summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--CMakeLists.txt19
-rw-r--r--lib/cluster.c368
-rw-r--r--lib/cluster.h216
-rw-r--r--lib/cluster_finite.c14
-rw-r--r--lib/cluster_finite.h13
-rw-r--r--lib/dihedral.c23
-rw-r--r--lib/dihedral.h4
-rw-r--r--lib/graph.h12
-rw-r--r--lib/initial_finite.c326
-rw-r--r--lib/initial_finite.h27
-rw-r--r--lib/measurement.c145
-rw-r--r--lib/measurement.h23
-rw-r--r--lib/orthogonal.c99
-rw-r--r--lib/orthogonal.h157
-rw-r--r--lib/rand.h9
-rw-r--r--lib/stack.h9
-rw-r--r--lib/symmetric.c43
-rw-r--r--lib/symmetric.h2
-rw-r--r--lib/vector.h85
-rw-r--r--lib/wolff.h73
-rw-r--r--lib/wolff_finite.c70
-rw-r--r--src/wolff_dgm.c247
-rw-r--r--src/wolff_finite.c188
-rw-r--r--src/wolff_heisenberg.cpp77
-rw-r--r--src/wolff_planar.cpp77
-rw-r--r--src/wolff_potts.c485
-rw-r--r--src/wolff_vector.c377
27 files changed, 1440 insertions, 1748 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 2ef18d5..ffbde47 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -4,15 +4,16 @@ project(wolff)
set(CMAKE_CXX_FLAGS_DEBUG "-g")
set(CMAKE_CXX_FLAGS_RELEASE "-O3")
-set (CMAKE_CXX_STANDARD 11)
+set (CMAKE_CXX_STANDARD 17)
include_directories(lib ~/.local/include)
link_directories(~/.local/lib)
-file(GLOB SOURCES lib/*.c)
-add_executable(wolff_potts src/wolff_potts.c ${SOURCES})
-add_executable(wolff_vector src/wolff_vector.c ${SOURCES})
-add_executable(wolff_dgm src/wolff_dgm.c ${SOURCES})
+file(GLOB CSOURCES lib/*.c)
+file(GLOB CPPSOURCES lib/*.cpp)
+add_executable(wolff_finite src/wolff_finite.c ${CSOURCES})
+add_executable(wolff_heisenberg src/wolff_heisenberg.cpp ${CPPSOURCES} ${CSOURCES})
+add_executable(wolff_planar src/wolff_planar.cpp ${CPPSOURCES} ${CSOURCES})
find_package(OpenMP)
if (OPENMP_FOUND)
@@ -20,9 +21,9 @@ if (OPENMP_FOUND)
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
endif()
-target_link_libraries(wolff_potts gsl m cblas fftw3)
-target_link_libraries(wolff_vector gsl m cblas fftw3)
-target_link_libraries(wolff_dgm gsl m cblas fftw3)
+target_link_libraries(wolff_finite gsl m cblas fftw3)
+target_link_libraries(wolff_heisenberg gsl m cblas fftw3)
+target_link_libraries(wolff_planar gsl m cblas fftw3)
-install(TARGETS wolff_potts wolff_vector wolff_dgm DESTINATION bin)
+install(TARGETS wolff_finite wolff_heisenberg wolff_planar DESTINATION bin)
diff --git a/lib/cluster.c b/lib/cluster.c
deleted file mode 100644
index 7274eb9..0000000
--- a/lib/cluster.c
+++ /dev/null
@@ -1,368 +0,0 @@
-
-#include "cluster.h"
-
-v_t flip_cluster(ising_state_t *s, v_t v0, q_t rot, gsl_rng *r) {
- v_t nv = 0;
-
- ll_t *stack = NULL; // create a new stack
- stack_push(&stack, v0); // push the initial vertex to the stack
-
- bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));
-
- while (stack != NULL) {
- v_t v = stack_pop(&stack);
-
- if (!marks[v]) {
- q_t s_old, s_new;
- dihedral_t *R_new;
- bool external_flipped;
-
- marks[v] = true;
-
- if (v == s->g->nv - 1) {
- R_new = dihedral_compose(s->q, rot, s->R);
- external_flipped = true;
- } else {
- s_old = s->spins[v];
- s_new = dihedral_act(s->q, rot, s_old);
- external_flipped = false;
- }
-
- v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
-
- for (v_t i = 0; i < nn; i++) {
- q_t sn;
- double prob;
- bool external_neighbor = false;
-
- v_t vn = s->g->v_adj[s->g->v_i[v] + i];
-
- if (vn == s->g->nv - 1) {
- external_neighbor = true;
- } else {
- sn = s->spins[vn];
- }
-
- if (external_flipped || external_neighbor) {
- q_t rot_s_old, rot_s_new;
-
- if (external_neighbor) {
- rot_s_old = dihedral_inverse_act(s->q, s->R, s_old);
- rot_s_new = dihedral_inverse_act(s->q, s->R, s_new);
- } else {
- rot_s_old = dihedral_inverse_act(s->q, s->R, sn);
- rot_s_new = dihedral_inverse_act(s->q, R_new, sn);
- }
-
- prob = s->H_probs[rot_s_new * s->q + rot_s_old];
-
- s->M[rot_s_old]--;
- s->M[rot_s_new]++;
-
- s->E += - s->H[rot_s_new] + s->H[rot_s_old];
- } else {
- q_t diff_old = (s_old + s->q - sn) % s->q;
- q_t diff_new = (s_new + s->q - sn) % s->q;
-
- prob = s->J_probs[diff_new * s->q + diff_old];
-
- s->E += - s->J[diff_new] + s->J[diff_old];
- }
-
- if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
- stack_push(&stack, vn); // push the neighboring vertex to the stack
- }
- }
-
- if (external_flipped) {
- free(s->R);
- s->R = R_new;
- } else {
- s->spins[v] = s_new;
- }
-
- if (v != s->g->nv - 1) { // count the number of non-external sites that flip
- nv++;
- }
- }
- }
-
- free(marks);
-
- return nv;
-}
-
-v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r) {
- v_t nv = 0;
-
- ll_t *stack = NULL; // create a new stack
- stack_push(&stack, v0); // push the initial vertex to the stack
-
- bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));
-
- while (stack != NULL) {
- v_t v = stack_pop(&stack);
-
- if (!marks[v]) {
- h_t s_old, s_new;
- dihinf_t *R_new;
- bool external_flipped;
-
- marks[v] = true;
-
- if (v == s->g->nv - 1) {
- R_new = dihinf_compose(rot, s->R);
- external_flipped = true;
- } else {
- s_old = s->spins[v];
- s_new = dihinf_act(rot, s_old);
- external_flipped = false;
- }
-
- v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
-
- for (v_t i = 0; i < nn; i++) {
- h_t sn;
- double prob;
- bool external_neighbor = false;
-
- v_t vn = s->g->v_adj[s->g->v_i[v] + i];
-
- if (vn == s->g->nv - 1) {
- external_neighbor = true;
- } else {
- sn = s->spins[vn];
- }
-
- if (external_flipped || external_neighbor) {
- h_t rot_s_old, rot_s_new;
-
- if (external_neighbor) {
- rot_s_old = dihinf_inverse_act(s->R, s_old);
- rot_s_new = dihinf_inverse_act(s->R, s_new);
- } else {
- rot_s_old = dihinf_inverse_act(s->R, sn);
- rot_s_new = dihinf_inverse_act(R_new, sn);
- }
-
- double dE = s->H(s->H_info, rot_s_old) - s->H(s->H_info, rot_s_new);
- prob = 1.0 - exp(-dE / s->T);
-
- s->M += rot_s_new - rot_s_old;
- s->E += dE;
- } else {
- double dE = (s->J)(s_old - sn) - (s->J)(s_new - sn);
- prob = 1.0 - exp(-dE / s->T);
- s->E += dE;
- }
-
- if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
- stack_push(&stack, vn); // push the neighboring vertex to the stack
- }
- }
-
- if (external_flipped) {
- free(s->R);
- s->R = R_new;
- } else {
- s->spins[v] = s_new;
- }
-
- if (v != s->g->nv - 1) { // count the number of non-external sites that flip
- nv++;
- }
- }
- }
-
- free(marks);
-
- return nv;
-}
-
-v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r) {
- v_t nv = 0;
-
- ll_t *stack = NULL; // create a new stack
- stack_push(&stack, v0); // push the initial vertex to the stack
-
- //node_t *T = NULL;
- bool *marks = (bool *)calloc(s->g->nv, sizeof(bool));
-
- while (stack != NULL) {
- v_t v = stack_pop(&stack);
-
-// if (!tree_contains(T, v)) { // if the vertex hasn't already been flipped
- if (!marks[v]) {
- bool v_is_external = false;
- double *s_old, *s_new, *R_tmp;
-
- if (v == s->g->nv - 1) {
- v_is_external = true;
- }
-
- //tree_insert(&T, v);
- marks[v] = true;
-
- if (v == s->g->nv - 1) {
- R_tmp = orthogonal_rotate(s->n, rot, s->R);
- } else {
- s_old = &(s->spins[s->n * v]); // don't free me! I'm a pointer within array s->spins
- s_new = vector_rotate(s->n, rot, s_old); // free me! I'm a new vector
- }
-
- v_t nn = s->g->v_i[v + 1] - s->g->v_i[v];
-
- for (v_t i = 0; i < nn; i++) {
- v_t vn = s->g->v_adj[s->g->v_i[v] + i];
-
- bool vn_is_external = false;
-
- if (vn == s->g->nv - 1) {
- vn_is_external = true;
- }
-
- double *sn;
-
- if (!vn_is_external) {
- sn = &(s->spins[s->n * vn]);
- }
-
- double prob;
-
- if (v_is_external || vn_is_external) {
- double *rs_old, *rs_new;
- if (vn_is_external) {
- rs_old = vector_rotate_inverse(s->n, s->R, s_old);
- rs_new = vector_rotate_inverse(s->n, s->R, s_new);
- } else {
- rs_old = vector_rotate_inverse(s->n, s->R, sn);
- rs_new = vector_rotate_inverse(s->n, R_tmp, sn);
- }
- double dE = s->H(s->n, s->H_info, rs_old) - s->H(s->n, s->H_info, rs_new);
- prob = 1.0 - exp(-dE / s->T);
- vector_subtract(s->n, s->M, rs_old);
- vector_add(s->n, s->M, rs_new);
- s->E += dE;
-
- free(rs_old);
- free(rs_new);
- } else {
- double dE = (s->J)(vector_dot(s->n, sn, s_old)) - (s->J)(vector_dot(s->n, sn, s_new));
- prob = 1.0 - exp(-dE / s->T);
- s->E += dE;
- }
-
- if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
- stack_push(&stack, vn); // push the neighboring vertex to the stack
- }
- }
-
- if (v == s->g->nv - 1) {
- free(s->R);
- s->R = R_tmp;
- } else {
- vector_replace(s->n, s_old, s_new);
- free(s_new);
- }
-
- if (v != s->g->nv - 1) { // count the number of non-external sites that flip
- nv++;
- }
- }
- }
-
- //tree_freeNode(T);
- free(marks);
-
- return nv;
-}
-
-/*G
-template <class R_t, class X_t>
-v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t *r, gsl_rng *rand) {
- v_t nv = 0;
-
- ll_t *stack = NULL; // create a new stack
- stack_push(&stack, v0); // push the initial vertex to the stack
-
- bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
-
- while (stack != NULL) {
- v_t v = stack_pop(&stack);
-
- if (!marks[v]) {
- X_t *si_old, *si_new;
- R_t *s0_old, *s0_new;
-
- si_old = state->s[v];
- s0_old = state->s0;
-
- marks[v] = true;
-
- if (v == state->g->nv - 1) {
- s0_new = act <R_t, R_t> (r, s0_old);
- } else {
- si_new = act <R_t, X_t> (r, si_old);
- }
-
- v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
-
- for (v_t i = 0; i < nn; i++) {
- v_t vn = state->g->v_adj[state->g->v_i[v] + i];
-
- X_t *sj;
-
- if (vn != state->g->nv - 1) {
- sj = state->s[vn];
- }
-
- double prob;
-
- bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
-
- if (is_ext) {
- X_t *rs_old, *rs_new;
- if (vn == state->g->nv - 1) {
- rs_old = inverse_act <class R_t, class X_t> (s0_old, si_old);
- rs_new = inverse_act <class R_t, class X_t> (s0_old, si_new);
- } else {
- rs_old = inverse_act <class R_t, class X_t> (s0_old, sj);
- rs_new = inverse_act <class R_t, class X_t> (s0_new, sj);
- }
- double dE = state->B(rs_old) - state->B(rs_new);
- prob = 1.0 - exp(-dE / state->T);
- update_magnetization <X_t> (state->M, rs_old, rs_new);
- state->E += dE;
-
- free_X <X_t> (rs_old);
- free_X <X_t> (rs_new);
- } else {
- double dE = state->Z(si_old, sj) - state->Z(si_new, sj);
- prob = 1.0 - exp(-dE / state->T);
- state->E += dE;
- }
-
- if (gsl_rng_uniform(rand) < prob) { // and with probability...
