diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-07-06 14:42:44 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-07-06 14:42:44 -0400 |
commit | 2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d (patch) | |
tree | 3812b4eaa09abf050b96404a615e18e95199966b | |
parent | 45faadfe2ddd0361d0268f836529c25e11f333b4 (diff) | |
download | c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.tar.gz c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.tar.bz2 c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.zip |
rewrote wolff in c++ with templates so that any system can be run with it
-rw-r--r-- | CMakeLists.txt | 15 | ||||
-rw-r--r-- | lib/cluster.c | 277 | ||||
-rw-r--r-- | lib/cluster.h | 391 | ||||
-rw-r--r-- | lib/graph.h | 10 | ||||
-rw-r--r-- | lib/rand.h | 9 | ||||
-rw-r--r-- | lib/stack.h | 9 | ||||
-rw-r--r-- | src/wolff.cpp | 137 | ||||
-rw-r--r-- | src/wolff_dgm.c | 247 | ||||
-rw-r--r-- | src/wolff_vector.c | 377 |
9 files changed, 507 insertions, 965 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt index 4b46bcd..7c1bc32 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -4,15 +4,15 @@ project(wolff) set(CMAKE_CXX_FLAGS_DEBUG "-g") set(CMAKE_CXX_FLAGS_RELEASE "-O3") -set (CMAKE_CXX_STANDARD 11) +set (CMAKE_CXX_STANDARD 17) include_directories(lib ~/.local/include) link_directories(~/.local/lib) -file(GLOB SOURCES lib/*.c) -add_executable(wolff_finite src/wolff_finite.c ${SOURCES}) -add_executable(wolff_vector src/wolff_vector.c ${SOURCES}) -add_executable(wolff_dgm src/wolff_dgm.c ${SOURCES}) +file(GLOB CSOURCES lib/*.c) +file(GLOB CPPSOURCES lib/*.cpp) +add_executable(wolff_finite src/wolff_finite.c ${CSOURCES}) +add_executable(wolff src/wolff.cpp ${CPPSOURCES} ${CSOURCES}) find_package(OpenMP) if (OPENMP_FOUND) @@ -21,8 +21,7 @@ if (OPENMP_FOUND) endif() target_link_libraries(wolff_finite gsl m cblas fftw3) -target_link_libraries(wolff_vector gsl m cblas fftw3) -target_link_libraries(wolff_dgm gsl m cblas fftw3) +target_link_libraries(wolff gsl m cblas fftw3) -install(TARGETS wolff_finite wolff_vector wolff_dgm DESTINATION bin) +install(TARGETS wolff_finite wolff DESTINATION bin) diff --git a/lib/cluster.c b/lib/cluster.c deleted file mode 100644 index 96225a2..0000000 --- a/lib/cluster.c +++ /dev/null @@ -1,277 +0,0 @@ - -#include "cluster.h" - -v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - bool *marks = (bool *)calloc(s->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - - if (!marks[v]) { - h_t s_old, s_new; - dihinf_t *R_new; - bool external_flipped; - - marks[v] = true; - - if (v == s->g->nv - 1) { - R_new = dihinf_compose(rot, s->R); - external_flipped = true; - } else { - s_old = s->spins[v]; - s_new = dihinf_act(rot, s_old); - external_flipped = false; - } - - v_t nn = s->g->v_i[v + 1] - s->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - h_t sn; - double prob; - bool external_neighbor = false; - - v_t vn = s->g->v_adj[s->g->v_i[v] + i]; - - if (vn == s->g->nv - 1) { - external_neighbor = true; - } else { - sn = s->spins[vn]; - } - - if (external_flipped || external_neighbor) { - h_t rot_s_old, rot_s_new; - - if (external_neighbor) { - rot_s_old = dihinf_inverse_act(s->R, s_old); - rot_s_new = dihinf_inverse_act(s->R, s_new); - } else { - rot_s_old = dihinf_inverse_act(s->R, sn); - rot_s_new = dihinf_inverse_act(R_new, sn); - } - - double dE = s->H(s->H_info, rot_s_old) - s->H(s->H_info, rot_s_new); - prob = 1.0 - exp(-dE / s->T); - - s->M += rot_s_new - rot_s_old; - s->E += dE; - } else { - double dE = (s->J)(s_old - sn) - (s->J)(s_new - sn); - prob = 1.0 - exp(-dE / s->T); - s->E += dE; - } - - if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (external_flipped) { - free(s->R); - s->R = R_new; - } else { - s->spins[v] = s_new; - } - - if (v != s->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - free(marks); - - return nv; -} - -v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - //node_t *T = NULL; - bool *marks = (bool *)calloc(s->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - -// if (!tree_contains(T, v)) { // if the vertex