diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-07-06 14:42:44 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-07-06 14:42:44 -0400 |
commit | 2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d (patch) | |
tree | 3812b4eaa09abf050b96404a615e18e95199966b /src | |
parent | 45faadfe2ddd0361d0268f836529c25e11f333b4 (diff) | |
download | c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.tar.gz c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.tar.bz2 c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.zip |
rewrote wolff in c++ with templates so that any system can be run with it
Diffstat (limited to 'src')
-rw-r--r-- | src/wolff.cpp | 137 | ||||
-rw-r--r-- | src/wolff_dgm.c | 247 | ||||
-rw-r--r-- | src/wolff_vector.c | 377 |
3 files changed, 137 insertions, 624 deletions
diff --git a/src/wolff.cpp b/src/wolff.cpp new file mode 100644 index 0000000..85df357 --- /dev/null +++ b/src/wolff.cpp @@ -0,0 +1,137 @@ + +#include <time.h> +#include <getopt.h> + +#include <cluster.h> + +double H_vector(vector_t <2, double> v1, double *H) { + vector_t <2, double> H_vec; + H_vec.x = H; + return dot <2, double> (v1, H_vec); +} + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e7; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double *H = (double *)calloc(MAX_Q, sizeof(double)); + + bool silent = false; + + int opt; + q_t J_ind = 0; + q_t H_ind = 0; + + while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H[H_ind] = atof(optarg); + H_ind++; + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + default: + exit(EXIT_FAILURE); + } + } + + state_t <orthogonal_t <2, double>, vector_t <2, double>> s(D, L, T, dot <2, double>, std::bind(H_vector, std::placeholders::_1, H)); + + // initialize random number generator + gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); + gsl_rng_set(r, rand_seed()); + + unsigned long timestamp; + + { + struct timespec spec; + clock_gettime(CLOCK_REALTIME, &spec); + timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; + } + + FILE *outfile_info = fopen("wolff_metadata.txt", "a"); + + fprintf(outfile_info, "<| \"ID\" -> %lu, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, s.nv, s.ne, T); + + for (q_t i = 0; i < 2; i++) { + fprintf(outfile_info, "%.15f", H[i]); + if (i < 2 - 1) { + fprintf(outfile_info, ", "); + } + } + + fprintf(outfile_info, "} |>\n"); + + fclose(outfile_info); + + char *filename_M = (char *)malloc(255 * sizeof(char)); + char *filename_E = (char *)malloc(255 * sizeof(char)); + char *filename_S = (char *)malloc(255 * sizeof(char)); + + sprintf(filename_M, "wolff_%lu_M.dat", timestamp); + sprintf(filename_E, "wolff_%lu_E.dat", timestamp); + sprintf(filename_S, "wolff_%lu_S.dat", timestamp); + + FILE *outfile_M = fopen(filename_M, "wb"); + FILE *outfile_E = fopen(filename_E, "wb"); + FILE *outfile_S = fopen(filename_S, "wb"); + + free(filename_M); + free(filename_E); + free(filename_S); + + v_t cluster_size = 0; + + if (!silent) printf("\n"); + for (count_t steps = 0; steps < N; steps++) { + if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", steps, N, s.E, s.M.x[0], cluster_size); + + v_t v0 = gsl_rng_uniform_int(r, s.nv); + + orthogonal_t <2, double> step; + generate_rotation<2>(r, &step); + + printf("(%g %g) . (%g %g) = %g or %g, H = %g\n\n", s.spins[0].x[0], s.spins[0].x[1], s.spins[1].x[0], s.spins[1].x[1], dot(s.spins[0], s.spins[1]), s.J(s.spins[0],s.spins[1]), s.H(s.spins[0])); + + getchar(); + cluster_size = flip_cluster <orthogonal_t <2, double>, vector_t <2, double>> (&s, v0, step, r); + + free_spin(step); + + fwrite(&(s.E), sizeof(double), 1, outfile_E); + fwrite(s.M.x, sizeof(double), 2, outfile_M); + fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S); + + } + if (!silent) { + printf("\033[F\033[J"); + } + printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", N, N, s.E, s.M.x[0], cluster_size); + + fclose(outfile_M); + fclose(outfile_E); + fclose(outfile_S); + + gsl_rng_free(r); + + free(H); + + return 0; +} + diff --git a/src/wolff_dgm.c b/src/wolff_dgm.c deleted file mode 100644 index f11b296..0000000 --- a/src/wolff_dgm.c +++ /dev/null @@ -1,247 +0,0 @@ - -#include <getopt.h> - -#include <cluster.h> - -double identity(h_t x) { - return -pow(x, 2); -} - -double basic_H(double *H, h_t x) { - return -H[0] * pow(x, 2); -} - -int main(int argc, char *argv[]) { - - L_t L = 128; - count_t N = (count_t)1e7; - count_t min_runs = 10; - count_t n = 3; - D_t D = 2; - double T = 2.26918531421; - double *H = (double *)calloc(MAX_Q, sizeof(double)); - double eps = 0; - bool silent = false; - bool record_autocorrelation = false; - count_t ac_skip = 1; - count_t W = 10; - - int opt; - q_t H_ind = 0; - - while ((opt = getopt(argc, argv, "N:n:D:L:T:H:m:e:saS:W:")) != -1) { - switch (opt) { - case 'N': - N = (count_t)atof(optarg); - break; - case 'n': - n = (count_t)atof(optarg); - break; - case 'D': - D = atoi(optarg); - break; - case 'L': - L = atoi(optarg); - break; - case 'T': - T = atof(optarg); - break; - case 'H': - H[H_ind] = atof(optarg); - H_ind++; - break; - case 'm': - min_runs = atoi(optarg); - break; - case 'e': - eps = atof(optarg); - break; - case 's': - silent = true; - break; - case 'a': - record_autocorrelation = true; - break; - case 'S': - ac_skip = (count_t)atof(optarg); - break; - case 'W': - W = (count_t)atof(optarg); - break; - default: - exit(EXIT_FAILURE); - } - } - - gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); - gsl_rng_set(r, rand_seed()); - - dgm_state_t *s = (dgm_state_t *)calloc(1, sizeof(dgm_state_t)); - - graph_t *h = graph_create_square(D, L); - s->g = graph_add_ext(h); - - s->spins = (h_t *)calloc(h->nv, sizeof(h_t)); - - s->H_info = H; - s->T = T; - s->H = basic_H; - s->J = identity; - - s->R = (dihinf_t *)calloc(1, sizeof(dihinf_t)); - - s->M = 0; - s->E = 0; - - double diff = 1e31; - count_t n_runs = 0; - count_t n_steps = 0; - - meas_t *E, *clust, *M, *dM; - - M = (meas_t *)calloc(1, sizeof(meas_t )); - dM = (meas_t *)calloc(1, sizeof(meas_t )); - - E = calloc(1, sizeof(meas_t)); - clust = calloc(1, sizeof(meas_t)); - - autocorr_t *autocorr; - if (record_autocorrelation) { - autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); - autocorr->W = 2 * W + 1; - autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); - } - - if (!silent) printf("\n"); - while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { - if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x); - - count_t n_flips = 0; - - while (n_flips / h->nv < n) { - v_t v0 = gsl_rng_uniform_int(r, h->nv); - h_t step = round((((double)s->M) / h->nv) + gsl_ran_gaussian(r, 5)); - - v_t tmp_flips = flip_cluster_dgm(s, v0, step, r); - n_flips += tmp_flips; - - if (n_runs > 0) { - n_steps++; - meas_update(clust, tmp_flips); - } - - if (record_autocorrelation && n_runs > 0) { - if (n_steps % ac_skip == 0) { - update_autocorr(autocorr, s->E); - } - } - } - - meas_update(M, s->M); - h_t min_h, max_h; - min_h = MAX_H; - max_h = MIN_H; - for (v_t i = 0; i < h->nv; i++) { - if (s->spins[i] < min_h) { - min_h = s->spins[i]; - } else if (s->spins[i] > max_h) { - max_h = s->spins[i]; - } - } - meas_update(dM, max_h - min_h); - meas_update(E, s->E); - - diff = fabs(meas_dc(E) / meas_c(E)); - - n_runs++; - } - if (!silent) { - printf("\033[F\033[J"); - } - printf("WOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x); - - double tau = 0; - bool tau_failed = false; - - if (record_autocorrelation) { - double *Gammas = (double *)malloc((W + 1) * sizeof(double)); - - Gammas[0] = 1 + rho(autocorr, 0); - for (uint64_t i = 0; i < W; i++) { - Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); - } - - uint64_t n; - for (n = 0; n < W + 1; n++) { - if (Gammas[n] <= 0) { - break; - } - } - - if (n == W + 1) { - printf("WARNING: correlation function never hit the noise floor.\n"); - tau_failed = true; - } - - if (n < 2) { - printf("WARNING: correlation function only has one nonnegative term.