- stack_push(&stack, vn); // push the neighboring vertex to the stack
- }
- }
-
- if (v == state->g->nv - 1) {
- free_R <R_t> (state->s0);
- state->s0 = s0_new;
- } else {
- free_X <X_t> (state->s[v]);
- state->s[v] = si_new;
- }
-
- if (v != state->g->nv - 1) { // count the number of non-external sites that flip
- nv++;
- }
- }
- }
-
- free(marks);
-
- return nv;
-}
-*/
diff --git a/lib/cluster.h b/lib/cluster.h
index d118735..a20912e 100644
--- a/lib/cluster.h
+++ b/lib/cluster.h
@@ -1,13 +1,14 @@
#pragma once
+#include <functional>
#include <assert.h>
#include <fftw3.h>
#include <float.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <inttypes.h>
-#include <math.h>
+#include <cmath>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>
@@ -19,62 +20,169 @@
#include "graph.h"
#include "tree.h"
#include "measurement.h"
+#include "vector.h"
#include "orthogonal.h"
#include "dihedral.h"
#include "dihinf.h"
#include "yule_walker.h"
-typedef struct {
- graph_t *g;
- q_t *spins;
- double T;
- double *J;
- double *H;
- double *J_probs;
- double *H_probs;
- dihedral_t *R;
- double E;
- v_t *M;
- q_t q;
-} ising_state_t;
-
-typedef struct {
- graph_t *g;
- h_t *spins;
- double T;
- double (*J)(h_t);
- double (*H)(double *, h_t);
- double *H_info;
- dihinf_t *R;
- double E;
- h_t M;
-} dgm_state_t;
-
-typedef struct {
- graph_t *g;
- double *spins;
- double T;
- double (*J)(double);
- double (*H)(q_t, double *, double *);
- double *H_info;
- double *R;
- double E;
- double *M;
- q_t n;
-} vector_state_t;
-
-typedef enum {
- VECTOR,
- MODULATED,
- CUBIC,
- QUADRATIC
-} vector_field_t;
-
-v_t flip_cluster(ising_state_t *s, v_t v0, q_t s1, gsl_rng *r);
-
-v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r);
-
-v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r);
-
-graph_t *graph_add_ext(const graph_t *g);
+template <class T>
+void init(T*);
+
+template <class T>
+T scalar_multiple(v_t a, T b);
+
+template <class R_t, class X_t>
+X_t act(R_t a, X_t b);
+
+template <class R_t, class X_t>
+X_t act_inverse(R_t a, X_t b);
+
+template <class T>
+T copy(T a);
+
+template <class T>
+void free_spin(T a);
+
+template <class T>
+T add(T, T);
+
+template <class T>
+T subtract(T, T);
+
+template <class T>
+T gen_rot(gsl_rng *r);
+
+template <class R_t, class X_t>
+class state_t {
+ public:
+ D_t D;
+ L_t L;
+ v_t nv;
+ v_t ne;
+ graph_t *g;
+ double T;
+ X_t *spins;
+ R_t R;
+ double E;
+ X_t M; // the "sum" of the spins, like the total magnetization
+
+ std::function <double(X_t, X_t)> J;
+ std::function <double(X_t)> H;
+
+ state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), T(T), J(J), H(H) {
+ graph_t *h = graph_create_square(D, L);
+ nv = h->nv;
+ ne = h->ne;
+ g = graph_add_ext(h);
+ graph_free(h);
+ spins = (X_t *)malloc(nv * sizeof(X_t));
+ for (v_t i = 0; i < nv; i++) {
+ init (&(spins[i]));
+ }
+ init (&R);
+ E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]);
+ M = scalar_multiple (nv, spins[0]);
+ }
+
+ ~state_t() {
+ graph_free(g);
+ for (v_t i = 0; i < nv; i++) {
+ free_spin(spins[i]);
+ }
+ free(spins);
+ free_spin(R);
+ free_spin(M);
+ }
+};
+
+template <class R_t, class X_t>
+v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) {
+ v_t nv = 0;
+
+ ll_t *stack = NULL; // create a new stack
+ stack_push(&stack, v0); // push the initial vertex to the stack
+
+ bool *marks = (bool *)calloc(state->g->nv, sizeof(bool));
+
+ while (stack != NULL) {
+ v_t v = stack_pop(&stack);
+
+ if (!marks[v]) {
+ X_t si_old, si_new;
+ R_t R_old, R_new;
+
+ si_old = state->spins[v];
+ R_old = state->R;
+
+ marks[v] = true;
+
+ if (v == state->g->nv - 1) {
+ R_new = act (r, R_old);
+ } else {
+ si_new = act (r, si_old);
+ }
+
+ v_t nn = state->g->v_i[v + 1] - state->g->v_i[v];
+
+ for (v_t i = 0; i < nn; i++) {
+ v_t vn = state->g->v_adj[state->g->v_i[v] + i];
+
+ X_t sj;
+
+ if (vn != state->g->nv - 1) {
+ sj = state->spins[vn];
+ }
+
+ double prob;
+
+ bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1);
+
+ if (is_ext) {
+ X_t rs_old, rs_new;
+ if (vn == state->g->nv - 1) {
+ rs_old = act_inverse (R_old, si_old);
+ rs_new = act_inverse (R_old, si_new);
+ } else {
+ rs_old = act_inverse (R_old, sj);
+ rs_new = act_inverse (R_new, sj);
+ }
+ double dE = state->H(rs_old) - state->H(rs_new);
+ prob = 1.0 - exp(-dE / state->T);
+
+ subtract (state->M, rs_old);
+ add (state->M, rs_new);
+ state->E += dE;
+
+ free_spin (rs_old);
+ free_spin (rs_new);
+ } else {
+ double dE = state->J(si_old, sj) - state->J(si_new, sj);
+ prob = 1.0 - exp(-dE / state->T);
+ state->E += dE;
+ }
+
+ if (gsl_rng_uniform(rand) < prob) { // and with probability...
+ stack_push(&stack, vn); // push the neighboring vertex to the stack
+ }
+ }
+
+ if (v == state->g->nv - 1) {
+ free_spin(state->R);
+ state->R = R_new;
+ } else {
+ free_spin(state->spins[v]);
+ state->spins[v] = si_new;
+ }
+
+ if (v != state->g->nv - 1) { // count the number of non-external sites that flip
+ nv++;
+ }
+ }
+ }
+
+ free(marks);
+
+ return nv;
+}
diff --git a/lib/cluster_finite.c b/lib/cluster_finite.c
index f11a3ea..9392cf8 100644
--- a/lib/cluster_finite.c
+++ b/lib/cluster_finite.c
@@ -1,8 +1,8 @@
#include "cluster_finite.h"
-v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) {
- q_t *rot = s->transformations + s->q * rot_ind;
+v_t flip_cluster_finite(state_finite_t *s, v_t v0, R_t rot_ind, gsl_rng *r) {
+ q_t *rot = s->transformations + s->q * s->involutions[rot_ind];
q_t *R_inv = symmetric_invert(s->q, s->R);
v_t nv = 0;
@@ -62,14 +62,14 @@ v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) {
s->M[rot_s_old]--;
s->M[rot_s_new]++;
- s->E += - s->H[rot_s_new] + s->H[rot_s_old];
} else {
- q_t diff_old = (s_old + s->q - sn) % s->q;
- q_t diff_new = (s_new + s->q - sn) % s->q;
+ q_t diff_old = s->bond_with_zero_type[s->transformations[s->q * s->transform_site_to_zero[sn] + s_old]];
+ q_t diff_new = s->bond_with_zero_type[s->transformations[s->q * s->transform_site_to_zero[sn] + s_new]];
- prob = s->J_probs[diff_new * s->q + diff_old];
+ prob = s->J_probs[diff_new * s->n_bond_types + diff_old];
- s->E += - s->J[diff_new] + s->J[diff_old];
+ s->B[diff_old]--;
+ s->B[diff_new]++;
}
if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]...
