summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2018-07-06 14:42:44 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2018-07-06 14:42:44 -0400
commit2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d (patch)
tree3812b4eaa09abf050b96404a615e18e95199966b
parent45faadfe2ddd0361d0268f836529c25e11f333b4 (diff)
downloadc++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.tar.gz
c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.tar.bz2
c++-2d8fcebf2f56efd1c3913ba49eaff6520ffdb33d.zip
rewrote wolff in c++ with templates so that any system can be run with it
-rw-r--r--CMakeLists.txt15
-rw-r--r--lib/cluster.c277
-rw-r--r--lib/cluster.h391
-rw-r--r--lib/graph.h10
-rw-r--r--lib/rand.h9
-rw-r--r--lib/stack.h9
-rw-r--r--src/wolff.cpp137
-rw-r--r--src/wolff_dgm.c247
-rw-r--r--src/wolff_vector.c377
9 files changed, 507 insertions, 965 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4b46bcd..7c1bc32 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -4,15 +4,15 @@ project(wolff)
set(CMAKE_CXX_FLAGS_DEBUG "-g")
set(CMAKE_CXX_FLAGS_RELEASE "-O3")
-set (CMAKE_CXX_STANDARD 11)
+set (CMAKE_CXX_STANDARD 17)
include_directories(lib ~/.local/include)
link_directories(~/.local/lib)
-file(GLOB SOURCES lib/*.c)
-add_executable(wolff_finite src/wolff_finite.c ${SOURCES})
-add_executable(wolff_vector src/wolff_vector.c ${SOURCES})
-add_executable(wolff_dgm src/wolff_dgm.c ${SOURCES})
+file(GLOB CSOURCES lib/*.c)
+file(GLOB CPPSOURCES lib/*.cpp)
+add_executable(wolff_finite src/wolff_finite.c ${CSOURCES})
+add_executable(wolff src/wolff.cpp ${CPPSOURCES} ${CSOURCES})
find_package(OpenMP)
if (OPENMP_FOUND)
@@ -21,8 +21,7 @@ if (OPENMP_FOUND)
endif()
target_link_libraries(wolff_finite gsl m cblas fftw3)
-target_link_libraries(wolff_vector gsl m cblas fftw3)
-target_link_libraries(wolff_dgm gsl m cblas fftw3)
+target_link_libraries(wolff gsl m cblas fftw3)
-install(TARGETS wolff_finite wolff_vector wolff_dgm DESTINATION bin)
+install(TARGETS wolff_finite wolff DESTINATION bin)
diff --git a/lib/cluster.c b/lib/cluster.c
deleted file mode 100644
index 96225a2..0000000
--- a/lib/cluster.c
+++ /dev/null
@@ -1,277 +0,0 @@
-
-#include "cluster.h"
-
-v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r) {
- v_t nv = 0;
-
- ll_t *stack = NULL; // create a new stack
- stack_push(&stack, v0); // push the initial vertex to the stack
-
- bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));
-
- while (stack != NULL) {
- v_t v = stack_pop(&stack);
-
- if (!marks[v]) {
- h_t s_old, s_new;
- dihinf_t *R_new;
- bool external_flipped;
-
- marks[v] = true;
-
- if (v == s->g->nv - 1) {
- R_new = dihinf_compose(rot, s->R);
- external_flipped = true;
- } else {
- s_old = s->spins[v];
- s_new = dihinf_act(rot, s_old);
- external_flipped = false;
- }
-
- v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
-
- for (v_t i = 0; i < nn; i++) {
- h_t sn;
- double prob;
- bool external_neighbor = false;
-
- v_t vn = s->g->v_adj[s->g->v_i[v] + i];
-
- if (vn == s->g->nv - 1) {
- external_neighbor = true;
- } else {
- sn = s->spins[vn];
- }
-
- if (external_flipped || external_neighbor) {
- h_t rot_s_old, rot_s_new;
-
- if (external_neighbor) {
- rot_s_old = dihinf_inverse_act(s->R, s_old);
- rot_s_new = dihinf_inverse_act(s->R, s_new);
- } else {
- rot_s_old = dihinf_inverse_act(s->R, sn);
- rot_s_new = dihinf_inverse_act(R_new, sn);
- }
-
- double dE = s->H(s->H_info, rot_s_old) - s->H(s->H_info, rot_s_new);
- prob = 1.0 - exp(-dE / s->T);
-
- s->M += rot_s_new - rot_s_old;
- s->E += dE;
- } else {
- double dE = (s->J)(s_old - sn) - (s->J)(s_new - sn);
- prob = 1.0 - exp(-dE / s->T);
- s->E += dE;
- }
-
- if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
- stack_push(&stack, vn); // push the neighboring vertex to the stack
- }
- }
-
- if (external_flipped) {
- free(s->R);
- s->R = R_new;
- } else {
- s->spins[v] = s_new;
- }
-
- if (v != s->g->nv - 1) { // count the number of non-external sites that flip
- nv++;
- }
- }
