summaryrefslogtreecommitdiff
path: root/frsb_kac-rice.tex
blob: 0fa768ae9919cd6cbd58e7cf44e8e8fe117d652b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
\documentclass[fleqn]{article}

\usepackage{fullpage,amsmath,amssymb,latexsym}

\begin{document}

\section{Equilibrium}

\begin{equation}
  \beta F=\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}f(Q_{ab})+\log\det Q\right)-\frac12\log S_\infty
\end{equation}
$\log S_\infty=1+\log2\pi$.
\begin{align*}
  \beta F=
  -\frac12\log S_\infty+
  \frac12\lim_{n\to0}\frac1n\left(\beta^2nf(1)+\beta^2\sum_{i=0}^kn(x_i-x_{i+1})f(q_i)
  +\log\left[
    \frac{
      1+\sum_{i=0}^k(x_i-x_{i+1})q_i
    }{
      1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0
    }
  \right]\right.\\
  +\frac n{x_1}\log\left[
      1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0
  \right]\\
  \left.+\sum_{j=1}^kn(x_{j+1}^{-1}-x_j^{-1})\log\left[
      1+\sum_{i=j+1}^k(x_i-x_{i+1})q_i-x_{j+1}q_j
  \right]
\right)
\end{align*}

\begin{align*}
  \lim_{n\to0}\frac1n
  \log\left[
    \frac{
      1+\sum_{i=0}^k(x_i-x_{i+1})q_i
    }{
      1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0
    }
  \right]
  &=
  \lim_{n\to0}\frac1n
  \log\left[
    \frac{
      1+\sum_{i=0}^k(x_i-x_{i+1})q_i
    }{
      1+\sum_{i=0}^k(x_i-x_{i+1})q_i-nq_0
    }
  \right] \\
  &=q_0\left(1+\sum_{i=0}^k(x_i-x_{i+1})q_i\right)^{-1}
\end{align*}


\begin{align*}
  \beta F=
  -\frac12\log S_\infty+
  \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
  +q_0\left(1+\sum_{i=0}^k(x_i-x_{i+1})q_i\right)^{-1}\right. \\
  +\frac1{x_1}\log\left[
      1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i-x_1q_0
  \right]\\
  \left.+\sum_{j=1}^k(x_{j+1}^{-1}-x_j^{-1})\log\left[
      1+\sum_{i=j+1}^{k}(x_i-x_{i+1})q_i-x_{j+1}q_j
  \right]
\right)
\end{align*}
$q_0=0$
\begin{align*}
  \beta F=
  -\frac12\log S_\infty+
  \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
  +\frac1{x_1}\log\left[
      1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i
  \right]\right.\\
  \left.+\sum_{j=1}^k(x_{j+1}^{-1}-x_j^{-1})\log\left[
      1+\sum_{i=j+1}^{k}(x_i-x_{i+1})q_i-x_{j+1}q_j
  \right]
\right)
\end{align*}
$x_i=\tilde x_ix_k$, $x_k=y/\beta$, $q_k=1-z/\beta$
\begin{align*}
  \beta F=
  -\frac12\log S_\infty+
  \frac12\left(\beta^2f(1)+\beta^2(y\beta^{-1}-1)f(1-z\beta^{-1})+y\beta\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)\right. \\
  +\frac\beta{\tilde x_1 y}\log\left[
    y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta
  \right]\\
  +\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\left[
    y\sum_{i=j+1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta-y\tilde x_{j+1}q_j
\right]\\
    \left.-\frac\beta{\tilde x_1 y}\log\beta-\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\beta+(1-\beta y^{-1})\log\left[
      z/\beta
  \right]
\right)
\end{align*}
\begin{align*}
  \lim_{\beta\to\infty}F=
  \frac12\left(yf(1)+zf'(1)+y\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)
  +\frac1{\tilde x_1 y}\log\left[
    y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z
  \right]\right.\\
  \left.+\sum_{j=1}^{k-1}\frac1 y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\left[
    y\sum_{i=j+1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-y\tilde x_{j+1}q_j
    \right]
    -\frac1y\log z
\right)
\end{align*}
$F$ is a $k-1$ RSB ansatz with all eigenvalues scaled by $y$ and shifted by $z$. $\tilde x_0=0$ and $\tilde x_k=1$.
\begin{equation} \label{eq:ground.state.free.energy}
  \lim_{\beta\to\infty}F=\lim_{n\to0}\frac1n\frac12\left(nzf'(1)+y\sum_{ab}f(\tilde Q_{ab})+\frac1y\log\det(yz^{-1}\tilde Q+I)
  \right)
\end{equation}

