summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2018-10-17 19:33:25 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2018-10-17 19:33:25 -0400
commitf2f7a072216dfafab89851e4ff3e0b2c3eb16663 (patch)
treef9c7e1e4e91ce8b0ec9cef9f2423029fe7b7f049 /examples
parent1343a3fe6bd17a2487f12a0d61be8dc83cd722a0 (diff)
downloadc++-f2f7a072216dfafab89851e4ff3e0b2c3eb16663.tar.gz
c++-f2f7a072216dfafab89851e4ff3e0b2c3eb16663.tar.bz2
c++-f2f7a072216dfafab89851e4ff3e0b2c3eb16663.zip
removed a lot of research code to simplify library and examples for publication
Diffstat (limited to 'examples')
-rw-r--r--examples/CMakeLists.txt13
-rw-r--r--examples/On.cpp82
-rw-r--r--examples/animate_ising.cpp133
-rw-r--r--examples/include/colors.h34
-rw-r--r--examples/include/correlation.hpp23
-rw-r--r--examples/include/measure.hpp159
m---------examples/include/randutils0
-rw-r--r--examples/ising.cpp82
-rw-r--r--examples/simple_ising.cpp192
-rw-r--r--examples/simple_measurement.hpp66
-rw-r--r--examples/src/CMakeLists.txt4
-rw-r--r--examples/src/models/CMakeLists.txt6
-rw-r--r--examples/src/models/On/CMakeLists.txt29
-rw-r--r--examples/src/models/On/orthogonal.hpp202
-rw-r--r--examples/src/models/On/vector.hpp118
-rw-r--r--examples/src/models/On/wolff_On.cpp269
-rw-r--r--examples/src/models/ising/CMakeLists.txt32
-rw-r--r--examples/src/models/ising/ising.hpp84
-rw-r--r--examples/src/models/ising/wolff_ising.cpp197
-rw-r--r--examples/src/models/ising/wolff_random-field_ising.cpp207
-rw-r--r--examples/src/models/ising/z2.hpp53
-rw-r--r--examples/src/models/potts/CMakeLists.txt39
-rw-r--r--examples/src/models/potts/dihedral.hpp48
-rw-r--r--examples/src/models/potts/potts.hpp72
-rw-r--r--examples/src/models/potts/symmetric.hpp52
-rw-r--r--examples/src/models/potts/wolff_clock.cpp149
-rw-r--r--examples/src/models/potts/wolff_potts.cpp210
-rw-r--r--examples/src/models/roughening/CMakeLists.txt21
-rw-r--r--examples/src/models/roughening/dihedral_inf.hpp47
-rw-r--r--examples/src/models/roughening/height.hpp75
-rw-r--r--examples/src/models/roughening/wolff_cgm.cpp167
-rw-r--r--examples/src/models/roughening/wolff_dgm.cpp164
-rw-r--r--examples/src/tools/CMakeLists.txt9
-rw-r--r--examples/src/tools/analyze_correlations.cpp486
34 files changed, 370 insertions, 3154 deletions
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index a435b29..73922c6 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -1,10 +1,11 @@
-add_library(wolff_examples INTERFACE)
+add_executable(ising ising.cpp)
+add_executable(animate_ising animate_ising.cpp)
+add_executable(xy On.cpp)
-target_include_directories(wolff_examples INTERFACE include)
+add_compile_definitions(xy WOLFF_N=2)
-add_executable(simple_ising simple_ising.cpp)
-target_link_libraries(simple_ising wolff)
-
-add_subdirectory(src)
+target_link_libraries(ising wolff)
+target_link_libraries(animate_ising wolff GL GLU glut)
+target_link_libraries(xy wolff)
diff --git a/examples/On.cpp b/examples/On.cpp
new file mode 100644
index 0000000..e045f52
--- /dev/null
+++ b/examples/On.cpp
@@ -0,0 +1,82 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/vector.hpp>
+#include <wolff/models/orthogonal.hpp>
+#include <wolff.hpp>
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 0.8;
+ vector_t<WOLFF_N, double> H;
+ H.fill(0.0);
+ q_t Hi = 0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H[Hi] = atof(optarg);
+ Hi++;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const vector_t<WOLFF_N, double>&, const vector_t<WOLFF_N, double>&)> Z = [] (const vector_t<WOLFF_N, double>& s1, const vector_t<WOLFF_N, double>& s2) -> double {
+ return s1 * s2;
+ };
+
+ // define the spin-field coupling
+ std::function <double(const vector_t<WOLFF_N, double>&)> B = [&] (const vector_t<WOLFF_N, double>& s) -> double {
+ return H * s;
+ };
+
+ // initialize the system
+ wolff_system<orthogonal_t<WOLFF_N, double>, vector_t<WOLFF_N, double>> S(D, L, T, Z, B);
+
+ std::function <orthogonal_t<WOLFF_N, double>(std::mt19937&, const vector_t<WOLFF_N, double>&)> gen_R = generate_rotation_uniform<WOLFF_N>;
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // run wolff N times
+ wolff<orthogonal_t<WOLFF_N, double>, vector_t<WOLFF_N, double>>(N, S, gen_R, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+
diff --git a/examples/animate_ising.cpp b/examples/animate_ising.cpp
new file mode 100644
index 0000000..e33736e
--- /dev/null
+++ b/examples/animate_ising.cpp
@@ -0,0 +1,133 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include <GL/glut.h>
+
+#include <wolff/models/ising.hpp>
+#include <wolff/finite_states.hpp>
+#include <wolff.hpp>
+
+class draw_ising : public wolff_measurement<ising_t, ising_t> {
+ private:
+ unsigned int frame_skip;
+ v_t C;
+ public:
+ draw_ising(const wolff_system<ising_t, ising_t>& S, unsigned int window_size, unsigned int frame_skip, int argc, char *argv[]) : frame_skip(frame_skip){
+ glutInit(&argc, argv);
+ glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
+ glutInitWindowSize(window_size, window_size);
+ glutCreateWindow("wolff");
+ glClearColor(0.0,0.0,0.0,0.0);
+ glMatrixMode(GL_PROJECTION);
+ glLoadIdentity();
+ gluOrtho2D(0.0, S.L, 0.0, S.L);
+ }
+
+ void pre_cluster(N_t, N_t, const wolff_system<ising_t, ising_t>& S, v_t, const ising_t&) {
+ glClear(GL_COLOR_BUFFER_BIT);
+ for (v_t i = 0; i < pow(S.L, 2); i++) {
+ if (S.s[i].x == S.s0.x) {
+ glColor3f(0.0, 0.0, 0.0);
+ } else {
+ glColor3f(1.0, 1.0, 1.0);
+ }
+ glRecti(i / S.L, i % S.L, (i / S.L) + 1, (i % S.L) + 1);
+ }
+ glFlush();
+ C = 0;
+ }
+
+ void plain_bond_visited(const wolff_system<ising_t, ising_t>&, v_t, const ising_t&, v_t, double dE) {}
+
+ void ghost_bond_visited(const wolff_system<ising_t, ising_t>&, v_t, const ising_t& s_old, const ising_t& s_new, double dE) {}
+
+ void plain_site_transformed(const wolff_system<ising_t, ising_t>& S, v_t i, const ising_t&) {
+ glColor3f(1.0, 0.0, 0.0);
+ glRecti(i / S.L, i % S.L, (i / S.L) + 1, (i % S.L) + 1);
+ C++;
+ if (C % frame_skip == 0) {
+ glFlush();
+ }
+ }
+
+ void ghost_site_transformed(const wolff_system<ising_t, ising_t>&, const ising_t&) {}
+
+ void post_cluster(N_t, N_t, const wolff_system<ising_t, ising_t>&) {}
+};
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double H = 0.0;
+ unsigned int window_size = 512;
+ unsigned int frame_skip = 1;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:w:f:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H = atof(optarg);
+ break;
+ case 'w':
+ window_size = atoi(optarg);
+ break;
+ case 'f':
+ frame_skip = atoi(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
+ return (double)(s1 * s2);
+ };
+
+ // define the spin-field coupling
+ std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double {
+ return H * s;
+ };
+
+ // initialize the system
+ wolff_system<ising_t, ising_t> S(D, L, T, Z, B);
+
+ // define function that generates self-inverse rotations
+ std::function <ising_t(std::mt19937&, const ising_t&)> gen_R = [] (std::mt19937&, const ising_t& s) -> ising_t {
+ return ising_t(true);
+ };
+
+ // initailze the measurement object
+ draw_ising A(S, window_size, frame_skip, argc, argv);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // run wolff N times
+ wolff<ising_t, ising_t>(N, S, gen_R, A, rng);
+
+ // exit
+ return 0;
+}
+
diff --git a/examples/include/colors.h b/examples/include/colors.h
deleted file mode 100644
index abf137c..0000000
--- a/examples/include/colors.h
+++ /dev/null
@@ -1,34 +0,0 @@
-#pragma once
-
-#include <wolff/types.h>
-
-double hue_to_R(double theta) {
- if (((M_PI / 3 <= theta) && (theta < 2 * M_PI / 3)) || ((4 * M_PI / 3 <= theta) && (theta < 5 * M_PI / 3))) {
- return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0);
- } else if (((0 <= theta) && (theta < M_PI / 3)) || ((5 * M_PI / 3 <= theta) && (theta <= 2 * M_PI))) {
- return 1.0;
- } else {
- return 0.0;
- }
-}
-
-double hue_to_G(double theta) {
- if (((0 <= theta) && (theta < M_PI / 3)) || ((M_PI <= theta) && (theta < 4 * M_PI / 3))) {
- return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0);
- } else if (((M_PI / 3 <= theta) && (theta < 2 * M_PI / 3)) || ((2 * M_PI / 3 <= theta) && (theta < M_PI))) {
- return 1.0;
- } else {
- return 0.0;
- }
-}
-
-double hue_to_B(double theta) {
- if (((2 * M_PI / 3 <= theta) && (theta < M_PI)) || ((5 * M_PI / 3 <= theta) && (theta <= 2 * M_PI))) {
- return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0);
- } else if (((M_PI <= theta) && (theta < 4 * M_PI / 3)) || ((4 * M_PI / 3 <= theta) && (theta < 5 * M_PI / 3))) {
- return 1.0;
- } else {
- return 0.0;
- }
-}
-
diff --git a/examples/include/correlation.hpp b/examples/include/correlation.hpp
deleted file mode 100644
index da8ab7f..0000000
--- a/examples/include/correlation.hpp
+++ /dev/null
@@ -1,23 +0,0 @@
-
-#pragma once
-
-#include <wolff/types.h>
-#include <wolff/state.hpp>
-
-#include <fftw3.h>
-
-template <class X_t>
-double correlation_length(const std::vector<typename X_t::F_t>& ReF, const std::vector<typename X_t::F_t>& ImF, D_t D) {
- double total = 0;
-
-#ifdef DIMENSION
- for (D_t j = 0; j < DIMENSION; j++) {
-#else
- for (D_t j = 0; j < D; j++) {
-#endif
- total += norm_squared(ReF[j]) + norm_squared(ImF[j]);
- }
-
- return total / D;
-}
-
diff --git a/examples/include/measure.hpp b/examples/include/measure.hpp
deleted file mode 100644
index bf8baab..0000000
--- a/examples/include/measure.hpp
+++ /dev/null
@@ -1,159 +0,0 @@
-
-#pragma once
-
-#include <wolff/state.hpp>
-#include <wolff/meas.h>
-#include "correlation.hpp"
-#include <functional>
-
-#define POSSIBLE_MEASUREMENTS 4
-const unsigned char measurement_energy = 1 << 0;
-const unsigned char measurement_clusterSize = 1 << 1;
-const unsigned char measurement_magnetization = 1 << 2;
-const unsigned char measurement_fourierZero = 1 << 3;
-
-char const *measurement_labels[] = {"E", "S", "M", "F"};
-
-template <class R_t, class X_t>
-class wolff_research_measurements : public wolff_measurement<R_t, X_t> {
- private:
- std::vector<std::vector<double>> precomputed_sin;
- std::vector<std::vector<double>> precomputed_cos;
- FILE **files;
- D_t D;
- unsigned char flags;
- std::function <void(const state_t <R_t, X_t>&, const wolff_research_measurements<R_t, X_t>&)> other_f;
- bool silent;
- public:
- v_t last_cluster_size;
- double E;
- typename X_t::M_t M;
- std::vector<typename X_t::F_t> ReF;
- std::vector<typename X_t::F_t> ImF;
-
- wolff_research_measurements(unsigned char flags, unsigned long timestamp, std::function <void(const state_t <R_t, X_t>&, const wolff_research_measurements<R_t, X_t>&)> other_f, state_t<R_t, X_t>& s, bool silent) : flags(flags), D(s.D), other_f(other_f), silent(silent) {
- FILE **files = (FILE **)calloc(POSSIBLE_MEASUREMENTS, sizeof(FILE *));
-
- for (uint8_t i = 0; i < POSSIBLE_MEASUREMENTS; i++) {
- if (flags & (1 << i)) {
- char *filename = (char *)malloc(255 * sizeof(char));
- sprintf(filename, "wolff_%lu_%s.dat", timestamp, measurement_labels[i]);
- files[i] = fopen(filename, "wb");
- free(filename);
- }
- }
-