diff --git a/lib/cluster_finite.h b/lib/cluster_finite.h
index abdc8fc..b2d764e 100644
--- a/lib/cluster_finite.h
+++ b/lib/cluster_finite.h
@@ -23,10 +23,19 @@
#include "yule_walker.h"
typedef struct {
+ D_t D;
+ L_t L;
+ v_t nv;
+ v_t ne;
graph_t *g;
q_t q;
R_t n_transformations;
q_t *transformations;
+ R_t n_involutions;
+ R_t *involutions;
+ R_t *transform_site_to_zero;
+ q_t n_bond_types;
+ q_t *bond_with_zero_type;
double T;
double *J;
double *H;
@@ -34,9 +43,9 @@ typedef struct {
double *H_probs;
q_t *spins;
q_t *R;
- double E;
+ v_t *B;
v_t *M;
} state_finite_t;
-v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot, gsl_rng *r);
+v_t flip_cluster_finite(state_finite_t *s, v_t v0, R_t rot, gsl_rng *r);
diff --git a/lib/dihedral.c b/lib/dihedral.c
index ac74a23..8158b43 100644
--- a/lib/dihedral.c
+++ b/lib/dihedral.c
@@ -11,10 +11,14 @@ dihedral_t *dihedral_compose(q_t q, q_t g1i, const dihedral_t *g2) {
return g3;
}
-q_t dihedral_act(q_t q, q_t gi, q_t s) {
+q_t dihedral_act(q_t q, q_t gi, bool r, q_t s) {
// we only need to consider the action of reflections
- return (gi + q - s) % q;
+ if (r) {
+ return (gi + q - s) % q;
+ } else {
+ return (gi + s) % q;
+ }
}
q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s) {
@@ -26,15 +30,26 @@ q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s) {
}
q_t *dihedral_gen_transformations(q_t q) {
- q_t *transformations = (q_t *)malloc(q * q * sizeof(q_t));
+ q_t *transformations = (q_t *)malloc(2 * q * q * sizeof(q_t));
for (q_t i = 0; i < q; i++) {
for (q_t j = 0; j < q; j++) {
- transformations[q * i + j] = dihedral_act(q, i, j);
+ transformations[q * i + j] = dihedral_act(q, i, false, j);
+ transformations[q * q + q * i + j] = dihedral_act(q, i, true, j);
}
}
return transformations;
}
+R_t *dihedral_gen_involutions(q_t q) {
+ R_t *transformations = (R_t *)malloc(q * sizeof(R_t));
+
+ for (q_t i = 0; i < q; i++) {
+ transformations[i] = q + i;
+ }
+
+ return transformations;
+}
+
diff --git a/lib/dihedral.h b/lib/dihedral.h
index e5e4cbd..c95b23a 100644
--- a/lib/dihedral.h
+++ b/lib/dihedral.h
@@ -11,9 +11,11 @@ typedef struct {
dihedral_t *dihedral_compose(q_t q, q_t gti, const dihedral_t *g2);
-q_t dihedral_act(q_t q, q_t gi, q_t s);
+q_t dihedral_act(q_t q, q_t gi, bool r, q_t s);
q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s);
q_t *dihedral_gen_transformations(q_t q);
+R_t *dihedral_gen_involutions(q_t q);
+R_t factorial(q_t);
diff --git a/lib/graph.h b/lib/graph.h
index 9c80dd6..beb7f4c 100644
--- a/lib/graph.h
+++ b/lib/graph.h
@@ -1,10 +1,16 @@
+#pragma once
+
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>
#include "types.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
typedef struct {
v_t ne;
v_t nv;
@@ -13,8 +19,10 @@ typedef struct {
} graph_t;
graph_t *graph_create_square(D_t D, L_t L);
-
graph_t *graph_add_ext(const graph_t *G);
-
void graph_free(graph_t *h);
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/lib/initial_finite.c b/lib/initial_finite.c
new file mode 100644
index 0000000..6ea76ef
--- /dev/null
+++ b/lib/initial_finite.c
@@ -0,0 +1,326 @@
+
+#include "initial_finite.h"
+
+double *Jprobs_from_J(q_t q, double T, double *J) {
+ double *J_probs = (double *)calloc(pow(q, 2), sizeof(double));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ J_probs[q * i + j] = 1.0 - exp((J[i] - J[j]) / T);
+ }
+ }
+
+ return J_probs;
+}
+
+q_t *initialize_R(q_t q) {
+ q_t *R = (q_t *)malloc(q * sizeof(q_t));
+
+ for (q_t i = 0; i < q; i++) {
+ R[i] = i;
+ }
+
+ return R;
+}
+
+R_t *transformation_bringing_to_zero(q_t q, R_t n_transformations, q_t *transformations) {
+ R_t *destination = (R_t *)malloc(q * sizeof(R_t));
+
+ for (q_t i = 0; i < q; i++) {
+ for (R_t j = 0; j < n_transformations; j++) {
+ if (transformations[q * j + i] == 0) {
+ destination[i] = j;
+ }
+ }
+ }
+
+ return destination;
+}
+
+R_t find_involutions(R_t *destination, q_t q, R_t n_transformations, q_t *transformations) {
+ R_t n_involutions = 0;
+
+ for (R_t i = 1; i < n_transformations; i++) {
+ bool is_involution = true;
+ for (q_t j = 0; j < q; j++) {
+ if (j != transformations[q * i + transformations[q * i + j]]) {
+ is_involution = false;
+ break;
+ }
+ }
+ if (is_involution) {
+ destination[n_involutions] = i;
+ n_involutions++;
+ }
+ }
+
+ return n_involutions;
+}
+
+state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H) {
+ state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t));
+
+ s->D = D;
+ s->L = L;
+
+ {
+ graph_t *g = graph_create_square(D, L);
+ s->nv = g->nv;
+ s->ne = g->ne;
+ s->g = graph_add_ext(g);
+ graph_free(g);
+ }
+
+ s->q = 2;
+
+ s->n_transformations = 2;
+ s->transformations = (q_t *)malloc(2 * 2 * sizeof(q_t));
+ s->transformations[0] = 0;
+ s->transformations[1] = 1;
+ s->transformations[2] = 1;
+ s->transformations[3] = 0;
+
+ s->n_involutions = 1;
+ s->involutions = (R_t *)malloc(1 * sizeof(R_t));
+ s->involutions[0] = 1;
+
+ s->transform_site_to_zero = (R_t *)malloc(2 * sizeof(R_t));
+ s->transform_site_to_zero[0] = 0;
+ s->transform_site_to_zero[1] = 1;
+
+ s->n_bond_types = 2;
+ s->bond_with_zero_type = (q_t *)malloc(2 * sizeof(q_t));
+ s->bond_with_zero_type[0] = 0;
+ s->bond_with_zero_type[1] = 1;
+
+ s->T = T;
+ s->J = (double *)malloc(2 * sizeof(double));
+ s->J[0] = 1.0;
+ s->J[1] = -1.0;
+ s->H = (double *)malloc(2 * sizeof(double));
+ s->H[0] = H[0];
+ s->H[1] = -H[0];
+
+ s->J_probs = Jprobs_from_J(2, T, s->J);
+ s->H_probs = Jprobs_from_J(2, T, s->H);
+
+ s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
+ s->R = initialize_R(2);
+
+ s->M = (v_t *)calloc(2, sizeof(v_t));
+ s->M[0] = s->nv; // everyone starts in state 0, remember?
+ s->B = (v_t *)calloc(2, sizeof(v_t));
+ s->B[0] = s->ne;
+
+ return s;
+}
+
+state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, double *H) {
+ state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t));
+
+ s->D = D;
+ s->L = L;
+
+ {
+ graph_t *g = graph_create_square(D, L);
+ s->nv = g->nv;
+ s->ne = g->ne;
+ s->g = graph_add_ext(g);
+ graph_free(g);
+ }
+
+ s->q = q;
+ s->n_transformations = factorial(q);
+ s->transformations = symmetric_gen_transformations(q);
+ s->involutions = (R_t *)malloc(s->n_transformations * sizeof(R_t));
+ s->n_involutions = find_involutions(s->involutions, q, s->n_transformations, s->transformations);
+
+ s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations);
+
+ s->n_bond_types = 2;
+
+ s->bond_with_zero_type = (q_t *)malloc(q * sizeof(q_t));
+
+ s->bond_with_zero_type[0] = 0;
+
+ for (q_t i = 1; i < q; i++) {
+ s->bond_with_zero_type[i] = 1;
+ }
+
+ s->T = T;
+ s->J = (double *)calloc(2, sizeof(double));
+ s->J[0] = 1.0;
+ s->J[1] = 0.0;
+
+ s->H = (double *)malloc(q * sizeof(double));
+ for (q_t i = 0; i < q; i++) {
+ s->H[i] = H[i];
+ }
+
+ s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J);
+ s->H_probs = Jprobs_from_J(q, T, s->H);
+
+ s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
+ s->R = initialize_R(q);
+
+ s->M = (v_t *)calloc(q, sizeof(v_t));
+ s->M[0] = s->nv; // everyone starts in state 0, remember?
+ s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t));
+ s->B[0] = s->ne; // everyone starts in state 0, remember?
+
+ return s;
+}
+
+state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, double *H) {
+ state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t));
+
+ s->D = D;
+ s->L = L;
+
+ {
+ graph_t *g = graph_create_square(D, L);
+ s->nv = g->nv;
+ s->ne = g->ne;
+ s->g = graph_add_ext(g);
+ graph_free(g);
+ }
+
+ s->q = q;
+
+ s->n_transformations = 2 * q;
+ s->transformations = dihedral_gen_transformations(q);
+ s->n_involutions = q;
+ s->involutions = dihedral_gen_involutions(q);
+
+ s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations);
+ s->bond_with_zero_type = malloc(q * sizeof(q_t));
+
+ s->n_bond_types = q / 2 + 1;
+
+ for (q_t i = 0; i < q / 2 + 1; i++) {
+ s->bond_with_zero_type[i] = i;
+ }
+
+ for (q_t i = 1; i < (q + 1) / 2; i++) {
+ s->bond_with_zero_type[q - i] = i;
+ }
+
+
+ s->T = T;
+ s->J = (double *)malloc(s->n_bond_types * sizeof(double));
+
+ for (q_t i = 0; i < s->n_bond_types; i++) {
+ s->J[i] = cos(2 * M_PI * i / ((double)q));
+ }
+
+
+ s->H = (double *)malloc(q * sizeof(double));
+ for (q_t i = 0; i < q; i++) {
+ s->H[i] = H[i];
+ }
+
+ s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J);
+ s->H_probs = Jprobs_from_J(q, T, s->H);
+
+ s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
+ s->R = initialize_R(q);
+
+ s->M = (v_t *)calloc(q, sizeof(v_t));
+ s->M[0] = s->nv; // everyone starts in state 0, remember?
+ s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t));
+ s->B[0] = s->ne; // everyone starts in state 0, remember?
+
+ return s;
+}
+
+
+state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double *H) {
+ state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t));
+
+ s->D = D;
+ s->L = L;
+
+ {
+ graph_t *g = graph_create_square(D, L);
+ s->nv = g->nv;
+ s->ne = g->ne;
+ s->g = graph_add_ext(g);
+ graph_free(g);
+ }
+
+ s->q = q;
+
+ s->n_transformations = 2 * q;
+ s->transformations = dihedral_gen_transformations(q);
+ s->n_involutions = q;
+ s->involutions = dihedral_gen_involutions(q);
+
+ s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations);
+ s->bond_with_zero_type = malloc(q * sizeof(q_t));
+
+ s->n_bond_types = q / 2 + 1;
+
+ for (q_t i = 0; i < q / 2 + 1; i++) {
+ s->bond_with_zero_type[i] = i;
+ }
+
+ for (q_t i = 1; i < (q + 1) / 2; i++) {
+ s->bond_with_zero_type[(int)q - (int)i] = i;
+ }
+
+ s->T = T;
+ s->J = (double *)malloc(s->n_bond_types * sizeof(double));
+
+ for (q_t i = 0; i < s->n_bond_types; i++) {
+ s->J[i] = -pow(i, 2);
+ }
+
+ s->H = (double *)malloc(q * sizeof(double));
+ for (q_t i = 0; i < q; i++) {
+ s->H[i] = H[i];
+ }
+
+ s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J);
+ s->H_probs = Jprobs_from_J(q, T, s->H);
+
+ s->spins = (q_t *)calloc(s->nv, sizeof(q_t));
+ s->R = initialize_R(q);
+
+ s->M = (v_t *)calloc(q, sizeof(v_t));
+ s->M[0] = s->nv; // everyone starts in state 0, remember?
+ s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t));
+ s->B[0] = s->nv; // everyone starts in state 0, remember?