\n"); - tau_failed = true; - } - - double *conv_Gamma = get_convex_minorant(n, Gammas); - - double ttau = - 0.5; - - for (uint64_t i = 0; i < n + 1; i++) { - ttau += conv_Gamma[i]; - } - - free(Gammas); - free(autocorr->OO); - while (autocorr->Op != NULL) { - stack_pop_d(&(autocorr->Op)); - } - free(autocorr); - - tau = ttau * ac_skip * clust->x / h->nv; - } - - if (tau_failed) { - tau = 0; - } - - FILE *outfile = fopen("out.m", "a"); - - fprintf(outfile, "<|D->%" PRID ",L->%" PRIL ",T->%.15f", D, L, T); - fprintf(outfile, ",E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->%.15f", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv, M->x / h->nv); - fprintf(outfile, ",\\[Delta]M->%.15f", meas_dx(M) / h->nv); - fprintf(outfile, ",\\[Chi]->%.15f", meas_c(M) / h->nv); - fprintf(outfile, ",\\[Delta]\\[Chi]->%.15f", meas_dc(M) / h->nv); - fprintf(outfile, ",w->%.15f,\\[Delta]w->%.15f,wc->%.15f,\\[Delta]wc->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", dM->x, meas_dx(dM), meas_c(dM), meas_dc(dM), clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau); - - fclose(outfile); - - FILE *image = fopen("out.dat", "a"); - for (v_t i = 0; i < h->nv; i++) { - fprintf(image, "%" PRIh " ", s->spins[i]); - } - fprintf(image, "\n"); - fclose(image); - - free(E); - free(clust); - free(H); - free(s->R); - free(s->spins); - graph_free(s->g); - free(s); - graph_free(h); - gsl_rng_free(r); - - return 0; -} - diff --git a/src/wolff_vector.c b/src/wolff_vector.c deleted file mode 100644 index c5ebcb5..0000000 --- a/src/wolff_vector.c +++ /dev/null @@ -1,377 +0,0 @@ - -#include <getopt.h> - -#include <cluster.h> - -double identity(double x) { - return x; -} - -double zero(q_t n, double *H, double *x) { - return 0.0; -} - -double dot(q_t n, double *H, double *x) { - double total = 0; - for (q_t i = 0; i < n; i++) { - total += H[i] * x[i]; - } - return total; -} - -double theta(double x, double y) { - double val = atan(y / x); - - if (x < 0.0 && y > 0.0) { - return M_PI + val; - } else if ( x < 0.0 && y < 0.0 ) { - return - M_PI + val; - } else { - return val; - } -} - -double modulated(q_t n, double *H_info, double *x) { - return H_info[0] * cos(H_info[1] * theta(x[0], x[1])); -} - -double cubic(q_t n, double *H_info, double *x) { - double v_sum = 0; - - for (q_t i = 0; i < n; i++) { - v_sum += pow(x[i], 4); - } - - return - H_info[0] * v_sum; -} - -double quadratic(q_t n, double *H_info, double *x) { - double tmp = 0; - - tmp += pow(x[0], 2); - - for (q_t i = 1; i < n; i++) { - tmp += - 1.0 / (n - 1.0) * pow(x[i], 2); - } - - return - 0.5 * H_info[0] * tmp; -} - -int main(int argc, char *argv[]) { - - L_t L = 128; - count_t N = (count_t)1e7; - count_t min_runs = 10; - count_t n = 3; - q_t q = 2; - D_t D = 2; - double T = 2.26918531421; - double *H = (double *)calloc(MAX_Q, sizeof(double)); - double eps = 0; - bool silent = false; - bool record_autocorrelation = false; - vector_field_t H_type = VECTOR; - count_t ac_skip = 1; - count_t W = 10; - - int opt; - q_t H_ind = 0; - - while ((opt = getopt(argc, argv, "N:n:D:L:q:T:H:m:e:saS:W:f:")) != -1) { - switch (opt) { - case 'N': - N = (count_t)atof(optarg); - break; - case 'n': - n = (count_t)atof(optarg); - break; - case 'D': - D = atoi(optarg); - break; - case 'L': - L = atoi(optarg); - break; - case 'q': - q = atoi(optarg); - break; - case 'T': - T = atof(optarg); - break; - case 'H': - H[H_ind] = atof(optarg); - H_ind++; - break; - case 'm': - min_runs = atoi(optarg); - break; - case 'e': - eps = atof(optarg); - break; - case 's': - silent = true; - break; - case 'a': - record_autocorrelation = true; - break; - case 'S': - ac_skip = (count_t)atof(optarg); - break; - case 'W': - W = (count_t)atof(optarg); - break; - case 'f': - switch (atoi(optarg)) { - case 0: - H_type = VECTOR; - break; - case 1: - H_type = MODULATED; - break; - case 2: - H_type = CUBIC; - break; - case 3: - H_type = QUADRATIC; - break; - } - break; - default: - exit(EXIT_FAILURE); - } - } - - gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); - gsl_rng_set(r, rand_seed()); - - vector_state_t *s = (vector_state_t *)calloc(1, sizeof(vector_state_t)); - - graph_t *h = graph_create_square(D, L); - s->g = graph_add_ext(h); - - s->n = q; - - s->spins = (double *)calloc(n * h->nv, sizeof(double)); - - for (v_t i = 0; i < h->nv; i++) { - s->spins[q * i] = 1.0; - } - - s->H_info = H; - s->T = T; - switch (H_type) { - case VECTOR: - s->H = dot; - break; - case MODULATED: - s->H = modulated; - break; - case CUBIC: - s->H = cubic; - break; - case