\section{Kac-Rice}

\begin{align*}
  \Sigma
  =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left(
    \sum_a\mu(F_{aa}-R_{aa})
    +\frac12\sum_{ab}\left[
      \hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})
      +D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})-F_{ab}^2f''(Q_{ab})
    \right]\right.\\\left.
  +\frac12\log\det\begin{bmatrix}Q&-iR\\-iR&-D\end{bmatrix}
  -\log\det F
  \right)
\end{align*}
\[
  0=\frac{\partial\Sigma}{\partial R_{ab}}
  =-\mu\delta_{ab}+\hat\epsilon f'(Q_{ab})+R_{ab}f''(Q_{ab})+\sum_c(R^2-DQ)^{-1}_{ac}R_{cb}
\]
\[
  0=\frac{\partial\Sigma}{\partial D_{ab}}
  =\frac12 f'(Q_{ab})-\frac12\sum_c(R^2-DQ)^{-1}_{ac}Q_{cb}
\]
The second equation implies
\[
  (R^2-DQ)^{-1}=Q^{-1}f'(Q)
\]
Insert the diagonal ansatz $R=R_dI$, $D=D_dI$. Then
\[
  0=(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+R_d(R_d^2I-D_dQ)^{-1}
  =(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+R_dQ^{-1}f'(Q)
\]
and
\[
  Q^{-1}f'(Q)=(I+D_df'(Q))/R_d^2
\]
Substituting the second into the first, we have
\[
  0=(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+\frac1{R_d}(I+D_df'(Q))
\]
\[
  0=(R_df''(1)-\mu+R_d^{-1})I+(\hat\epsilon+D_d/R_d)f'(Q)
\]
The only way for this equation to be satisfied off the diagonal for nontrivial $Q$ is for $D_d=-R_d\hat\epsilon$. We therefore have
\begin{align*}
  \Sigma
  =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left(
    n\mu(F_d-R_d)+\frac12n\left[
      \hat\epsilon R_df'(1)+R_d^2f''(1)-F_d^2f''(1)
    \right]
    +\frac12\sum_{ab}
      \hat\epsilon^2f(Q_{ab})
    ]\right.\\\left.
    +\frac12\log\det(\hat\epsilon R_d^{-1} Q+I)
    +n\log R_d
  -n\log F_d
  \right)
\end{align*}
Taking the saddle with respect to $\mu$ and $F_d$ yields
\[
  F_d=R_d
\]
\[
  \mu=R_d^{-1}(1+R_d^2f''(1))
\]
and gives
\begin{align*}
  \Sigma
  =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\frac12\left(
    n
      \hat\epsilon R_df'(1)
    +\hat\epsilon^2\sum_{ab}
      f(Q_{ab})
    +\log\det(\hat\epsilon R_d^{-1} Q+I)
  \right)
\end{align*}
Finally, setting $0=\Sigma$ gives
\[
  \epsilon
  =\lim_{n\to0}\frac1n\frac12\left(nR_df'(1)+\hat\epsilon\sum_{ab}
      f(Q_{ab})
      +\frac1{\hat\epsilon}\log\det(\hat\epsilon R_d^{-1} Q+I)
  \right)
\]
which is precisely \eqref{eq:ground.state.free.energy} with $R_d=z$ and $\hat\epsilon=y$. Therefore, a $(k-1)$-RSB ansatz in Kac-Rice will predict the correct ground state energy for a model whose equilibrium state at small temperatures is $k$-RSB.

\section{Full}

\begin{align*}
  \lim_{n\to0}\frac1n\log\det(\hat\epsilon R_d^{-1} Q+I)
  =x_1^{-1}\log\left(\hat\epsilon R_d^{-1}(1-\bar q_k)+1\right)+\int_{q_0^+}^{q_{k-1}}dq\,\mu(q)\log\left[\hat\epsilon R_d^{-1}\lambda(q)+1\right]
\end{align*}
where
\[
  \mu(q)=\frac{\partial x^{-1}(q)}{\partial q}
\]
Integrating by parts,
\begin{align*}
  \lim_{n\to0}\frac1n\log\det(\hat\epsilon R_d^{-1} Q+I)
  &=x_1^{-1}\log\left(\hat\epsilon R_d^{-1}(1-\bar q_k)+1\right)+\left[x^{-1}(q)\log[\hat\epsilon R_d^{-1}\lambda(q)+1]\right]_{q=q_0^+}^{q=q_{k-1}}-\frac{\hat\epsilon}{R_d}\int_{q_0^+}^{q_{k-1}}dq\,\frac{\lambda'(q)}{x(q)}\frac1{\hat\epsilon R_d^{-1}\lambda(q)+1}\\
  &=\log[\hat\epsilon R_d^{-1}\lambda(q_{k-1})+1]+\frac{\hat\epsilon}{R_d}\int_{q_0^+}^{q_{k-1}}dq\,\frac1{\hat\epsilon R_d^{-1}\lambda(q)+1}
\end{align*}