hasn't already been flipped - if (!marks[v]) { - bool v_is_external = false; - double *s_old, *s_new, *R_tmp; - - if (v == s->g->nv - 1) { - v_is_external = true; - } - - //tree_insert(&T, v); - marks[v] = true; - - if (v == s->g->nv - 1) { - R_tmp = orthogonal_rotate(s->n, rot, s->R); - } else { - s_old = &(s->spins[s->n * v]); // don't free me! I'm a pointer within array s->spins - s_new = vector_rotate(s->n, rot, s_old); // free me! I'm a new vector - } - - v_t nn = s->g->v_i[v + 1] - s->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - v_t vn = s->g->v_adj[s->g->v_i[v] + i]; - - bool vn_is_external = false; - - if (vn == s->g->nv - 1) { - vn_is_external = true; - } - - double *sn; - - if (!vn_is_external) { - sn = &(s->spins[s->n * vn]); - } - - double prob; - - if (v_is_external || vn_is_external) { - double *rs_old, *rs_new; - if (vn_is_external) { - rs_old = vector_rotate_inverse(s->n, s->R, s_old); - rs_new = vector_rotate_inverse(s->n, s->R, s_new); - } else { - rs_old = vector_rotate_inverse(s->n, s->R, sn); - rs_new = vector_rotate_inverse(s->n, R_tmp, sn); - } - double dE = s->H(s->n, s->H_info, rs_old) - s->H(s->n, s->H_info, rs_new); - prob = 1.0 - exp(-dE / s->T); - vector_subtract(s->n, s->M, rs_old); - vector_add(s->n, s->M, rs_new); - s->E += dE; - - free(rs_old); - free(rs_new); - } else { - double dE = (s->J)(vector_dot(s->n, sn, s_old)) - (s->J)(vector_dot(s->n, sn, s_new)); - prob = 1.0 - exp(-dE / s->T); - s->E += dE; - } - - if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (v == s->g->nv - 1) { - free(s->R); - s->R = R_tmp; - } else { - vector_replace(s->n, s_old, s_new); - free(s_new); - } - - if (v != s->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - //tree_freeNode(T); - free(marks); - - return nv; -} - -/*G -template <class R_t, class X_t> -v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t *r, gsl_rng *rand) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - bool *marks = (bool *)calloc(state->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - - if (!marks[v]) { - X_t *si_old, *si_new; - R_t *s0_old, *s0_new; - - si_old = state->s[v]; - s0_old = state->s0; - - marks[v] = true; - - if (v == state->g->nv - 1) { - s0_new = act <R_t, R_t> (r, s0_old); - } else { - si_new = act <R_t, X_t> (r, si_old); - } - - v_t nn = state->g->v_i[v + 1] - state->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - v_t vn = state->g->v_adj[state->g->v_i[v] + i]; - - X_t *sj; - - if (vn != state->g->nv - 1) { - sj = state->s[vn]; - } - - double prob; - - bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1); - - if (is_ext) { - X_t *rs_old, *rs_new; - if (vn == state->g->nv - 1) { - rs_old = inverse_act <class R_t, class X_t> (s0_old, si_old); - rs_new = inverse_act <class R_t, class X_t> (s0_old, si_new); - } else { - rs_old = inverse_act <class R_t, class X_t> (s0_old, sj); - rs_new = inverse_act <class R_t, class X_t> (s0_new, sj); - } - double dE = state->B(rs_old) - state->B(rs_new); - prob = 1.0 - exp(-dE / state->T); - update_magnetization <X_t> (state->M, rs_old, rs_new); - state->E += dE; - - free_X <X_t> (rs_old); - free_X <X_t> (rs_new); - } else { - double dE = state->Z(si_old, sj) - state->Z(si_new, sj); - prob = 1.0 - exp(-dE / state->T); - state->E += dE; - } - - if (gsl_rng_uniform(rand) < prob) { // and with probability... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (v == state->g->nv - 1) { - free_R <R_t> (state->s0); - state->s0 = s0_new; - } else { - free_X <X_t> (state->s[v]); - state->s[v] = si_new; - } - - if (v != state->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - free(marks); - - return nv; -} -*/ diff --git a/lib/cluster.h b/lib/cluster.h index d118735..29dd0cb 100644 --- a/lib/cluster.h +++ b/lib/cluster.h @@ -1,13 +1,14 @@ #pragma once +#include <functional> #include <assert.h> #include <fftw3.h> #include <float.