- }
-
- free(marks);
-
- return nv;
-}
-
-v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r) {
- v_t nv = 0;
-
- ll_t *stack = NULL; // create a new stack
- stack_push(&stack, v0); // push the initial vertex to the stack
-
- //node_t *T = NULL;
- bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));
-
- while (stack != NULL) {
- v_t v = stack_pop(&stack);
-
-// if (!tree_contains(T, v)) { // if the vertex hasn't already been flipped
- if (!marks[v]) {
- bool v_is_external = false;
- double *s_old, *s_new, *R_tmp;
-
- if (v == s->g->nv - 1) {
- v_is_external = true;
- }
-
- //tree_insert(&T, v);
- marks[v] = true;
-
- if (v == s->g->nv - 1) {
- R_tmp = orthogonal_rotate(s->n, rot, s->R);
- } else {
- s_old = &(s->spins[s->n * v]); // don't free me! I'm a pointer within array s->spins
- s_new = vector_rotate(s->n, rot, s_old); // free me! I'm a new vector
- }
-
- v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
-
- for (v_t i = 0; i < nn; i++) {
- v_t vn = s->g->v_adj[s->g->v_i[v] + i];
-
- bool vn_is_external = false;
-
- if (vn == s->g->nv - 1) {
- vn_is_external = true;
- }
-
- double *sn;
-
- if (!vn_is_external) {
- sn = &(s->spins[s->n * vn]);
- }
-
- double prob;
-
- if (v_is_external || vn_is_external) {
- double *rs_old, *rs_new;
- if (vn_is_external) {
- rs_old = vector_rotate_inverse(s->n, s->R, s_old);
- rs_new = vector_rotate_inverse(s->n, s->R, s_new);
- } else {
- rs_old = vector_rotate_inverse(s->n, s->R, sn);
- rs_new = vector_rotate_inverse(s->n, R_tmp, sn);
- }
- double dE = s->H(s->n, s->H_info, rs_old) - s->H(s->n, s->H_info, rs_new);
- prob = 1.0 - exp(-dE / s->T);
- vector_subtract(s->n, s->M, rs_old);
- vector_add(s->n, s->M, rs_new);
- s->E += dE;
-
- free(rs_old);
- free(rs_new);
- } else {
- double dE = (s->J)(vector_dot(s->n, sn, s_old)) - (s->J)(vector_dot(s->n, sn, s_new));
- prob = 1.0 - exp(-dE / s->T);
- s->E += dE;
- }
-
- if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
- stack_push(&stack, vn); // push the neighboring vertex to the stack
- }
- }
-
- if (v == s->g->nv - 1) {
- free(s->R);
- s->R = R_tmp;
- } else {
- vector_replace(s->n, s_old, s_new);
- free(s_new);
- }
-
- if (v != s->g->nv - 1) { // count the number of non-external sites that flip
- nv++;
- }
- }
- }
-
- //tree_freeNode(T);
- free(marks);
-
- return nv;
-}
-
-/*G
-template <class R_t, class X_t>
-v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t *r, gsl_rng *rand) {
- v_t nv = 0;
-
- ll_t *stack = NULL; // create a new stack
- stack_push(&stack, v0); // push the initial vertex to the stack
-
- bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
-
- while (stack != NULL) {
- v_t v = stack_pop(&stack);
-
- if (!marks[v]) {
- X_t *si_old, *si_new;
- R_t *s0_old, *s0_new;
-
- si_old = state->s[v];
- s0_old = state->s0;
-
- marks[v] = true;
-
- if (v == state->g->nv - 1) {
- s0_new = act <R_t, R_t> (r, s0_old);
- } else {
- si_new = act <R_t, X_t> (r, si_old);
- }
-
- v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
-
- for (v_t i = 0; i < nn; i++) {
- v_t vn = state->g->v_adj[state->g->v_i[v] + i];
-
- X_t *sj;
-
- if (vn != state->g->nv - 1) {
- sj = state->s[vn];
- }
-
- double prob;
-
- bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
-
- if (is_ext) {
- X_t *rs_old, *rs_new;
- if (vn == state->g->nv - 1) {
- rs_old = inverse_act <class R_t, class X_t> (s0_old, si_old);
- rs_new = inverse_act <class R_t, class X_t> (s0_old, si_new);
- } else {
- rs_old = inverse_act <class R_t, class X_t> (s0_old, sj);
- rs_new = inverse_act <class R_t, class X_t> (s0_new, sj);
- }
- double dE = state->B(rs_old) - state->B(rs_new);
- prob = 1.0 - exp(-dE / state->T);
- update_magnetization <X_t> (state->M, rs_old, rs_new);
- state->E += dE;
-
- free_X <X_t> (rs_old);
- free_X <X_t> (rs_new);
- } else {
- double dE = state->Z(si_old, sj) - state->Z(si_new, sj);
- prob = 1.0 - exp(-dE / state->T);
- state->E += dE;
- }
-
- if (gsl_rng_uniform(rand) < prob) { // and with probability...