-#ifdef BOND_DEPENDENCE
- E = 0;
- for (v_t v = 0; v < s.nv; v++) {
- for (const v_t &vn : s.g.v_adj[v]) {
- if (v < vn) {
- E -= s.J(v, s.spins[v], vn, s.spins[vn]);
- }
- }
- }
-#else
- E = - (double)s.ne * s.J(s.spins[0], s.spins[0]);
-#endif
-
-#ifndef NOFIELD
-#ifdef SITE_DEPENDENCE
- for (v_t i = 0; i < s.nv; i++) {
- E -= s.H(i, s.spins[i]);
- }
-#else
- E -= (double)s.nv * s.H(s.spins[0]);
-#endif
-#endif
-
- M = s.spins[0] * s.nv;
-
- ReF.resize(s.D);
- ImF.resize(s.D);
- for (D_t i = 0; i < s.D; i++) {
- ReF[i] = s.spins[0] * 0.0;
- ImF[i] = s.spins[0] * 0.0;
- }
- precomputed_cos.resize(s.nv);
- precomputed_sin.resize(s.nv);
- for (v_t i = 0; i < s.nv; i++) {
- precomputed_cos[i].resize(s.D);
- precomputed_sin[i].resize(s.D);
- for (D_t j = 0; j < s.D; j++) {
- precomputed_cos[i][j] = cos(2 * M_PI * s.g.coordinate[i][j] / (double)s.L);
- precomputed_sin[i][j] = sin(2 * M_PI * s.g.coordinate[i][j] / (double)s.L);
- }
- }
-
- if (!silent) printf("\n");
-
- }
-
- void pre_cluster(const state_t<R_t, X_t>& s, count_t step, count_t N, v_t v0, const R_t& R) {
- last_cluster_size = 0;
- if (!silent) printf("\033[F\033[JWOLFF: step %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", step, N, E, last_cluster_size);
-
- }
-
- void plain_bond_added(v_t vi, const X_t& si_old, const X_t& si_new, v_t vn, const X_t& sn, double dE) {
- E += dE;
- }
-
- void ghost_bond_added(v_t v, const X_t& rs_old, const X_t& rs_new, double dE) {
- E += dE;
- M += rs_new - rs_old;
-
-#ifdef DIMENSION
- for (D_t i = 0; i < DIMENSION; i++)
-#else
- for (D_t i = 0; i < D; i++)
-#endif
- {
- ReF[i] += (rs_new - rs_old) * precomputed_cos[v][i];
- ImF[i] += (rs_new - rs_old) * precomputed_sin[v][i];
- }
- }
-
- void plain_site_transformed(v_t v, const X_t& s_old, const X_t& s_new) {
- last_cluster_size++;
- }
-
- void ghost_site_transformed(const R_t& r_old, const R_t& r_new) {
- }
-
- void post_cluster(const state_t<R_t, X_t>& s, count_t step, count_t N) {
- if (flags & measurement_energy) {
- float smaller_E = (float)E;
- fwrite(&smaller_E, sizeof(float), 1, files[0]);
- }
- if (flags & measurement_clusterSize) {
- fwrite(&(last_cluster_size), sizeof(uint32_t), 1, files[1]);
- }
- if (flags & measurement_magnetization) {
- write_magnetization(M, files[2]);
- }
- if (flags & measurement_fourierZero) {
- float smaller_X = (float)correlation_length<X_t>(ReF, ImF, D);
- fwrite(&smaller_X, sizeof(float), 1, files[3]);
- }
-
- other_f(s, *this);
-
- }
-
- ~wolff_research_measurements() {
- for (uint8_t i = 0; i < POSSIBLE_MEASUREMENTS; i++) {
- if (flags & (1 << i)) {
- fclose(files[i]);
- }
- }
-
- if (!silent) {
- printf("\033[F\033[J");
- }
- printf("WOLFF COMPLETE: E = %.2f, S = %" PRIv "\n", E, last_cluster_size);
-
- free(files);
- }
-};
-
diff --git a/examples/include/randutils b/examples/include/randutils
deleted file mode 160000
-Subproject 8486a610a954a8248c12485fb4cfc390a5f5f85
diff --git a/examples/ising.cpp b/examples/ising.cpp
new file mode 100644
index 0000000..ffcb7e4
--- /dev/null
+++ b/examples/ising.cpp
@@ -0,0 +1,82 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/ising.hpp>
+#include <wolff/finite_states.hpp>
+#include <wolff.hpp>
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double H = 0.0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H = atof(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
+ return (double)(s1 * s2);
+ };
+
+ // define the spin-field coupling
+ std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double {
+ return H * s;
+ };
+
+ // initialize the system
+ wolff_system<ising_t, ising_t> S(D, L, T, Z, B);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // define function that generates self-inverse rotations
+ std::function <ising_t(std::mt19937&, const ising_t&)> gen_R = [] (std::mt19937&, const ising_t& s) -> ising_t {
+ return ising_t(true);
+ };
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // run wolff N times
+ wolff<ising_t, ising_t>(N, S, gen_R, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+
diff --git a/examples/simple_ising.cpp b/examples/simple_ising.cpp
deleted file mode 100644
index 24e4ae5..0000000
--- a/examples/simple_ising.cpp
+++ /dev/null
@@ -1,192 +0,0 @@
-
-#include <getopt.h>
-#include <iostream>
-
-#include "include/randutils/randutils.hpp"
-
-#include <wolff.hpp>
-
-// define your R_t and X_t. here both are the same, ising_t
-class ising_t {
- public:
- bool x;
-
- // both X_t and R_t need a default constructor (and destructor, if relevant)
- ising_t() : x(false) {}
- ising_t(bool x) : x(x) {}
-
- // R_t needs the member functions
- // X_t act(const X_t& s) const {}
- // R_t act(const R_t& s) const {}
- // to define action on both spins and other transformations
- ising_t act(const ising_t& s) const {
- if (x) {
- return ising_t(!(s.x));
- } else {
- return ising_t(s.x);
- }
- }
-
- // R_t needs the member functions
- // X_t act_inverse(const X_t& s) const {}
- // R_t act_inverse(const R_t& s) const {}
- // to define action of its inverse on both spins and other transformations
- ising_t act_inverse(const ising_t& s) const {
- return this->act(s);
- }
-};
-
-// define how measurements should be taken by importing the interface wolff_measurement<R_t, X_t>
-class ising_measurements : public wolff_measurement<ising_t, ising_t> {
- private:
- count_t n;
-
- double E;
- int M;
- v_t S;
-
- double totalE;
- double totalM;
- double totalS;
-
- public:
- ising_measurements(D_t D, L_t L, double H) {
- n = 0;
- M = (int)pow(L, D);
- E = -D * pow(L, D) - H * pow(L, D);
-
- totalE = 0;
- totalM = 0;
- totalS = 0;
- }
-
- void pre_cluster(const state_t<ising_t, ising_t>& s, count_t step, count_t N, v_t v0, const ising_t& R) {
- S = 0;
- }
-
- void plain_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, v_t vn, const ising_t& sn, double dE) {
- E += dE;
- }
-
- void ghost_bond_added(v_t v, const ising_t& s_old, const ising_t& s_new, double dE) {
- E += dE;
-
- if (s_old.x) {
- M++;
- } else {
- M--;
- }
-
- if (s_new.x) {
- M--;
- } else {
- M++;
- }
- }
-
- void plain_site_transformed(v_t v, const ising_t& s_old, const ising_t& s_new) {
- S++;
- }
-
- void ghost_site_transformed(const ising_t& R_old, const ising_t& R_new) {
- }
-
- void post_cluster(const state_t<ising_t, ising_t>& s, count_t step, count_t N) {
- totalE += E;
- totalM += M;
- totalS += S;
- n++;
- }
-
- double avgE() {
- return totalE / n;
- }
-
- double avgM() {
- return totalM / n;
- }
-
- double avgS() {
- return totalS / n;
- }
-};
-
-int main(int argc, char *argv[]) {
-
- // set defaults
- count_t N = (count_t)1e4;
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double H = 0.0;
-
- int opt;
-
- // take command line arguments
- while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field
- H = atof(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- // define the spin-spin coupling
- std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
- if (s1.x == s2.x) {
- return 1.0;
- } else {
- return -1.0;
- }
- };
-
- // define the spin-field coupling
- std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double {
- if (s.x) {
- return -H;
- } else {
- return H;
- }
- };
-
- // initialize the system
- state_t<ising_t, ising_t> s(D, L, T, Z, B);
-
- // initialize the random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- // define function that generates self-inverse rotations
- std::function <ising_t(std::mt19937&, const ising_t&)> gen_R = [] (std::mt19937&, const ising_t& s) -> ising_t {
- return ising_t(true);
- };
-
- // initailze the measurement object
- ising_measurements m(D, L, H);
-
- // run wolff N times
- wolff<ising_t, ising_t>(N, s, gen_R, m, rng);
-
- // print the result of our measurements
- std::cout << "Wolff complete!\nThe average energy per site was " << m.avgE() / s.nv
- << ".\nThe average magnetization per site was " << m.avgM() / s.nv
- << ".\nThe average cluster size per site was " << m.avgS() / s.nv << ".\n";
-
- // exit
- return 0;
-}
-
diff --git a/examples/simple_measurement.hpp b/examples/simple_measurement.hpp
new file mode 100644
index 0000000..2287c58
--- /dev/null
+++ b/examples/simple_measurement.hpp
@@ -0,0 +1,66 @@
+
+#include <wolff/measurement.hpp>
+
+template <class R_t, class X_t>
+class simple_measurement : public wolff_measurement<R_t, X_t> {
+ private:
+ N_t n;
+
+ double E;
+ typename X_t::M_t M;
+ v_t C;
+
+ double totalE;
+ typename X_t::F_t totalM;
+ double totalC;
+
+ public:
+ simple_measurement(const wolff_system<R_t, X_t>& S) {
+ n = 0;
+ M = S.nv * S.s[0];
+ E = - (S.ne * S.Z(S.s[0], S.s[0]) + S.nv * S.B(S.s[0]));
+
+ totalE = 0;
+ totalM = 0.0 * (S.s[0]);
+ totalC = 0;
+ }
+
+ void pre_cluster(N_t, N_t, const wolff_system<R_t, X_t>&, v_t, const R_t&) {
+ C = 0;
+ }
+
+ void plain_bond_visited(const wolff_system<R_t, X_t>&, v_t, const X_t&, v_t, double dE) {
+ E += dE;
+ }
+
+ void ghost_bond_visited(const wolff_system<R_t, X_t>&, v_t, const X_t& s_old, const X_t& s_new, double dE) {
+ E += dE;
+ M += s_new - s_old;
+ }
+
+ void plain_site_transformed(const wolff_system<R_t, X_t>&, v_t, const X_t&) {
+ C++;
+ }
+
+ void ghost_site_transformed(const wolff_system<R_t, X_t>&, const R_t&) {}
+
+ void post_cluster(N_t, N_t, const wolff_system<R_t, X_t>&) {
+ totalE += E;
+ totalM += M;
+ totalC += C;
+ n++;
+ }
+
+ double avgE() {
+ return totalE / n;
+ }
+
+ typename X_t::F_t avgM() {
+ return totalM / n;
+ }
+
+ double avgC() {
+ return totalC / n;
+ }
+};
+
diff --git a/examples/src/CMakeLists.txt b/examples/src/CMakeLists.txt
deleted file mode 100644
index 3397426..0000000
--- a/examples/src/CMakeLists.txt
+++ /dev/null
@@ -1,4 +0,0 @@
-
-add_subdirectory(models)
-add_subdirectory(tools)
-
diff --git a/examples/src/models/CMakeLists.txt b/examples/src/models/CMakeLists.txt
deleted file mode 100644
index 0b0c111..0000000
--- a/examples/src/models/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-
-add_subdirectory(ising)
-add_subdirectory(On)
-add_subdirectory(potts)
-add_subdirectory(roughening)
-
diff --git a/examples/src/models/On/CMakeLists.txt b/examples/src/models/On/CMakeLists.txt
deleted file mode 100644
index 1b2e058..0000000
--- a/examples/src/models/On/CMakeLists.txt
+++ /dev/null
@@ -1,29 +0,0 @@
-
-add_executable(wolff_planar wolff_On.cpp)
-add_executable(wolff_planar_2d_no-field wolff_On.cpp)
-add_executable(wolff_heisenberg wolff_On.cpp)
-
-set_target_properties(wolff_planar PROPERTIES COMPILE_FLAGS "-DN_COMP=2")
-set_target_properties(wolff_planar_2d_no-field PROPERTIES COMPILE_FLAGS "-DN_COMP=2 -DDIMENSION=2 -DNOFIELD")
-set_target_properties(wolff_heisenberg PROPERTIES COMPILE_FLAGS "-DN_COMP=3")
-
-find_library(GL NAMES GL)
-find_library(GLU NAMES GLU)
-find_library(GLUT NAMES glut)
-
-if (${GLUT} MATCHES "GLUT-NOTFOUND")
- target_link_libraries(wolff_planar wolff wolff_examples)
- target_link_libraries(wolff_planar_2d_no-field wolff wolff_examples)
- target_link_libraries(wolff_heisenberg wolff wolff_examples)
-else()
