summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2018-07-26 16:55:17 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2018-07-26 16:55:17 -0400
commit5f1eb9a12821e7462b7b2853e0d95c8c863bf900 (patch)
tree6aa091a95846923e253a83886c5da2a8a62d5e93
parent1160baa61bad605cf8a1d583e8ae356a54a942df (diff)
downloadc++-5f1eb9a12821e7462b7b2853e0d95c8c863bf900.tar.gz
c++-5f1eb9a12821e7462b7b2853e0d95c8c863bf900.tar.bz2
c++-5f1eb9a12821e7462b7b2853e0d95c8c863bf900.zip
now using const passing of object reference instead of pointers
-rw-r--r--CMakeLists.txt4
-rw-r--r--lib/cluster.h65
-rw-r--r--lib/correlation.h8
-rw-r--r--lib/measure.h10
-rw-r--r--lib/wolff.h12
-rw-r--r--lib/z2.h8
-rw-r--r--src/wolff_O2.cpp278
-rw-r--r--src/wolff_On.cpp18
-rw-r--r--src/wolff_cgm.cpp16
-rw-r--r--src/wolff_clock.cpp14
-rw-r--r--src/wolff_dgm.cpp16
-rw-r--r--src/wolff_ising.cpp22
-rw-r--r--src/wolff_potts.cpp22
13 files changed, 107 insertions, 386 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 12fe087..fe564f7 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -22,7 +22,6 @@ add_executable(wolff_4potts src/wolff_potts.cpp ${CPPSOURCES} ${CSOURCES})
add_executable(wolff_7potts src/wolff_potts.cpp ${CPPSOURCES} ${CSOURCES})
add_executable(wolff_3clock src/wolff_clock.cpp ${CPPSOURCES} ${CSOURCES})
add_executable(wolff_5clock src/wolff_clock.cpp ${CPPSOURCES} ${CSOURCES})
-add_executable(wolff_planar2 src/wolff_O2.cpp ${CPPSOURCES} ${CSOURCES})
add_executable(wolff_planar src/wolff_On.cpp ${CPPSOURCES} ${CSOURCES})
add_executable(wolff_heisenberg src/wolff_On.cpp ${CPPSOURCES} ${CSOURCES})
add_executable(analyze_correlations src/analyze_correlations.cpp ${CPPSOURCES} ${CSOURCES})
@@ -55,7 +54,6 @@ if (${GLUT} MATCHES "GLUT-NOTFOUND")
target_link_libraries(wolff_5clock cblas gsl m)
target_link_libraries(wolff_heisenberg cblas gsl m)
target_link_libraries(wolff_planar cblas gsl m)
- target_link_libraries(wolff_planar2 cblas gsl m)
else()
target_link_libraries(wolff_ising cblas gsl m glut GL GLU)
target_link_libraries(wolff_dgm cblas gsl m glut GL GLU)
@@ -67,7 +65,6 @@ else()
target_link_libraries(wolff_5clock cblas gsl m glut GL GLU)
target_link_libraries(wolff_heisenberg cblas gsl m glut GL GLU)
target_link_libraries(wolff_planar cblas gsl m glut GL GLU)
- target_link_libraries(wolff_planar2 cblas gsl m glut GL GLU)
target_compile_definitions(wolff_ising PUBLIC HAVE_GLUT)
target_compile_definitions(wolff_dgm PUBLIC HAVE_GLUT)
target_compile_definitions(wolff_cgm PUBLIC HAVE_GLUT)
@@ -77,7 +74,6 @@ else()
target_compile_definitions(wolff_3clock PUBLIC HAVE_GLUT)
target_compile_definitions(wolff_5clock PUBLIC HAVE_GLUT)
target_compile_definitions(wolff_planar PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_planar2 PUBLIC HAVE_GLUT)
target_compile_definitions(wolff_heisenberg PUBLIC HAVE_GLUT)
endif()
diff --git a/lib/cluster.h b/lib/cluster.h
index f948586..f3271b0 100644
--- a/lib/cluster.h
+++ b/lib/cluster.h
@@ -12,45 +12,45 @@
#include "graph.h"
template <class R_t, class X_t>
-void flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
+void flip_cluster(state_t<R_t, X_t>& s, v_t v0, const R_t& r, gsl_rng *rand) {
v_t nv = 0;
std::stack<v_t> stack;
stack.push(v0);
- std::vector<bool> marks(state->g.nv, false);
+ std::vector<bool> marks(s.g.nv, false);
while (!stack.empty()) {
v_t v = stack.top();
stack.pop();
- if (!marks[v]) {
+ if (!marks[v]) { // don't reprocess anyone we've already visited!