- stack_push(&stack, vn); // push the neighboring vertex to the stack
- }
- }
-
- if (v == state->g->nv - 1) {
- free_R <R_t> (state->s0);
- state->s0 = s0_new;
- } else {
- free_X <X_t> (state->s[v]);
- state->s[v] = si_new;
- }
-
- if (v != state->g->nv - 1) { // count the number of non-external sites that flip
- nv++;
- }
- }
- }
-
- free(marks);
-
- return nv;
-}
-*/
diff --git a/lib/cluster.h b/lib/cluster.h
index d118735..29dd0cb 100644
--- a/lib/cluster.h
+++ b/lib/cluster.h
@@ -1,13 +1,14 @@
#pragma once
+#include <functional>
#include <assert.h>
#include <fftw3.h>
#include <float.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <inttypes.h>
-#include <math.h>
+#include <cmath>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>
@@ -24,57 +25,339 @@
#include "dihinf.h"
#include "yule_walker.h"
-typedef struct {
- graph_t *g;
- q_t *spins;
- double T;
- double *J;
- double *H;
- double *J_probs;
- double *H_probs;
- dihedral_t *R;
- double E;
- v_t *M;
- q_t q;
-} ising_state_t;
-
-typedef struct {
- graph_t *g;
- h_t *spins;
- double T;
- double (*J)(h_t);
- double (*H)(double *, h_t);
- double *H_info;
- dihinf_t *R;
- double E;
- h_t M;
-} dgm_state_t;
-
-typedef struct {
- graph_t *g;
- double *spins;
- double T;
- double (*J)(double);
- double (*H)(q_t, double *, double *);
- double *H_info;
- double *R;
- double E;
- double *M;
- q_t n;
-} vector_state_t;
-
-typedef enum {
- VECTOR,
- MODULATED,
- CUBIC,
- QUADRATIC
-} vector_field_t;
-
-v_t flip_cluster(ising_state_t *s, v_t v0, q_t s1, gsl_rng *r);
-
-v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r);
-
-v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r);
-
-graph_t *graph_add_ext(const graph_t *g);
+template <class T>
+void init(T*);
+
+template <class T>
+T scalar_multiple(v_t a, T b);
+
+template <class R_t, class X_t>
+X_t act(R_t a, X_t b);
+
+template <class R_t, class X_t>
+X_t act_inverse(R_t a, X_t b);
+
+template <class T>
+T copy(T a);
+
+template <class T>
+void free_spin(T a);
+
+template <class T>
+T add(T, T);
+
+template <class T>
+T subtract(T, T);
+
+template <class T>
+T gen_rot(gsl_rng *r);
+
+template <class R_t, class X_t>
+class state_t {
+ public:
+ D_t D;
+ L_t L;
+ v_t nv;
+ v_t ne;
+ graph_t *g;
+ double T;
+ X_t *spins;
+ R_t R;
+ double E;
+ X_t M; // the "sum" of the spins, like the total magnetization
+
+ std::function <double(X_t, X_t)> J;
+ std::function <double(X_t)> H;
+
+ state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), T(T), J(J), H(H) {
+ graph_t *h = graph_create_square(D, L);
+ nv = h->nv;
+ ne = h->ne;
+ g = graph_add_ext(h);
+ graph_free(h);
+ spins = (X_t *)malloc(nv * sizeof(X_t));
+ for (v_t i = 0; i < nv; i++) {
+ init (&(spins[i]));
+ }
+ init (&R);
+ E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]);
+ M = scalar_multiple (nv, spins[0]);
+ }
+
+ ~state_t() {
+ graph_free(g);
+ for (v_t i = 0; i < nv; i++) {
+ free_spin(spins[i]);
+ }
+ free(spins);
+ free_spin(R);
+ free_spin(M);
+ }
+};
+
+template <q_t q, class T>
+struct vector_t { T *x; };
+
+template <q_t q, class T>
+void init(vector_t <q, T> *ptr) {
+ ptr->x = (T *)calloc(q, sizeof(T));
+
+ ptr->x[0] = (T)1;
+}
+
+template <q_t q, class T>
+vector_t <q, T> copy (vector_t <q, T> v) {
+ vector_t <q, T> v_copy;
+
+ v_copy.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ v_copy.x[i] = v.x[i];
+ }
+
+ return v_copy;
+}
+
+template <q_t q, class T>
+void add (vector_t <q, T> v1, vector_t <q, T> v2) {
+ for (q_t i = 0; i < q; i++) {
+ v1.x[i] += v2.x[i];
+ }
+}
+
+template <q_t q, class T>
+void subtract (vector_t <q, T> v1, vector_t <q, T> v2) {
+ for (q_t i = 0; i < q; i++) {
+ v1.x[i] -= v2.x[i];
+ }
+}
+
+template <q_t q, class T>
+vector_t <q, T> scalar_multiple(v_t a, vector_t <q, T> v) {
+ vector_t <q, T> multiple;
+ multiple.x = (T *)malloc(q * sizeof(T));
+ for (q_t i = 0; i < q; i++) {
+ multiple.x[i] = a * v.x[i];
+ }
+
+ return multiple;
+}
+