- target_compile_definitions(wolff_planar PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_planar_2d_no-field PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_heisenberg PUBLIC HAVE_GLUT)
-
- target_link_libraries(wolff_planar wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_planar_2d_no-field wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_heisenberg wolff wolff_examples glut GL GLU)
-endif()
-
-install(TARGETS wolff_planar wolff_planar_2d_no-field wolff_heisenberg DESTINATION ${CMAKE_INSTALL_BINDIR} OPTIONAL)
-
diff --git a/examples/src/models/On/orthogonal.hpp b/examples/src/models/On/orthogonal.hpp
deleted file mode 100644
index f13357f..0000000
--- a/examples/src/models/On/orthogonal.hpp
+++ /dev/null
@@ -1,202 +0,0 @@
-
-#pragma once
-
-#include <stdlib.h>
-#include <random>
-#include <cmath>
-
-#include <wolff/state.hpp>
-#include <wolff/types.h>
-#include "vector.hpp"
-
-template <q_t q, class T>
-class orthogonal_t : public std::array<std::array<T, q>, q> {
- public :
- bool is_reflection;
-
- orthogonal_t() : is_reflection(false) {
- for (q_t i = 0; i < q; i++) {
- (*this)[i].fill(0);
- (*this)[i][i] = (T)1;
- }
- }
-
- vector_t<q, T> act(const vector_t <q, T>& v) const {
- vector_t <q, T> v_rot;
- v_rot.fill(0);
-
- if (is_reflection) {
- double prod = 0;
- for (q_t i = 0; i < q; i++) {
- prod += v[i] * (*this)[0][i];
- }
- for (q_t i = 0; i < q; i++) {
- v_rot[i] = v[i] - 2 * prod * (*this)[0][i];
- }
- } else {
- for (q_t i = 0; i < q; i++) {
- for (q_t j = 0; j < q; j++) {
- v_rot[i] += (*this)[i][j] * v[j];
- }
- }
- }
-
- return v_rot;
- }
-
- orthogonal_t<q, T> act(const orthogonal_t <q, T>& m) const {
- orthogonal_t <q, T> m_rot;
-
- m_rot.is_reflection = false;
-
- if (is_reflection) {
- for (q_t i = 0; i < q; i++) {
- double akOki = 0;
-
- for (q_t k = 0; k < q; k++) {
- akOki += (*this)[0][k] * m[k][i];
- }
-
- for (q_t j = 0; j < q; j++) {
- m_rot[j][i] = m[j][i] - 2 * akOki * (*this)[0][j];
- }
- }
- } else {
- for (q_t i = 0; i < q; i++) {
- m_rot[i].fill(0);
- for (q_t j = 0; j < q; j++) {
- for (q_t k = 0; k < q; k++) {
- m_rot[i][j] += (*this)[i][j] * m[j][k];
- }
- }
- }
- }
-
- return m_rot;
- }
-
- vector_t <q, T> act_inverse(const vector_t <q, T>& v) const {
- if (is_reflection) {
- return this->act(v); // reflections are their own inverse
- } else {
- vector_t <q, T> v_rot;
- v_rot.fill(0);
-
- for (q_t i = 0; i < q; i++) {
- for (q_t j = 0; j < q; j++) {
- v_rot[i] += (*this)[j][i] * v[j];
- }
- }
-
- return v_rot;
- }
- }
-
- vector_t <q, T> act_inverse(const orthogonal_t <q, T>& m) const {
- if (is_reflection) {
- return this->act(m); // reflections are their own inverse
- } else {
- orthogonal_t <q, T> m_rot;
- m_rot.is_reflection = false;
-
- for (q_t i = 0; i < q; i++) {
- m_rot[i].fill(0);
- for (q_t j = 0; j < q; j++) {
- for (q_t k = 0; k < q; k++) {
- m_rot[i][j] += (*this)[j][i] * m[j][k];
- }
- }
- }
-
- return m_rot;
- }
- }
-
-};
-
-
-template <q_t q>
-orthogonal_t <q, double> generate_rotation_uniform (std::mt19937& r, const vector_t <q, double>& v) {
- std::normal_distribution<double> dist(0.0,1.0);
- orthogonal_t <q, double> ptr;
- ptr.is_reflection = true;
-
- double v2 = 0;
-
- for (q_t i = 0; i < q; i++) {
- ptr[0][i] = dist(r);
- v2 += ptr[0][i] * ptr[0][i];
- }
-
- double mag_v = sqrt(v2);
-
- for (q_t i = 0; i < q; i++) {
- ptr[0][i] /= mag_v;
- }
-
- return ptr;
-}
-
-template <q_t q>
-orthogonal_t <q, double> generate_rotation_perturbation (std::mt19937& r, const vector_t <q, double>& v0, double epsilon, unsigned int n) {
- std::normal_distribution<double> dist(0.0,1.0);
- orthogonal_t <q, double> m;
- m.is_reflection = true;
-
- vector_t <q, double> v;
-
- if (n > 1) {
- std::uniform_int_distribution<unsigned int> udist(0, n);
- unsigned int rotation = udist(r);
-
- double cosr = cos(2 * M_PI * rotation / (double)n / 2.0);
- double sinr = sin(2 * M_PI * rotation / (double)n / 2.0);
-
- v[0] = v0[0] * cosr - v0[1] * sinr;
- v[1] = v0[1] * cosr + v0[0] * sinr;
-
- for (q_t i = 2; i < q; i++) {
- v[i] = v0[i];
- }
- } else {
- v = v0;
- }
-
- double m_dot_v = 0;
-
- for (q_t i = 0; i < q; i++) {
- m[0][i] = dist(r); // create a random vector
- m_dot_v += m[0][i] * v[i];
- }
-
- double v2 = 0;
-
- for (q_t i = 0; i < q; i++) {
- m[0][i] = m[0][i] - m_dot_v * v[i]; // find the component orthogonal to v
- v2 += pow(m[0][i], 2);
- }
-
- double mag_v = sqrt(v2);
-
- for (q_t i = 0; i < q; i++) {
- m[0][i] /= mag_v; // normalize
- }
-
- v2 = 0;
-
- double factor = epsilon * dist(r);
-
- for (q_t i = 0; i < q; i++) {
- m[0][i] += factor * v[i]; // perturb orthogonal vector in original direction
- v2 += pow(m[0][i], 2);
- }
-
- mag_v = sqrt(v2);
-
- for (q_t i = 0; i < q; i++) {
- m[0][i] /= mag_v; // normalize
- }
-
- return m;
-}
-
diff --git a/examples/src/models/On/vector.hpp b/examples/src/models/On/vector.hpp
deleted file mode 100644
index 1cdb60a..0000000
--- a/examples/src/models/On/vector.hpp
+++ /dev/null
@@ -1,118 +0,0 @@
-
-#pragma once
-
-#include <stdlib.h>
-#include <cmath>
-#include <array>
-
-#include <wolff/types.h>
-
-template <q_t q, class T>
-class vector_t : public std::array<T, q> {
- public:
-
- // M_t needs to hold the sum of nv spins
- typedef vector_t <q, T> M_t;
-
- // F_t needs to hold the double-weighted sum of spins
- typedef vector_t <q, double> F_t;
-
- vector_t() {
- this->fill((T)0);
- (*this)[1] = (T)1;
- }
-
- vector_t(const T *x) {
- for (q_t i = 0; i < q; i++) {
- (*this)[i] = x[i];
- }
- }
-
- template <class U>
- inline vector_t<q, T>& operator+=(const vector_t<q, U> &v) {
- for (q_t i = 0; i < q; i++) {
- (*this)[i] += (U)v[i];
- }
- return *this;
- }
-
- template <class U>
- inline vector_t<q, T>& operator-=(const vector_t<q, U> &v) {
- for (q_t i = 0; i < q; i++) {
- (*this)[i] -= (U)v[i];
- }
- return *this;
- }
-
- inline vector_t<q, T> operator*(v_t x) const {
- vector_t<q, T> result;
- for (q_t i = 0; i < q; i++) {
- result[i] = x * (*this)[i];
- }
-
- return result;
- }
-
- inline vector_t<q, double> operator*(double x) const {
- vector_t<q, double> result;
- for (q_t i = 0; i < q; i++) {
- result[i] = x * (*this)[i];
- }
-
- return result;
- }
-
- inline vector_t<q, T> operator-(const vector_t<q, T>& v) const {
- vector_t<q, T> diff = *this;
- diff -= v;
- return diff;
- }
-};
-
-
-template<q_t q, class T>
-double norm_squared(vector_t<q, T> v) {
- double tmp = 0;
- for (T &x : v) {
- tmp += pow(x, 2);
- }
-
- return tmp;
-}
-
-template <q_t q, class T>
-void write_magnetization(vector_t <q, T> M, FILE *outfile) {
- for (q_t i = 0; i < q; i++) {
- fwrite(&(M[i]), sizeof(T), q, outfile);
- }
-}
-
-// below functions and definitions are unnecessary for wolff.h but useful.
-
-template <q_t q> // save some space and don't write whole doubles
-void write_magnetization(vector_t <q, double> M, FILE *outfile) {
- for (q_t i = 0; i < q; i++) {
- float M_tmp = (float)M[i];
- fwrite(&M_tmp, sizeof(float), 1, outfile);
- }
-}
-
-template <q_t q, class T>
-T dot(const vector_t <q, T>& v1, const vector_t <q, T>& v2) {
- T prod = 0;
-
- for (q_t i = 0; i < q; i++) {
- prod += v1[i] * v2[i];
- }
-
- return prod;
-}
-
-template <q_t q, class T>
-double H_vector(const vector_t <q, T>& v1, T *H) {
- vector_t <q, T> H_vec(H);
- return (double)(dot <q, T> (v1, H_vec));
-}
-
-char const *ON_strings[] = {"TRIVIAL", "ISING", "PLANAR", "HEISENBERG"};
-
diff --git a/examples/src/models/On/wolff_On.cpp b/examples/src/models/On/wolff_On.cpp
deleted file mode 100644
index 67f28a5..0000000
--- a/examples/src/models/On/wolff_On.cpp
+++ /dev/null
@@ -1,269 +0,0 @@
-
-#include <getopt.h>
-#include <stdio.h>
-
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-#include "orthogonal.hpp"
-#include "vector.hpp"
-
-#include <wolff.hpp>
-#include <measure.hpp>
-#include <colors.h>
-#include <randutils/randutils.hpp>
-
-typedef orthogonal_t <N_COMP, double> orthogonal_R_t;
-typedef vector_t <N_COMP, double> vector_R_t;
-typedef state_t <orthogonal_R_t, vector_R_t> On_t;
-
-// angle from the x-axis of a two-vector
-double theta(vector_R_t v) {
- double x = v[0];
- double y = v[1];
-
- double val = atan(y / x);
-
- if (x < 0.0 && y > 0.0) {
- return M_PI + val;
- } else if ( x < 0.0 && y < 0.0 ) {
- return - M_PI + val;
- } else {
- return val;
- }
-}
-
-double H_modulated(vector_R_t v, int order, double mag) {
- return mag * cos(order * theta(v));
-}
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e7;
-
-#ifdef DIMENSION
- D_t D = DIMENSION;
-#else
- D_t D = 2;
-#endif
- L_t L = 128;
- double T = 2.26918531421;
- double *H_vec = (double *)calloc(MAX_Q, sizeof(double));
-
- bool silent = false;
- bool use_pert = false;
- bool N_is_sweeps = false;
- bool draw = false;
- unsigned int window_size = 512;
-
- bool modulated_field = false;
- unsigned int order = 1;
-
- int opt;
- q_t H_ind = 0;
- double epsilon = 1;
-
-// unsigned char measurement_flags = measurement_energy | measurement_clusterSize;
-
- unsigned char measurement_flags = 0;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:spe:mo:M:Sdw:")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
-#ifdef DIMENSION
- case 'D': // dimension
- printf("Dimension was specified at compile time, you can't change it now!\n");
- exit(EXIT_FAILURE);
-#else
- case 'D': // dimension
- D = atoi(optarg);
- break;
-#endif
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field. nth call couples to state n
- H_vec[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'p':
- use_pert = true;
- break;
- case 'e':
- epsilon = atof(optarg);
- break;
- case 'm':
- modulated_field = true;
- break;
- case 'M':
- measurement_flags ^= 1 << atoi(optarg);
- break;
- case 'o':
- order = atoi(optarg);
- break;
- case 'S':
- N_is_sweeps = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- unsigned long timestamp;
-
- {
- struct timespec spec;
- clock_gettime(CLOCK_REALTIME, &spec);
- timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
- }
-
- const char *pert_type;
-
- std::function <orthogonal_R_t(std::mt19937&, vector_R_t)> gen_R;
-
- if (use_pert) {
- double Hish;
- if (modulated_field) {
- Hish = fabs(H_vec[0]);
- } else {
- double H2 = 0;
- for (q_t i = 0; i < N_COMP; i++) {
- H2 += pow(H_vec[i], 2);
- }
- Hish = sqrt(H2);
- }
-
- epsilon = sqrt((N_COMP - 1) * T / (D + Hish / 2)) / 2;
-
- gen_R = std::bind(generate_rotation_perturbation <N_COMP>, std::placeholders::_1, std::placeholders::_2, epsilon, order);
- pert_type = "PERTURB5";
- } else {
- gen_R = generate_rotation_uniform <N_COMP>;
- pert_type = "UNIFORM";
- }
-
- FILE *outfile_info = fopen("wolff_metadata.txt", "a");
-
- fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[N_COMP], N_COMP, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T);
- if (modulated_field) {
- fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]);
- } else {
- fprintf(outfile_info, "\"VECTOR\", \"H\" -> {");
- for (q_t i = 0; i < N_COMP; i++) {
- fprintf(outfile_info, "%.15f", H_vec[i]);
- if (i < N_COMP - 1) {
- fprintf(outfile_info, ", ");
- }
- }
- fprintf(outfile_info, "}, ");
- }
-
- fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type);
-
- if (use_pert) {
- fprintf(outfile_info, ", \"EPS\" -> %g", epsilon);
- }
-
- fprintf(outfile_info, " |>\n");
-
- fclose(outfile_info);
-
- std::function <void(const On_t&, const wolff_research_measurements<orthogonal_R_t, vector_R_t>&)> other_f;
- uint64_t sum_of_clusterSize = 0;
-
- if (N_is_sweeps) {
- other_f = [&] (const On_t& s, const wolff_research_measurements<orthogonal_R_t, vector_R_t>& m) {
- sum_of_clusterSize += m.last_cluster_size;
- };
- } else if (draw) {
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- other_f = [&] (const On_t& s, const wolff_research_measurements<orthogonal_R_t, vector_R_t>& m) {
- glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(L, 2); i++) {
-#ifdef NOFIELD
- vector_R_t v_tmp = s.spins[i];
-#else
- vector_R_t v_tmp = s.R.act_inverse(s.spins[i]);
-#endif
- double thetai = fmod(2 * M_PI + theta(v_tmp), 2 * M_PI);
- double saturation = 0.7;
- double value = 0.9;
- double chroma = saturation * value;
- glColor3f(chroma * hue_to_R(thetai) + (value - chroma), chroma * hue_to_G(thetai) + (value - chroma), chroma * hue_to_B(thetai) + (value - chroma));
- glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
- }
- glFlush();
- };
-#endif
- } else {
- other_f = [] (const On_t& s, const wolff_research_measurements<orthogonal_R_t, vector_R_t>& m) {};
- }
-
- std::function <double(const vector_R_t&)> H;
-
- if (modulated_field) {
- H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]);
- } else {
- H = std::bind(H_vector <N_COMP, double>, std::placeholders::_1, H_vec);
- }
-
- // initialize random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
-#ifndef NOFIELD
- state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>, H);
-#else
- state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>);
-#endif
-
- wolff_research_measurements<orthogonal_R_t, vector_R_t> m(measurement_flags, timestamp, other_f, s, silent);
-
- if (N_is_sweeps) {
- count_t N_rounds = 0;
- printf("\n");
- while (sum_of_clusterSize < N * s.nv) {
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, m.E, m.last_cluster_size);
- wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, m, rng);
- N_rounds++;
- }
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, m.E, m.last_cluster_size);
- } else {
- wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, m, rng);
- }
-
- free(H_vec);
-
- return 0;
-}
-
diff --git a/examples/src/models/ising/CMakeLists.txt b/examples/src/models/ising/CMakeLists.txt
deleted file mode 100644
index 9f4acd4..0000000
--- a/examples/src/models/ising/CMakeLists.txt
+++ /dev/null
@@ -1,32 +0,0 @@
-
-add_executable(wolff_ising wolff_ising.cpp)
-add_executable(wolff_ising_2d wolff_ising.cpp)
-add_executable(wolff_ising_2d_no-field wolff_ising.cpp)
-add_executable(wolff_random-field_ising wolff_random-field_ising.cpp)
-
-set_target_properties(wolff_ising_2d PROPERTIES COMPILE_FLAGS "-DDIMENSION=2")
-set_target_properties(wolff_ising_2d_no-field PROPERTIES COMPILE_FLAGS "-DDIMENSION=2 -DNOFIELD")
-
-find_library(GL NAMES GL)
-find_library(GLU NAMES GLU)
-find_library(GLUT NAMES glut)
-
-if (${GLUT} MATCHES "GLUT-NOTFOUND")
- target_link_libraries(wolff_ising wolff wolff_examples)
- target_link_libraries(wolff_ising_2d wolff wolff_examples)
- target_link_libraries(wolff_ising_2d_no-field wolff wolff_examples)
- target_link_libraries(wolff_random-field_ising wolff wolff_examples)
-else()
- target_compile_definitions(wolff_ising PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_ising_2d PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_ising_2d_no-field PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_random-field_ising PUBLIC HAVE_GLUT)
-
- target_link_libraries(wolff_ising wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_ising_2d wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_ising_2d_no-field wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_random-field_ising wolff wolff_examples glut GL GLU)
-endif()
-
-install(TARGETS wolff_ising wolff_ising_2d wolff_ising_2d_no-field wolff_random-field_ising DESTINATION ${CMAKE_INSTALL_BINDIR} OPTIONAL)
-
diff --git a/examples/src/models/ising/ising.hpp b/examples/src/models/ising/ising.hpp
deleted file mode 100644
index 73b06ed..0000000
--- a/examples/src/models/ising/ising.hpp
+++ /dev/null
@@ -1,84 +0,0 @@
-#pragma once
-
-#include <cmath>
-#include <stdio.h>
-
-#include <wolff/types.h>
-
-// all that is required to use wolff.hpp is a default constructor
-class ising_t {
- public:
- bool x;
-
- ising_t() : x(false) {}
-
- // optional constructors for syntactic sugar
- ising_t(bool x) : x(x) {}
- ising_t(int x) : x((bool)x) {}
-
- /* below this comment is code required only for using measure.hpp in the
- * examples folder, which provides an interface for measuring several
- * generic features of models. these require
- *
- * - an M_t, representing the magnetization or sum of all spins
- * - an F_t, representing a double-weighted version of the magnetization
- * - the overloaded operator *, which takes a v_t (unsigned int) and returns an M_t
- * - the overloaded operator *, which takes a double and returns an F_t
- * - the overloaded operator -, which takes another X_t and returns an M_t
- */
-
- typedef int M_t;
- typedef double F_t;
-
- inline int operator*(v_t a) const {
- if (x) {
- return -(int)a;
- } else {
- return (int)a;
- }
- }
-
- inline double operator*(double a) const {
- if (x) {
- return -a;
- } else {
- return a;
- }
- }
-
- inline int operator-(const ising_t &s) const {
- if (x == s.x) {
- return 0;
- } else {
- if (x) {
- return -2;
- } else {
- return 2;
- }
- }
- }
-};
-
-/* using measure.hpp additionally requires a norm_squared function which takes
- * an F_t to a double, and a write_magnetization function, which takes an M_t
- * and a FILE pointer and appropriately records the contents of the former to
- * the latter.
- */
-
-double norm_squared(double s) {
- return pow(s, 2);
-}
-
-void write_magnetization(int M, FILE *outfile) {
- fwrite(&M, sizeof(int), 1, outfile);
-}
-
-/* these definitions allow wolff/finite_states.hpp to be invoked and provide
- * much faster performance for models whose number of possible spin
- * configurations is finite.
- */
-
-#define N_STATES 2
-const ising_t states[2] = {ising_t(0), ising_t(1)};
-q_t state_to_ind(ising_t state) { return (q_t)state.x; }
-
diff --git a/examples/src/models/ising/wolff_ising.cpp b/examples/src/models/ising/wolff_ising.cpp
deleted file mode 100644
index de04f32..0000000
--- a/examples/src/models/ising/wolff_ising.cpp
+++ /dev/null
@@ -1,197 +0,0 @@
-
-#include <getopt.h>
-#include <stdio.h>
-
-// if you have GLUT installed, you can see graphics!
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-// include your group and spin space
-#include "z2.hpp"
-#include "ising.hpp"
-
-// finite_states.h can be included for spin types that have special variables
-// defined, and it causes wolff execution to use precomputed bond probabilities
-#include <wolff/finite_states.hpp>
-
-#include <randutils/randutils.hpp>
-
-// measure.hpp contains useful functions for saving timeseries to files
-#include <measure.hpp>
-
-// include wolff.hpp
-#include <wolff.hpp>
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e4;
-
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double H = 0.0;
-
- bool silent = false;
- bool draw = false;
- bool N_is_sweeps = false;
- unsigned int window_size = 512;
-
- // don't measure anything by default
- unsigned char measurement_flags = 0;
-
- int opt;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field
- H = atof(optarg);
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'S':
- N_is_sweeps = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- case 'M':
- measurement_flags ^= 1 << atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- // get nanosecond timestamp for unique run id
- unsigned long timestamp;
-
- {
- struct timespec spec;
- clock_gettime(CLOCK_REALTIME, &spec);
- timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
- }
-
- // initialize random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- // define spin-spin coupling
- std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
- if (s1.x == s2.x) {
- return 1.0;
- } else {
- return -1.0;
- }
- };
-
- // define spin-field coupling
- std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double {
- if (s.x) {
- return -H;
- } else {
- return H;
- }
- };
-
- // initialize state object
-#ifndef NOFIELD
- state_t <z2_t, ising_t> s(D, L, T, Z, B);
-#else
- state_t <z2_t, ising_t> s(D, L, T, Z);
-#endif
-
- // define function that generates self-inverse rotations
- std::function <z2_t(std::mt19937&, ising_t)> gen_R = [] (std::mt19937&, const ising_t& s) -> z2_t {
- return z2_t(true);
- };
-
- std::function <void(const state_t<z2_t, ising_t>&, const wolff_research_measurements<z2_t, ising_t>&)> other_f;
- uint64_t sum_of_clusterSize = 0;
-
- if (N_is_sweeps) {
- other_f = [&] (const state_t<z2_t, ising_t>& s, const wolff_research_measurements<z2_t, ising_t>& meas) {
- sum_of_clusterSize += meas.last_cluster_size;
- };
- } else if (draw) {
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- other_f = [] (const state_t <z2_t, ising_t>& s, const wolff_research_measurements<z2_t, ising_t>& meas) {
- glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(s.L, 2); i++) {
-#ifdef NOFIELD
- if (s.spins[i].x == false) {
-#else
- if (s.spins[i].x == s.R.x) {
-#endif
- glColor3f(0.0, 0.0, 0.0);
- } else {
- glColor3f(1.0, 1.0, 1.0);
- }
- glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1);
- }
- glFlush();
- };
-#endif
- } else {
- other_f = [] (const state_t<z2_t, ising_t>& s, const wolff_research_measurements<z2_t, ising_t>& meas) {};
- }
-
- wolff_research_measurements<z2_t, ising_t> m(measurement_flags, timestamp, other_f, s, silent);
-
- // add line to metadata file with run info
- {
- FILE *outfile_info = fopen("wolff_metadata.txt", "a");
-
- fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"ISING\", \"q\" -> 2, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> %.15f |>\n", timestamp, s.D, s.L, s.nv, s.ne, T, H);
-
- fclose(outfile_info);
- }
-
- // run wolff for N cluster flips
- if (N_is_sweeps) {
- count_t N_rounds = 0;
- printf("\n");
- while (sum_of_clusterSize < N * s.nv) {
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, m.E, m.last_cluster_size);
- wolff(N, s, gen_R, m, rng);
- N_rounds++;
- }
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, m.E, m.last_cluster_size);
- } else {
- wolff(N, s, gen_R, m, rng);
- }
-
- return 0;
-}
-
diff --git a/examples/src/models/ising/wolff_random-field_ising.cpp b/examples/src/models/ising/wolff_random-field_ising.cpp
deleted file mode 100644
index ce26b88..0000000
--- a/examples/src/models/ising/wolff_random-field_ising.cpp
+++ /dev/null
@@ -1,207 +0,0 @@
-
-#define SITE_DEPENDENCE
-
-#include <getopt.h>
-#include <stdio.h>
-
-// if you have GLUT installed, you can see graphics!
