summaryrefslogtreecommitdiff
path: root/examples/src/models/On/wolff_On.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/src/models/On/wolff_On.cpp')
-rw-r--r--examples/src/models/On/wolff_On.cpp268
1 files changed, 268 insertions, 0 deletions
diff --git a/examples/src/models/On/wolff_On.cpp b/examples/src/models/On/wolff_On.cpp
new file mode 100644
index 0000000..e3568c7
--- /dev/null
+++ b/examples/src/models/On/wolff_On.cpp
@@ -0,0 +1,268 @@
+
+#include <getopt.h>
+#include <stdio.h>
+
+#ifdef HAVE_GLUT
+#include <GL/glut.h>
+#endif
+
+#include "orthogonal.hpp"
+#include "vector.hpp"
+
+#include <wolff.hpp>
+#include <measure.hpp>
+#include <colors.h>
+#include <randutils/randutils.hpp>
+
+typedef orthogonal_t <N_COMP, double> orthogonal_R_t;
+typedef vector_t <N_COMP, double> vector_R_t;
+typedef state_t <orthogonal_R_t, vector_R_t> On_t;
+
+// angle from the x-axis of a two-vector
+double theta(vector_R_t v) {
+ double x = v[0];
+ double y = v[1];
+
+ double val = atan(y / x);
+
+ if (x < 0.0 && y > 0.0) {
+ return M_PI + val;
+ } else if ( x < 0.0 && y < 0.0 ) {
+ return - M_PI + val;
+ } else {
+ return val;
+ }
+}
+
+double H_modulated(vector_R_t v, int order, double mag) {
+ return mag * cos(order * theta(v));
+}
+
+int main(int argc, char *argv[]) {
+
+ count_t N = (count_t)1e7;
+
+#ifdef DIMENSION
+ D_t D = DIMENSION;
+#else
+ D_t D = 2;
+#endif
+ L_t L = 128;
+ double T = 2.26918531421;
+ double *H_vec = (double *)calloc(MAX_Q, sizeof(double));
+
+ bool silent = false;
+ bool use_pert = false;
+ bool N_is_sweeps = false;
+ bool draw = false;
+ unsigned int window_size = 512;
+
+ bool modulated_field = false;
+ unsigned int order = 1;
+
+ int opt;
+ q_t H_ind = 0;
+ double epsilon = 1;
+
+// unsigned char measurement_flags = measurement_energy | measurement_clusterSize;
+
+ unsigned char measurement_flags = 0;
+
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:spe:mo:M:Sdw:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (count_t)atof(optarg);
+ break;
+#ifdef DIMENSION
+ case 'D': // dimension
+ printf("Dimension was specified at compile time, you can't change it now!\n");
+ exit(EXIT_FAILURE);
+#else
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+#endif
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field. nth call couples to state n
+ H_vec[H_ind] = atof(optarg);
+ H_ind++;
+ break;
+ case 's': // don't print anything during simulation. speeds up slightly
+ silent = true;
+ break;
+ case 'p':
+ use_pert = true;
+ break;
+ case 'e':
+ epsilon = atof(optarg);
+ break;
+ case 'm':
+ modulated_field = true;
+ break;
+ case 'M':
+ measurement_flags ^= 1 << atoi(optarg);
+ break;
+ case 'o':
+ order = atoi(optarg);
+ break;
+ case 'S':
+ N_is_sweeps = true;
+ break;
+ case 'd':
+#ifdef HAVE_GLUT
+ draw = true;
+ break;
+#else
+ printf("You didn't compile this with the glut library installed!\n");
+ exit(EXIT_FAILURE);
+#endif
+ case 'w':
+ window_size = atoi(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ unsigned long timestamp;
+
+ {
+ struct timespec spec;
+ clock_gettime(CLOCK_REALTIME, &spec);
+ timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
+ }
+
+ const char *pert_type;
+
+ std::function <orthogonal_R_t(std::mt19937&, vector_R_t)> gen_R;
+
+ if (use_pert) {
+ double Hish;
+ if (modulated_field) {
+ Hish = fabs(H_vec[0]);
+ } else {
+ double H2 = 0;
+ for (q_t i = 0; i < N_COMP; i++) {