+template <q_t q, class T>
+T dot(vector_t <q, T> v1, vector_t <q, T> v2) {
+ T prod = 0;
+
+ for (q_t i = 0; i < q; i++) {
+ prod += v1.x[i] * v2.x[i];
+ }
+
+ return prod;
+}
+
+template <q_t q, class T>
+void free_spin (vector_t <q, T> v) {
+ free(v.x);
+}
+
+template <q_t q, class T>
+struct orthogonal_t { T *x; };
+
+template <q_t q, class T>
+void init(orthogonal_t <q, T> *ptr) {
+ ptr->x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ ptr->x[q * i + i] = (T)1;
+ }
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> copy (orthogonal_t <q, T> m) {
+ orthogonal_t <q, T> m_copy;
+ m_copy.x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q * q; i++) {
+ m_copy.x[i] = m.x[i];
+ }
+
+ return m_copy;
+}
+
+template <q_t q, class T>
+void free_spin (orthogonal_t <q, T> m) {
+ free(m.x);
+}
+
+template <q_t q, class T>
+vector_t <q, T> act (orthogonal_t <q, T> m, vector_t <q, T> v) {
+ vector_t <q, T> v_rot;
+ v_rot.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ v_rot.x[i] += m.x[q * i + j] * v.x[j];
+ }
+ }
+
+ return v_rot;
+}
+
+
+template <q_t q, class T>
+orthogonal_t <q, T> act (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+ orthogonal_t <q, T> m2_rot;
+ m2_rot.x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ for (q_t k = 0; k < q; k++) {
+ m2_rot.x[i * q + j] += m1.x[i * q + j] * m2.x[j * q + k];
+ }
+ }
+ }
+
+ return m2_rot;
+}
+
+template <q_t q, class T>
+vector_t <q, T> act_inverse (orthogonal_t <q, T> m, vector_t <q, T> v) {
+ vector_t <q, T> v_rot;
+ v_rot.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ v_rot.x[i] += m.x[q * j + i] * v.x[j];
+ }
+ }
+
+ return v_rot;
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> act_inverse (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+ orthogonal_t <q, T> m2_rot;
+ m2_rot.x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ for (q_t k = 0; k < q; k++) {
+ m2_rot.x[i * q + j] += m1.x[j * q + i] * m2.x[j * q + k];
+ }
+ }
+ }
+
+ return m2_rot;
+}
+
+template <q_t q>
+void generate_rotation (gsl_rng *r, orthogonal_t <q, double> *ptr) {
+ double *v = (double *)malloc(q * sizeof(double));
+ double v2 = 0;
+
+ for (q_t i = 0; i < q; i++) {
+ v[i] = gsl_ran_ugaussian(r);
+ v2 += v[i] * v[i];
+ }
+
+ ptr->x = (double *)calloc(q * q, sizeof(double));
+
+ for (q_t i = 0; i < q; i++) {
+ ptr->x[q * i + i] = 1.0;
+ for (q_t j = 0; j < q; j++) {
+ ptr->x[q * i + j] -= 2 * v[i] * v[j] / v2;
+ }
+ }
+
+ free(v);
+}
+
+template <class R_t, class X_t>
+v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
+ v_t nv = 0;
+
+ ll_t *stack = NULL; // create a new stack
+ stack_push(&stack, v0); // push the initial vertex to the stack
+
+ bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
+
+ while (stack != NULL) {
+ v_t v = stack_pop(&stack);
+
+ if (!marks[v]) {
+ X_t si_old, si_new;
+ R_t R_old, R_new;
+
+ si_old = state->spins[v];
+ R_old = state->R;
+
+ marks[v] = true;
+
+ if (v == state->g->nv - 1) {
+ R_new = act (r, R_old);
+ } else {
+ si_new = act (r, si_old);
+ }
+
+ v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
+
+ for (v_t i = 0; i < nn; i++) {
+ v_t vn = state->g->v_adj[state->g->v_i[v] + i];
+
+ X_t sj;
+
+ if (vn != state->g->nv - 1) {
+ sj = state->spins[vn];
+ }
+
+ double prob;
+
+ bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
+
+ if (is_ext) {
+ X_t rs_old, rs_new;
+ if (vn == state->g->nv - 1) {
+ rs_old = act_inverse (R_old, si_old);
+ rs_new = act_inverse (R_old, si_new);
+ } else {
+ rs_old = act_inverse (R_old, sj);
+ rs_new = act_inverse (R_new, sj);
+ }
+ double dE = state->H(rs_old) - state->H(rs_new);
+ prob = 1.0 - exp(-dE / state->T);
+
+ subtract (state->M, rs_old);
+ add (state->M, rs_new);
+ state->E += dE;
+
+ free_spin (rs_old);
+ free_spin (rs_new);
+ } else {
+ double dE = state->J(si_old, sj) - state->J(si_new, sj);
+ prob = 1.0 - exp(-dE / state->T);
+ state->E += dE;
+ }
+
+ if (gsl_rng_uniform(rand) < prob) { // and with probability...