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-// include your group and spin space
-#include "z2.hpp"
-#include "ising.hpp"
-
-#include <randutils/randutils.hpp>
-
-// measure.hpp contains useful functions for saving timeseries to files
-#include <measure.hpp>
-
-// include wolff.hpp
-#include <wolff.hpp>
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e4;
-
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double H = 0.0;
-
- bool silent = false;
- bool draw = false;
- bool N_is_sweeps = false;
- unsigned int window_size = 512;
-
- // don't measure anything by default
- unsigned char measurement_flags = 0;
-
- int opt;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field
- H = atof(optarg);
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'S':
- N_is_sweeps = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- case 'M':
- measurement_flags ^= 1 << atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- // get nanosecond timestamp for unique run id
- unsigned long timestamp;
-
- {
- struct timespec spec;
- clock_gettime(CLOCK_REALTIME, &spec);
- timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
- }
-
- // initialize random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- // define spin-spin coupling
- std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double {
- if (s1.x == s2.x) {
- return 1.0;
- } else {
- return -1.0;
- }
- };
-
- // create random field
- std::vector<double> random_field_values(pow(L, D));
- std::normal_distribution<double> distribution(0.0, H);
- for (v_t i = 0; i < pow(L, D); i++) {
- random_field_values[i] = distribution(rng);
- }
-
- // define spin-field coupling
- std::function <double(v_t, const ising_t&)> B = [&] (v_t v, const ising_t& s) -> double {
- if (s.x) {
- return -random_field_values[v];
- } else {
- return random_field_values[v];
- }
- };
-
- // initialize state object
-#ifndef NOFIELD
- state_t <z2_t, ising_t> s(D, L, T, Z, B);
-#else
- state_t <z2_t, ising_t> s(D, L, T, Z);
-#endif
-
- // define function that generates self-inverse rotations
- std::function <z2_t(std::mt19937&, ising_t)> gen_R = [] (std::mt19937&, const ising_t& s) -> z2_t {
- return z2_t(true);
- };
-
- FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
-
- std::function <void(const state_t<z2_t, ising_t>&)> other_f;
- uint64_t sum_of_clusterSize = 0;
-
- if (N_is_sweeps) {
- other_f = [&] (const state_t<z2_t, ising_t>& s) {
- sum_of_clusterSize += s.last_cluster_size;
- };
- } else if (draw) {
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- other_f = [] (const state_t <z2_t, ising_t>& s) {
- glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(s.L, 2); i++) {
-#ifdef NOFIELD
- if (s.spins[i].x == false) {
-#else
- if (s.spins[i].x == s.R.x) {
-#endif
- glColor3f(0.0, 0.0, 0.0);
- } else {
- glColor3f(1.0, 1.0, 1.0);
- }
- glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1);
- }
- glFlush();
- };
-#endif
- } else {
- other_f = [] (const state_t<z2_t, ising_t>& s) {};
- }
-
- std::function <void(const state_t<z2_t, ising_t>&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
-
- // add line to metadata file with run info
- {
- FILE *outfile_info = fopen("wolff_metadata.txt", "a");
-
- fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"ISING\", \"q\" -> 2, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> %.15f |>\n", timestamp, s.D, s.L, s.nv, s.ne, T, H);
-
- fclose(outfile_info);
- }
-
- // run wolff for N cluster flips
- if (N_is_sweeps) {
- count_t N_rounds = 0;
- printf("\n");
- while (sum_of_clusterSize < N * s.nv) {
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
- wolff(N, s, gen_R, measurements, rng, silent);
- N_rounds++;
- }
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
- } else {
- wolff(N, s, gen_R, measurements, rng, silent);
- }
-
- measure_free_files(measurement_flags, outfiles);
-
- return 0;
-
-}
-
diff --git a/examples/src/models/ising/z2.hpp b/examples/src/models/ising/z2.hpp
deleted file mode 100644
index 19b6c05..0000000
--- a/examples/src/models/ising/z2.hpp
+++ /dev/null
@@ -1,53 +0,0 @@
-
-#pragma once
-
-#include <wolff/types.h>
-#include "ising.hpp"
-
-/* The minimum definition for a group type R_t to act on a spin type X_t is
- * given by the following.
- *
- * void init(R_t *p);
- * void free_spin(R_t r);
- * R_t copy(R_t r);
- * X_t act(R_t r, X_t x);
- * R_t act(R_t r, R_t r);
- * X_t act_inverse(R_t r, X_t x);
- * R_t act_inverse(R_t r, R_t r);
- *
- */
-
-class z2_t {
- public:
- bool x;
-
- z2_t() : x(false) {}
-
- z2_t(bool x) : x(x) {}
-
- ising_t act(const ising_t& s) const {
- if (x) {
- return ising_t(!s.x);
- } else {
- return ising_t(s.x);
- }
- }
-
- z2_t act(const z2_t& r) const {
- if (x) {
- return z2_t(!r.x);
- } else {
- return z2_t(r.x);
- }
- }
-
- ising_t act_inverse(const ising_t& s) const {
- return this->act(s);
- }
-
- z2_t act_inverse(const z2_t& r) const {
- return this->act(r);
- }
-};
-
-
diff --git a/examples/src/models/potts/CMakeLists.txt b/examples/src/models/potts/CMakeLists.txt
deleted file mode 100644
index e78aa6b..0000000
--- a/examples/src/models/potts/CMakeLists.txt
+++ /dev/null
@@ -1,39 +0,0 @@
-
-add_executable(wolff_3potts wolff_potts.cpp)
-add_executable(wolff_4potts wolff_potts.cpp)
-add_executable(wolff_7potts wolff_potts.cpp)
-add_executable(wolff_3clock wolff_clock.cpp)
-add_executable(wolff_5clock wolff_clock.cpp)
-
-set_target_properties(wolff_3potts PROPERTIES COMPILE_FLAGS "-DPOTTSQ=3")
-set_target_properties(wolff_4potts PROPERTIES COMPILE_FLAGS "-DPOTTSQ=4")
-set_target_properties(wolff_7potts PROPERTIES COMPILE_FLAGS "-DPOTTSQ=7")
-set_target_properties(wolff_3clock PROPERTIES COMPILE_FLAGS "-DPOTTSQ=3")
-set_target_properties(wolff_5clock PROPERTIES COMPILE_FLAGS "-DPOTTSQ=5")
-
-find_library(GL NAMES GL)
-find_library(GLU NAMES GLU)
-find_library(GLUT NAMES glut)
-
-if (${GLUT} MATCHES "GLUT-NOTFOUND")
- target_link_libraries(wolff_3potts wolff wolff_examples)
- target_link_libraries(wolff_4potts wolff wolff_examples)
- target_link_libraries(wolff_7potts wolff wolff_examples)
- target_link_libraries(wolff_3clock wolff wolff_examples)
- target_link_libraries(wolff_5clock wolff wolff_examples)
-else()
- target_compile_definitions(wolff_3potts PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_4potts PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_7potts PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_3clock PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_5clock PUBLIC HAVE_GLUT)
-
- target_link_libraries(wolff_3potts wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_4potts wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_7potts wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_3clock wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_5clock wolff wolff_examples glut GL GLU)
-endif()
-
-install(TARGETS wolff_3potts wolff_4potts wolff_7potts wolff_3clock wolff_5clock DESTINATION ${CMAKE_INSTALL_BINDIR} OPTIONAL)
-
diff --git a/examples/src/models/potts/dihedral.hpp b/examples/src/models/potts/dihedral.hpp
deleted file mode 100644
index cbc5687..0000000
--- a/examples/src/models/potts/dihedral.hpp
+++ /dev/null
@@ -1,48 +0,0 @@
-
-#pragma once
-
-#include <wolff/types.h>
-#include "potts.hpp"
-
-template <q_t q>
-class dihedral_t {
- public:
- bool is_reflection;
- q_t x;
-
- dihedral_t() : is_reflection(false), x(0) {}
- dihedral_t(bool x, q_t y) : is_reflection(x), x(y) {}
-
- potts_t<q> act(const potts_t<q>& s) const {
- if (this->is_reflection) {
- return potts_t<q>(((q + this->x) - s.x) % q);
- } else {
- return potts_t<q>((this->x + s.x) % q);
- }
- }
-
- dihedral_t<q> act(dihedral_t<q> r) const {
- if (this->is_reflection) {
- return dihedral_t<q>(!(r.is_reflection), ((q + this->x) - r.x) % q);
- } else {
- return dihedral_t<q>(r.is_reflection, (this->x + r.x) % q);
- }
- }
-
- potts_t<q> act_inverse(potts_t<q> s) const {
- if (this->is_reflection) {
- return this->act(s);
- } else {
- return potts_t<q>(((s.x + q) - this->x) % q);
- }
- }
-
- dihedral_t<q> act_inverse(dihedral_t<q> r) const {
- if (this->is_reflection) {
- return this->act(r);
- } else {
- return dihedral_t<q>(r.is_reflection, ((r.x + q) - this->x) % q);
- }
- }
-};
-
diff --git a/examples/src/models/potts/potts.hpp b/examples/src/models/potts/potts.hpp
deleted file mode 100644
index f4765e2..0000000
--- a/examples/src/models/potts/potts.hpp
+++ /dev/null
@@ -1,72 +0,0 @@
-#pragma once
-
-#include <cmath>
-#include <stdio.h>
-
-#include <wolff/types.h>
-#include "../On/vector.hpp"
-
-template <q_t q>
-class potts_t {
- public:
- q_t x;
-
- typedef vector_t<q, int> M_t;
- typedef vector_t<q, double> F_t;
-
- potts_t() : x(0) {}
- potts_t(q_t x) : x(x) {}
-
- inline vector_t<q, int> operator*(v_t a) const {
- vector_t<q, int> result;
- result.fill(0);
- result[x] = (int)a;
-
- return result;
- }
-
- inline vector_t<q, double> operator*(double a) const {
- vector_t<q, double> result;
- result.fill(0.0);
- result[x] = a;
-
- return result;
- }
-
- inline vector_t<q, int> operator-(const potts_t<q> &s) const {
- vector_t<q, int> result;
- result.fill(0);
-
- result[x]++;
- result[s.x]--;
-
- return result;
- }
-};
-
-// we could inherit norm_squared from vector.h, but convention dictates that
-// potts norms be changed by a constant factor
-template <q_t q>
-double norm_squared(vector_t<q, double> s) {
- double total = 0;
- for (double& x : s) {
- total += pow(x, 2);
- }
-
- return total * (double)q / ((double)q - 1.0);
-}
-
-// we could inherit write_magnetization from vector.h, but since M.x must sum
-// to nv we don't need to write the last element
-template <q_t q>
-void write_magnetization(vector_t<q, int> M, FILE *outfile) {
- for (int& x : M) {
- fwrite(&x, sizeof(int), q - 1, outfile);
- }
-}
-
-// knock yourself out
-const potts_t<POTTSQ> states[256] = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}, {26}, {27}, {28}, {29}, {30}, {31}, {32}, {33}, {34}, {35}, {36}, {37}, {38}, {39}, {40}, {41}, {42}, {43}, {44}, {45}, {46}, {47}, {48}, {49}, {50}, {51}, {52}, {53}, {54}, {55}, {56}, {57}, {58}, {59}, {60}, {61}, {62}, {63}, {64}, {65}, {66}, {67}, {68}, {69}, {70}, {71}, {72}, {73}, {74}, {75}, {76}, {77}, {78}, {79}, {80}, {81}, {82}, {83}, {84}, {85}, {86}, {87}, {88}, {89}, {90}, {91}, {92}, {93}, {94}, {95}, {96}, {97}, {98}, {99}, {100}, {101}, {102}, {103}, {104}, {105}, {106}, {107}, {108}, {109}, {110}, {111}, {112}, {113}, {114}, {115}, {116}, {117}, {118}, {119}, {120}, {121}, {122}, {123}, {124}, {125}, {126}, {127}, {128}, {129}, {130}, {131}, {132}, {133}, {134}, {135}, {136}, {137}, {138}, {139}, {140}, {141}, {142}, {143}, {144}, {145}, {146}, {147}, {148}, {149}, {150}, {151}, {152}, {153}, {154}, {155}, {156}, {157}, {158}, {159}, {160}, {161}, {162}, {163}, {164}, {165}, {166}, {167}, {168}, {169}, {170}, {171}, {172}, {173}, {174}, {175}, {176}, {177}, {178}, {179}, {180}, {181}, {182}, {183}, {184}, {185}, {186}, {187}, {188}, {189}, {190}, {191}, {192}, {193}, {194}, {195}, {196}, {197}, {198}, {199}, {200}, {201}, {202}, {203}, {204}, {205}, {206}, {207}, {208}, {209}, {210}, {211}, {212}, {213}, {214}, {215}, {216}, {217}, {218}, {219}, {220}, {221}, {222}, {223}, {224}, {225}, {226}, {227}, {228}, {229}, {230}, {231}, {232}, {233}, {234}, {235}, {236}, {237}, {238}, {239}, {240}, {241}, {242}, {243}, {244}, {245}, {246}, {247}, {248}, {249}, {250}, {251}, {252}, {253}, {254}, {255}};
-template <q_t q>
-q_t state_to_ind(potts_t<q> state) { return (q_t)state.x; }
-
diff --git a/examples/src/models/potts/symmetric.hpp b/examples/src/models/potts/symmetric.hpp
deleted file mode 100644
index bc8673f..0000000