+ H2 += pow(H_vec[i], 2);
+ }
+ Hish = sqrt(H2);
+ }
+
+ epsilon = sqrt((N_COMP - 1) * T / (D + Hish / 2)) / 2;
+
+ gen_R = std::bind(generate_rotation_perturbation <N_COMP>, std::placeholders::_1, std::placeholders::_2, epsilon, order);
+ pert_type = "PERTURB5";
+ } else {
+ gen_R = generate_rotation_uniform <N_COMP>;
+ pert_type = "UNIFORM";
+ }
+
+ FILE *outfile_info = fopen("wolff_metadata.txt", "a");
+
+ fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[N_COMP], N_COMP, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T);
+ if (modulated_field) {
+ fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]);
+ } else {
+ fprintf(outfile_info, "\"VECTOR\", \"H\" -> {");
+ for (q_t i = 0; i < N_COMP; i++) {
+ fprintf(outfile_info, "%.15f", H_vec[i]);
+ if (i < N_COMP - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+ fprintf(outfile_info, "}, ");
+ }
+
+ fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type);
+
+ if (use_pert) {
+ fprintf(outfile_info, ", \"EPS\" -> %g", epsilon);
+ }
+
+ fprintf(outfile_info, " |>\n");
+
+ fclose(outfile_info);
+
+ FILE **outfiles = measure_setup_files(measurement_flags, timestamp);
+
+ std::function <void(const On_t&)> other_f;
+ uint64_t sum_of_clusterSize = 0;
+
+ if (N_is_sweeps) {
+ other_f = [&] (const On_t& s) {
+ sum_of_clusterSize += s.last_cluster_size;
+ };
+ } else if (draw) {
+#ifdef HAVE_GLUT
+ // initialize glut
+ glutInit(&argc, argv);
+ glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
+ glutInitWindowSize(window_size, window_size);
+ glutCreateWindow("wolff");
+ glClearColor(0.0,0.0,0.0,0.0);
+ glMatrixMode(GL_PROJECTION);
+ glLoadIdentity();
+ gluOrtho2D(0.0, L, 0.0, L);
+
+ other_f = [&] (const On_t& s) {
+ glClear(GL_COLOR_BUFFER_BIT);
+ for (v_t i = 0; i < pow(L, 2); i++) {
+ vector_R_t v_tmp = s.R.act_inverse(s.spins[i]);
+ double thetai = fmod(2 * M_PI + theta(v_tmp), 2 * M_PI);
+ double saturation = 0.7;
+ double value = 0.9;
+ double chroma = saturation * value;
+ glColor3f(chroma * hue_to_R(thetai) + (value - chroma), chroma * hue_to_G(thetai) + (value - chroma), chroma * hue_to_B(thetai) + (value - chroma));
+ glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1);
+ }
+ glFlush();
+ };
+#endif
+ } else {
+ other_f = [] (const On_t& s) {};
+ }
+
+ std::function <void(const On_t&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f);
+
+ std::function <double(const vector_R_t&)> H;
+
+ if (modulated_field) {
+ H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]);
+ } else {
+ H = std::bind(H_vector <N_COMP, double>, std::placeholders::_1, H_vec);
+ }
+
+ // initialize random number generator
+ randutils::auto_seed_128 seeds;
+ std::mt19937 rng{seeds};
+
+#ifndef NOFIELD
+ state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>, H);
+#else
+ state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>);
+#endif
+
+ if (N_is_sweeps) {
+ count_t N_rounds = 0;
+ printf("\n");
+ while (sum_of_clusterSize < N * s.nv) {
+ printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
+ wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, measurements, rng, silent);
+ N_rounds++;
+ }
+ printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size);
+ } else {
+ wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, measurements, rng, silent);
+ }
+
+ measure_free_files(measurement_flags, outfiles);
+ free(H_vec);
+
+ return 0;
+}
+