+ stack_push(&stack, vn); // push the neighboring vertex to the stack
+ }
+ }
+
+ if (v == state->g->nv - 1) {
+ free_spin(state->R);
+ state->R = R_new;
+ } else {
+ free_spin(state->spins[v]);
+ state->spins[v] = si_new;
+ }
+
+ if (v != state->g->nv - 1) { // count the number of non-external sites that flip
+ nv++;
+ }
+ }
+ }
+
+ free(marks);
+
+ return nv;
+}
diff --git a/lib/graph.h b/lib/graph.h
index cb47faa..beb7f4c 100644
--- a/lib/graph.h
+++ b/lib/graph.h
@@ -7,6 +7,10 @@
#include "types.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
typedef struct {
v_t ne;
v_t nv;
@@ -15,8 +19,10 @@ typedef struct {
} graph_t;
graph_t *graph_create_square(D_t D, L_t L);
-
graph_t *graph_add_ext(const graph_t *G);
-
void graph_free(graph_t *h);
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/lib/rand.h b/lib/rand.h
index 2354f6a..7bb5354 100644
--- a/lib/rand.h
+++ b/lib/rand.h
@@ -4,4 +4,13 @@
#include <assert.h>
#include <stdio.h>
+#ifdef __cplusplus
+extern "C" {
+#endif
+
unsigned long int rand_seed();
+
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/lib/stack.h b/lib/stack.h
index a354ab5..8d25aff 100644
--- a/lib/stack.h
+++ b/lib/stack.h
@@ -8,6 +8,11 @@
#include "types.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
typedef struct ll_tag {
v_t x;
struct ll_tag *next;
@@ -24,3 +29,7 @@ void stack_push_d(dll_t **q, double x);
v_t stack_pop(ll_t **q);
double stack_pop_d(dll_t **q);
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/src/wolff.cpp b/src/wolff.cpp
new file mode 100644
index 0000000..85df357
--- /dev/null
+++ b/src/wolff.cpp
@@ -0,0 +1,137 @@
+
+#include <time.h>
+#include <getopt.h>
+
+#include <cluster.h>
+
+double H_vector(vector_t <2, double> v1, double *H) {
+ vector_t <2, double> H_vec;
+ H_vec.x = H;
+ return dot <2, double> (v1, H_vec);
+}
+
+int main(int argc, char *argv[]) {
+
+ count_t N = (count_t)1e7;
+
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double *H = (double *)calloc(MAX_Q, sizeof(double));
+
+ bool silent = false;
+
+ int opt;
+ q_t J_ind = 0;
+ q_t H_ind = 0;
+
+ while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (count_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field. nth call couples to state n
+ H[H_ind] = atof(optarg);
+ H_ind++;
+ break;
+ case 's': // don't print anything during simulation. speeds up slightly
+ silent = true;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ state_t <orthogonal_t <2, double>, vector_t <2, double>> s(D, L, T, dot <2, double>, std::bind(H_vector, std::placeholders::_1, H));
+
+ // initialize random number generator
+ gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+ gsl_rng_set(r, rand_seed());
+
+ unsigned long timestamp;
+
+ {
+ struct timespec spec;
+ clock_gettime(CLOCK_REALTIME, &spec);
+ timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
+ }
+
+ FILE *outfile_info = fopen("wolff_metadata.txt", "a");
+
+ fprintf(outfile_info, "<| \"ID\" -> %lu, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, s.nv, s.ne, T);
+
+ for (q_t i = 0; i < 2; i++) {
+ fprintf(outfile_info, "%.15f", H[i]);
+ if (i < 2 - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+
+ fprintf(outfile_info, "} |>\n");
+
+ fclose(outfile_info);
+
+ char *filename_M = (char *)malloc(255 * sizeof(char));
+ char *filename_E = (char *)malloc(255 * sizeof(char));
+ char *filename_S = (char *)malloc(255 * sizeof(char));
+
+ sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
+ sprintf(filename_E, "wolff_%lu_E.dat", timestamp);
+ sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
+
+ FILE *outfile_M = fopen(filename_M, "wb");
+ FILE *outfile_E = fopen(filename_E, "wb");
+ FILE *outfile_S = fopen(filename_S, "wb");
+
+ free(filename_M);
+ free(filename_E);
+ free(filename_S);
+
+ v_t cluster_size = 0;
+
+ if (!silent) printf("\n");
+ for (count_t steps = 0; steps < N; steps++) {
+ if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", steps, N, s.E, s.M.x[0], cluster_size);
+
+ v_t v0 = gsl_rng_uniform_int(r, s.nv);
+
+ orthogonal_t <2, double> step;
+ generate_rotation<2>(r, &step);
+
+ printf("(%g %g) . (%g %g) = %g or %g, H = %g\n\n", s.spins[0].x[0], s.spins[0].x[1], s.spins[1].x[0], s.spins[1].x[1], dot(s.spins[0], s.spins[1]), s.J(s.spins[0],s.spins[1]), s.H(s.spins[0]));
+
+ getchar();