--- a/examples/src/models/potts/symmetric.hpp
+++ /dev/null
@@ -1,52 +0,0 @@
-
-#pragma once
-
-#include <stdlib.h>
-#include <array>
-#include <wolff/types.h>
-#include "potts.hpp"
-
-template <q_t q>
-class symmetric_t : public std::array<q_t, q> {
- public:
-
- symmetric_t() {
- for (q_t i = 0; i < q; i++) {
- (*this)[i] = i;
- }
- }
-
- potts_t<q> act(const potts_t<q> &s) const {
- return potts_t<q>((*this)[s.x]);
- }
-
- symmetric_t<q> act(const symmetric_t<q>& r) const {
- symmetric_t<q> r_rot;
- for (q_t i = 0; i < q; i++) {
- r_rot[i] = (*this)[r[i]];
- }
-
- return r_rot;
- }
-
- potts_t<q> act_inverse(const potts_t<q>& s) const {
- for (q_t i = 0; i < q; i++) {
- if ((*this)[i] == s.x) {
- return potts_t<q>(i);
- }
- }
-
- printf("Your spin wasn't a valid state!", s.x);
- exit(EXIT_FAILURE);
- }
-
- symmetric_t<q> act_inverse(const symmetric_t<q>& r) const {
- symmetric_t<q> r_rot;
- for (q_t i = 0; i < q; i++) {
- r_rot[(*this)[i]] = r[i];
- }
-
- return r_rot;
- }
-};
-
diff --git a/examples/src/models/potts/wolff_clock.cpp b/examples/src/models/potts/wolff_clock.cpp
deleted file mode 100644
index 0706cc5..0000000
--- a/examples/src/models/potts/wolff_clock.cpp
+++ /dev/null
@@ -1,149 +0,0 @@
-
-#include <getopt.h>
-
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-// include your group and spin space
-#include "dihedral.hpp"
-#include "potts.hpp"
-#include <colors.h>
-#include <measure.hpp>
-
-// hack to speed things up considerably
-#define N_STATES POTTSQ
-#include <wolff/finite_states.hpp>
-
-#include <randutils/randutils.hpp>
-
-// include wolff.hpp
-#include <wolff.hpp>
-
-typedef state_t <dihedral_t<POTTSQ>, potts_t<POTTSQ>> sim_t;
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e4;
-
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double *H_vec = (double *)calloc(MAX_Q, sizeof(double));
-
- bool silent = false;
- bool draw = false;
- unsigned int window_size = 512;
-
- int opt;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field. nth call couples to state n
- H_vec[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- // initialize random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- // define spin-spin coupling
- std::function <double(const potts_t<POTTSQ>&, const potts_t<POTTSQ>&)> Z = [] (const potts_t<POTTSQ>& s1, const potts_t<POTTSQ>& s2) -> double {
- return cos(2 * M_PI * (double)(s1.x + POTTSQ - s2.x) / (double)POTTSQ);
- };
-
- // define spin-field coupling
- std::function <double(const potts_t<POTTSQ>&)> B = [=] (const potts_t<POTTSQ>& s) -> double {
- return H_vec[s.x];
- };
-
- // initialize state object
- state_t <dihedral_t<POTTSQ>, potts_t<POTTSQ>> s(D, L, T, Z, B);
-
- // define function that generates self-inverse rotations
- std::function <dihedral_t<POTTSQ>(std::mt19937&, potts_t<POTTSQ>)> gen_R = [] (std::mt19937& r, potts_t<POTTSQ> v) -> dihedral_t<POTTSQ> {
- dihedral_t<POTTSQ> rot;
- rot.is_reflection = true;
- std::uniform_int_distribution<q_t> dist(0, POTTSQ - 2);
- q_t x = dist(r);
- rot.x = (2 * v.x + x + 1) % POTTSQ;
-
- return rot;
- };
-
- // define function that updates any number of measurements
- std::function <void(const sim_t&, const wolff_research_measurements<dihedral_t<POTTSQ>, potts_t<POTTSQ>>&)> measurement;
-
- if (!draw) {
- // a very simple example: measure the average magnetization
- measurement = [&] (const sim_t& s, const wolff_research_measurements<dihedral_t<POTTSQ>, potts_t<POTTSQ>>&) {
- };
- } else {
- // a more complex example: measure the average magnetization, and draw the spin configuration to the screen
-
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- measurement = [&] (const sim_t& s, const wolff_research_measurements<dihedral_t<POTTSQ>, potts_t<POTTSQ>>&) {
- glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(L, 2); i++) {
- potts_t<POTTSQ> tmp_s = s.R.act_inverse(s.spins[i]);
- glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ));
- glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
- }
- glFlush();
- };
-#endif
- }
-
- wolff_research_measurements<dihedral_t<POTTSQ>, potts_t<POTTSQ>> m(0, 0, measurement, s, silent);
-
- // run wolff for N cluster flips
- wolff(N, s, gen_R, m, rng);
-
- // free the random number generator
-
- return 0;
-
-}
-
diff --git a/examples/src/models/potts/wolff_potts.cpp b/examples/src/models/potts/wolff_potts.cpp
deleted file mode 100644
index 7b92ac1..0000000
--- a/examples/src/models/potts/wolff_potts.cpp
+++ /dev/null
@@ -1,210 +0,0 @@
-
-#include <getopt.h>
-#include <stdio.h>
-
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-// include your group and spin space
-#include "symmetric.hpp"
-#include "potts.hpp"
-
-// hack to speed things up considerably
-#define N_STATES POTTSQ
-#include <wolff/finite_states.hpp>
-
-// include wolff.h
-#include <measure.hpp>
-#include <colors.h>
-#include <randutils/randutils.hpp>
-#include <wolff.hpp>
-
-typedef state_t <symmetric_t<POTTSQ>, potts_t<POTTSQ>> sim_t;
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e4;
-
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double *H_vec = (double *)calloc(MAX_Q, sizeof(double));
-
- bool silent = false;
- bool draw = false;
- bool N_is_sweeps = false;
- unsigned int window_size = 512;
-
- // don't measure anything by default
- unsigned char measurement_flags = 0;
-
- int opt;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field. nth call couples to state n
- H_vec[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'S':
- N_is_sweeps = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- case 'M':
- measurement_flags ^= 1 << atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- // get nanosecond timestamp for unique run id
- unsigned long timestamp;
-
- {
- struct timespec spec;
- clock_gettime(CLOCK_REALTIME, &spec);
- timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
- }
-
- // initialize random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- // define spin-spin coupling
- std::function <double(const potts_t<POTTSQ>&, const potts_t<POTTSQ>&)> Z = [] (const potts_t<POTTSQ>& s1, const potts_t<POTTSQ>& s2) -> double {
- if (s1.x == s2.x) {
- return 1.0;
- } else {
- return 0.0;
- }
- };
-
- // define spin-field coupling
- std::function <double(const potts_t<POTTSQ> &)> B = [=] (const potts_t<POTTSQ>& s) -> double {
- return H_vec[s.x];
- };
-
- // initialize state object
- state_t <symmetric_t<POTTSQ>, potts_t<POTTSQ>> s(D, L, T, Z, B);
-
- // define function that generates self-inverse rotations
- std::function <symmetric_t<POTTSQ>(std::mt19937&, potts_t<POTTSQ>)> gen_R = [] (std::mt19937& r, potts_t<POTTSQ> v) -> symmetric_t<POTTSQ> {
- symmetric_t<POTTSQ> rot;
-
- std::uniform_int_distribution<q_t> dist(0, POTTSQ - 2);
- q_t j = dist(r);
- q_t swap_v;
- if (j < v.x) {
- swap_v = j;
- } else {
- swap_v = j + 1;
- }
-
- rot[v.x] = swap_v;
- rot[swap_v] = v.x;
-
- return rot;
- };
-
- std::function <void(const sim_t&, const wolff_research_measurements<symmetric_t<POTTSQ>, potts_t<POTTSQ>>&)> other_f;
- uint64_t sum_of_clusterSize = 0;
-
- if (N_is_sweeps) {
- other_f = [&] (const sim_t& s, const wolff_research_measurements<symmetric_t<POTTSQ>, potts_t<POTTSQ>>& m) {
- sum_of_clusterSize += m.last_cluster_size;
- };
- } else if (draw) {
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- other_f = [] (const sim_t& s, const wolff_research_measurements<symmetric_t<POTTSQ>, potts_t<POTTSQ>>& m) {
- glClear(GL_COLOR_BUFFER_BIT);
- for (v_t i = 0; i < pow(s.L, 2); i++) {
- potts_t<POTTSQ> tmp_s = s.R.act_inverse(s.spins[i]);
- glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ));
- glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1);
- }
- glFlush();
- };
-#endif
- } else {
- other_f = [] (const sim_t& s, const wolff_research_measurements<symmetric_t<POTTSQ>, potts_t<POTTSQ>>& m) {};
- }
-
- wolff_research_measurements<symmetric_t<POTTSQ>, potts_t<POTTSQ>> m(measurement_flags, timestamp, other_f, s, silent);
-
- // add line to metadata file with run info
- {
- FILE *outfile_info = fopen("wolff_metadata.txt", "a");
-
- fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"POTTS\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, POTTSQ, s.D, s.L, s.nv, s.ne, T);
-
- for (q_t i = 0; i < POTTSQ; i++) {
- fprintf(outfile_info, "%.15f", H_vec[i]);
- if (i < POTTSQ - 1) {
- fprintf(outfile_info, ", ");
- }
- }
-
- fprintf(outfile_info, "} |>\n");
-
- fclose(outfile_info);
- }
-
- // run wolff for N cluster flips
- if (N_is_sweeps) {
- count_t N_rounds = 0;
- printf("\n");
- while (sum_of_clusterSize < N * s.nv) {
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, m.E, m.last_cluster_size);
- wolff(N, s, gen_R, m, rng);
- N_rounds++;
- }
- printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, m.E, m.last_cluster_size);
- } else {
- wolff(N, s, gen_R, m, rng);
- }
-
- // free the random number generator
- free(H_vec);
-
- return 0;
-
-}
-
diff --git a/examples/src/models/roughening/CMakeLists.txt b/examples/src/models/roughening/CMakeLists.txt
deleted file mode 100644
index 163a0b9..0000000
--- a/examples/src/models/roughening/CMakeLists.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-
-add_executable(wolff_dgm wolff_dgm.cpp)
-add_executable(wolff_cgm wolff_cgm.cpp)
-
-find_library(GL NAMES GL)
-find_library(GLU NAMES GLU)
-find_library(GLUT NAMES glut)
-
-if (${GLUT} MATCHES "GLUT-NOTFOUND")
- target_link_libraries(wolff_dgm wolff wolff_examples)
- target_link_libraries(wolff_cgm wolff wolff_examples)
-else()
- target_compile_definitions(wolff_dgm PUBLIC HAVE_GLUT)
- target_compile_definitions(wolff_cgm PUBLIC HAVE_GLUT)
-
- target_link_libraries(wolff_dgm wolff wolff_examples glut GL GLU)
- target_link_libraries(wolff_cgm wolff wolff_examples glut GL GLU)
-endif()
-
-install(TARGETS wolff_dgm wolff_cgm DESTINATION ${CMAKE_INSTALL_BINDIR} OPTIONAL)
-
diff --git a/examples/src/models/roughening/dihedral_inf.hpp b/examples/src/models/roughening/dihedral_inf.hpp
deleted file mode 100644
index 19fa195..0000000
--- a/examples/src/models/roughening/dihedral_inf.hpp
+++ /dev/null
@@ -1,47 +0,0 @@
-
-#include <wolff/types.h>
-#include <cmath>
-#include "height.hpp"
-
-template <class T>
-class dihedral_inf_t {
- public:
- bool is_reflection;
- T x;
-
- dihedral_inf_t() : is_reflection(false), x(0) {}
- dihedral_inf_t(bool x, T y) : is_reflection(x), x(y) {}
-
- height_t<T> act(const height_t<T>& h) const {
- if (this->is_reflection) {
- return height_t(this->x - h.x);
- } else {
- return height_t(this->x + h.x);
- }
- }
-
- dihedral_inf_t<T> act(const dihedral_inf_t<T>& r) const {
- if (this->is_reflection) {
- return dihedral_inf_t<T>(!r.is_reflection, this->x - r.x);
- } else {
- return dihedral_inf_t<T>(r.is_reflection, this->x + r.x);
- }
- }
-
- height_t<T> act_inverse(const height_t<T>& h) const {
- if (this->is_reflection) {
- return this->act(h);
- } else {
- return height_t(h.x - this->x);
- }
- }
-
- dihedral_inf_t<T> act_inverse(const dihedral_inf_t<T>& r) const {
- if (this->is_reflection) {
- return this->act(r);
- } else {
- return dihedral_inf_t<T>(r.is_reflection, r.x - this->x);
- }
- }
-};
-
diff --git a/examples/src/models/roughening/height.hpp b/examples/src/models/roughening/height.hpp
deleted file mode 100644
index 4023063..0000000
--- a/examples/src/models/roughening/height.hpp
+++ /dev/null
@@ -1,75 +0,0 @@
-
-#pragma once
-
-#include <cmath>
-#include <stdio.h>
-
-#include <wolff/types.h>
-
-/* The following is the minimum definition of a spin class.
- *
- * The class must contain an M_t and an F_t for holding the sum of an
- * integer number of spins and a double-weighted number of spins,
- * respectively.