X_t si_old, si_new;
R_t R_old, R_new;
- R_old = state->R;
+ R_old = s.R;
marks[v] = true;
- bool v_is_ghost = (v == state->nv);
+ bool v_is_ghost = (v == s.nv); // ghost site has the last index
if (v_is_ghost) {
- R_new = r.act(R_old);
+ R_new = r.act(R_old); // if we are, then we're moving the transformation
} else {
- si_old = state->spins[v];
- si_new = r.act(si_old);
+ si_old = s.spins[v];
+ si_new = r.act(si_old); // otherwise, we're moving the spin at our site
}
- for (const v_t &vn : state->g.v_adj[v]) {
+ for (const v_t &vn : s.g.v_adj[v]) {
X_t sj;
- bool vn_is_ghost = (vn == state->nv);
+ bool vn_is_ghost = (vn == s.nv); // any of our neighbors could be the ghost
if (!vn_is_ghost) {
- sj = state->spins[vn];
+ sj = s.spins[vn];
}
double prob;
- if (v_is_ghost || vn_is_ghost) {
+ if (v_is_ghost || vn_is_ghost) { // if this is a ghost-involved bond...
X_t rs_old, rs_new;
v_t non_ghost;
if (vn_is_ghost) {
@@ -63,51 +63,54 @@ void flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
non_ghost = vn;
}
- double dE = state->H(rs_old) - state->H(rs_new);
+ double dE = s.H(rs_old) - s.H(rs_new);
+
#ifdef FINITE_STATES
prob = H_probs[state_to_ind(rs_old)][state_to_ind(rs_new)];
#else
- prob = 1.0 - exp(-dE / state->T);
+ prob = 1.0 - exp(-dE / s.T);
#endif
- state->M -= rs_old;
- state->M += rs_new;
+ s.M -= rs_old;
+ s.M += rs_new;
- state->E += dE;
+ s.E += dE;
- for (D_t i = 0; i < state->D; i++) {
- L_t x = (non_ghost / (v_t)pow(state->L, state->D - i - 1)) % state->L;
+ for (D_t i = 0; i < s.D; i++) {
+ L_t x = (non_ghost / (v_t)pow(s.L, s.D - i - 1)) % s.L;
- state->ReF[i] -= rs_old * state->precomputed_cos[x];
- state->ReF[i] += rs_new * state->precomputed_cos[x];
+ s.ReF[i] -= rs_old * s.precomputed_cos[x];
+ s.ReF[i] += rs_new * s.precomputed_cos[x];
- state->ImF[i] -= rs_old * state->precomputed_sin[x];
- state->ImF[i] += rs_new * state->precomputed_sin[x];
+ s.ImF[i] -= rs_old * s.precomputed_sin[x];
+ s.ImF[i] += rs_new * s.precomputed_sin[x];
}
- } else {
- double dE = state->J(si_old, sj) - state->J(si_new, sj);
+ } else { // otherwise, we're at a perfectly normal bond!
+ double dE = s.J(si_old, sj) - s.J(si_new, sj);
+
#ifdef FINITE_STATES
prob = J_probs[state_to_ind(si_old)][state_to_ind(si_new)][state_to_ind(sj)];
#else
- prob = 1.0 - exp(-dE / state->T);
+ prob = 1.0 - exp(-dE / s.T);
#endif
- state->E += dE;
+
+ s.E += dE;
}
- if (gsl_rng_uniform(rand) < prob) { // and with probability...