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_rng.h> #include <inttypes.h> -#include <math.h> +#include <cmath> #include <stdbool.h> #include <string.h> #include <sys/types.h> @@ -24,57 +25,339 @@ #include "dihinf.h" #include "yule_walker.h" -typedef struct { - graph_t *g; - q_t *spins; - double T; - double *J; - double *H; - double *J_probs; - double *H_probs; - dihedral_t *R; - double E; - v_t *M; - q_t q; -} ising_state_t; - -typedef struct { - graph_t *g; - h_t *spins; - double T; - double (*J)(h_t); - double (*H)(double *, h_t); - double *H_info; - dihinf_t *R; - double E; - h_t M; -} dgm_state_t; - -typedef struct { - graph_t *g; - double *spins; - double T; - double (*J)(double); - double (*H)(q_t, double *, double *); - double *H_info; - double *R; - double E; - double *M; - q_t n; -} vector_state_t; - -typedef enum { - VECTOR, - MODULATED, - CUBIC, - QUADRATIC -} vector_field_t; - -v_t flip_cluster(ising_state_t *s, v_t v0, q_t s1, gsl_rng *r); - -v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r); - -v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r); - -graph_t *graph_add_ext(const graph_t *g); +template <class T> +void init(T*); + +template <class T> +T scalar_multiple(v_t a, T b); + +template <class R_t, class X_t> +X_t act(R_t a, X_t b); + +template <class R_t, class X_t> +X_t act_inverse(R_t a, X_t b); + +template <class T> +T copy(T a); + +template <class T> +void free_spin(T a); + +template <class T> +T add(T, T); + +template <class T> +T subtract(T, T); + +template <class T> +T gen_rot(gsl_rng *r); + +template <class R_t, class X_t> +class state_t { + public: + D_t D; + L_t L; + v_t nv; + v_t ne; + graph_t *g; + double T; + X_t *spins; + R_t R; + double E; + X_t M; // the "sum" of the spins, like the total magnetization + + std::function <double(X_t, X_t)> J; + std::function <double(X_t)> H; + + state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), T(T), J(J), H(H) { + graph_t *h = graph_create_square(D, L); + nv = h->nv; + ne = h->ne; + g = graph_add_ext(h); + graph_free(h); + spins = (X_t *)malloc(nv * sizeof(X_t)); + for (v_t i = 0; i < nv; i++) { + init (&(spins[i])); + } + init (&R); + E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]); + M = scalar_multiple (nv, spins[0]); + } + + ~state_t() { + graph_free(g); + for (v_t i = 0; i < nv; i++) { + free_spin(spins[i]); + } + free(spins); + free_spin(R); + free_spin(M); + } +}; + +template <q_t q, class T> +struct vector_t { T *x; }; + +template <q_t q, class T> +void init(vector_t <q, T> *ptr) { + ptr->x = (T *)calloc(q, sizeof(T)); + + ptr->x[0] = (T)1; +} + +template <q_t q, class T> +vector_t <q, T> copy (vector_t <q, T> v) { + vector_t <q, T> v_copy; + + v_copy.x = (T *)calloc(q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + v_copy.x[i] = v.x[i]; + } + + return v_copy; +} + +template <q_t q, class T> +void add (vector_t <q, T> v1, vector_t <q, T> v2) { + for (q_t i = 0; i < q; i++) { + v1.x[i] += v2.x[i]; + } +} + +template <q_t q, class T> +void subtract (vector_t <q, T> v1, vector_t <q, T> v2) { + for (q_t i = 0; i < q; i++) { + v1.x[i] -= v2.x[i]; + } +} + +template <q_t q, class T> +vector_t <q, T> scalar_multiple(v_t a, vector_t <q, T> v) { + vector_t <q, T> multiple; + multiple.x = (T *)malloc(q * sizeof(T)); + for (q_t i = 0; i < q; i++) { + multiple.x[i] = a * v.x[i]; + } + + return multiple; +} + +template <q_t q, class T> +T dot(vector_t <q, T> v1, vector_t <q, T> v2) { + T prod = 0; + + for (q_t i = 0; i < q; i++) { + prod += v1.x[i] * v2.x[i]; + } + + return prod; +} + +template <q_t q, class T> +void free_spin (vector_t <q, T> v) { + free(v.x); +} + +template <q_t q, class T> +struct orthogonal_t { T *x; }; + +template <q_t q, class T> +void init(orthogonal_t <q, T> *ptr) { + ptr->x = (T *)calloc(q * q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + ptr->x[q * i + i] = (T)1; + } +} + +template <q_t q, class T> +orthogonal_t <q, T> copy (orthogonal_t <q, T> m) { + orthogonal_t <q, T> m_copy; + m_copy.x = (T *)calloc(q * q, sizeof(T)); + + for (q_t i = 0; i < q * q; i++) { + m_copy.x[i] = m.x[i]; + } + + return m_copy; +} + +template <q_t q, class T> +void free_spin (orthogonal_t <q, T> m) { + free(m.x); +} + +template <q_t q, class T> +vector_t <q, T> act (orthogonal_t <q, T> m, vector_t <q, T> v) { + vector_t <q, T> v_rot; + v_rot.x = (T *)calloc(q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + v_rot.x[i] += m.x[q * i + j] * v.x[j]; + } + } + + return v_rot; +} + + +template <q_t q, class T> +orthogonal_t <q, T> act (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) { + orthogonal_t <q, T> m2_rot; + m2_rot.x = (T *)calloc(q * q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + for (q_t k = 0; k < q; k++) { + m2_rot.x[i * q + j] += m1.x[i * q + j] * m2.x[j * q + k]; + } + } + } + + return m2_rot; +} + +template <q_t q, class T> +vector_t <q, T> act_inverse (orthogonal_t <q, T> m, vector_t <q, T> v) { + vector_t <q, T> v_rot; + v_rot.x = (T *)calloc(q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + v_rot.x[i] += m.x[q * j + i] * v.x[j]; + } + } + + return v_rot; +} + +template <q_t q, class T> +orthogonal_t <q, T> act_inverse (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) { + orthogonal_t <q, T> m2_rot; + m2_rot.x = (T *)calloc(q * q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + for (q_t k = 0; k < q; k++) { + m2_rot.x[i * q + j] += m1.x[j * q + i] * m2.x[j * q + k]; + } + } + } + + return m2_rot; +} + +template <q_t q> +void generate_rotation (gsl_rng *r, orthogonal_t <q, double> *ptr) { + double *v = (double *)malloc(q * sizeof(double)); + double v2 = 0; + + for (q_t i = 0; i < q; i++) { + v[i] = gsl_ran_ugaussian(r); + v2 += v[i] * v[i]; + } + + ptr->x = (double *)calloc(q * q, sizeof(double)); + + for (q_t i = 0; i < q; i++) { + ptr->x[q * i + i] = 1.0; + for (q_t j = 0; j < q; j++) { + ptr->x[q * i + j] -= 2 * v[i] * v[j] / v2; + } + } + + free(v); +} + +template <class R_t, class X_t> +v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) { + v_t nv = 0; + + ll_t *stack = NULL; // create a new stack + stack_push(&stack, v0); // push the initial vertex to the stack + + bool *marks = (bool *)calloc(state->g->nv, sizeof(bool)); + + while (stack != NULL) { + v_t v = stack_pop(&stack); + + if (!marks[v]) { + X_t si_old, si_new; + R_t R_old, R_new; + + si_old = state->spins[v]; + R_old = state->R; + + marks[v] = true; + + if (v == state->g->nv - 1) { + R_new = act (r, R_old); + } else { + si_new = act (r, si_old); + } + + v_t nn = state->g->v_i[v + 1] - state->g->v_i[v]; + + for (v_t i = 0; i < nn; i++) { + v_t vn = state->g->v_adj[state->g->v_i[v] + i]; + + X_t sj; + + if (vn != state->g->nv - 1) { + sj = state->spins[vn]; + } + + double prob; + + bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1); + + if (is_ext) { + X_t rs_old, rs_new; + if (vn == state->g->nv - 1) { + rs_old = act_inverse (R_old, si_old); + rs_new = act_inverse (R_old, si_new); + } else { + rs_old = act_inverse (R_old, sj); + rs_new = act_inverse (R_new, sj); + } + double dE = state->H(rs_old) - state->H(rs_new); + prob = 1.0 - exp(-dE / state->T); + + subtract (state->M, rs_old); + add (state->M, rs_new); + state->E += dE; + + free_spin (rs_old); + free_spin (rs_new); + } else { + double dE = state->J(si_old, sj) - state->J(si_new, sj); + prob = 1.0 - exp(-dE / state->T); + state->E += dE; + } + + if (gsl_rng_uniform(rand) < prob) { // and with probability... + stack_push(&stack, vn); // push the neighboring vertex to the stack + } + } + + if (v == state->g->nv - 1) { + free_spin(state->R); + state->R = R_new; + } else { + free_spin(state->spins[v]); + state->spins[v] = si_new; + } + + if (v != state->g->nv - 1) { // count the number of non-external sites that flip + nv++; + } + } + } + + free(marks); + + return nv; +} diff --git a/lib/graph.h b/lib/graph.h index cb47faa..beb7f4c 100644 --- a/lib/graph.h +++ b/lib/graph.h @@ -7,6 +7,10 @@ #include "types.h" +#ifdef __cplusplus +extern "C" { +#endif + typedef struct { v_t ne; v_t nv; @@ -15,8 +19,10 @@ typedef struct { } graph_t; graph_t *graph_create_square(D_t D, L_t L); - graph_t *graph_add_ext(const graph_t *G); - void graph_free(graph_t *h); +#ifdef __cplusplus +} +#endif + @@ -4,4 +4,13 @@ #include <assert.h> #include <stdio.h> +#ifdef __cplusplus +extern "C" { +#endif + unsigned long int rand_seed(); + +#ifdef __cplusplus +} +#endif + diff --git a/lib/stack.h