+
+ return s;
+}
+
+double state_finite_energy(state_finite_t *s) {
+ double E = 0;
+
+ for (q_t i = 0; i < s->n_bond_types; i++) {
+ E += s->J[i] * s->B[i];
+ }
+ for (q_t i = 0; i < s->q; i++) {
+ E += s->H[i] * s->M[i];
+ }
+
+ return -E;
+}
+
+void state_finite_free(state_finite_t *s) {
+ graph_free(s->g);
+ free(s->J);
+ free(s->H);
+ free(s->J_probs);
+ free(s->H_probs);
+ free(s->spins);
+ free(s->R);
+ free(s->M);
+ free(s->B);
+ free(s->transformations);
+ free(s->involutions);
+ free(s->transform_site_to_zero);
+ free(s->bond_with_zero_type);
+ free(s);
+}
+
diff --git a/lib/initial_finite.h b/lib/initial_finite.h
new file mode 100644
index 0000000..542f923
--- /dev/null
+++ b/lib/initial_finite.h
@@ -0,0 +1,27 @@
+
+#pragma once
+
+#include <stdbool.h>
+
+#include "types.h"
+#include "dihedral.h"
+#include "cluster_finite.h"
+
+static char *finite_model_t_strings[] = {"ISING", "POTTS", "CLOCK", "DGM"};
+
+typedef enum {
+ ISING,
+ POTTS,
+ CLOCK,
+ DGM
+} finite_model_t;
+
+state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H);
+state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, double *H);
+state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, double *H);
+state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double *H);
+
+void state_finite_free(state_finite_t *s);
+
+double state_finite_energy(state_finite_t *s);
+
diff --git a/lib/measurement.c b/lib/measurement.c
index ad824f6..b30cf6b 100644
--- a/lib/measurement.c
+++ b/lib/measurement.c
@@ -1,6 +1,15 @@
+#include "convex.h"
#include "measurement.h"
+meas_t *meas_initialize(count_t W) {
+ meas_t *m = (meas_t *)calloc(1, sizeof(meas_t));
+ m->W = W;
+ m->xx = (double *)calloc(2 * W + 1, sizeof(double));
+
+ return m;
+}
+
double add_to_avg(double mx, double x, count_t n) {
return mx * (n / (n + 1.0)) + x / (n + 1.0);
}
@@ -10,24 +19,42 @@ void meas_update(meas_t *m, double x) {
m->x = add_to_avg(m->x, x, n);
m->x2 = add_to_avg(m->x2, pow(x, 2), n);
+ m->x4 = add_to_avg(m->x4, pow(x, 4), n);
m->m2 = add_to_avg(m->m2, pow(x - m->x, 2), n);
m->m4 = add_to_avg(m->m4, pow(x - m->x, 4), n);
- /*
- if (n > 1) {
- double s2 = n / (n - 1.) * (m->x2 - pow(m->x, 2));
- m->dx = sqrt(s2 / n);
- m->c = s2;
- m->dc = sqrt((m->m4 - (n - 3.)/(n - 1.) * pow(m->m2, 2)) / n);
+ dll_t *tmp_window = m->x_window;
+ dll_t *pos_save;
+ count_t t = 0;
+
+ while (tmp_window != NULL) {
+ m->xx[t] = add_to_avg(m->xx[t], x * (tmp_window->x), m->n - t - 1);
+ t++;
+ if (t == 2 * (m->W)) {
+ pos_save = tmp_window;
+ }
+ tmp_window = tmp_window->next;
}
- */
+
+ if (t == 2 * (m->W) + 1) {
+ if (2 * (m->W) + 1 == 1) {
+ free(m->x_window);
+ m->x_window = NULL;
+ } else {
+ free(pos_save->next);
+ pos_save->next = NULL;
+ }
+ }
+
+ stack_push_d(&(m->x_window), x);
(m->n)++;
}
double meas_dx(const meas_t *m) {
- return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2)));
+ return 2 * get_tau(m) * Cxx(m, 0) / m->n;
+// return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2)));
}
double meas_c(const meas_t *m) {
@@ -74,3 +101,105 @@ double rho(const autocorr_t *o, count_t i) {
return (o->OO[i] - pow(o->O, 2)) / (o->O2 - pow(o->O, 2));
}
+double Cxx(const meas_t *m, count_t t) {
+ return m->xx[t] - pow(m->x, 2);
+}
+
+double rho_m(const meas_t *m, count_t t) {
+ return Cxx(m, t) / Cxx(m, 0);
+}
+
+double get_tau(const meas_t *m) {
+ double *Gammas = (double *)malloc((m->W + 1) * sizeof(double));
+
+ Gammas[0] = 1 + rho_m(m, 0);
+ for (uint64_t i = 0; i < m->W; i++) {
+ Gammas[1 + i] = rho_m(m, 2 * i + 1) + rho_m(m, 2 * i + 2);
+ }
+
+ uint64_t n;
+ for (n = 0; n < m->W + 1; n++) {
+ if (Gammas[n] <= 0) {
+ break;
+ }
+ }
+
+ double *conv_Gamma = get_convex_minorant(n, Gammas);
+
+ double tau = - 0.5;
+
+ for (uint64_t i = 0; i < n + 1; i++) {
+ tau += conv_Gamma[i];
+ }
+
+ free(Gammas);
+
+ return tau;
+}
+
+void print_meas(const meas_t *m, const char *sym, FILE *outfile) {
+ fprintf(outfile, "%s-><|n->%" PRIcount ",x->%.15f,x^2->%.15f,x^4->%.15f,xx->{", sym, m->n, m->x, m->x2, m->x4);
+ for (count_t i = 0; i < 2 * (m->W) + 1; i++) {
+ fprintf(outfile, "%.15f", m->xx[i]);
+ if (i < 2 * (m->W)) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "}|>");
+}
+
+void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile) {
+ fprintf(outfile, "%s-><|n->{", sym);
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%" PRIcount, m[i]->n);
+ if (i < q - 1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},x->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", m[i]->x);
+ if (i < q - 1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},x^2->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", m[i]->x2);
+ if (i < q - 1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},x^4->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "%.15f", m[i]->x4);
+ if (i < q - 1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "},xx->{");
+ for (q_t i = 0; i < q; i++) {
+ fprintf(outfile, "{");
+ for (count_t j = 0; j < 2 * (m[i]->W) + 1; j++) {
+ fprintf(outfile, "%.15f", m[i]->xx[j]);
+ if (j < 2 * (m[i]->W)) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "}");
+ if (i < q - 1) {
+ fprintf(outfile, ",");
+ }
+ }
+ fprintf(outfile, "}|>");
+}
+
+void free_meas(meas_t *m) {
+ free(m->xx);
+ while (m->x_window != NULL) {
+ stack_pop_d(&(m->x_window));
+ }
+ free(m);
+}
+
+
diff --git a/lib/measurement.h b/lib/measurement.h
index 46c034f..d9bd52e 100644
--- a/lib/measurement.h
+++ b/lib/measurement.h
@@ -3,16 +3,21 @@
#include <math.h>
#include <stdlib.h>
+#include <stdio.h>
#include "types.h"
#include "stack.h"
typedef struct {
- uint64_t n;
+ count_t n;
double x;
double x2;
+ double x4;
double m2;
double m4;
+ count_t W;
+ double *xx;
+ dll_t *x_window;
} meas_t;
typedef struct {
@@ -24,11 +29,6 @@ typedef struct {
double O2;
} autocorr_t;
-typedef struct {
- void (*f)(state_finite_t *, void *);
- void *data;
-} measurement_t;
-
void meas_update(meas_t *m, double x);
double meas_dx(const meas_t *m);
@@ -41,3 +41,14 @@ void update_autocorr(autocorr_t *OO, double O);
double rho(const autocorr_t *o, uint64_t i);
+void print_meas(const meas_t *m, const char *sym, FILE *outfile);
+void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile);
+
+void free_meas(meas_t *m);
+
+meas_t *meas_initialize(count_t W);
+
+double get_tau(const meas_t *m);
+
+double Cxx(const meas_t *m, count_t t);
+
diff --git a/lib/orthogonal.c b/lib/orthogonal.c
deleted file mode 100644
index 87569ae..0000000
--- a/lib/orthogonal.c
+++ /dev/null
@@ -1,99 +0,0 @@
-
-#include "orthogonal.h"
-
-void vector_replace(q_t n, double *v1, const double *v2) {
- // writes vector v2 of length n to memory located at v1
- for (q_t i = 0; i < n; i++) {
- v1[i] = v2[i];
- }
-}
-
-void vector_add(q_t n, double *v1, const double *v2) {
- // adds vector v2 of length n to vector v1
- for (q_t i = 0; i < n; i++) {
- v1[i] += v2[i];
- }
-}
-
-void vector_subtract(q_t n, double *v1, const double *v2) {
- // subtracts vector v2 of length n from vector v1
- for (q_t i = 0; i < n; i++) {
- v1[i] -= v2[i];
- }
-}
-
-double *vector_rotate(q_t n, const double *rot, const double *vec) {
- // multiplies n by n rotation matrix rot to vector vec
- double *rot_vec = (double *)malloc(n * sizeof(double));
-
- double prod = 0.0;
- for (q_t i = 0; i < n; i++) {
- prod += rot[i] * vec[i];
- }
-
- for (q_t i = 0; i < n; i++) {
- rot_vec[i] = vec[i] - 2 * prod * rot[i];
- }
-
- return rot_vec;
-}
-
-double *vector_rotate_inverse(q_t n, const double *rot, const double *vec) {
- double *rot_vec = (double *)calloc(n, sizeof(double));
-
- for (q_t i = 0; i < n; i++) {
- for (q_t j = 0; j < n; j++) {
- rot_vec[i] += rot[n * j + i] * vec[j];
- }
- }
-
- return rot_vec;
-}
-
-double vector_dot(q_t n, const double *v1, const double *v2) {
- double dot = 0;
-
- for (q_t i = 0; i < n; i++) {
- dot += v1[i] * v2[i];
- }
-
- return dot;
-}
-
-double *orthogonal_rotate(q_t n, const double *r, const double *m) {
- double *mul = (double *)calloc(n * n, sizeof(double));
-
- for (q_t i = 0; i < n; i++) {
- double akOki = 0;
-
- for (q_t k = 0; k < n; k++) {
- akOki += r[k] * m[n * k + i];
- }
-
- for (q_t j = 0; j < n; j++) {
- mul[n * j + i] = m[n * j + i] - 2 * akOki * r[j];
- }
- }
-
- return mul;
-}
-
-double *gen_rot(gsl_rng *r, q_t n) {
- double *v = (double *)malloc(n * sizeof(double));
-
- double v2 = 0;
-
- for (q_t i = 0; i < n; i++) {
- v[i] = gsl_ran_ugaussian(r);
- v2 += v[i] * v[i];
- }
-
- double magv = sqrt(v2);
-
- for (q_t i = 0; i < n; i++) {
- v[i] /= magv;
- }
-
- return v;
-}
-
diff --git a/lib/orthogonal.h b/lib/orthogonal.h
index 60d5f49..85f7a20 100644
--- a/lib/orthogonal.h
+++ b/lib/orthogonal.h
@@ -1,24 +1,163 @@
+#pragma once
+
#include <stdlib.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
-#include <math.h>
+#include <cmath>
#include "types.h"
-void vector_replace(q_t n, double *v1, const double *v2);
+template <q_t q, class T>
+struct orthogonal_t { bool is_reflection; T *x; };
+
+template <q_t q, class T>
+void init(orthogonal_t <q, T> *ptr) {
+ ptr->is_reflection = false;
+ ptr->x = (T *)calloc(q * q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ ptr->x[q * i + i] = (T)1;
+ }
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> copy (orthogonal_t <q, T> m) {
+ orthogonal_t <q, T> m_copy;
+ m_copy.is_reflection = m.is_reflection;
+
+ q_t size;
+
+ if (m.is_reflection) {
+ size = q;
+ } else {
+ size = q * q;
+ }
+
+ m_copy.x = (T *)calloc(size, sizeof(T));
+
+ for (q_t i = 0; i < size; i++) {
+ m_copy.x[i] = m.x[i];
+ }
+
+ return m_copy;
+}
+
+template <q_t q, class T>
+void free_spin (orthogonal_t <q, T> m) {
+ free(m.x);
+}
+
+template <q_t q, class T>