- *
- * void init(X_t *p);
- * void free_spin(X_t p);
- * void free_spin(M_t p);
- * void free_spin(F_t p);
- * X_t copy(X_t x);
- * void add(M_t *x1, int factor, X_t x2);
- * void add(F_t *x1, double factor, X_t x2);
- * M_t scalar_multiple(int factor, X_t x);
- * F_t scalar_multiple(double factor, X_t x);
- * double norm_squared(F_t x);
- * void write_magnetization(M_t M, FILE *outfile);
- *
- */
-
-template <class T>
-struct height_t {
- T x;
-
- typedef T M_t;
- typedef double F_t;
-
- height_t() : x(0) {}
-
- height_t(T x) : x(x) {}
-
- inline T operator*(v_t a) const {
- return x * a;
- }
-
- inline double operator*(double a) const {
- return x * a;
- }
-
- inline T operator-(const height_t& h) const {
- return x - h.x;
- }
-};
-
-template <class T>
-inline T& operator+=(T& M, const height_t<T> &h) {
- M += h.x;
-
- return M;
-}
-
-template <class T>
-inline T& operator-=(T& M, const height_t<T> &h) {
- M -= h.x;
-
- return M;
-}
-
-double norm_squared(double h) {
- return pow(h, 2);
-}
-
-template <class T>
-void write_magnetization(T M, FILE *outfile) {
- fwrite(&M, sizeof(T), 1, outfile);
-}
-
diff --git a/examples/src/models/roughening/wolff_cgm.cpp b/examples/src/models/roughening/wolff_cgm.cpp
deleted file mode 100644
index 65f8d66..0000000
--- a/examples/src/models/roughening/wolff_cgm.cpp
+++ /dev/null
@@ -1,167 +0,0 @@
-
-#include <getopt.h>
-
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-// include your group and spin space
-#include "dihedral_inf.hpp"
-#include "height.hpp"
-
-#include <randutils/randutils.hpp>
-
-// include wolff.h
-#include <wolff.hpp>
-
-typedef state_t <dihedral_inf_t<double>, height_t<double>> sim_t;
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e4;
-
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double H = 0;
-
- bool silent = false;
- bool draw = false;
- unsigned int window_size = 512;
- double epsilon = 1;
-
- int opt;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:e:")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field. nth call couples to state n
- H = atof(optarg);
- break;
- case 'e': // external field. nth call couples to state n
- epsilon = atof(optarg);
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- // initialize random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- // define spin-spin coupling
- std::function <double(const height_t<double>&, const height_t<double>&)> Z = [] (const height_t<double>& h1, const height_t<double>& h2) -> double {
- return -pow(h1.x - h2.x, 2);
- };
-
- // define spin-field coupling
- std::function <double(height_t<double>)> B = [=] (height_t<double> h) -> double {
- return -H * pow(h.x, 2);;
- };
-
- // initialize state object
- sim_t s(D, L, T, Z, B);
-
- // define function that generates self-inverse rotations
- std::function <dihedral_inf_t<double>(std::mt19937&, height_t<double>)> gen_R = [=] (std::mt19937& r, height_t<double> h) -> dihedral_inf_t<double> {
- dihedral_inf_t<double> rot;
- rot.is_reflection = true;
- std::normal_distribution<double> dist(0.0,1.0);
-
- double amount = epsilon * dist(r);
-
- rot.x = 2 * h.x + amount;
-
- return rot;
- };
-
- // define function that updates any number of measurements
- std::function <void(const sim_t&)> measurement;
-
- double average_M = 0;
- if (!draw) {
- // a very simple example: measure the average magnetization
- measurement = [&] (const sim_t& s) {
- average_M += (double)s.M / (double)N / (double)s.nv;
- };
- } else {
- // a more complex example: measure the average magnetization, and draw the spin configuration to the screen
-
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- measurement = [&] (const sim_t& s) {
- average_M += (double)s.M / (double)N / (double)s.nv;
- glClear(GL_COLOR_BUFFER_BIT);
- double max_h = INT64_MIN;
- double min_h = INT64_MAX;
- for (v_t i = 0; i < pow(L, 2); i++) {
- double cur_h = (s.R.act_inverse(s.spins[i])).x;
- if (cur_h < min_h) {
- min_h = cur_h;
- }
- if (cur_h > max_h) {
- max_h = cur_h;
- }
- }
-
- for (v_t i = 0; i < pow(L, 2); i++) {
- double cur_h = (s.R.act_inverse(s.spins[i])).x;
- double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h));
- glColor3f(mag, mag, mag);
- glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
- }
- glFlush();
- };
-#endif
- }
-
- // run wolff for N cluster flips
- wolff(N, s, gen_R, measurement, rng, silent);
-
- // tell us what we found!
- printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M);
-
- // free the random number generator
-
- if (draw) {
- }
-
- return 0;
-
-}
-
diff --git a/examples/src/models/roughening/wolff_dgm.cpp b/examples/src/models/roughening/wolff_dgm.cpp
deleted file mode 100644
index 8395382..0000000
--- a/examples/src/models/roughening/wolff_dgm.cpp
+++ /dev/null
@@ -1,164 +0,0 @@
-
-#include <getopt.h>
-
-#ifdef HAVE_GLUT
-#include <GL/glut.h>
-#endif
-
-// include your group and spin space
-#include "dihedral_inf.hpp"
-#include "height.hpp"
-
-#include <randutils/randutils.hpp>
-
-// include wolff.h
-#include <wolff.hpp>
-
-typedef state_t <dihedral_inf_t<int64_t>, height_t<int64_t>> sim_t;
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e4;
-
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double H = 0;
-
- bool silent = false;
- bool draw = false;
- unsigned int window_size = 512;
- uint64_t epsilon = 1;
-
- int opt;
-
- while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:e:")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'H': // external field. nth call couples to state n
- H = atof(optarg);
- break;
- case 'e': // external field. nth call couples to state n
- epsilon = atof(optarg);
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- case 'd':
-#ifdef HAVE_GLUT
- draw = true;
- break;
-#else
- printf("You didn't compile this with the glut library installed!\n");
- exit(EXIT_FAILURE);
-#endif
- case 'w':
- window_size = atoi(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- // initialize random number generator
- randutils::auto_seed_128 seeds;
- std::mt19937 rng{seeds};
-
- // define spin-spin coupling
- std::function <double(const height_t<int64_t>&, const height_t<int64_t>&)> Z = [] (const height_t<int64_t>& h1, const height_t<int64_t>& h2) -> double {
- return -pow(h1.x - h2.x, 2);
- };
-
- // define spin-field coupling
- std::function <double(const height_t<int64_t> &)> B = [=] (const height_t<int64_t>& h) -> double {
- return -H * pow(h.x, 2);;
- };
-
- // initialize state object
- sim_t s(D, L, T, Z, B);
-
- // define function that generates self-inverse rotations
- std::function <dihedral_inf_t<int64_t>(std::mt19937&, height_t<int64_t>)> gen_R = [=] (std::mt19937& r, height_t<int64_t> h) -> dihedral_inf_t<int64_t> {
- dihedral_inf_t<int64_t> rot;
- rot.is_reflection = true;
-
- std::uniform_int_distribution<int64_t> dist(-epsilon,epsilon);
-
- rot.x = 2 * h.x + dist(r);
-
- return rot;
- };
-
- // define function that updates any number of measurements
- std::function <void(const sim_t&)> measurement;
-
- double average_M = 0;
- if (!draw) {
- // a very simple example: measure the average magnetization
- measurement = [&] (const sim_t& s) {
- average_M += (double)s.M / (double)N / (double)s.nv;
- };
- } else {
- // a more complex example: measure the average magnetization, and draw the spin configuration to the screen
-
-#ifdef HAVE_GLUT
- // initialize glut
- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
- glutInitWindowSize(window_size, window_size);
- glutCreateWindow("wolff");
- glClearColor(0.0,0.0,0.0,0.0);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, L, 0.0, L);
-
- measurement = [&] (const sim_t& s) {
- average_M += (double)s.M / (double)N / (double)s.nv;
- glClear(GL_COLOR_BUFFER_BIT);
- int64_t max_h = INT64_MIN;
- int64_t min_h = INT64_MAX;
- for (v_t i = 0; i < pow(L, 2); i++) {
- int64_t cur_h = (s.R.act_inverse(s.spins[i])).x;
- if (cur_h < min_h) {
- min_h = cur_h;
- }
- if (cur_h > max_h) {
- max_h = cur_h;
- }
- }
-
- for (v_t i = 0; i < pow(L, 2); i++) {
- int64_t cur_h = (s.R.act_inverse(s.spins[i])).x;
- double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h));
- glColor3f(mag, mag, mag);
- glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
- }
- glFlush();
- };
-#endif
- }
-
- // run wolff for N cluster flips
- wolff(N, s, gen_R, measurement, rng, silent);
-
- // tell us what we found!
- printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M);
-
- if (draw) {
- }
-
- return 0;
-
-}
-
diff --git a/examples/src/tools/CMakeLists.txt b/examples/src/tools/CMakeLists.txt
deleted file mode 100644
index 4a6c1a0..0000000
--- a/examples/src/tools/CMakeLists.txt
+++ /dev/null
@@ -1,9 +0,0 @@
-
-find_library(fftw REQUIRED NAMES fftw3)
-
-add_executable(analyze_correlations analyze_correlations.cpp)
-
-target_link_libraries(analyze_correlations fftw3 wolff)
-
-install(TARGETS analyze_correlations DESTINATION ${CMAKE_INSTALL_BINDIR} OPTIONAL)
-
diff --git a/examples/src/tools/analyze_correlations.cpp b/examples/src/tools/analyze_correlations.cpp
deleted file mode 100644
index abeaff3..0000000
--- a/examples/src/tools/analyze_correlations.cpp
+++ /dev/null
@@ -1,486 +0,0 @@
-
-#include <wolff/types.h>
-#include <cmath>
-#include <cstring>
-#include <stdio.h>
-#include <stdlib.h>
-#include <getopt.h>
-#include <fftw3.h>
-
-template <class T>
-double mean(int N, T *data) {
- double total = 0;
- for (int i = 0; i < N; i++) {
- total += (double)data[i];
- }
-
- return total / N;
-}
-
-double squared_mean(int N, double *data) {
- double total = 0;
- for (int i = 0; i < N; i++) {
- total += pow(data[i], 2);
- }
-
- return total / N;
-}
-
-double central_moment(int N, double *data, double mean, int m) {
- double total = 0;
- for (int i = 0; i < N; i++) {
- total += pow(data[i] - mean, m);
- }
-
- return total / N;
-}
-
-void compute_OO(int N, fftw_plan forward_plan, double *forward_data, fftw_plan reverse_plan, double *reverse_data) {
-
- fftw_execute(forward_plan);
-
- reverse_data[0] = forward_data[0] * forward_data[0];
- reverse_data[N / 2] = forward_data[N/2] * forward_data[N/2];
-
- for (count_t i = 1; i < N / 2; i++) {
- reverse_data[i] = pow(forward_data[i], 2) + pow(forward_data[N - i], 2);
- reverse_data[N - i] = 0;
- }
-
- fftw_execute(reverse_plan);
-
-}
-
-double finite_energy(q_t nb, double *J, q_t q, double *H, v_t nv, v_t ne, uint32_t *bo, uint32_t *so) {
- double energy = 0;
-
- v_t tot = 0;
- for (q_t i = 0; i < nb - 1; i++) {
- energy -= J[i] * bo[i];
- tot += bo[i];
- }
-
- energy -= J[nb - 1] * (ne - tot);
-
- tot = 0;
- for (q_t i = 0; i < q - 1; i++) {
- energy -= H[i] * so[i];
- tot += so[i];
- }
-
- energy -= H[q - 1] * (nv - tot);
-
- return energy;
-}
-
-int main (int argc, char *argv[]) {
- count_t drop = (count_t)1e4;
- count_t length = (count_t)1e4;
- bool speedy_drop = false;
- bool from_stdin = false;
- bool oldstyle = false;
-
- int opt;
-
- while ((opt = getopt(argc, argv, "d:l:spo")) != -1) {
- switch (opt) {
- case 'd':
- drop = (count_t)atof(optarg);
- break;
- case 'l':
- length = (count_t)atof(optarg);
- break;
- case 's':
- speedy_drop = true;
- break;
- case 'p':
- from_stdin = true;
- break;
- case 'o':
- oldstyle = true;
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
- FILE *metadata;
-
- fftw_set_timelimit(1);
-
- if (from_stdin) {
- metadata = stdin;
- } else {
- metadata = fopen("wolff_metadata.txt", "r");
- }
-
- if (metadata == NULL) {
- printf("Metadata file not found. Make sure you are in the correct directory!\n");
- exit(EXIT_FAILURE);
- }
-
- unsigned long id;
- char *model = (char *)malloc(32 * sizeof(char));
-
- if (model == NULL) {
- printf("Malloc failed.\n");