+ cluster_size = flip_cluster <orthogonal_t <2, double>, vector_t <2, double>> (&s, v0, step, r);
+
+ free_spin(step);
+
+ fwrite(&(s.E), sizeof(double), 1, outfile_E);
+ fwrite(s.M.x, sizeof(double), 2, outfile_M);
+ fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
+
+ }
+ if (!silent) {
+ printf("\033[F\033[J");
+ }
+ printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, M_0 = %.2f, S = %" PRIv "\n", N, N, s.E, s.M.x[0], cluster_size);
+
+ fclose(outfile_M);
+ fclose(outfile_E);
+ fclose(outfile_S);
+
+ gsl_rng_free(r);
+
+ free(H);
+
+ return 0;
+}
+
diff --git a/src/wolff_dgm.c b/src/wolff_dgm.c
deleted file mode 100644
index f11b296..0000000
--- a/src/wolff_dgm.c
+++ /dev/null
@@ -1,247 +0,0 @@
-
-#include <getopt.h>
-
-#include <cluster.h>
-
-double identity(h_t x) {
- return -pow(x, 2);
-}
-
-double basic_H(double *H, h_t x) {
- return -H[0] * pow(x, 2);
-}
-
-int main(int argc, char *argv[]) {
-
- L_t L = 128;
- count_t N = (count_t)1e7;
- count_t min_runs = 10;
- count_t n = 3;
- D_t D = 2;
- double T = 2.26918531421;
- double *H = (double *)calloc(MAX_Q, sizeof(double));
- double eps = 0;
- bool silent = false;
- bool record_autocorrelation = false;
- count_t ac_skip = 1;
- count_t W = 10;
-
- int opt;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:n:D:L:T:H:m:e:saS:W:")) != -1) {
- switch (opt) {
- case 'N':
- N = (count_t)atof(optarg);
- break;
- case 'n':
- n = (count_t)atof(optarg);
- break;
- case 'D':
- D = atoi(optarg);
- break;
- case 'L':
- L = atoi(optarg);
- break;
- case 'T':
- T = atof(optarg);
- break;
- case 'H':
- H[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 'm':
- min_runs = atoi(optarg);
- break;
- case 'e':
- eps = atof(optarg);
- break;
- case 's':
- silent = true;
- break;
- case 'a':
- record_autocorrelation = true;
- break;
- case 'S':
- ac_skip = (count_t)atof(optarg);
- break;
- case 'W':
- W = (count_t)atof(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, rand_seed());
-
- dgm_state_t *s = (dgm_state_t *)calloc(1, sizeof(dgm_state_t));
-
- graph_t *h = graph_create_square(D, L);
- s->g = graph_add_ext(h);
-
- s->spins = (h_t *)calloc(h->nv, sizeof(h_t));
-
- s->H_info = H;
- s->T = T;
- s->H = basic_H;
- s->J = identity;
-
- s->R = (dihinf_t *)calloc(1, sizeof(dihinf_t));
-
- s->M = 0;
- s->E = 0;
-
- double diff = 1e31;
- count_t n_runs = 0;
- count_t n_steps = 0;
-
- meas_t *E, *clust, *M, *dM;
-
- M = (meas_t *)calloc(1, sizeof(meas_t ));
- dM = (meas_t *)calloc(1, sizeof(meas_t ));
-
- E = calloc(1, sizeof(meas_t));
- clust = calloc(1, sizeof(meas_t));
-
- autocorr_t *autocorr;
- if (record_autocorrelation) {
- autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
- autocorr->W = 2 * W + 1;
- autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
- }
-
- if (!silent) printf("\n");
- while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
- if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x);
-
- count_t n_flips = 0;
-
- while (n_flips / h->nv < n) {
- v_t v0 = gsl_rng_uniform_int(r, h->nv);
- h_t step = round((((double)s->M) / h->nv) + gsl_ran_gaussian(r, 5));
-
- v_t tmp_flips = flip_cluster_dgm(s, v0, step, r);
- n_flips += tmp_flips;
-
- if (n_runs > 0) {
- n_steps++;
- meas_update(clust, tmp_flips);
- }
-
- if (record_autocorrelation && n_runs > 0) {
- if (n_steps % ac_skip == 0) {
- update_autocorr(autocorr, s->E);
- }
- }
- }
-
- meas_update(M, s->M);
- h_t min_h, max_h;
- min_h = MAX_H;
- max_h = MIN_H;
- for (v_t i = 0; i < h->nv; i++) {
- if (s->spins[i] < min_h) {
- min_h = s->spins[i];
- } else if (s->spins[i] > max_h) {
- max_h = s->spins[i];
- }
- }
- meas_update(dM, max_h - min_h);
- meas_update(E, s->E);
-
- diff = fabs(meas_dc(E) / meas_c(E));
-
- n_runs++;
- }
- if (!silent) {
- printf("\033[F\033[J");
- }
- printf("WOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x);
-
- double tau = 0;
- bool tau_failed = false;
-
- if (record_autocorrelation) {
- double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
- Gammas[0] = 1 + rho(autocorr, 0);
- for (uint64_t i = 0; i < W; i++) {
- Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
- }
-
- uint64_t n;
- for (n = 0; n < W + 1; n++) {
- if (Gammas[n] <= 0) {
- break;
- }
- }
-
- if (n == W + 1) {
- printf("WARNING: correlation function never hit the noise floor.\n");