+vector_t <q, T> act (orthogonal_t <q, T> m, vector_t <q, T> v) {
+ vector_t <q, T> v_rot;
+ v_rot.x = (T *)calloc(q, sizeof(T));
+
+ if (m.is_reflection) {
+ double prod = 0;
+ for (q_t i = 0; i < q; i++) {
+ prod += v.x[i] * m.x[i];
+ }
+ for (q_t i = 0; i < q; i++) {
+ v_rot.x[i] = v.x[i] - 2 * prod * m.x[i];
+ }
+ } else {
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ v_rot.x[i] += m.x[q * i + j] * v.x[j];
+ }
+ }
+ }
+
+ return v_rot;
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> act (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+ orthogonal_t <q, T> m2_rot;
+
+ m2_rot.is_reflection = false;
+ m2_rot.x = (T *)calloc(q * q, sizeof(T));
+
+ if (m1.is_reflection) {
+ for (q_t i = 0; i < q; i++) {
+ double akOki = 0;
+
+ for (q_t k = 0; k < q; k++) {
+ akOki += m1.x[k] * m2.x[q * k + i];
+ }
+
+ for (q_t j = 0; j < q; j++) {
+ m2_rot.x[q * j + i] = m2.x[q * j + i] - 2 * akOki * m1.x[j];
+ }
+ }
+ } else {
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ for (q_t k = 0; k < q; k++) {
+ m2_rot.x[i * q + j] += m1.x[i * q + j] * m2.x[j * q + k];
+ }
+ }
+ }
+ }
+
+ return m2_rot;
+}
+
+template <q_t q, class T>
+vector_t <q, T> act_inverse (orthogonal_t <q, T> m, vector_t <q, T> v) {
+ if (m.is_reflection) {
+ return act(m, v); // reflections are their own inverse
+ } else {
+ vector_t <q, T> v_rot;
+ v_rot.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ v_rot.x[i] += m.x[q * j + i] * v.x[j];
+ }
+ }
+
+ return v_rot;
+ }
+}
+
+template <q_t q, class T>
+orthogonal_t <q, T> act_inverse (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) {
+ if (m1.is_reflection) {
+ return act(m1, m2); // reflections are their own inverse
+ } else {
+ orthogonal_t <q, T> m2_rot;
+ m2_rot.x = (T *)calloc(q * q, sizeof(T));
-void vector_add(q_t n, double *v1, const double *v2);
+ for (q_t i = 0; i < q; i++) {
+ for (q_t j = 0; j < q; j++) {
+ for (q_t k = 0; k < q; k++) {
+ m2_rot.x[i * q + j] += m1.x[j * q + i] * m2.x[j * q + k];
+ }
+ }
+ }
-void vector_subtract(q_t n, double *v1, const double *v2);
+ return m2_rot;
+ }
+}
-double *vector_rotate(q_t n, const double *rot, const double *vec);
+template <q_t q>
+void generate_rotation (gsl_rng *r, orthogonal_t <q, double> *ptr) {
+ ptr->is_reflection = true;
+ ptr->x = (double *)calloc(q, sizeof(double));
-double *vector_rotate_inverse(q_t n, const double *rot, const double *vec);
+ double v2 = 0;
-double vector_dot(q_t n, const double *v1, const double *v2);
+ for (q_t i = 0; i < q; i++) {
+ ptr->x[i] = gsl_ran_ugaussian(r);
+ v2 += ptr->x[i] * ptr->x[i];
+ }
-double *orthogonal_rotate(q_t n, const double *m1, const double *m2);
+ double mag_v = sqrt(v2);
-double *gen_rot(gsl_rng *r, q_t n);
+ for (q_t i = 0; i < q; i++) {
+ ptr->x[i] /= mag_v;
+ }
+}
diff --git a/lib/rand.h b/lib/rand.h
index 2354f6a..7bb5354 100644
--- a/lib/rand.h
+++ b/lib/rand.h
@@ -4,4 +4,13 @@
#include <assert.h>
#include <stdio.h>
+#ifdef __cplusplus
+extern "C" {
+#endif
+
unsigned long int rand_seed();
+
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/lib/stack.h b/lib/stack.h
index a354ab5..8d25aff 100644
--- a/lib/stack.h
+++ b/lib/stack.h
@@ -8,6 +8,11 @@
#include "types.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
typedef struct ll_tag {
v_t x;
struct ll_tag *next;
@@ -24,3 +29,7 @@ void stack_push_d(dll_t **q, double x);
v_t stack_pop(ll_t **q);
double stack_pop_d(dll_t **q);
+#ifdef __cplusplus
+}
+#endif
+
diff --git a/lib/symmetric.c b/lib/symmetric.c
index 729b38c..4487538 100644
--- a/lib/symmetric.c
+++ b/lib/symmetric.c
@@ -25,3 +25,46 @@ q_t *symmetric_invert(q_t q, const q_t *g) {
return g_inv;
}
+void swap(q_t *q1, q_t *q2) {
+ q_t temp = *q1;
+ *q1 = *q2;
+ *q2 = temp;
+}
+
+R_t factorial(q_t q) {
+ if (q == 0) {
+ return 1;
+ } else {
+ return q * factorial(q - 1);
+ }
+}
+
+void permute(q_t *a, q_t l, q_t r, R_t pos, q_t *transformations) {
+ if (l == r - 1) {
+ for (q_t i = 0; i < r; i++) {
+ transformations[r * pos + i] = a[i];
+ }
+ } else {
+ for (q_t i = l; i < r; i++) {
+ swap((a+l), (a+i));
+ permute(a, l+1, r, pos + (i - l) * factorial(r - l - 1), transformations);
+ swap((a+l), (a+i));
+ }
+ }
+}
+
+q_t *symmetric_gen_transformations(q_t q) {
+ q_t *transformations = (q_t *)malloc(q * factorial(q) * sizeof(q_t));
+ q_t *tmp = (q_t *)malloc(q * sizeof(q_t));
+
+ for (q_t i = 0; i < q; i++) {
+ tmp[i] = i;
+ }
+
+ permute(tmp, 0, q, 0, transformations);
+
+ free(tmp);
+
+ return transformations;
+}
+
diff --git a/lib/symmetric.h b/lib/symmetric.h
index 6e00f52..c71521d 100644
--- a/lib/symmetric.h
+++ b/lib/symmetric.h
@@ -11,3 +11,5 @@ q_t symmetric_act(const q_t *g, q_t s);
q_t *symmetric_invert(q_t q, const q_t *g);
+q_t *symmetric_gen_transformations(q_t q);
+
diff --git a/lib/vector.h b/lib/vector.h
new file mode 100644
index 0000000..62ce59e
--- /dev/null
+++ b/lib/vector.h
@@ -0,0 +1,85 @@
+
+#pragma once
+
+#include <stdlib.h>
+#include <cmath>
+
+#include "types.h"
+
+template <q_t q, class T>
+struct vector_t { T *x; };
+
+template <q_t q, class T>
+void init(vector_t <q, T> *ptr) {
+ ptr->x = (T *)calloc(q, sizeof(T));
+
+ ptr->x[0] = (T)1;
+}
+
+template <q_t q, class T>
+vector_t <q, T> copy (vector_t <q, T> v) {
+ vector_t <q, T> v_copy;
+
+ v_copy.x = (T *)calloc(q, sizeof(T));
+
+ for (q_t i = 0; i < q; i++) {
+ v_copy.x[i] = v.x[i];
+ }
+
+ return v_copy;
+}
+
+template <q_t q, class T>
+void add (vector_t <q, T> v1, vector_t <q, T> v2) {
+ for (q_t i = 0; i < q; i++) {
+ v1.x[i] += v2.x[i];
+ }
+}
+
+template <q_t q, class T>
+void subtract (vector_t <q, T> v1, vector_t <q, T> v2) {
+ for (q_t i = 0; i < q; i++) {
+ v1.x[i] -= v2.x[i];
+ }
+}
+
+template <q_t q, class T>
+vector_t <q, T> scalar_multiple(v_t a, vector_t <q, T> v) {
+ vector_t <q, T> multiple;
+ multiple.x = (T *)malloc(q * sizeof(T));
+ for (q_t i = 0; i < q; i++) {
+ multiple.x[i] = a * v.x[i];
+ }
+
+ return multiple;
+}
+
+template <q_t q, class T>
+T dot(vector_t <q, T> v1, vector_t <q, T> v2) {
+ T prod = 0;
+
+ for (q_t i = 0; i < q; i++) {
+ prod += v1.x[i] * v2.x[i];
+ }
+
+ return prod;
+}
+
+template <q_t q, class T>
+void free_spin (vector_t <q, T> v) {
+ free(v.x);
+}
+
+template <q_t q, class T>
+void write_magnetization(vector_t <q, T> M, FILE *outfile) {
+ fwrite(M.x, sizeof(double), q, outfile);
+}
+
+template <q_t q> // save some space and don't write whole doubles
+void write_magnetization(vector_t <q, double> M, FILE *outfile) {
+ for (q_t i = 0; i < q; i++) {
+ float M_tmp = (float)M.x[i];
+ fwrite(&M_tmp, sizeof(float), 1, outfile);
+ }
+}
+
diff --git a/lib/wolff.h b/lib/wolff.h
new file mode 100644
index 0000000..caf413b
--- /dev/null
+++ b/lib/wolff.h
@@ -0,0 +1,73 @@
+
+#include <time.h>
+#include <getopt.h>
+
+#include <cluster.h>
+
+template <q_t q, class T>
+double H_vector(vector_t <q, T> v1, T *H) {
+ vector_t <q, T> H_vec;
+ H_vec.x = H;
+ return (double)(dot <q, T> (v1, H_vec));
+}
+
+template <class R_t, class X_t>
+void wolff(count_t N, D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H, unsigned long timestamp, bool silent) {
+
+ state_t <R_t, X_t> s(D, L, T, J, H);
+
+ // initialize random number generator
+ gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+ gsl_rng_set(r, rand_seed());
+
+ char *filename_M = (char *)malloc(255 * sizeof(char));
+ char *filename_E = (char *)malloc(255 * sizeof(char));
+ char *filename_S = (char *)malloc(255 * sizeof(char));
+
+ sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
+ sprintf(filename_E, "wolff_%lu_E.dat", timestamp);
+ sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
+
+ FILE *outfile_M = fopen(filename_M, "wb");
+ FILE *outfile_E = fopen(filename_E, "wb");
+ FILE *outfile_S = fopen(filename_S, "wb");
+
+ free(filename_M);
+ free(filename_E);
+ free(filename_S);
+
+ v_t cluster_size = 0;
+
+ if (!silent) printf("\n");
+ for (count_t steps = 0; steps < N; steps++) {
+ if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", steps, N, s.E, cluster_size);
+
+ v_t v0 = gsl_rng_uniform_int(r, s.nv);
+
+ R_t step;
+ generate_rotation(r, &step);
+
+ cluster_size = flip_cluster <R_t, X_t> (&s, v0, step, r);
+
+ free_spin(step);
+
+ {
+ float smaller_E = (float)s.E;
+ fwrite(&smaller_E, sizeof(float), 1, outfile_E);
+ }
+ write_magnetization(s.M, outfile_M);
+ fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
+
+ }
+ if (!silent) {
+ printf("\033[F\033[J");
+ }
+ printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", N, N, s.E, cluster_size);
+
+ fclose(outfile_M);
+ fclose(outfile_E);
+ fclose(outfile_S);
+
+ gsl_rng_free(r);
+}
+
diff --git a/lib/wolff_finite.c b/lib/wolff_finite.c
deleted file mode 100644
index 64de9ba..0000000
--- a/lib/wolff_finite.c
+++ /dev/null
@@ -1,70 +0,0 @@
-
-#include "cluster_finite.h"
-
-void wolff_finite(state_finite_t *s, count_t sweeps, count_t sweeps_per_measurement, count_t n_measurements, measurement_t *measurements) {
- for (count_t i = 0; i < sweeps; i++) {
-
- count_t n_flips = 0;
-
- while (n_flips / h->nv < sweeps_per_measurement) {
- v_t v0 = gsl_rng_uniform_int(r, h->nv);
- R_t step;
-
- bool changed = false;
- while (!changed) {
- step = gsl_rng_uniform_int(r, s->n_transformations);
- if v(symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) {
- changed = true;
- }
- }
-
- v_t tmp_flips = flip_cluster_finite(s, v0, step, r);
- n_flips += tmp_flips;
-
- if (n_runs > 0) {
- n_steps++;
- meas_update(clust, tmp_flips);
-
- if (record_autocorrelation && n_steps % ac_skip == 0) {
- update_autocorr(autocorr, s->E);
- }
-
- }
-
- }
-
- for (q_t i = 0; i < q; i++) {
- meas_update(M[i], s->M[i]);
- }
- meas_update(E, s->E);
-
- q_t n_at_max = 0;
- q_t max_M_i = 0;
- v_t max_M = 0;
-
- for (q_t i = 0; i < q; i++) {
- if (s->M[i] > max_M) {