b/lib/stack.h index a354ab5..8d25aff 100644 --- a/lib/stack.h +++ b/lib/stack.h @@ -8,6 +8,11 @@ #include "types.h" + +#ifdef __cplusplus +extern "C" { +#endif + typedef struct ll_tag { v_t x; struct ll_tag *next; @@ -24,3 +29,7 @@ void stack_push_d(dll_t **q, double x); v_t stack_pop(ll_t **q); double stack_pop_d(dll_t **q); +#ifdef __cplusplus +} +#endif + diff --git a/src/wolff.cpp b/src/wolff.cpp new file mode 100644 index 0000000..85df357 --- /dev/null +++ b/src/wolff.cpp @@ -0,0 +1,137 @@ + +#include <time.h> +#include <getopt.h> + +#include <cluster.h> + +double H_vector(vector_t <2, double> v1, double *H) { + vector_t <2, double> H_vec; + H_vec.x = H; + return dot <2, double> (v1, H_vec); +} + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e7; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double *H = (double *)calloc(MAX_Q, sizeof(double)); + + bool silent = false; + + int opt; + q_t J_ind = 0; + q_t H_ind = 0; + + while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H[H_ind] = atof(optarg); + H_ind++; + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + default: + exit(EXIT_FAILURE); + } + } + + state_t <orthogonal_t <2, double>, vector_t <2, double>> s(D, L, T, dot <2, double>, std::bind(H_vector, std::placeholders::_1, H)); + + // initialize random number generator + gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); + gsl_rng_set(r, rand_seed()); + + unsigned long timestamp; + + { + struct timespec spec; + clock_gettime(CLOCK_REALTIME, &spec); + timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; + } + + FILE *outfile_info = fopen("wolff_metadata.txt", "a"); + + fprintf(outfile_info, "<| \"ID\" -> %lu, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, s.nv, s.ne, T); + + for (q_t i = 0; i < 2; i++) { + fprintf(outfile_info, "%.15f", H[i]); + if (i < 2 - 1) { + fprintf(outfile_info, ", "); + } + } + + fprintf(outfile_info, "} |>\n"); + + fclose(outfile_info); + + char *filename_M = (char *)malloc(255 * sizeof(char)); + char *filename_E = (char *)malloc(255 * sizeof(char)); + char *filename_S = (char *)malloc(255 * sizeof(char)); + + sprintf(filename_M, "wolff_%lu_M.dat", timestamp); + sprintf(filename_E, "wolff_%lu_E.dat", timestamp); + sprintf(filename_S, "wolff_%lu_S.dat", timestamp); + + FILE *outfile_M = fopen(filename_M, "wb"); + FILE *outfile_E = fopen(filename_E, "wb"); + FILE *outfile_S = fopen(filename_S, "wb"); + + free(filename_M); + free(filename_E); + free(filename_S); + + v_t cluster_size = 0; + + if (!silent) printf("\n"); + for (count_t steps = 0; steps < N; steps++) { + if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", steps, N, s.E, s.M.x[0], cluster_size); + + v_t v0 = gsl_rng_uniform_int(r, s.nv); + + orthogonal_t <2, double> step; + generate_rotation<2>(r, &step); + + printf("(%g %g) . (%g %g) = %g or %g, H = %g\n\n", s.spins[0].x[0], s.spins[0].x[1], s.spins[1].x[0], s.spins[1].x[1], dot(s.spins[0], s.spins[1]), s.J(s.spins[0],s.spins[1]), s.H(s.spins[0])); + + getchar(); + cluster_size = flip_cluster <orthogonal_t <2, double>, vector_t <2, double>> (&s, v0, step, r); + + free_spin(step); + + fwrite(&(s.E), sizeof(double), 1, outfile_E); + fwrite(s.M.x, sizeof(double), 2, outfile_M); + fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S); + + } + if (!silent) { + printf("\033[F\033[J"); + } + printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", N, N, s.E, s.M.x[0], cluster_size); + + fclose(outfile_M); + fclose(outfile_E); + fclose(outfile_S); + + gsl_rng_free(r); + + free(H); + + return 0; +} + diff --git a/src/wolff_dgm.c b/src/wolff_dgm.c deleted file mode 100644 index f11b296..0000000 --- a/src/wolff_dgm.c +++ /dev/null @@ -1,247 +0,0 @@ - -#include <getopt.h> - -#include <cluster.h> - -double identity(h_t x) { - return -pow(x, 2); -} - -double basic_H(double *H, h_t x) { - return -H[0] * pow(x, 2); -} - -int main(int argc, char *argv[]) { - - L_t L = 128; - count_t N = (count_t)1e7; - count_t min_runs = 10; - count_t n = 3; - D_t D = 2; - double T = 2.26918531421; - double *H = (double *)calloc(MAX_Q, sizeof(double)); - double