+ if (gsl_rng_uniform(rand) < prob) {
stack.push(vn); // push the neighboring vertex to the stack
}
}
if (v_is_ghost) {
- state->R = R_new;
+ s.R = R_new;
} else {
- state->spins[v] = si_new;
+ s.spins[v] = si_new;
nv++;
}
}
}
- state->last_cluster_size = nv;
+ s.last_cluster_size = nv;
}
diff --git a/lib/correlation.h b/lib/correlation.h
index 49c6ff2..23b1bd9 100644
--- a/lib/correlation.h
+++ b/lib/correlation.h
@@ -7,13 +7,13 @@
#include <fftw3.h>
template <class R_t, class X_t>
-double correlation_length(const state_t <R_t, X_t> *s) {
+double correlation_length(const state_t <R_t, X_t>& s) {
double total = 0;
- for (D_t j = 0; j < s->D; j++) {
- total += norm_squared(s->ReF[j]) + norm_squared(s->ReF[j]);
+ for (D_t j = 0; j < s.D; j++) {
+ total += norm_squared(s.ReF[j]) + norm_squared(s.ReF[j]);
}
- return total / s->D;
+ return total / s.D;
}
diff --git a/lib/measure.h b/lib/measure.h
index 8082dd2..2c5ffb7 100644
--- a/lib/measure.h
+++ b/lib/measure.h
@@ -29,17 +29,17 @@ FILE **measure_setup_files(unsigned char flags, unsigned long timestamp) {
}
template <class R_t, class X_t>
-std::function <void(const state_t <R_t, X_t> *)> measure_function_write_files(unsigned char flags, FILE **files, std::function <void(const state_t <R_t, X_t> *)> other_f) {
- return [=] (const state_t <R_t, X_t> *s) {
+std::function <void(const state_t <R_t, X_t>&)> measure_function_write_files(unsigned char flags, FILE **files, std::function <void(const state_t <R_t, X_t>&)> other_f) {
+ return [=] (const state_t <R_t, X_t>& s) {
if (flags & measurement_energy) {
- float smaller_E = (float)s->E;
+ float smaller_E = (float)s.E;
fwrite(&smaller_E, sizeof(float), 1, files[0]);
}
if (flags & measurement_clusterSize) {
- fwrite(&(s->last_cluster_size), sizeof(uint32_t), 1, files[1]);
+ fwrite(&(s.last_cluster_size), sizeof(uint32_t), 1, files[1]);
}
if (flags & measurement_magnetization) {
- write_magnetization(s->M, files[2]);
+ write_magnetization(s.M, files[2]);
}
if (flags & measurement_fourierZero) {
float smaller_X = (float)correlation_length(s);
diff --git a/lib/wolff.h b/lib/wolff.h
index a4a663c..498f7f3 100644
--- a/lib/wolff.h
+++ b/lib/wolff.h
@@ -3,18 +3,18 @@
#include "state.h"
template <class R_t, class X_t>
-void wolff(count_t N, state_t <R_t, X_t> *s, std::function <R_t(gsl_rng *, X_t s0)> gen_R, std::function <void(const state_t <R_t, X_t> *)> measurements, gsl_rng *r, bool silent) {
+void wolff(count_t N, state_t <R_t, X_t>& s, std::function <R_t(gsl_rng *, X_t s0)> gen_R, std::function <void(const state_t <R_t, X_t>&)> measurements, gsl_rng *r, bool silent) {
#ifdef FINITE_STATES
- initialize_probs(s->J, s->H, s->T);
+ initialize_probs(s.J, s.H, s.T);
#endif
if (!silent) printf("\n");
for (count_t steps = 0; steps < N; steps++) {
- if (!silent) printf("\033[F\033[JWOLFF: step %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", steps, N, s->E, s->last_cluster_size);
+ if (!silent) printf("\033[F\033[JWOLFF: step %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", steps, N, s.E, s.last_cluster_size);
- v_t v0 = gsl_rng_uniform_int(r, s->nv);
- R_t step = gen_R(r, s->spins[v0]);
+ v_t v0 = gsl_rng_uniform_int(r, s.nv);
+ R_t step = gen_R(r, s.spins[v0]);
flip_cluster <R_t, X_t> (s, v0, step, r);
measurements(s);
@@ -23,7 +23,7 @@ void wolff(count_t N, state_t <R_t, X_t> *s, std::function <R_t(gsl_rng *, X_t s
if (!silent) {
printf("\033[F\033[J");
}