- n_at_max = 1;
- max_M_i = i;
- max_M = s->M[i];
- } else if (s->M[i] == max_M) {
- n_at_max++;
- }
- }
-
- if (record_distribution) {
- mag_dist[s->M[0]]++;
- }
-
- if (n_at_max == 1) {
- for (q_t i = 0; i < q; i++) {
- meas_update(sM[max_M_i][i], s->M[i]);
- }
- meas_update(sE[max_M_i], s->E);
- freqs[max_M_i]++;
- }
-
- diff = fabs(meas_dx(clust) / clust->x);
- }
-}
-
diff --git a/src/wolff_dgm.c b/src/wolff_dgm.c
deleted file mode 100644
index f11b296..0000000
--- a/src/wolff_dgm.c
+++ /dev/null
@@ -1,247 +0,0 @@
-
-#include <getopt.h>
-
-#include <cluster.h>
-
-double identity(h_t x) {
- return -pow(x, 2);
-}
-
-double basic_H(double *H, h_t x) {
- return -H[0] * pow(x, 2);
-}
-
-int main(int argc, char *argv[]) {
-
- L_t L = 128;
- count_t N = (count_t)1e7;
- count_t min_runs = 10;
- count_t n = 3;
- D_t D = 2;
- double T = 2.26918531421;
- double *H = (double *)calloc(MAX_Q, sizeof(double));
- double eps = 0;
- bool silent = false;
- bool record_autocorrelation = false;
- count_t ac_skip = 1;
- count_t W = 10;
-
- int opt;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:n:D:L:T:H:m:e:saS:W:")) != -1) {
- switch (opt) {
- case 'N':
- N = (count_t)atof(optarg);
- break;
- case 'n':
- n = (count_t)atof(optarg);
- break;
- case 'D':
- D = atoi(optarg);
- break;
- case 'L':
- L = atoi(optarg);
- break;
- case 'T':
- T = atof(optarg);
- break;
- case 'H':
- H[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 'm':
- min_runs = atoi(optarg);
- break;
- case 'e':
- eps = atof(optarg);
- break;
- case 's':
- silent = true;
- break;
- case 'a':
- record_autocorrelation = true;
- break;
- case 'S':
- ac_skip = (count_t)atof(optarg);
- break;
- case 'W':
- W = (count_t)atof(optarg);
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, rand_seed());
-
- dgm_state_t *s = (dgm_state_t *)calloc(1, sizeof(dgm_state_t));
-
- graph_t *h = graph_create_square(D, L);
- s->g = graph_add_ext(h);
-
- s->spins = (h_t *)calloc(h->nv, sizeof(h_t));
-
- s->H_info = H;
- s->T = T;
- s->H = basic_H;
- s->J = identity;
-
- s->R = (dihinf_t *)calloc(1, sizeof(dihinf_t));
-
- s->M = 0;
- s->E = 0;
-
- double diff = 1e31;
- count_t n_runs = 0;
- count_t n_steps = 0;
-
- meas_t *E, *clust, *M, *dM;
-
- M = (meas_t *)calloc(1, sizeof(meas_t ));
- dM = (meas_t *)calloc(1, sizeof(meas_t ));
-
- E = calloc(1, sizeof(meas_t));
- clust = calloc(1, sizeof(meas_t));
-
- autocorr_t *autocorr;
- if (record_autocorrelation) {
- autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
- autocorr->W = 2 * W + 1;
- autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
- }
-
- if (!silent) printf("\n");
- while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
- if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x);
-
- count_t n_flips = 0;
-
- while (n_flips / h->nv < n) {
- v_t v0 = gsl_rng_uniform_int(r, h->nv);
- h_t step = round((((double)s->M) / h->nv) + gsl_ran_gaussian(r, 5));
-
- v_t tmp_flips = flip_cluster_dgm(s, v0, step, r);
- n_flips += tmp_flips;
-
- if (n_runs > 0) {
- n_steps++;
- meas_update(clust, tmp_flips);
- }
-
- if (record_autocorrelation && n_runs > 0) {
- if (n_steps % ac_skip == 0) {
- update_autocorr(autocorr, s->E);
- }
- }
- }
-
- meas_update(M, s->M);
- h_t min_h, max_h;
- min_h = MAX_H;
- max_h = MIN_H;
- for (v_t i = 0; i < h->nv; i++) {
- if (s->spins[i] < min_h) {
- min_h = s->spins[i];
- } else if (s->spins[i] > max_h) {
- max_h = s->spins[i];
- }
- }
- meas_update(dM, max_h - min_h);
- meas_update(E, s->E);
-
- diff = fabs(meas_dc(E) / meas_c(E));
-
- n_runs++;
- }
- if (!silent) {
- printf("\033[F\033[J");
- }
- printf("WOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M) / M->x, meas_dc(E) / meas_c(E), meas_dc(M) / meas_c(M), h->nv / clust->x);
-
- double tau = 0;
- bool tau_failed = false;
-
- if (record_autocorrelation) {
- double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
- Gammas[0] = 1 + rho(autocorr, 0);
- for (uint64_t i = 0; i < W; i++) {
- Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
- }
-
- uint64_t n;
- for (n = 0; n < W + 1; n++) {
- if (Gammas[n] <= 0) {
- break;
- }
- }
-
- if (n == W + 1) {
- printf("WARNING: correlation function never hit the noise floor.\n");
- tau_failed = true;
- }
-
- if (n < 2) {
- printf("WARNING: correlation function only has one nonnegative term.\n");
- tau_failed = true;
- }
-
- double *conv_Gamma = get_convex_minorant(n, Gammas);
-
- double ttau = - 0.5;
-
- for (uint64_t i = 0; i < n + 1; i++) {
- ttau += conv_Gamma[i];
- }
-
- free(Gammas);
- free(autocorr->OO);
- while (autocorr->Op != NULL) {
- stack_pop_d(&(autocorr->Op));
- }
- free(autocorr);
-
- tau = ttau * ac_skip * clust->x / h->nv;
- }
-
- if (tau_failed) {
- tau = 0;
- }
-
- FILE *outfile = fopen("out.m", "a");
-
- fprintf(outfile, "<|D->%" PRID ",L->%" PRIL ",T->%.15f", D, L, T);
- fprintf(outfile, ",E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->%.15f", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv, M->x / h->nv);
- fprintf(outfile, ",\\[Delta]M->%.15f", meas_dx(M) / h->nv);
- fprintf(outfile, ",\\[Chi]->%.15f", meas_c(M) / h->nv);
- fprintf(outfile, ",\\[Delta]\\[Chi]->%.15f", meas_dc(M) / h->nv);
- fprintf(outfile, ",w->%.15f,\\[Delta]w->%.15f,wc->%.15f,\\[Delta]wc->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", dM->x, meas_dx(dM), meas_c(dM), meas_dc(dM), clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau);
-
- fclose(outfile);
-
- FILE *image = fopen("out.dat", "a");
- for (v_t i = 0; i < h->nv; i++) {
- fprintf(image, "%" PRIh " ", s->spins[i]);
- }
- fprintf(image, "\n");
- fclose(image);
-
- free(E);
- free(clust);
- free(H);
- free(s->R);
- free(s->spins);
- graph_free(s->g);
- free(s);
- graph_free(h);
- gsl_rng_free(r);
-
- return 0;
-}
-
diff --git a/src/wolff_finite.c b/src/wolff_finite.c
new file mode 100644
index 0000000..9b3e21e
--- /dev/null
+++ b/src/wolff_finite.c
@@ -0,0 +1,188 @@
+
+#include <time.h>
+#include <getopt.h>
+
+#include <initial_finite.h>
+
+int main(int argc, char *argv[]) {
+
+ count_t N = (count_t)1e7;
+
+ finite_model_t model = ISING;
+
+ q_t q = 2;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double *J = (double *)calloc(MAX_Q, sizeof(double));
+ J[0] = 1.0;
+ double *H = (double *)calloc(MAX_Q, sizeof(double));
+
+ bool silent = false;
+
+ int opt;
+ q_t J_ind = 0;
+ q_t H_ind = 0;
+
+ while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (count_t)atof(optarg);
+ break;
+ case 't': // type of simulation
+ model = (finite_model_t)atoi(optarg);
+ break;
+ case 'q': // number of states, if relevant
+ q = atoi(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'J': // couplings, if relevant. nth call couples states i and i + n
+ J[J_ind] = atof(optarg);
+ J_ind++;
+ break;
+ case 'H': // external field. nth call couples to state n
+ H[H_ind] = atof(optarg);
+ H_ind++;
+ break;
+ case 's': // don't print anything during simulation. speeds up slightly
+ silent = true;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ state_finite_t *s;
+
+ switch (model) {
+ case ISING:
+ s = initial_finite_prepare_ising(D, L, T, H);
+ break;
+ case POTTS:
+ s = initial_finite_prepare_potts(D, L, q, T, H);
+ break;
+ case CLOCK:
+ s = initial_finite_prepare_clock(D, L, q, T, H);
+ break;
+ case DGM:
+ s = initial_finite_prepare_dgm(D, L, q, T, H);
+ break;
+ default:
+ printf("Not a valid model!\n");
+ free(J);
+ free(H);
+ exit(EXIT_FAILURE);
+ }
+
+ free(J);
+ free(H);
+
+ // initialize random number generator
+ gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+ gsl_rng_set(r, rand_seed());
+
+ unsigned long timestamp;
+
+ {
+ struct timespec spec;
+ clock_gettime(CLOCK_REALTIME, &spec);
+ timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
+ }
+
+ FILE *outfile_info = fopen("wolff_metadata.txt", "a");
+
+ fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %" PRIq ", \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"NB\" -> %" PRIq ", \"T\" -> %.15f, \"J\" -> {", timestamp, finite_model_t_strings[model], s->q, D, L, s->nv, s->ne, s->n_bond_types, T);
+
+ for (q_t i = 0; i < s->n_bond_types; i++) {
+ fprintf(outfile_info, "%.15f", s->J[i]);
+ if (i < s->n_bond_types - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+
+ fprintf(outfile_info, "}, \"H\" -> {");
+
+ for (q_t i = 0; i < s->q; i++) {
+ fprintf(outfile_info, "%.15f", s->H[i]);
+ if (i < s->q - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+
+ fprintf(outfile_info, "} |>\n");
+
+ fclose(outfile_info);
+
+ char *filename_M = (char *)malloc(255 * sizeof(char));
+ char *filename_B = (char *)malloc(255 * sizeof(char));
+ char *filename_S = (char *)malloc(255 * sizeof(char));
+
+ sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
+ sprintf(filename_B, "wolff_%lu_B.dat", timestamp);
+ sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
+
+ FILE *outfile_M = fopen(filename_M, "wb");
+ FILE *outfile_B = fopen(filename_B, "wb");
+ FILE *outfile_S = fopen(filename_S, "wb");
+
+ free(filename_M);
+ free(filename_B);
+ free(filename_S);
+
+ v_t cluster_size = 0;
+
+ if (!silent) printf("\n");
+ for (count_t steps = 0; steps < N; steps++) {
+ if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
+
+ v_t v0 = gsl_rng_uniform_int(r, s->nv);
+ R_t step;
+
+ bool changed = false;
+ while (!changed) {
+ step = gsl_rng_uniform_int(r, s->n_involutions);
+ if (symmetric_act(s->transformations + s->q * s->involutions[step], s->spins[v0]) != s->spins[v0]) {
+ changed = true;
+ }
+ }
+
+ cluster_size = flip_cluster_finite(s, v0, step, r);
+
+ // v_t is never going to be bigger than 32 bits, but since it's specified
+ // as a fast time many machines will actually have it be 64 bits. we cast
+ // it down here to halve space.