eps = 0; - bool silent = false; - bool record_autocorrelation = false; - count_t ac_skip = 1; - count_t W = 10; - - int opt; - q_t H_ind = 0; - - while ((opt = getopt(argc, argv, "N:n:D:L:T:H:m:e:saS:W:")) != -1) { - switch (opt) { - case 'N': - N = (count_t)atof(optarg); - break; - case 'n': - n = (count_t)atof(optarg); - break; - case 'D': - D = atoi(optarg); - break; - case 'L': - L = atoi(optarg); - break; - case 'T': - T = atof(optarg); - break; - case 'H': - H[H_ind] = atof(optarg); - H_ind++; - break; - case 'm': - min_runs = atoi(optarg); - break; - case 'e': - eps = atof(optarg); - break; - case 's': - silent = true; - break; - case 'a': - record_autocorrelation = true; - break; - case 'S': - ac_skip = (count_t)atof(optarg); - break; - case 'W': - W = (count_t)atof(optarg); - break; - default: - exit(EXIT_FAILURE); - } - } - - gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); - gsl_rng_set(r, rand_seed()); - - dgm_state_t *s = (dgm_state_t *)calloc(1, sizeof(dgm_state_t)); - - graph_t *h = graph_create_square(D, L); - s->g = graph_add_ext(h); - - s->spins = (h_t *)calloc(h->nv, sizeof(h_t)); - - s->H_info = H; - s->T = T; - s->H = basic_H; - s->J = identity; - - s->R = (dihinf_t *)calloc(1, sizeof(dihinf_t)); - - s->M = 0; - s->E = 0; - - double diff = 1e31; - count_t n_runs = 0; - count_t n_steps = 0; - - meas_t *E, *clust, *M, *dM; - - M = (meas_t *)calloc(1, sizeof(meas_t )); - dM = (meas_t *)calloc(1, sizeof(meas_t )); - - E = calloc(1, sizeof(meas_t)); - clust = calloc(1, sizeof(meas_t)); - - autocorr_t *autocorr; - if (record_autocorrelation) { - autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); - autocorr->W = 2 * W + 1; - autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); - } - - if (!silent) printf("\n"); - while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { - if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x); - - count_t n_flips = 0; - - while (n_flips / h->nv < n) { - v_t v0 = gsl_rng_uniform_int(r, h->nv); - h_t step = round((((double)s->M) / h->nv) + gsl_ran_gaussian(r, 5)); - - v_t tmp_flips = flip_cluster_dgm(s, v0, step, r); - n_flips += tmp_flips; - - if (n_runs > 0) { - n_steps++; - meas_update(clust, tmp_flips); - } - - if (record_autocorrelation && n_runs > 0) { - if (n_steps % ac_skip == 0) { - update_autocorr(autocorr, s->E); - } - } - } - - meas_update(M, s->M); - h_t min_h, max_h; - min_h = MAX_H; - max_h = MIN_H; - for (v_t i = 0; i < h->nv; i++) { - if (s->spins[i] < min_h) { - min_h = s->spins[i]; - } else if (s->spins[i] > max_h) { - max_h = s->spins[i]; - } - } - meas_update(dM, max_h - min_h); - meas_update(E, s->E); - - diff = fabs(meas_dc(E) / meas_c(E)); - - n_runs++; - } - if (!silent) { - printf("\033[F\033[J"); - } - printf("WOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x); - - double tau = 0; - bool tau_failed = false; - - if (record_autocorrelation) { - double *Gammas = (double *)malloc((W + 1) * sizeof(double)); - - Gammas[0] = 1 + rho(autocorr, 0); - for (uint64_t i = 0; i < W; i++) { - Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); - } - - uint64_t n; - for (n = 0; n < W + 1; n++) { - if (Gammas[n] <= 0) { - break; - } - } - - if (n == W + 1) { - printf("WARNING: correlation function never hit the noise floor.\n"); - tau_failed = true; - } - - if (n < 2) { - printf("WARNING: correlation function only has one nonnegative term.\n"); - tau_failed = true; - } - - double *conv_Gamma = get_convex_minorant(n, Gammas); - - double ttau = - 0.5; - - for (uint64_t i = 0; i < n + 1; i++) { - ttau += conv_Gamma[i]; - } - - free(Gammas); - free(autocorr->OO); - while (autocorr->Op != NULL) { - stack_pop_d(&(autocorr->Op)); - } - free(autocorr); - - tau = ttau * ac_skip * clust->x / h->nv; - } - - if (tau_failed) { - tau = 0; - } - - FILE *outfile = fopen("out.m", "a"); - - fprintf(outfile, "<|D->%" PRID ",L->%" PRIL ",T->%.15f", D, L, T); - fprintf(outfile, ",E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->%.15f", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv, M->x / h->nv); - fprintf(outfile, ",\\[Delta]M->%.15f", meas_dx(M) / h->nv); - fprintf(outfile, ",\\[Chi]->%.15f", meas_c(M) / h->nv); - fprintf(outfile, ",\\[Delta]\\[Chi]->%.15f", meas_dc(M) / h->nv); - fprintf(outfile, ",w->%.15f,\\[Delta]w->%.15f,wc->%.15f,\\[Delta]wc->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", dM->x, meas_dx(dM), meas_c(dM), meas_dc(dM), clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau); - - fclose(outfile); - - FILE *image = fopen("out.dat", "a"); - for (v_t i = 0; i < h->nv; i++) { - fprintf(image, "%" PRIh " ", s->spins[i]); - } - fprintf(image, "\n"); - fclose(image); - - free(E); - free(clust); - free(H); - free(s->R); - free(s->spins); - graph_free(s->g); - free(s); - graph_free(h); - gsl_rng_free(r); - - return 0; -} - diff --git a/src/wolff_vector.c b/src/wolff_vector.c deleted file mode 100644 index c5ebcb5..0000000 --- a/src/wolff_vector.c +++ /dev/null @@ -1,377 +0,0 @@ - -#include <getopt.h> - -#include <cluster.h> - -double identity(double x) { - return x; -} - -double zero(q_t n, double *H, double *x) { - return 0.0; -} - -double dot(q_t n, double *H, double *x) { - double total = 0; - for (q_t i = 0; i < n; i++) { - total += H[i] * x[i]; - } - return total; -} - -double theta(double x, double y) { - double val = atan(y / x); - - if (x < 0.0 && y > 0.0) { - return M_PI + val; - } else if ( x < 0.0 && y < 0.0 ) { - return - M_PI + val; - } else { - return val; - } -} - -double modulated(q_t n, double *H_info, double *x) { - return H_info[0] * cos(H_info[1] * theta(x[0], x[1])); -} - -double cubic(q_t n, double *H_info, double *x) { - double v_sum = 0; - - for (q_t i = 0; i < n; i++) { - v_sum += pow(x[i], 4); - } - - return - H_info[0] * v_sum; -} - -double quadratic(q_t n, double *H_info, double *x) { - double tmp = 0; - - tmp += pow(x[0], 2); - - for (q_t i = 1; i < n; i++) { - tmp += - 1.0 / (n - 1.0) * pow(x[i], 2); - } - - return - 0.5 * H_info[0] * tmp; -} - -int main(int argc, char *argv[]) { - - L_t L = 128; - count_t N = (count_t)1e7; - count_t min_runs = 10; - count_t n = 3; - q_t q = 2; - D_t D = 2; - double T = 2.26918531421; - double *H = (double *)calloc(MAX_Q, sizeof(double)); - double eps = 0; - bool silent = false; - bool record_autocorrelation = false; - vector_field_t H_type = VECTOR; - count_t ac_skip = 1; - count_t W = 10; - - int opt; - q_t H_ind = 0; - - while ((opt = getopt(argc, argv, "N:n:D:L:q:T:H:m:e:saS:W:f:")) != -1) { - switch (opt) { - case 'N': - N = (count_t)atof(optarg); - break; - case 'n': - n = (count_t)atof(optarg); - break; - case 'D': - D = atoi(optarg); - break; - case 'L': - L = atoi(optarg); - break; - case 'q': - q = atoi(optarg); - break; - case 'T': - T = atof(optarg); - break; - case 'H': - H[H_ind] = atof(optarg); - H_ind++; - break; - case 'm': - min_runs = atoi(optarg); - break; - case 'e': - eps = atof(optarg); - break; - case 's': - silent = true; - break; - case 'a': - record_autocorrelation = true; - break; - case 'S': - ac_skip = (count_t)atof(optarg); - break; - case 'W': - W = (count_t)atof(optarg); - break; - case 'f': - switch (atoi(optarg)) { - case 0: - H_type = VECTOR; - break; - case 1: - H_type = MODULATED; - break; - case 2: - H_type = CUBIC; - break; - case 3: - H_type = QUADRATIC; - break; - } - break; - default: - exit(EXIT_FAILURE); - } - } - - gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); - gsl_rng_set(r, rand_seed()); - - vector_state_t *s = (vector_state_t *)calloc(1, sizeof(vector_state_t)); - - graph_t *h = graph_create_square(D, L); - s->g = graph_add_ext(h); - - s->n = q; - - s->spins = (double *)calloc(n * h->nv, sizeof(double)); - - for (v_t i = 0; i < h->nv; i++) { - s->spins[q * i] = 1.0; - } - - s->H_info = H; - s->T = T; - switch (H_type) { - case VECTOR: - s->H = dot; - break; - case MODULATED: - s->H = modulated; - break; - case CUBIC: - s->H = cubic; - break; - case QUADRATIC: - s->H = quadratic; - break; - } - s->J = identity; - - s->R = (double *)calloc(q * q, sizeof(double)); - - for (q_t i = 0; i < q; i++) { - s->R[q * i + i] = 1.0; - } - - s->M = (double *)calloc(q, sizeof(double)); - s->M[0] = 1.0; - s->E = - ((double)h->ne) * s->J(1.0) - (double)h->nv * s->H(s->n, s->H_info, s->M); - s->M[0] *= (double)h->nv; - - double diff = 1e31; - count_t n_runs = 0; - count_t n_steps = 0; - - meas_t *E, *clust, **M, *aM; - - M = (meas_t **)malloc(q * sizeof(meas_t *)); - aM = (meas_t *)calloc(q, sizeof(meas_t )); - for (q_t i = 0; i < q; i++) { - M[i] = (meas_t *)calloc(1, sizeof(meas_t)); - } - - E = calloc(1, sizeof(meas_t)); - clust = calloc(1, sizeof(meas_t)); - - autocorr_t *autocorr; - if (record_autocorrelation) { - autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); - autocorr->W = 2 * W + 1; - autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); - } - - if (!silent) printf("\n"); - while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { - if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(aM) / aM->x, meas_dc(E) / meas_c(E), meas_dc(aM) / meas_c(aM), h->nv / clust->x); - - count_t n_flips = 0; - - while (n_flips / h->nv < n) { - v_t v0 = gsl_rng_uniform_int(r, h->nv); - double *step = gen_rot(r, q); - - v_t tmp_flips = flip_cluster_vector(s, v0, step, r); - free(step); - n_flips += tmp_flips; - - if (n_runs > 0) { - n_steps++; - meas_update(clust, tmp_flips); - - if (record_autocorrelation && n_steps % ac_skip == 0) { - update_autocorr(autocorr, s->E); - } - } - } - - double aM_val = 0; - - for (q_t i = 0; i < q; i++) { - meas_update(M[i], s->M[i]); - aM_val += s->M[i] * s->M[i]; - } - - meas_update(aM, sqrt(aM_val)); - meas_update(E, s->E); - - diff = fabs(meas_dx(clust) / clust->x); - - n_runs++; - } - - if (!silent) { - printf("\033[F\033[J"); - } - printf("WOLFF: sweep %" PRIu64 - ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", - n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x); - - double tau = 0; - bool tau_failed = false; - - if (record_autocorrelation) { - double *Gammas = (double *)malloc((W + 1) * sizeof(double)); - - Gammas[0] = 1 + rho(autocorr, 0); - for (uint64_t i = 0; i < W; i++) { - Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); - } - - uint64_t n; - for (n = 0; n < W + 1; n++) { - if (Gammas[n] <= 0) { - break; - } - } - - if (n == W + 1) { - printf("WARNING: correlation function never hit the noise floor.\n"); - tau_failed = true; - } - - if (n < 2) { - printf("WARNING: correlation function only has one nonnegative term.\n"); - tau_failed = true; - } - - double *conv_Gamma = get_convex_minorant(n, Gammas); - - double ttau = - 0.5; - - for (uint64_t i = 0; i < n + 1; i++) { - ttau += conv_Gamma[i]; - } - - FILE *autocorr_file = fopen("autocorr.dat", "a"); - - printf("%g %g\n", Gammas[0], conv_Gamma[0]); - - for (count_t i = 0; i < n+1; i++) { - fprintf(autocorr_file, "%g ", conv_Gamma[i]); - } - fprintf(autocorr_file, "\n"); - - fclose(autocorr_file); - - free(Gammas); - free(autocorr->OO); - while (autocorr->Op != NULL) { - stack_pop_d(&(autocorr->Op)); - } - free(autocorr); - - tau = ttau * ac_skip * clust->x / h->nv; - } - - if (tau_failed) { - tau = 0; - } - - FILE *outfile = fopen("out.m", "a"); - - fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,H->{", N, n, D, L, q, T); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", H[i]); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", M[i]->x / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Delta]M->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Chi]->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},\\[Delta]\\[Chi]->{"); - for (q_t i = 0; i < q; i++) { - fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv); - if (i != q-1) { - fprintf(outfile, ","); - } - } - fprintf(outfile, "},aM->%.15f,\\[Delta]aM->%.15f,a\\[Chi]->%.15f,\\[Delta]a\\[Chi]->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", aM->x / h->nv, meas_dx(aM) / h->nv, meas_c(aM) / h->nv, meas_dc(aM) / h->nv, clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau); - - fclose(outfile); - - free(E); - free(clust); - for (q_t i = 0; i < q; i++) { - free(M[i]); - } - free(M); - free(H); - free(s->M); - free(s->R); - free(s->spins); - graph_free(s->g); - free(s); - graph_free(h); - gsl_rng_free(r); - - return 0; -} - |