\begin{align*}
  \Sigma
  =-\epsilon\hat\epsilon+
    \frac12\hat\epsilon R_df'(1)
    +\frac12\int_0^1dq\,\left[
      \hat\epsilon^2\lambda(q)f''(q)
      +\frac1{\lambda(q)+R_d/\hat\epsilon}
    \right]
\end{align*}
for $\lambda$ concave, monotonic,  $\lambda(1)=0$, and $\lambda'(1)=-1$
\[
  0=\frac{\delta\Sigma}{\delta\lambda(q)}=\frac12\hat\epsilon^2f''(q)-\frac12\frac1{(\lambda(q)+R_d/\hat\epsilon)^2}
\]
\[
  \lambda^*(q)=\frac1{\hat\epsilon}\left[f''(q)^{-1/2}-R_d\right]
\]

We suppose that solutions are given by
\begin{equation}
  \lambda(q)=\begin{cases}
    \lambda^*(q) & q<q^* \\
    1-q          & q\geq q^*
  \end{cases}
\end{equation}
where $1-q$ guarantees the boundary conditions at $q=1$, and corresponds to the 0RSB or annealed solutions (annealed Kac-Rice is recovered by substituting in $1-q$ for $\lambda$). We will need to require that $1-q^*=\lambda^*(q^*)$, i.e., continuity.

Inserting this into the complexity, we find
\begin{align*}
  \Sigma
  &=-\epsilon\hat\epsilon+\frac12\hat\epsilon R_df'(1)
  +\frac12\int_0^{q^*}dq\left[
    \hat\epsilon(f''(q)^{-1/2}-R_d)f''(q)+\hat\epsilon f''(q)^{1/2}
  \right]
  +\frac12\int_{q^*}^1dq\left[
    \hat\epsilon^2(1-q)f''(q)+\frac1{q-1+R_d/\hat\epsilon}
  \right] \\
  &=-\epsilon\hat\epsilon+\frac12\hat\epsilon R_d\left[f'(1)-f'(q^*)\right]
  +\hat\epsilon\int_0^{q^*}dq\,f''(q)^{1/2}
  +\frac12\hat\epsilon^2\int_{q^*}^1dq\,
    (1-q)f''(q)
    -\log\left[1-(1-q^*)\hat\epsilon/R_d\right]
\end{align*}
$R_d$ can be extremized now, with
\[
  R_d=\frac12\left(
    (1-q^*)\hat\epsilon\pm\sqrt{
      (1-q^*)\left(
        (1-q^*)\hat\epsilon^2+8/[f'(1)-f'(q^*)]
      \right)
    }
  \right)
\]

This all is for $\mu=\mu^*$, which counts the dominant saddles. We can also count by fixed macroscopic index $\mu$ by leaving it unoptimized in the complexity. This gives
\[
  F_d=\frac1{2f''(1)}\left[\mu\pm\sqrt{\mu^2-4f''(1)}\right]
\]
and
\begin{align*}
  \Sigma
  =-\epsilon\hat\epsilon+
    \frac12\hat\epsilon R_df'(1)
    +\frac12\int_0^1dq\,\left[
      \hat\epsilon^2\lambda(q)f''(q)
      +\frac1{\lambda(q)+R_d/\hat\epsilon}
    \right]-\mu R_d+\frac12R_d^2f''(1)+\log R_d\\
    +\operatorname{Re}\left\{\frac12\left(1+\frac\mu{2f''(1)}\left(\mu\pm\sqrt{\mu^2-4f''(1)}\right)\right)-\log\left(\frac1{2f''(1)}\left(\mu\pm\sqrt{\mu^2-4f''(1)}\right)\right)\right\}
\end{align*}

\end{document}