+
+ for (q_t i = 0; i < s->n_bond_types - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
+ fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B);
+ }
+
+ for (q_t i = 0; i < s->q - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
+ fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M);
+ }
+
+ fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
+
+ }
+ if (!silent) {
+ printf("\033[F\033[J");
+ }
+ printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
+
+ fclose(outfile_M);
+ fclose(outfile_B);
+ fclose(outfile_S);
+
+ state_finite_free(s);
+ gsl_rng_free(r);
+
+ return 0;
+}
+
diff --git a/src/wolff_heisenberg.cpp b/src/wolff_heisenberg.cpp
new file mode 100644
index 0000000..d1ebd48
--- /dev/null
+++ b/src/wolff_heisenberg.cpp
@@ -0,0 +1,77 @@
+
+#include <getopt.h>
+
+#include <wolff.h>
+
+int main(int argc, char *argv[]) {
+
+ count_t N = (count_t)1e7;
+
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double *H = (double *)calloc(MAX_Q, sizeof(double));
+
+ bool silent = false;
+
+ int opt;
+ q_t J_ind = 0;
+ q_t H_ind = 0;
+
+ while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (count_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field. nth call couples to state n
+ H[H_ind] = atof(optarg);
+ H_ind++;
+ break;
+ case 's': // don't print anything during simulation. speeds up slightly
+ silent = true;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ unsigned long timestamp;
+
+ {
+ struct timespec spec;
+ clock_gettime(CLOCK_REALTIME, &spec);
+ timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
+ }
+
+ FILE *outfile_info = fopen("wolff_metadata.txt", "a");
+
+ fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"HEISENBERG\", q -> \"3\", \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, L * L, D * L * L, T);
+
+ for (q_t i = 0; i < 2; i++) {
+ fprintf(outfile_info, "%.15f", H[i]);
+ if (i < 2 - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+
+ fprintf(outfile_info, "} |>\n");
+
+ fclose(outfile_info);
+
+
+ wolff <orthogonal_t <3, double>, vector_t <3, double>> (N, D, L, T, dot <3, double>, std::bind(H_vector <3, double>, std::placeholders::_1, H), timestamp, silent);
+
+ free(H);
+
+ return 0;
+}
+
diff --git a/src/wolff_planar.cpp b/src/wolff_planar.cpp
new file mode 100644
index 0000000..02ededc
--- /dev/null
+++ b/src/wolff_planar.cpp
@@ -0,0 +1,77 @@
+
+#include <getopt.h>
+
+#include <wolff.h>
+
+int main(int argc, char *argv[]) {
+
+ count_t N = (count_t)1e7;
+
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double *H = (double *)calloc(MAX_Q, sizeof(double));
+
+ bool silent = false;
+
+ int opt;
+ q_t J_ind = 0;
+ q_t H_ind = 0;
+
+ while ((opt = getopt(argc, argv, "N:q:D:L:T:J:H:s")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (count_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field. nth call couples to state n
+ H[H_ind] = atof(optarg);
+ H_ind++;
+ break;
+ case 's': // don't print anything during simulation. speeds up slightly
+ silent = true;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ unsigned long timestamp;
+
+ {
+ struct timespec spec;
+ clock_gettime(CLOCK_REALTIME, &spec);
+ timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
+ }
+
+ FILE *outfile_info = fopen("wolff_metadata.txt", "a");
+
+ fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"PLANAR\", \"q\" -> 2, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, D, L, L * L, D * L * L, T);
+
+ for (q_t i = 0; i < 2; i++) {
+ fprintf(outfile_info, "%.15f", H[i]);
+ if (i < 2 - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+
+ fprintf(outfile_info, "} |>\n");
+
+ fclose(outfile_info);
+
+
+ wolff <orthogonal_t <2, double>, vector_t <2, double>> (N, D, L, T, dot <2, double>, std::bind(H_vector <2, double>, std::placeholders::_1, H), timestamp, silent);
+
+ free(H);
+
+ return 0;
+}
+
diff --git a/src/wolff_potts.c b/src/wolff_potts.c
deleted file mode 100644
index b081bec..0000000
--- a/src/wolff_potts.c
+++ /dev/null
@@ -1,485 +0,0 @@
-
-#include <getopt.h>
-
-#include <dihedral.h>
-#include <cluster_finite.h>
-
-int main(int argc, char *argv[]) {
-
- L_t L = 128;
- count_t N = (count_t)1e7;
- count_t min_runs = 10;
- count_t n = 3;
- q_t q = 2;
- D_t D = 2;
- double T = 2.26918531421;
- double *J = (double *)calloc(MAX_Q, sizeof(double));
- J[0] = 1.0;
- double *H = (double *)calloc(MAX_Q, sizeof(double));
- double eps = 0;
- bool pretend_ising = false;
- bool planar_potts = false;
- bool sim_dgm = false;
- bool silent = false;
- bool snapshots = false;
- bool snapshot = false;
- bool record_autocorrelation = false;
- bool record_distribution = false;
- count_t W = 10;
- count_t ac_skip = 1;
-
- int opt;
- q_t J_ind = 0;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:n:D:L:q:T:J:H:m:e:IpsSPak:W:dr")) != -1) {
- switch (opt) {
- case 'N':
- N = (count_t)atof(optarg);
- break;
- case 'n':
- n = (count_t)atof(optarg);
- break;
- case 'D':
- D = atoi(optarg);
- break;
- case 'L':
- L = atoi(optarg);
- break;
- case 'q':
- q = atoi(optarg);
- break;
- case 'T':
- T = atof(optarg);
- break;
- case 'J':
- J[J_ind] = atof(optarg);
- J_ind++;
- break;
- case 'H':
- H[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 'm':
- min_runs = atoi(optarg);
- break;
- case 'e':
- eps = atof(optarg);
- break;
- case 'I':
- pretend_ising = true;
- break;
- case 'p':
- planar_potts = true;
- break;
- case 's':
- silent = true;
- break;
- case 'S':
- snapshots = true;
- break;
- case 'P':
- snapshot = true;
- break;
- case 'a':
- record_autocorrelation = true;
- break;
- case 'k':
- ac_skip = (count_t)atof(optarg);
- break;
- case 'W':
- W = (count_t)atof(optarg);
- break;
- case 'd':
- record_distribution = true;
- break;
- case 'r':
- sim_dgm = true;
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, rand_seed());
-
- if (pretend_ising) {
- q = 2;
- H[1] = -H[0];
- J[1] = -J[0];
- }
-
- if (planar_potts) {
- for (q_t i = 0; i < q; i++) {
- J[i] = cos(2 * M_PI * i / ((double)q));
- }
- }
-
- if (sim_dgm) {
- for (q_t i = 0; i < q / 2 + 1; i++) {
- J[i] = -pow(i, 2);
- }
- for (q_t i = 1; i < (q + 1) / 2; i++) {
- J[q - i] = -pow(i, 2);
- }
- }
-
- state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t));
-
- graph_t *h = graph_create_square(D, L);
- s->g = graph_add_ext(h);
-
- s->q = q;
- s->n_transformations = q;
- s->transformations = dihedral_gen_transformations(q);
-
- s->T = T;
- s->J = J;
- s->H = H;
-
- s->J_probs = (double *)calloc(pow(q, 2), sizeof(double));
- for (q_t i = 0; i < q; i++) {
- for (q_t j = 0; j < q; j++) {
- s->J_probs[q * i + j] = 1.0 - exp((s->J[i] - s->J[j]) / T);
- }
- }
- s->H_probs = (double *)calloc(pow(q, 2), sizeof(double));
- for (q_t i = 0; i < q; i++) {
- for (q_t j = 0; j < q; j++) {
- s->H_probs[q * i + j] = 1.0 - exp((s->H[i] - s->H[j]) / T);
- }
- }
-
- s->spins = (q_t *)calloc(h->nv, sizeof(q_t)); // everyone starts in state 0
- s->R = (q_t *)malloc(q * sizeof(q_t)); // transformation is the identity, (1 ... q)
-
- for (q_t i = 0; i < q; i++) {
- s->R[i] = i;
- }
-
- // energy is the number of edges times the energy of an aligned edge minus
- // the number of vertices times the energy of a 0-aligned vertex
- s->E = - ((double)h->ne) * s->J[0] - ((double)h->nv) * s->H[0];
- s->M = (v_t *)calloc(q, sizeof(v_t));
- s->M[0] = h->nv; // everyone starts in state 0, remember?
-
- double diff = 1e31;
- count_t n_runs = 0;
- count_t n_steps = 0;
-
- meas_t *E, *clust, **M, **sE, ***sM;
-
- M = (meas_t **)malloc(q * sizeof(meas_t *));
- for (q_t i = 0; i < q; i++) {
- M[i] = (meas_t *)calloc(1, sizeof(meas_t));
- }
-
- E = calloc(1, sizeof(meas_t));
- clust = calloc(1, sizeof(meas_t));
-
- sE = (meas_t **)malloc(q * sizeof(meas_t *));
- sM = (meas_t ***)malloc(q * sizeof(meas_t **));
-
- for (q_t i = 0; i < q; i++) {
- sE[i] = (meas_t *)calloc(1, sizeof(meas_t));
- sM[i] = (meas_t **)malloc(q * sizeof(meas_t *));
- for (q_t j = 0; j < q; j++) {
- sM[i][j] = (meas_t *)calloc(1, sizeof(meas_t));
- }
- }
-
- count_t *freqs = (count_t *)calloc(q, sizeof(count_t));
- q_t cur_M = 0;
-
- autocorr_t *autocorr;
- if (record_autocorrelation) {
- autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
- autocorr->W = 2 * W + 1;
- autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
- }
-
- count_t *mag_dist;
- if (record_distribution) {
- mag_dist = (count_t *)calloc(h->nv + 1, sizeof(count_t));
- }
-
- if (!silent) printf("\n");
- while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
- if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x);
-
- count_t n_flips = 0;
-
- while (n_flips / h->nv < n) {
- v_t v0 = gsl_rng_uniform_int(r, h->nv);
- R_t step;
-
- bool changed = false;
- while (!changed) {
- step = gsl_rng_uniform_int(r, s->n_transformations);
- if (symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) {
- changed = true;
- }
- }
-
- v_t tmp_flips = flip_cluster_finite(s, v0, step, r);
- n_flips += tmp_flips;
-
- if (n_runs > 0) {
- n_steps++;
- meas_update(clust, tmp_flips);
-
- if (record_autocorrelation && n_steps % ac_skip == 0) {
- update_autocorr(autocorr, s->E);
- }
-
- }
-
- }
-
- for (q_t i = 0; i < q; i++) {
- meas_update(M[i], s->M[i]);
- }
- meas_update(E, s->E);
-
- q_t n_at_max = 0;
- q_t max_M_i = 0;
- v_t max_M = 0;
-
- for (q_t i = 0; i < q; i++) {
- if (s->M[i] > max_M) {
- n_at_max = 1;
- max_M_i = i;
- max_M = s->M[i];
- } else if (s->M[i] == max_M) {
- n_at_max++;
- }
- }
-
- if (record_distribution) {
- mag_dist[s->M[0]]++;
- }
-
- if (n_at_max == 1) {
- for (q_t i = 0; i < q; i++) {
- meas_update(sM[max_M_i][i], s->M[i]);
- }
- meas_update(sE[max_M_i], s->E);
- freqs[max_M_i]++;
- }
-
- diff = fabs(meas_dx(clust) / clust->x);
-
- n_runs++;
- }
- if (!silent) {
- printf("\033[F\033[J");
- }
- printf("WOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x);
-
- if (snapshots) {
- FILE *snapfile = fopen("snapshots.m", "a");
- fprintf(snapfile, "\n");
- }
-
- if (snapshot) {
- q_t *R_inv = symmetric_invert(q, s->R);
- FILE *snapfile = fopen("snapshot.m", "a");
- fprintf(snapfile, "{{");
- for (L_t i = 0; i < L; i++) {
- fprintf(snapfile, "{");
- for (L_t j = 0; j < L; j++) {
- fprintf(snapfile, "%" PRIq, symmetric_act(R_inv, s->spins[L * i + j]));
- if (j != L - 1) {
- fprintf(snapfile, ",");
- }
- }
- fprintf(snapfile, "}");
- if (i != L - 1) {
- fprintf(snapfile, ",");
- }
- }
- fprintf(snapfile, "}}\n");
- fclose(snapfile);
- }
-
- double tau = 0;
- int tau_failed = 0;
-
- if (record_autocorrelation) {
- double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
- Gammas[0] = 1 + rho(autocorr, 0);
- for (uint64_t i = 0; i < W; i++) {
- Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
- }
-
- uint64_t n;
- for (n = 0; n < W + 1; n++) {
- if (Gammas[n] <= 0) {
- break;
- }
- }
-
- if (n == W + 1) {
- printf("WARNING: correlation function never hit the noise floor.\n");