- printf("WOLFF: step %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", N, N, s->E, s->last_cluster_size);
+ printf("WOLFF: step %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", N, N, s.E, s.last_cluster_size);
}
diff --git a/lib/z2.h b/lib/z2.h
index fd4722e..a18d740 100644
--- a/lib/z2.h
+++ b/lib/z2.h
@@ -25,7 +25,7 @@ class z2_t {
z2_t(bool x) : x(x) {}
- ising_t act(const ising_t& s) {
+ ising_t act(const ising_t& s) const {
if (x) {
return ising_t(!s.x);
} else {
@@ -33,7 +33,7 @@ class z2_t {
}
}
- z2_t act(const z2_t& r) {
+ z2_t act(const z2_t& r) const {
if (x) {
return z2_t(!r.x);
} else {
@@ -41,11 +41,11 @@ class z2_t {
}
}
- ising_t act_inverse(const ising_t& s) {
+ ising_t act_inverse(const ising_t& s) const {
return this->act(s);
}
- z2_t act_inverse(const z2_t& r) {
+ z2_t act_inverse(const z2_t& r) const {
return this->act(r);
}
};
diff --git a/src/wolff_O2.cpp b/src/wolff_O2.cpp
deleted file mode 100644
index 63ca0a7..0000000
--- a/src/wolff_O2.cpp
+++ /dev/null
@@ -1,278 +0,0 @@
-
-#include <getopt.h>
-#include <stdio.h>
-
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-#include <circle_group.h>
-#include <angle.h>
-
-#include <wolff.h>
-#include <measure.h>
-#include <colors.h>
-#include <rand.h>
-
-typedef circle_group_t orthogonal_R_t;
-typedef angle_t vector_R_t;
-typedef state_t <orthogonal_R_t, vector_R_t> On_t;
-
-double H_modulated(vector_R_t v, int order, double mag) {
- return mag * cos(order * v.x);
-}
-
-double theta(double *v) {
- double x = v[0];
- double y = v[1];
-
- if (x == 0) {
- if (y >= 0) {
- return M_PI / 2;
- } else {
- return - M_PI / 2;
- }
- } else {
- double val = atan(y / x);
-
- if (x < 0.0 && y > 0.0) {
- return M_PI + val;
- } else if ( x < 0.0 && y < 0.0 ) {
- return - M_PI + val;
- } else {
- return val;
- }
- }
-}
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e7;
-
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double *H_vec = (double *)calloc(MAX_Q, sizeof(double));
-
- bool silent = false;
- bool use_pert = false;
- bool N_is_sweeps = false;
- bool draw = false;
- unsigned int window_size = 512;
-
- bool modulated_field = false;
- unsigned int order = 1;
-
- int opt;
- q_t H_ind = 0;
- double epsilon = 1;
-
-// unsigned char measurement_flags = measurement_energy | measurement_clusterSize;
-
- unsigned char measurement_flags = 0;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:spe:mo:M:Sdw:")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field. nth call couples to state n
- H_vec[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'p':
- use_pert = true;
- break;
- case 'e':
- epsilon = atof(optarg);
- break;
- case 'm':
- modulated_field = true;
- break;
- case 'M':
- measurement_flags ^= 1 << atoi(optarg);
- break;
- case 'o':
- order = atoi(optarg);
- break;
- case 'S':
- N_is_sweeps = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- unsigned long timestamp;
-
- {
- struct timespec spec;
- clock_gettime(CLOCK_REALTIME, &spec);
- timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
- }
-
- const char *pert_type;
-
- std::function <orthogonal_R_t(gsl_rng *, vector_R_t)> gen_R;
-
- if (use_pert) {
- gen_R = [=] (gsl_rng *r, const angle_t& t) -> circle_group_t {
- circle_group_t rot;
- rot.is_reflection = true;
-
- unsigned int x = gsl_rng_uniform_int(r, order);
- double amount = epsilon * gsl_ran_ugaussian(r);
-
- rot.x = fmod(2 * M_PI * (1.0 + (double)x / (double)order + amount), 2 * M_PI);
-
- return rot;
- };
