summaryrefslogtreecommitdiff
path: root/walk.cpp
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-12-25 18:22:40 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-12-25 18:22:40 +0100
commitcedc3b70bfd9226f87674ab6d6faa2b349a1e4a9 (patch)
treeece991a4775611e4dc877d10b9ed5f1cb7fb1c65 /walk.cpp
parentbba01ec107ea1e0e6eccd79e4a8ebb30f46bfea7 (diff)
downloadcode-cedc3b70bfd9226f87674ab6d6faa2b349a1e4a9.tar.gz
code-cedc3b70bfd9226f87674ab6d6faa2b349a1e4a9.tar.bz2
code-cedc3b70bfd9226f87674ab6d6faa2b349a1e4a9.zip
Dramatic speedup by using diagonal representation of interations.
Diffstat (limited to 'walk.cpp')
-rw-r--r--walk.cpp44
1 files changed, 31 insertions, 13 deletions
diff --git a/walk.cpp b/walk.cpp
index 3d7020d..7c5d01c 100644
--- a/walk.cpp
+++ b/walk.cpp
@@ -1,5 +1,6 @@
#include <getopt.h>
#include <iomanip>
+#include <random>
#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"
@@ -16,31 +17,45 @@ Vector normalize(const Vector& x) {
return x * sqrt(x.size() / x.squaredNorm());
}
+Real wignerCDF(Real λ) {
+ return 0.5 + (λ * sqrt(4 - pow(λ, 2)) / 4 + atan(λ / sqrt(4 - pow(λ, 2)))) / M_PI;
+}
+
+Real wignerInverse(Real p, Real ε = 1e-14) {
+ Real a = -2;
+ Real b = 2;
+
+ while (b - a > ε) {
+ Real c = (a + b) / 2;
+ if ((wignerCDF(a) - p) * (wignerCDF(c) - p) > 0) {
+ a = c;
+ } else {
+ b = c;
+ }
+ }
+
+ return (a + b) / 2;
+}
+
class QuadraticModel {
private:
- Matrix J;
+ Vector J;
public:
unsigned N;
- QuadraticModel(unsigned N, Rng& r) : J(N, N), N(N) {
-
- for (unsigned i = 0; i < N; i++) {
- for (unsigned j = i; j < N; j++) {
- J(i, j) = r.variate<Real, std::normal_distribution>(0, 1 / sqrt(N));
- if (i != j) {
- J(j, i) = J(i, j);
- }
- }
+ QuadraticModel(unsigned N, Rng& r) : J(N), N(N) {
+ for (Real& Jᵢ : J) {
+ Jᵢ = wignerInverse(r.uniform(0.0, 1.0));
}
}
Real H(const Vector& x) const {
- return 0.5 * (J * x).dot(x);
+ return 0.5 * (J.cwiseProduct(x)).dot(x);
}
Vector ∇H(const Vector& x) const {
- Vector ∂H = J * x;
+ Vector ∂H = J.cwiseProduct(x);
return ∂H - (∂H.dot(x) / x.squaredNorm()) * x;
}
};
@@ -112,7 +127,10 @@ int main(int argc, char* argv[]) {
QuadraticModel ls(N, r);
Vector x₀ = Vector::Zero(N);
- x₀(0) = sqrt(N);
+ for (Real& xi : x₀) {
+ xi = r.variate<Real, std::normal_distribution>(0, 1);
+ }
+ x₀ = normalize(x₀);
x₀ = gradientDescent(ls, x₀, E);
std::cout << std::setprecision(15);