 + (λ * sqrt(4 - pow(λ, 2)) / 4 + atan(λ / sqrt(4 - pow(λ, 2)))) / M_PI;
}

Real wignerInverse(Real p, Real ε = 1e-14) {
  Real a = -2;
  Real b = 2;

  while (b - a > ε) {
    Real c = (a + b) / 2;
    if ((wignerCDF(a) - p) * (wignerCDF(c) - p) > 0) {
      a = c;
    } else {
      b = c;
    }
  }

  return (a + b) / 2;
}

class QuadraticModel {
private:
  Vector J;

public:
  unsigned N;

  QuadraticModel(unsigned N, Rng& r) : J(N), N(N) {
    for (Real& Jᵢ : J) {
      Jᵢ = wignerInverse(r.uniform(0.0, 1.0));
    }
  }

  Real H(const Vector& x) const {
    return 0.5 * (J.cwiseProduct(x)).dot(x);
  }

  Vector ∇H(const Vector& x) const {
    Vector ∂H = J.cwiseProduct(x);
    return ∂H - (∂H.dot(x) / x.squaredNorm()) * x;
  }
};

Vector gradientDescent(const QuadraticModel& M, const Vector& x₀, Real E, Real ε = 1e-14) {
  Vector xₜ = x₀;
  Real Hₜ = M.H(x₀);
  Real α = 1;
  Real m;
  Vector ∇H;

  while (
    ∇H = (Hₜ / M.N - E) * M.H(xₜ) / M.N, m = ∇H.squaredNorm(),
    m > ε
  ) {
    Vector xₜ₊₁;
    Real Hₜ₊₁;

    while (
      xₜ₊₁ = normalize(xₜ - α * ∇H), Hₜ₊₁ = M.H(xₜ₊₁),
      pow(Hₜ₊₁ / M.N - E, 2) > pow(Hₜ / M.N - E, 2) - α * m
    ) {
      α /= 2;
    }

    xₜ = xₜ₊₁;
    Hₜ = Hₜ₊₁;
    α *= 1.25;
  }

  return xₜ;
}

Vector randomStep(const QuadraticModel& M, const Vector& x₀, Real E, Rng& r, Real Δt = 1e-4) {
  Vector η(M.N);
  for (Real& ηᵢ : η) {
    ηᵢ = r.variate<Real, std::normal_distribution>(0, sqrt(2 * Δt));
  }
  η -= η.dot(x₀) * x₀ / x₀.squaredNorm();
  Vector ∇H₀ = M.H(x₀);
  η -= η.dot(∇H₀) * ∇H₀ / ∇H₀.squaredNorm();
  return gradientDescent(M, normalize(x₀ + η), E);
}

int main(int argc, char* argv[]) {
  unsigned N = 10;
  unsigned steps = 10;
  Real E = 0;

  int opt;

  while ((opt = getopt(argc, argv, "N:E:n:")) != -1) {
    switch (opt) {
    case 'N':
      N = (unsigned)atof(optarg);
      break;
    case 'E':
      E = atof(optarg);
      break;
    case 'n':
      steps = (unsigned)atof(optarg);
      break;
    default:
      exit(1);
    }
  }

  Rng r;
  QuadraticModel ls(N, r);

  Vector x₀ = Vector::Zero(N);
  for (Real& xi : x₀) {
    xi = r.variate<Real, std::normal_distribution>(0, 1);
  }
  x₀ = normalize(x₀);
  x₀ = gradientDescent(ls, x₀, E);

  std::cout << std::setprecision(15);

  Vector x = x₀;

  for (unsigned step = 0; step < steps; step++) {
    x = randomStep(ls, x, E, r);
    std::cout << ls.H(x) / N << " " << x.dot(x₀) / N << std::endl;
  }

  return 0;
}