- tau_failed = 1;
- }
-
- if (n < 2) {
- printf("WARNING: correlation function only has one nonnegative term.\n");
- tau_failed = 2;
- }
-
- double *conv_Gamma = get_convex_minorant(n, Gammas);
-
- double ttau = - 0.5;
-
- for (uint64_t i = 0; i < n + 1; i++) {
- ttau += conv_Gamma[i];
- }
-
- tau = ttau * ac_skip * clust->x / h->nv;
-
- free(Gammas);
- free(autocorr->OO);
- while (autocorr->Op != NULL) {
- stack_pop_d(&(autocorr->Op));
- }
- free(autocorr);
- }
-
- if (tau_failed) {
- //tau = 0;
- }
-
- FILE *outfile = fopen("out.m", "a");
-
- fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,J->{", N, n, D, L, q, T);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", J[i]);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},H->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", H[i]);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", M[i]->x / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]M->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "},Subscript[E,%" PRIq "]->%.15f,Subscript[\\[Delta]E,%" PRIq "]->%.15f,Subscript[C,%" PRIq "]->%.15f,Subscript[\\[Delta]C,%" PRIq "]->%.15f,Subscript[M,%" PRIq "]->{", i, sE[i]->x / h->nv, i, meas_dx(sE[i]) / h->nv, i, meas_c(sE[i]) / h->nv, i, meas_dc(sE[i]) / h->nv, i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", sM[i][j]->x / h->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},Subscript[\\[Delta]M,%" PRIq "]->{", i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", meas_dx(sM[i][j]) / h->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},Subscript[\\[Chi],%" PRIq "]->{", i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", meas_c(sM[i][j]) / h->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},Subscript[\\[Delta]\\[Chi],%" PRIq "]->{", i);
- for (q_t j = 0; j < q; j++) {
- fprintf(outfile, "%.15f", meas_dc(sM[i][j]) / h->nv);
- if (j != q-1) {
- fprintf(outfile, ",");
- }
- }
- }
- fprintf(outfile,"}");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, ",Subscript[f,%" PRIq "]->%.15f,Subscript[\\[Delta]f,%" PRIq "]->%.15f", i, (double)freqs[i] / (double)n_runs, i, sqrt(freqs[i]) / (double)n_runs);
- }
- fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f,\\[Tau]s->%d", clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau,tau_failed);
- if (record_distribution) {
- fprintf(outfile, ",S->{");
- for (v_t i = 0; i < h->nv + 1; i++) {
- fprintf(outfile, "%" PRIcount, mag_dist[i]);
- if (i != h->nv) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "}");
- free(mag_dist);
- }
- fprintf(outfile, "|>\n");
-
- fclose(outfile);
-
- free(E);
- free(clust);
- for (q_t i = 0; i < q; i++) {
- free(M[i]);
- for (q_t j = 0; j < q; j++) {
- free(sM[i][j]);
- }
- free(sM[i]);
- }
- free(M);
- free(sM);
- for (q_t i = 0; i < q; i++) {
- free(sE[i]);
- }
- free(freqs);
- free(sE);
- free(s->H_probs);
- free(s->J_probs);
- free(s->M);
- free(s->spins);
- free(s->R);
- free(s->transformations);
- graph_free(s->g);
- free(s);
- free(H);
- free(J);
- graph_free(h);
- gsl_rng_free(r);
-
- return 0;
-}
-
diff --git a/src/wolff_vector.c b/src/wolff_vector.c
deleted file mode 100644
index c5ebcb5..0000000
--- a/src/wolff_vector.c
+++ /dev/null
@@ -1,377 +0,0 @@
-
-#include <getopt.h>
-
-#include <cluster.h>
-
-double identity(double x) {
- return x;
-}
-
-double zero(q_t n, double *H, double *x) {
- return 0.0;
-}
-
-double dot(q_t n, double *H, double *x) {
- double total = 0;
- for (q_t i = 0; i < n; i++) {
- total += H[i] * x[i];
- }
- return total;
-}
-
-double theta(double x, double y) {
- double val = atan(y / x);
-
- if (x < 0.0 && y > 0.0) {
- return M_PI + val;
- } else if ( x < 0.0 && y < 0.0 ) {
- return - M_PI + val;
- } else {
- return val;
- }
-}
-
-double modulated(q_t n, double *H_info, double *x) {
- return H_info[0] * cos(H_info[1] * theta(x[0], x[1]));
-}
-
-double cubic(q_t n, double *H_info, double *x) {
- double v_sum = 0;
-
- for (q_t i = 0; i < n; i++) {
- v_sum += pow(x[i], 4);
- }
-
- return - H_info[0] * v_sum;
-}
-
-double quadratic(q_t n, double *H_info, double *x) {
- double tmp = 0;
-
- tmp += pow(x[0], 2);
-
- for (q_t i = 1; i < n; i++) {
- tmp += - 1.0 / (n - 1.0) * pow(x[i], 2);
- }
-
- return - 0.5 * H_info[0] * tmp;
-}
-
-int main(int argc, char *argv[]) {
-
- L_t L = 128;
- count_t N = (count_t)1e7;
- count_t min_runs = 10;
- count_t n = 3;
- q_t q = 2;
- D_t D = 2;
- double T = 2.26918531421;
- double *H = (double *)calloc(MAX_Q, sizeof(double));
- double eps = 0;
- bool silent = false;
- bool record_autocorrelation = false;
- vector_field_t H_type = VECTOR;
- count_t ac_skip = 1;
- count_t W = 10;
-
- int opt;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:n:D:L:q:T:H:m:e:saS:W:f:")) != -1) {
- switch (opt) {
- case 'N':
- N = (count_t)atof(optarg);
- break;
- case 'n':
- n = (count_t)atof(optarg);
- break;
- case 'D':
- D = atoi(optarg);
- break;
- case 'L':
- L = atoi(optarg);
- break;
- case 'q':
- q = atoi(optarg);
- break;
- case 'T':
- T = atof(optarg);
- break;
- case 'H':
- H[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 'm':
- min_runs = atoi(optarg);
- break;
- case 'e':
- eps = atof(optarg);
- break;
- case 's':
- silent = true;
- break;
- case 'a':
- record_autocorrelation = true;
- break;
- case 'S':
- ac_skip = (count_t)atof(optarg);
- break;
- case 'W':
- W = (count_t)atof(optarg);
- break;
- case 'f':
- switch (atoi(optarg)) {
- case 0:
- H_type = VECTOR;
- break;
- case 1:
- H_type = MODULATED;
- break;
- case 2:
- H_type = CUBIC;
- break;
- case 3:
- H_type = QUADRATIC;
- break;
- }
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, rand_seed());
-
- vector_state_t *s = (vector_state_t *)calloc(1, sizeof(vector_state_t));
-
- graph_t *h = graph_create_square(D, L);
- s->g = graph_add_ext(h);
-
- s->n = q;
-
- s->spins = (double *)calloc(n * h->nv, sizeof(double));
-
- for (v_t i = 0; i < h->nv; i++) {
- s->spins[q * i] = 1.0;
- }
-
- s->H_info = H;
- s->T = T;
- switch (H_type) {
- case VECTOR:
- s->H = dot;
- break;
- case MODULATED:
- s->H = modulated;
- break;
- case CUBIC:
- s->H = cubic;
- break;
- case QUADRATIC:
- s->H = quadratic;
- break;
- }
- s->J = identity;
-
- s->R = (double *)calloc(q * q, sizeof(double));
-
- for (q_t i = 0; i < q; i++) {
- s->R[q * i + i] = 1.0;
- }
-
- s->M = (double *)calloc(q, sizeof(double));
- s->M[0] = 1.0;
- s->E = - ((double)h->ne) * s->J(1.0) - (double)h->nv * s->H(s->n, s->H_info, s->M);
- s->M[0] *= (double)h->nv;
-
- double diff = 1e31;
- count_t n_runs = 0;
- count_t n_steps = 0;
-
- meas_t *E, *clust, **M, *aM;
-
- M = (meas_t **)malloc(q * sizeof(meas_t *));
- aM = (meas_t *)calloc(q, sizeof(meas_t ));
- for (q_t i = 0; i < q; i++) {
- M[i] = (meas_t *)calloc(1, sizeof(meas_t));
- }
-
- E = calloc(1, sizeof(meas_t));
- clust = calloc(1, sizeof(meas_t));
-
- autocorr_t *autocorr;
- if (record_autocorrelation) {
- autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t));
- autocorr->W = 2 * W + 1;
- autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double));
- }
-
- if (!silent) printf("\n");
- while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) {
- if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(aM) / aM->x, meas_dc(E) / meas_c(E), meas_dc(aM) / meas_c(aM), h->nv / clust->x);
-
- count_t n_flips = 0;
-
- while (n_flips / h->nv < n) {
- v_t v0 = gsl_rng_uniform_int(r, h->nv);
- double *step = gen_rot(r, q);
-
- v_t tmp_flips = flip_cluster_vector(s, v0, step, r);
- free(step);
- n_flips += tmp_flips;
-
- if (n_runs > 0) {
- n_steps++;
- meas_update(clust, tmp_flips);
-
- if (record_autocorrelation && n_steps % ac_skip == 0) {
- update_autocorr(autocorr, s->E);
- }
- }
- }
-
- double aM_val = 0;
-
- for (q_t i = 0; i < q; i++) {
- meas_update(M[i], s->M[i]);
- aM_val += s->M[i] * s->M[i];
- }
-
- meas_update(aM, sqrt(aM_val));
- meas_update(E, s->E);
-
- diff = fabs(meas_dx(clust) / clust->x);
-
- n_runs++;
- }
-
- if (!silent) {
- printf("\033[F\033[J");
- }
- printf("WOLFF: sweep %" PRIu64
- ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n",
- n_runs, fabs(meas_dx(E) / E->x), meas_dx(M[0]) / M[0]->x, meas_dc(E) / meas_c(E), meas_dc(M[0]) / meas_c(M[0]), h->nv / clust->x);
-
- double tau = 0;
- bool tau_failed = false;
-
- if (record_autocorrelation) {
- double *Gammas = (double *)malloc((W + 1) * sizeof(double));
-
- Gammas[0] = 1 + rho(autocorr, 0);
- for (uint64_t i = 0; i < W; i++) {
- Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2);
- }
-
- uint64_t n;
- for (n = 0; n < W + 1; n++) {
- if (Gammas[n] <= 0) {
- break;
- }
- }
-
- if (n == W + 1) {
- printf("WARNING: correlation function never hit the noise floor.\n");
- tau_failed = true;
- }
-
- if (n < 2) {
- printf("WARNING: correlation function only has one nonnegative term.\n");
- tau_failed = true;
- }
-
- double *conv_Gamma = get_convex_minorant(n, Gammas);
-
- double ttau = - 0.5;
-
- for (uint64_t i = 0; i < n + 1; i++) {
- ttau += conv_Gamma[i];
- }
-
- FILE *autocorr_file = fopen("autocorr.dat", "a");
-
- printf("%g %g\n", Gammas[0], conv_Gamma[0]);
-
- for (count_t i = 0; i < n+1; i++) {
- fprintf(autocorr_file, "%g ", conv_Gamma[i]);
- }
- fprintf(autocorr_file, "\n");
-
- fclose(autocorr_file);
-
- free(Gammas);
- free(autocorr->OO);
- while (autocorr->Op != NULL) {
- stack_pop_d(&(autocorr->Op));
- }
- free(autocorr);
-
- tau = ttau * ac_skip * clust->x / h->nv;
- }
-
- if (tau_failed) {
- tau = 0;
- }
-
- FILE *outfile = fopen("out.m", "a");
-
- fprintf(outfile, "<|N->%" PRIcount ",n->%" PRIcount ",D->%" PRID ",L->%" PRIL ",q->%" PRIq ",T->%.15f,H->{", N, n, D, L, q, T);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", H[i]);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->{", E->x / h->nv, meas_dx(E) / h->nv, meas_c(E) / h->nv, meas_dc(E) / h->nv);
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", M[i]->x / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]M->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dx(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_c(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},\\[Delta]\\[Chi]->{");
- for (q_t i = 0; i < q; i++) {
- fprintf(outfile, "%.15f", meas_dc(M[i]) / h->nv);
- if (i != q-1) {
- fprintf(outfile, ",");
- }
- }
- fprintf(outfile, "},aM->%.15f,\\[Delta]aM->%.15f,a\\[Chi]->%.15f,\\[Delta]a\\[Chi]->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", aM->x / h->nv, meas_dx(aM) / h->nv, meas_c(aM) / h->nv, meas_dc(aM) / h->nv, clust->x / h->nv, meas_dx(clust) / h->nv, meas_c(clust) / h->nv, meas_dc(clust) / h->nv,tau);
-
- fclose(outfile);
-
- free(E);
- free(clust);
- for (q_t i = 0; i < q; i++) {
- free(M[i]);
- }
- free(M);
- free(H);
- free(s->M);
- free(s->R);
- free(s->spins);
- graph_free(s->g);
- free(s);
- graph_free(h);
- gsl_rng_free(r);
-
- return 0;
-}
-