- exit(EXIT_FAILURE);
- }
-
- q_t q;
- D_t D;
- L_t L;
- v_t nv, ne;
-
- while (EOF != fscanf(metadata, "<| \"ID\" -> %lu, \"MODEL\" -> \"%[^\"]\", \"q\" -> %" SCNq ", \"D\" -> %" SCND ", \"L\" -> %" SCNL ", \"NV\" -> %" SCNv ", \"NE\" -> %" SCNv ", ", &id, model, &q, &D, &L, &nv, &ne)) {
-
- printf("%lu: Processing...\n", id);
-
-// bool is_finite = 0 == strcmp(model, "ISING") || 0 == strcmp(model, "POTTS") || 0 == strcmp(model, "CLOCK");
-
- if (oldstyle) {
- q_t nb;
- double T;
- fscanf(metadata, "\"NB\" -> %" SCNq ", \"T\" -> %lf, \"J\" -> {", &nb, &T);
- double *J = (double *)malloc(nb * sizeof(double));
- double *H = (double *)malloc(q * sizeof(double));
-
- if (J == NULL || H == NULL) {
- printf("%lu: Malloc failed.\n", id);
- break;
- }
-
- for (q_t i = 0; i < nb - 1; i++) {
- fscanf(metadata, "%lf, ", &(J[i]));
- }
- fscanf(metadata, "%lf}, \"H\" -> {", &(J[nb - 1]));
- for (q_t i = 0; i < q - 1; i++) {
- fscanf(metadata, "%lf, ", &(H[i]));
- }
- fscanf(metadata, "%lf} |>\n", &(H[q - 1]));
-
- char *filename_M = (char *)malloc(128 * sizeof(char));
- char *filename_B = (char *)malloc(128 * sizeof(char));
- char *filename_S = (char *)malloc(128 * sizeof(char));
-
- if (filename_M == NULL || filename_B == NULL || filename_S == NULL) {
- printf("%lu: Malloc failed.\n", id);
- break;
- }
-
- sprintf(filename_M, "wolff_%lu_M.dat", id);
- sprintf(filename_B, "wolff_%lu_B.dat", id);
- sprintf(filename_S, "wolff_%lu_S.dat", id);
-
- FILE *file_M = fopen(filename_M, "rb");
- FILE *file_B = fopen(filename_B, "rb");
- FILE *file_S = fopen(filename_S, "rb");
-
- if (file_M == NULL || file_B == NULL || file_S == NULL) {
- printf("%lu: Opening data file failed.\n", id);
- break;
- }
-
- fseek(file_S, 0, SEEK_END);
- unsigned long N = ftell(file_S) / sizeof(uint32_t);
- fseek(file_S, 0, SEEK_SET);
-
- if (speedy_drop) {
- drop = N - pow(2, floor(log(N) / log(2)));
- } else {
- if (N % 2 == 1 && drop % 2 == 0) {
- drop++; // make sure M is even
- }
- }
-
- if (N <= drop) {
- printf("\033[F%lu: Number of steps %lu is less than %" PRIcount ", nothing done.\n", id, N, drop);
- } else {
- int M = N - drop;
-
- double M_f = (double)M;
-
- if (length > M) {
- length = M;
- }
-
- double *forward_data = (double *)fftw_malloc(M * sizeof(double));
- fftw_plan forward_plan = fftw_plan_r2r_1d(M, forward_data, forward_data, FFTW_R2HC, 0);
- double *reverse_data = (double *)fftw_malloc(M * sizeof(double));
- fftw_plan reverse_plan = fftw_plan_r2r_1d(M, reverse_data, reverse_data, FFTW_HC2R, 0);
-
-
- uint32_t *data_S = (uint32_t *)malloc(N * sizeof(uint32_t));
- fread(data_S, N, sizeof(uint32_t), file_S);
- for (count_t i = 0; i < M; i++) {
- forward_data[i] = (double)data_S[drop + i];
- }
- free(data_S);
- double mean_S = mean(M, forward_data);
- double squaredMean_S = squared_mean(M, forward_data);
- double moment2_S = central_moment(M, forward_data, mean_S, 2);
- double moment4_S = central_moment(M, forward_data, mean_S, 4);
-
- compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data);
-
- sprintf(filename_S, "wolff_%lu_S_OO.dat", id);
-
- FILE *file_S = fopen(filename_S, "wb");
- fwrite(&M_f, sizeof(double), 1, file_S);
- fwrite(&mean_S, sizeof(double), 1, file_S);
- fwrite(&squaredMean_S, sizeof(double), 1, file_S);
- fwrite(&moment2_S, sizeof(double), 1, file_S);
- fwrite(&moment4_S, sizeof(double), 1, file_S);
- fwrite(reverse_data, sizeof(double), length, file_S);
- fclose(file_S);
-
- uint32_t *data_B = (uint32_t *)malloc((nb - 1) * N * sizeof(uint32_t));
- uint32_t *data_M = (uint32_t *)malloc((q - 1) * N * sizeof(uint32_t));
- fread(data_B, N * (nb - 1), sizeof(uint32_t), file_B);
- fread(data_M, N * (q - 1), sizeof(uint32_t), file_M);
-
- for (count_t i = 0; i < M; i++) {
- forward_data[i] = finite_energy(nb, J, q, H, nv, ne, data_B + (nb - 1) * (drop + i), data_M + (q - 1) * (drop + i));
- }
-
- double mean_E = mean(M, forward_data);
- double squaredMean_E = squared_mean(M, forward_data);
- double moment2_E = central_moment(M, forward_data, mean_E, 2);
- double moment4_E = central_moment(M, forward_data, mean_E, 4);
-
- free(data_B);
- free(data_M);
-
- compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data);
-
- sprintf(filename_B, "wolff_%lu_E_OO.dat", id);
-
- FILE *file_E = fopen(filename_B, "wb");
- fwrite(&M_f, sizeof(double), 1, file_E);
- fwrite(&mean_E, sizeof(double), 1, file_E);
- fwrite(&squaredMean_E, sizeof(double), 1, file_E);
- fwrite(&moment2_E, sizeof(double), 1, file_E);
- fwrite(&moment4_E, sizeof(double), 1, file_E);
- fwrite(reverse_data, sizeof(double), length, file_E);
- fclose(file_E);
-
- printf("\033[F%lu: Correlation functions for %d steps written.\n", id, M);
-
- fftw_destroy_plan(forward_plan);
- fftw_destroy_plan(reverse_plan);
- fftw_free(forward_data);
- fftw_free(reverse_data);
-
- }
-
- fclose(file_M);
- fclose(file_B);
- fclose(file_S);
-
- free(J);
- free(H);
-
- free(filename_S);
- free(filename_B);
- free(filename_M);
-
- } else {
- char *junk = (char *)malloc(1024 * sizeof(char));
- fscanf(metadata, "%[^\n]\n", junk); // throw away the rest of the line, we don't need it
- free(junk);
-
- char *filename_E = (char *)malloc(128 * sizeof(char));
- char *filename_F = (char *)malloc(128 * sizeof(char));
- char *filename_M = (char *)malloc(128 * sizeof(char));
- char *filename_S = (char *)malloc(128 * sizeof(char));
-
- sprintf(filename_E, "wolff_%lu_E.dat", id);
- sprintf(filename_F, "wolff_%lu_F.dat", id);
- sprintf(filename_M, "wolff_%lu_M.dat", id);
- sprintf(filename_S, "wolff_%lu_S.dat", id);
-
- FILE *file_E = fopen(filename_E, "rb");
- FILE *file_F = fopen(filename_F, "rb");
- FILE *file_M = fopen(filename_M, "rb");
- FILE *file_S = fopen(filename_S, "rb");
-
- fseek(file_S, 0, SEEK_END);
- unsigned long N = ftell(file_S) / sizeof(uint32_t);
- fseek(file_S, 0, SEEK_SET);
-
- if (speedy_drop) {
- drop = N - pow(2, floor(log(N) / log(2)));
- } else {
- if (N % 2 == 1 && drop % 2 == 0) {
- drop++; // make sure M is even
- }
- }
-
- if (N <= drop) {
- printf("\033[F%lu: Number of steps %lu is less than %" PRIcount ", nothing done.\n", id, N, drop);
- } else {
- int M = N - drop;
- double M_f = (double)M;
-
- if (length > M) {
- length = M;
- }
-
- double *forward_data = (double *)fftw_malloc(M * sizeof(double));
- fftw_plan forward_plan = fftw_plan_r2r_1d(M, forward_data, forward_data, FFTW_R2HC, 0);
-
- double *reverse_data = (double *)fftw_malloc(M * sizeof(double));
- fftw_plan reverse_plan = fftw_plan_r2r_1d(M, reverse_data, reverse_data, FFTW_HC2R, 0);
-
- if (file_S != NULL) {
- uint32_t *data_S = (uint32_t *)malloc(N * sizeof(uint32_t));
-
- fread(data_S, sizeof(uint32_t), N, file_S);
- fclose(file_S);
-
- for (int i = 0; i < M; i++) {
- forward_data[i] = (double)data_S[drop + i];
- }
- free(data_S);
-
- double mean_S = mean(M, forward_data);
- double squaredMean_S = squared_mean(M, forward_data);
- double moment2_S = central_moment(M, forward_data, mean_S, 2);
- double moment4_S = central_moment(M, forward_data, mean_S, 4);
-
- compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data);
-
- sprintf(filename_S, "wolff_%lu_S_OO.dat", id);
- FILE *file_S_new = fopen(filename_S, "wb");
- fwrite(&M_f, sizeof(double), 1, file_S_new);
- fwrite(&mean_S, sizeof(double), 1, file_S_new);
- fwrite(&squaredMean_S, sizeof(double), 1, file_S_new);
- fwrite(&moment2_S, sizeof(double), 1, file_S_new);
- fwrite(&moment4_S, sizeof(double), 1, file_S_new);
- fwrite(reverse_data, sizeof(double), length, file_S_new);
- fclose(file_S_new);
- }
- if (file_F != NULL) {
- float *data_F = (float *)malloc(N * sizeof(float));
-
- fread(data_F, sizeof(float), N, file_F);
- fclose(file_F);
-
- for (int i = 0; i < M; i++) {
- forward_data[i] = (double)data_F[drop + i];
- }
- free(data_F);
-
- double mean_F = mean(M, forward_data);
- double squaredMean_F = squared_mean(M, forward_data);
- double moment2_F = central_moment(M, forward_data, mean_F, 2);
- double moment4_F = central_moment(M, forward_data, mean_F, 4);
-
- compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data);
-
- sprintf(filename_F, "wolff_%lu_F_OO.dat", id);
- FILE *file_F_new = fopen(filename_F, "wb");
- fwrite(&M_f, sizeof(double), 1, file_F_new);
- fwrite(&mean_F, sizeof(double), 1, file_F_new);
- fwrite(&squaredMean_F, sizeof(double), 1, file_F_new);
- fwrite(&moment2_F, sizeof(double), 1, file_F_new);
- fwrite(&moment4_F, sizeof(double), 1, file_F_new);
- fwrite(reverse_data, sizeof(double), length, file_F_new);
- fclose(file_F_new);
- }
- if (file_E != NULL) {
- float *data_E = (float *)malloc(N * sizeof(float));
-
- fread(data_E, sizeof(float), N, file_E);
- fclose(file_E);
-
- for (int i = 0; i < M; i++) {
- forward_data[i] = (double)data_E[drop + i];
- }
- free(data_E);
-
- double mean_E = mean(M, forward_data);
- double squaredMean_E = squared_mean(M, forward_data);
- double moment2_E = central_moment(M, forward_data, mean_E, 2);
- double moment4_E = central_moment(M, forward_data, mean_E, 4);
-
- compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data);
-
- sprintf(filename_E, "wolff_%lu_E_OO.dat", id);
- FILE *file_E_new = fopen(filename_E, "wb");
- fwrite(&M_f, sizeof(double), 1, file_E_new);
- fwrite(&mean_E, sizeof(double), 1, file_E_new);
- fwrite(&squaredMean_E, sizeof(double), 1, file_E_new);
- fwrite(&moment2_E, sizeof(double), 1, file_E_new);
- fwrite(&moment4_E, sizeof(double), 1, file_E_new);
- fwrite(reverse_data, sizeof(double), length, file_E_new);
- fclose(file_E_new);
- }
- if (file_M != NULL) {
- if (0 == strcmp(model, "PLANAR")) {
- float *data_M = (float *)malloc(2 * N * sizeof(float));
- fread(data_M, sizeof(float), 2 * N, file_M);
- fclose(file_M);
- for (int i = 0; i < M; i++) {
- forward_data[i] = (double)sqrt(pow(data_M[2 * drop + 2 * i], 2) + pow(data_M[2 * drop + 2 * i + 1], 2));
- }
- free(data_M);
- } else if (0 == strcmp(model, "HEISENBERG")) {
- float *data_M = (float *)malloc(3 * N * sizeof(float));
- fread(data_M, sizeof(float), 3 * N, file_M);
- fclose(file_M);
- for (int i = 0; i < M; i++) {
- forward_data[i] = sqrt(pow(data_M[3 * drop + 3 * i], 2) + pow(data_M[3 * drop + 3 * i + 1], 2) + pow(data_M[3 * drop + 3 * i + 2], 2));
- }
- free(data_M);
- } else if (0 == strcmp(model, "ISING")) {
- int *data_M = (int *)malloc(N * sizeof(float));
- fread(data_M, sizeof(int), N, file_M);
- fclose(file_M);
- for (int i = 0; i < M; i++) {
- forward_data[i] = (double)data_M[i];
- }
- free(data_M);
- } else {
- printf("UNKNOWN MODEL\n");
- exit(EXIT_FAILURE);
- }
-
- double mean_M = mean(M, forward_data);
- double squaredMean_M = squared_mean(M, forward_data);
- double moment2_M = central_moment(M, forward_data, mean_M, 2);
- double moment4_M = central_moment(M, forward_data, mean_M, 4);
-
- compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data);
-
- sprintf(filename_M, "wolff_%lu_M_OO.dat", id);
- FILE *file_M_new = fopen(filename_M, "wb");
- fwrite(&M_f, sizeof(double), 1, file_M_new);
- fwrite(&mean_M, sizeof(double), 1, file_M_new);
- fwrite(&squaredMean_M, sizeof(double), 1, file_M_new);
- fwrite(&moment2_M, sizeof(double), 1, file_M_new);
- fwrite(&moment4_M, sizeof(double), 1, file_M_new);
- fwrite(reverse_data, sizeof(double), length, file_M_new);
- fclose(file_M_new);
- }
-
- printf("\033[F%lu: Correlation functions for %d steps written.\n", id, M);
- fftw_destroy_plan(forward_plan);
- fftw_destroy_plan(reverse_plan);
- fftw_free(forward_data);
- fftw_free(reverse_data);
-
- }
- free(filename_E);
- free(filename_S);
- free(filename_F);
- free(filename_M);
- }
- }
-
- free(model);
- fclose(metadata);
- fftw_cleanup();
-
- return 0;
-}
-