- pert_type = "PERTURB";
- } else {
- gen_R = [=] (gsl_rng *r, const angle_t& t) -> circle_group_t {
- circle_group_t rot;
- rot.is_reflection = true;
- rot.x = 2 * M_PI * gsl_rng_uniform(r);
-
- return rot;
- };
- pert_type = "UNIFORM";
- }
-
- FILE *outfile_info = fopen("wolff_metadata.txt", "a");
-
- fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[2], 2, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T);
- if (modulated_field) {
- fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]);
- } else {
- fprintf(outfile_info, "\"VECTOR\", \"H\" -> {");
- for (q_t i = 0; i < 2; i++) {
- fprintf(outfile_info, "%.15f", H_vec[i]);
- if (i < 2 - 1) {
- fprintf(outfile_info, ", ");
- }
- }
- fprintf(outfile_info, "}, ");
- }
-
- fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type);
-
- if (use_pert) {
- fprintf(outfile_info, ", \"EPS\" -> %g", epsilon);
- }
-
- fprintf(outfile_info, " |>\n");
-
- fclose(outfile_info);
-
- FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
-
- std::function <void(const On_t *)> other_f;
- uint64_t sum_of_clusterSize = 0;
-
- if (N_is_sweeps) {
- other_f = [&] (const On_t *s) {
- sum_of_clusterSize += s->last_cluster_size;
- };
- } else if (draw) {
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- other_f = [&] (const On_t *s) {
- glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(L, 2); i++) {
- vector_R_t v_tmp = s->R.act_inverse(s->spins[i]);
- double saturation = 0.7;
- double value = 0.9;
- double chroma = saturation * value;
- glColor3f(chroma * hue_to_R(v_tmp.x) + (value - chroma), chroma * hue_to_G(v_tmp.x) + (value - chroma), chroma * hue_to_B(v_tmp.x) + (value - chroma));
- glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
- }
- glFlush();
- };
-#endif
- } else {
- other_f = [] (const On_t *s) {};
- }
-
- std::function <void(const On_t *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
-
- std::function <double(const angle_t&, const angle_t&)> J = [] (const angle_t& t1, const angle_t& t2) -> double {
- return cos(t1.x - t2.x);
- };
-
- std::function <double(const angle_t &)> H;
-
- if (modulated_field) {
- H = [=] (const angle_t& t) -> double {
- return H_vec[0] * cos(order * t.x);
- };
- } else {
- double mag = 0;
- for (q_t i = 0; i < 2; i++) {
- mag += pow(H_vec[i], 2);
- }
- mag = sqrt(mag);
- double t0 = theta(H_vec);
- H = [=] (const angle_t& t) -> double {
- return mag * cos(t0 + t.x);
- };
- }
-
- // initialize random number generator
- gsl_rng *r = gsl_rng_alloc(gsl_rng_taus2);
- gsl_rng_set(r, rand_seed());
-
- state_t <orthogonal_R_t, vector_R_t> s(D, L, T, J, H);
-
- if (N_is_sweeps) {
- count_t N_rounds = 0;
- printf("\n");
- while (sum_of_clusterSize < N * s.nv) {
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
- wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
- N_rounds++;
- }
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
- } else {
- wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
- }
-
- measure_free_files(measurement_flags, outfiles);
- free(H_vec);
- gsl_rng_free(r);
-
- return 0;
-}
-
diff --git a/src/wolff_On.cpp b/src/wolff_On.cpp
index cbde498..3fa5840 100644
--- a/src/wolff_On.cpp
+++ b/src/wolff_On.cpp
@@ -167,12 +167,12 @@ int main(int argc, char *argv[]) {
FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
- std::function <void(const On_t *)> other_f;
+ std::function <void(const On_t&)> other_f;
uint64_t sum_of_clusterSize = 0;
if (N_is_sweeps) {
- other_f = [&] (const On_t *s) {