- tau_failed = true;
- }
-
- if (n < 2) {
- printf("WARNING: correlation function only has one nonnegative term.\n");
- tau_failed = true;
- }
-
- double *conv_Gamma = get_convex_minorant(n, Gammas);
-
- double ttau = - 0.5;
-
- for (uint64_t i = 0; i < n + 1; i++) {
- ttau += conv_Gamma[i];
- }
-
- free(Gammas);
- free(autocorr->OO);
- while (autocorr->Op != NULL) {
- stack_pop_d(&(autocorr->Op));
- }
- free(autocorr);
-
- tau = ttau * ac_skip * clust->x / h->nv;
- }
-
- if (tau_failed) {
- tau = 0;
- }
-
- FILE *outfile = fopen("out.m", "a");
-
- fprintf(outfile, "<|D->%" PRID ",L->%" PRIL ",T->%.15f", D, L, T);
- fprintf(outfile, ",E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->%.15f", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv, M->x / h->nv);
- fprintf(outfile, ",\\[Delta]M->%.15f", meas_dx(M) / h->nv);
- fprintf(outfile, ",\\[Chi]->%.15f", meas_c(M) / h->nv);
- fprintf(outfile, ",\\[Delta]\\[Chi]->%.15f", meas_dc(M) / h->nv);
- fprintf(outfile, ",w->%.15f,\\[Delta]w->%.15f,wc->%.15f,\\[Delta]wc->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", dM->x, meas_dx(dM), meas_c(dM), meas_dc(dM), clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau);
-
- fclose(outfile);
-
- FILE *image = fopen("out.dat", "a");
- for (v_t i = 0; i < h->nv; i++) {
- fprintf(image, "%" PRIh " ", s->spins[i]);
- }
- fprintf(image, "\n");
- fclose(image);
-
- free(E);
- free(clust);
- free(H);
- free(s->R);
- free(s->spins);
- graph_free(s->g);
- free(s);
- graph_free(h);
- gsl_rng_free(r);
-
- return 0;
-}
-
diff --git a/src/wolff_vector.c b/src/wolff_vector.c
deleted file mode 100644
index c5ebcb5..0000000
--- a/src/wolff_vector.c
+++ /dev/null
@@ -1,377 +0,0 @@
-
-#include <getopt.h>
-
-#include <cluster.h>
-
-double identity(double x) {
- return x;
-}
-
-double zero(q_t n, double *H, double *x) {
- return 0.0;
-}
-
-double dot(q_t n, double *H, double *x) {
- double total = 0;
- for (q_t i = 0; i < n; i++) {
- total += H[i] * x[i];
- }
- return total;
-}
-
-double theta(double x, double y) {
- double val = atan(y / x);
-
- if (x < 0.0 && y > 0.0) {
- return M_PI + val;
- } else if ( x < 0.0 && y < 0.0 ) {
- return - M_PI + val;
- } else {
- return val;
- }
-}
-
-double modulated(q_t n, double *H_info, double *x) {
- return H_info[0] * cos(H_info[1] * theta(x[0], x[1]));
-}
-
-double cubic(q_t n, double *H_info, double *x) {
- double v_sum = 0;
-
- for (q_t i = 0; i < n; i++) {
- v_sum += pow(x[i], 4);
- }
-
- return - H_info[0] * v_sum;
-}
-
-double quadratic(q_t n, double *H_info, double *x) {
- double tmp = 0;
-
- tmp += pow(x[0], 2);
-
- for (q_t i = 1; i < n; i++) {
- tmp += - 1.0 / (n - 1.0) * pow(x[i], 2);
- }
-
- return - 0.5 * H_info[0] * tmp;
-}
-
-int main(int argc, char *argv[]) {
-
- L_t L = 128;
- count_t N = (count_t)1e7;
- count_t min_runs = 10;
- count_t n = 3;
- q_t q = 2;
- D_t D = 2;
- double T = 2.26918531421;
- double *H = (double *)calloc(MAX_Q, sizeof(double));
- double eps = 0;
- bool silent = false;
- bool record_autocorrelation = false;
- vector_field_t H_type = VECTOR;
- count_t ac_skip = 1;
- count_t W = 10;
-
- int opt;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:n:D:L:q:T:H:m:e:saS:W:f:")) != -1) {
- switch (opt) {
- case 'N':
- N = (count_t)atof(optarg);
- break;
- case 'n':
- n = (count_t)atof(optarg);
- break;
- case 'D':
- D = atoi(optarg);
- break;
- case 'L':
- L = atoi(optarg);
- break;
- case 'q':
- q = atoi(optarg);
- break;
- case 'T':
- T = atof(optarg);
- break;
- case 'H':
- H[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 'm':
- min_runs = atoi(optarg);
- break;
- case 'e':
- eps = atof(optarg);
- break;
- case 's':
- silent = true;
- break;
- case 'a':
- record_autocorrelation = true;
- break;
- case 'S':
- ac_skip = (count_t)atof(optarg);
- break;
- case 'W':
- W = (count_t)atof(optarg);
- break;
- case 'f':
- switch (atoi(optarg)) {
- case 0:
- H_type = VECTOR;
- break;
- case 1:
- H_type = MODULATED;
- break;
- case 2:
- H_type = CUBIC;
- break;
- case 3:
- H_type = QUADRATIC;
- break;
- }
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, rand_seed());
-
- vector_state_t *s = (vector_state_t *)calloc(1, sizeof(vector_state_t));
-
- graph_t *h = graph_create_square(D, L);
- s->g = graph_add_ext(h);
-
- s->n = q;
-