QUADRATIC: - s->H = quadratic; - break; - } - s->J = identity; - - s->R = (double *)calloc(q * q, sizeof(double)); - - for (q_t i = 0; i < q; i++) { - s->R[q * i + i] = 1.0; - } - - s->M = (double *)calloc(q, sizeof(double)); - s->M[0] = 1.0; - s->E = - ((double)h->ne) * s->J(1.0) - (double)h->nv * s->H(s->n, s->H_info, s->M); - s->M[0] *= (double)h->nv; - - double diff = 1e31; - count_t n_runs = 0; - count_t n_steps = 0; - - meas_t *E, *clust, **M, *aM; - - M = (meas_t **)malloc(q * sizeof(meas_t *)); - aM = (meas_t *)calloc(q, sizeof(meas_t )); - for (q_t i = 0; i < q; i++) { - M[i] = (meas_t *)calloc(1, sizeof(meas_t)); - } - - E = calloc(1, sizeof(meas_t)); - clust = calloc(1, sizeof(meas_t)); - - autocorr_t *autocorr; - if (record_autocorrelation) { - autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); - autocorr->W = 2 * W + 1; - autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); - } - - if (!silent) printf("\n"); - while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { - if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(aM) / aM->x, meas_dc(E) / meas_c(E), meas_dc(aM) / meas_c(aM), h->nv / clust->x); - - count_t n_flips = 0; - - while (n_flips / h->nv < n) { - v_t v0 = gsl_rng_uniform_int(r, h->nv); - double *step = gen_rot(r, q); - - v_t tmp_flips = flip_cluster_vector(s, v0, step, r); - free(step); - n_flips += tmp_flips; - - if (n_runs > 0) { - n_steps++; - meas_update(clust, tmp_flips); - - if (record_autocorrelation && n_steps % ac_skip == 0) { - update_autocorr(autocorr, s->E); - } - } - } - - double aM_val = 0; - - for (q_t i = 0; i < q; i++) { - meas_update(M[i], s->M[i]); - aM_val += s->M[i] * s->M[i]; - } - - meas_update(aM, sqrt(aM_val)); - meas_update(E, s->E); - - diff = fabs(meas_dx(clust) / clust->x); - - n_runs++; - } - - if (!silent) { - printf("\033[F\033[J"); - } - printf("WOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x); - - double tau = 0; - bool tau_failed = false; - - if (record_autocorrelation) { - double *Gammas = (double *)malloc((W + 1) * sizeof(double)); - - Gammas[0] = 1 + rho(autocorr, 0); - for (uint64_t i = 0; i < W; i++) { - Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); - } - - uint64_t n; - for (n = 0; n < W + 1; n++) { - if (Gammas[n] <= 0) { - break; - } - } - - if (n == W + 1) { - printf("WARNING: correlation function never hit the noise floor.\n"); - tau_failed = true; - } - - if (n < 2) { - printf("WARNING: correlation function only has one nonnegative term.\n"); - tau_failed = true; - } - - double *conv_Gamma = get_convex_minorant(n, Gammas); - - double ttau = - 0.5; - - for (uint64_t i = 0; i < n + 1; i++) { - ttau += conv_Gamma[i]; - } - - FILE *autocorr_file = fopen("autocorr.dat", "a"); - - printf("%g %g\n", Gammas[0], conv_Gamma[0]); - - for (count_t i = 0; i < n+1; i++) { - fprintf(autocorr_file, "%g ", conv_Gamma[i]); - } - fprintf(autocorr_file, "\n"); - - fclose(autocorr_file); - - free(Gammas); - free(autocorr->OO); - while (autocorr->Op != NULL) { - stack_pop_d(&(autocorr->Op)); - } - free(autocorr); - - tau = ttau * ac_skip * clust->x / h->nv; - } - - if (tau_failed) { - tau = 0; - } - - FILE *outfile = fopen("out.m", "a"); - - fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,H->{", N, n, D, L, q, T); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", H[i]); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", M[i]->x / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Delta]M->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Chi]->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Delta]\\[Chi]->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},aM->%.15f,\\[Delta]aM->%.15f,a\\[Chi]->%.15f,\\[Delta]a\\[Chi]->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", aM->x / h->nv, meas_dx(aM) / h->nv, meas_c(aM) / h->nv, meas_dc(aM) / h->nv, clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau); - - fclose(outfile); - - free(E); - free(clust); - for (q_t i = 0; i < q; i++) { - free(M[i]); - } - free(M); - free(H); - free(s->M); - free(s->R); - free(s->spins); - graph_free(s->g); - free(s); - graph_free(h); - gsl_rng_free(r); - - return 0; -} - |