- sum_of_clusterSize += s->last_cluster_size;
+ other_f = [&] (const On_t& s) {
+ sum_of_clusterSize += s.last_cluster_size;
};
} else if (draw) {
#ifdef HAVE_GLUT
@@ -186,10 +186,10 @@ int main(int argc, char *argv[]) {
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
- other_f = [&] (const On_t *s) {
+ other_f = [&] (const On_t& s) {
glClear(GL_COLOR_BUFFER_BIT);
for (v_t i = 0; i < pow(L, 2); i++) {
- vector_R_t v_tmp = s->R.act_inverse(s->spins[i]);
+ vector_R_t v_tmp = s.R.act_inverse(s.spins[i]);
double thetai = fmod(2 * M_PI + theta(v_tmp), 2 * M_PI);
double saturation = 0.7;
double value = 0.9;
@@ -201,10 +201,10 @@ int main(int argc, char *argv[]) {
};
#endif
} else {
- other_f = [] (const On_t *s) {};
+ other_f = [] (const On_t& s) {};
}
- std::function <void(const On_t *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
+ std::function <void(const On_t&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
std::function <double(const vector_R_t&)> H;
@@ -225,12 +225,12 @@ int main(int argc, char *argv[]) {
printf("\n");
while (sum_of_clusterSize < N * s.nv) {
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
- wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
+ wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, measurements, r, silent);
N_rounds++;
}
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
} else {
- wolff <orthogonal_R_t, vector_R_t> (N, &s, gen_R, measurements, r, silent);
+ wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, measurements, r, silent);
}
measure_free_files(measurement_flags, outfiles);
diff --git a/src/wolff_cgm.cpp b/src/wolff_cgm.cpp
index ec3ae36..ce91bf2 100644
--- a/src/wolff_cgm.cpp
+++ b/src/wolff_cgm.cpp
@@ -100,13 +100,13 @@ int main(int argc, char *argv[]) {
};
// define function that updates any number of measurements
- std::function <void(const sim_t *)> measurement;
+ std::function <void(const sim_t&)> measurement;
double average_M = 0;
if (!draw) {
// a very simple example: measure the average magnetization
- measurement = [&] (const sim_t *s) {
- average_M += (double)s->M / (double)N / (double)s->nv;
+ measurement = [&] (const sim_t& s) {
+ average_M += (double)s.M / (double)N / (double)s.nv;
};
} else {
// a more complex example: measure the average magnetization, and draw the spin configuration to the screen
@@ -122,13 +122,13 @@ int main(int argc, char *argv[]) {
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
- measurement = [&] (const sim_t *s) {
- average_M += (double)s->M / (double)N / (double)s->nv;
+ measurement = [&] (const sim_t& s) {
+ average_M += (double)s.M / (double)N / (double)s.nv;
glClear(GL_COLOR_BUFFER_BIT);
double max_h = INT64_MIN;
double min_h = INT64_MAX;
for (v_t i = 0; i < pow(L, 2); i++) {
- double cur_h = (s->R.act_inverse(s->spins[i])).x;
+ double cur_h = (s.R.act_inverse(s.spins[i])).x;
if (cur_h < min_h) {
min_h = cur_h;
}
@@ -138,7 +138,7 @@ int main(int argc, char *argv[]) {
}
for (v_t i = 0; i < pow(L, 2); i++) {
- double cur_h = (s->R.act_inverse(s->spins[i])).x;
+ double cur_h = (s.R.act_inverse(s.spins[i])).x;
double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h));
glColor3f(mag, mag, mag);
glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
@@ -149,7 +149,7 @@ int main(int argc, char *argv[]) {
}
// run wolff for N cluster flips
- wolff(N, &s, gen_R, measurement, r, silent);
+ wolff(N, s, gen_R, measurement, r, silent);
// tell us what we found!
printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M);
diff --git a/src/wolff_clock.cpp b/src/wolff_clock.cpp
index 376eaec..3dec284 100644
--- a/src/wolff_clock.cpp
+++ b/src/wolff_clock.cpp
@@ -101,13 +101,13 @@ int main(int argc, char *argv[]) {
};
// define function that updates any number of measurements
- std::function <void(const sim_t *)> measurement;
+ std::function <void(const sim_t&)> measurement;
double average_M = 0;
if (!draw) {
// a very simple example: measure the average magnetization
- measurement = [&] (const sim_t *s) {
- average_M += (double)s->M[0] / (double)N / (double)s->nv;
+ measurement = [&] (const sim_t& s) {
+ average_M += (double)s.M[0] / (double)N / (double)s.nv;
};
} else {
// a more complex example: measure the average magnetization, and draw the spin configuration to the screen
@@ -123,11 +123,11 @@ int main(int argc, char *argv[]) {
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
- measurement = [&] (const sim_t *s) {
- average_M += (double)s->M[0] / (double)N / (double)s->nv;
+ measurement = [&] (const sim_t& s) {
+ average_M += (double)s.M[0] / (double)N / (double)s.nv;
glClear(GL_COLOR_BUFFER_BIT);
for (v_t i = 0; i < pow(L, 2); i++) {
- potts_t<POTTSQ> tmp_s = s->R.act_inverse(s->spins[i]);
+ potts_t<POTTSQ> tmp_s = s.R.act_inverse(s.spins[i]);
glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ));
glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
}
@@ -137,7 +137,7 @@ int main(int argc, char *argv[]) {
}
// run wolff for N cluster flips
- wolff(N, &s, gen_R, measurement, r, silent);
+ wolff(N, s, gen_R, measurement, r, silent);
// tell us what we found!
printf("%" PRIcount " %d-Potts runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, POTTSQ, D, L, T, H_vec[0], average_M);
diff --git a/src/wolff_dgm.cpp b/src/wolff_dgm.cpp
index d00cae5..8667fb5 100644
--- a/src/wolff_dgm.cpp
+++ b/src/wolff_dgm.cpp
@@ -105,13 +105,13 @@ int main(int argc, char *argv[]) {
};
// define function that updates any number of measurements
- std::function <void(const sim_t *)> measurement;
+ std::function <void(const sim_t&)> measurement;
double average_M = 0;
if (!draw) {
// a very simple example: measure the average magnetization
- measurement = [&] (const sim_t *s) {
- average_M += (double)s->M / (double)N / (double)s->nv;
+ measurement = [&] (const sim_t& s) {
+ average_M += (double)s.M / (double)N / (double)s.nv;
};
} else {
// a more complex example: measure the average magnetization, and draw the spin configuration to the screen
@@ -127,13 +127,13 @@ int main(int argc, char *argv[]) {
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
- measurement = [&] (const sim_t *s) {
- average_M += (double)s->M / (double)N / (double)s->nv;
+ measurement = [&] (const sim_t& s) {
+ average_M += (double)s.M / (double)N / (double)s.nv;
glClear(GL_COLOR_BUFFER_BIT);
int64_t max_h = INT64_MIN;
int64_t min_h = INT64_MAX;
for (v_t i = 0; i < pow(L, 2); i++) {
- int64_t cur_h = (s->R.act_inverse(s->spins[i])).x;
+ int64_t cur_h = (s.R.act_inverse(s.spins[i])).x;
if (cur_h < min_h) {
min_h = cur_h;
}
@@ -143,7 +143,7 @@ int main(int argc, char *argv[]) {
}
for (v_t i = 0; i < pow(L, 2); i++) {
- int64_t cur_h = (s->R.act_inverse(s->spins[i])).x;
+ int64_t cur_h = (s.R.act_inverse(s.spins[i])).x;
double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h));
glColor3f(mag, mag, mag);
glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
@@ -154,7 +154,7 @@ int main(int argc, char *argv[]) {
}
// run wolff for N cluster flips
- wolff(N, &s, gen_R, measurement, r, silent);
+ wolff(N, s, gen_R, measurement, r, silent);
// tell us what we found!
printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M);
diff --git a/src/wolff_ising.cpp b/src/wolff_ising.cpp
index 0c9485d..24bf74c 100644
--- a/src/wolff_ising.cpp
+++ b/src/wolff_ising.cpp
@@ -126,12 +126,12 @@ int main(int argc, char *argv[]) {
FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
- std::function <void(const state_t<z2_t, ising_t> *)> other_f;
+ std::function <void(const state_t<z2_t, ising_t>&)> other_f;
uint64_t sum_of_clusterSize = 0;
if (N_is_sweeps) {
- other_f = [&] (const state_t<z2_t, ising_t> *s) {
- sum_of_clusterSize += s->last_cluster_size;
+ other_f = [&] (const state_t<z2_t, ising_t>& s) {
+ sum_of_clusterSize += s.last_cluster_size;
};
} else if (draw) {
#ifdef HAVE_GLUT
@@ -145,24 +145,24 @@ int main(int argc, char *argv[]) {
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
- other_f = [] (const state_t <z2_t, ising_t> *s) {
+ other_f = [] (const state_t <z2_t, ising_t>& s) {
glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(s->L, 2); i++) {
- if (s->spins[i].x == s->R.x) {
+ for (v_t i = 0; i < pow(s.L, 2); i++) {
+ if (s.spins[i].x == s.R.x) {
glColor3f(0.0, 0.0, 0.0);
} else {
glColor3f(1.0, 1.0, 1.0);
}
- glRecti(i / s->L, i % s->L, (i / s->L) + 1, (i % s->L) + 1);
+ glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1);
}
glFlush();
};
#endif
} else {
- other_f = [] (const state_t<z2_t, ising_t> *s) {};
+ other_f = [] (const state_t<z2_t, ising_t>& s) {};
}
- std::function <void(const state_t<z2_t, ising_t> *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
+ std::function <void(const state_t<z2_t, ising_t>&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
// add line to metadata file with run info
{
@@ -179,12 +179,12 @@ int main(int argc, char *argv[]) {
printf("\n");
while (sum_of_clusterSize < N * s.nv) {
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
- wolff(N, &s, gen_R, measurements, r, silent);
+ wolff(N, s, gen_R, measurements, r, silent);
N_rounds++;
}
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
} else {
- wolff(N, &s, gen_R, measurements, r, silent);
+ wolff(N, s, gen_R, measurements, r, silent);
}
// free the random number generator
diff --git a/src/wolff_potts.cpp b/src/wolff_potts.cpp
index 2bc306b..9fe3ffe 100644
--- a/src/wolff_potts.cpp
+++ b/src/wolff_potts.cpp
@@ -135,12 +135,12 @@ int main(int argc, char *argv[]) {
FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
- std::function <void(const sim_t *)> other_f;
+ std::function <void(const sim_t&)> other_f;
uint64_t sum_of_clusterSize = 0;
if (N_is_sweeps) {
- other_f = [&] (const sim_t *s) {
- sum_of_clusterSize += s->last_cluster_size;
+ other_f = [&] (const sim_t& s) {
+ sum_of_clusterSize += s.last_cluster_size;
};
} else if (draw) {
#ifdef HAVE_GLUT
@@ -154,21 +154,21 @@ int main(int argc, char *argv[]) {
glLoadIdentity();
gluOrtho2D(0.0, L, 0.0, L);
- other_f = [] (const sim_t *s) {
+ other_f = [] (const sim_t& s) {
glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(s->L, 2); i++) {
- potts_t<POTTSQ> tmp_s = s->R.act_inverse(s->spins[i]);
+ for (v_t i = 0; i < pow(s.L, 2); i++) {
+ potts_t<POTTSQ> tmp_s = s.R.act_inverse(s.spins[i]);
glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ));
- glRecti(i / s->L, i % s->L, (i / s->L) + 1, (i % s->L) + 1);
+ glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1);
}
glFlush();
};
#endif
} else {
- other_f = [] (const sim_t *s) {};
+ other_f = [] (const sim_t& s) {};
}
- std::function <void(const sim_t *)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
+ std::function <void(const sim_t&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
// add line to metadata file with run info
{
@@ -194,12 +194,12 @@ int main(int argc, char *argv[]) {
printf("\n");
while (sum_of_clusterSize < N * s.nv) {
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
- wolff(N, &s, gen_R, measurements, r, silent);
+ wolff(N, s, gen_R, measurements, r, silent);
N_rounds++;
}
printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
} else {
- wolff(N, &s, gen_R, measurements, r, silent);
+ wolff(N, s, gen_R, measurements, r, silent);
}
// free the random number generator