- s->spins = (double *)calloc(n * h->nv, sizeof(double));
-
- for (v_t i = 0; i < h->nv; i++) {
- s->spins[q * i] = 1.0;
- }
-
- s->H_info = H;
- s->T = T;
- switch (H_type) {
- case VECTOR:
- s->H = dot;
- break;
- case MODULATED:
- s->H = modulated;
- break;
- case CUBIC:
- s->H = cubic;
- break;
- case QUADRATIC:
- s->H = quadratic;
- break;
- }
- s->J = identity;
-
- s->R = (double *)calloc(q * q, sizeof(double));
-
- for (q_t i = 0; i < q; i++) {
- s->R[q * i + i] = 1.0;
- }
-
- s->M = (double *)calloc(q, sizeof(double));
- s->M[0] = 1.0;
- s->E = - ((double)h->ne) * s->J(1.0) - (double)h->nv * s->H(s->n, s->H_info, s->M);
- s->M[0] *= (double)h->nv;
-
- double diff = 1e31;
- count_t n_runs = 0;
- count_t n_steps = 0;
-
- meas_t *E, *clust, **M, *aM;
-
- M = (meas_t **)malloc(q * sizeof(meas_t *));
- aM = (meas_t *)calloc(q, sizeof(meas_t ));
- for (q_t i = 0; i < q; i++) {
- M[i] = (meas_t *)calloc(1, sizeof(meas_t));
- }
-
- E = calloc(1, sizeof(meas_t));
- clust = calloc(1, sizeof(meas_t));
-
- autocorr_t *autocorr;
- if (record_autocorrelation) {
- autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
- autocorr->W = 2 * W + 1;
- autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
- }
-
- if (!silent) printf("\n");
- while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
- if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(aM) / aM->x, meas_dc(E) / meas_c(E), meas_dc(aM) / meas_c(aM), h->nv / clust->x);
-
- count_t n_flips = 0;
-
- while (n_flips / h->nv < n) {
- v_t v0 = gsl_rng_uniform_int(r, h->nv);
- double *step = gen_rot(r, q);
-
- v_t tmp_flips = flip_cluster_vector(s, v0, step, r);
- free(step);
- n_flips += tmp_flips;
-
- if (n_runs > 0) {
- n_steps++;
- meas_update(clust, tmp_flips);
-
- if (record_autocorrelation && n_steps % ac_skip == 0) {
- update_autocorr(autocorr, s->E);
- }
- }
- }
-
- double aM_val = 0;
-
- for (q_t i = 0; i < q; i++) {
- meas_update(M[i], s->M[i]);
- aM_val += s->M[i] * s->M[i];
- }
-
- meas_update(aM, sqrt(aM_val));
- meas_update(E, s->E);
-
- diff = fabs(meas_dx(clust) / clust->x);
-
- n_runs++;
- }
-
- if (!silent) {
- printf("\033[F\033[J");
- }
- printf("WOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x);
-
- double tau = 0;
- bool tau_failed = false;
-
- if (record_autocorrelation) {
- double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
- Gammas[0] = 1 + rho(autocorr, 0);
- for (uint64_t i = 0; i < W; i++) {
- Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
- }
-
- uint64_t n;
- for (n = 0; n < W + 1; n++) {
- if (Gammas[n] <= 0) {
- break;
- }
- }
-
- if (n == W + 1) {
- printf("WARNING: correlation function never hit the noise floor.\n");
- tau_failed = true;
- }
-
- if (n < 2) {
- printf("WARNING: correlation function only has one nonnegative term.\n");
- tau_failed = true;
- }
-
- double *conv_Gamma = get_convex_minorant(n, Gammas);
-
- double ttau = - 0.5;
-
- for (uint64_t i = 0; i < n + 1; i++) {
- ttau += conv_Gamma[i];
- }
-
- FILE *autocorr_file = fopen("autocorr.dat", "a");
-
- printf("%g %g\n", Gammas[0], conv_Gamma[0]);
-
- for (count_t i = 0; i < n+1; i++) {
- fprintf(autocorr_file, "%g ", conv_Gamma[i]);
- }
- fprintf(autocorr_file, "\n");
-
- fclose(autocorr_file);
-
- free(Gammas);
- free(autocorr->OO);
- while (autocorr->Op != NULL) {
- stack_pop_d(&(autocorr->Op));
- }
- free(autocorr);
-
- tau = ttau * ac_skip * clust->x / h->nv;
- }
-
- if (tau_failed) {
- tau = 0;
- }
-
- FILE *outfile = fopen("out.m", "a");
-
- fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,H->{", N, n, D, L, q, T);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", H[i]);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", M[i]->x / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]M->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},aM->%.15f,\\[Delta]aM->%.15f,a\\[Chi]->%.15f,\\[Delta]a\\[Chi]->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", aM->x / h->nv, meas_dx(aM) / h->nv, meas_c(aM) / h->nv, meas_dc(aM) / h->nv, clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau);
-
- fclose(outfile);
-
- free(E);
- free(clust);
- for (q_t i = 0; i < q; i++) {
- free(M[i]);
- }
- free(M);
- free(H);
- free(s->M);
- free(s->R);
- free(s->spins);
- graph_free(s->g);
- free(s);
- graph_free(h);
- gsl_rng_free(r);
-
- return 0;
-}
-