diff options
| author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2019-09-04 21:54:19 -0400 | 
|---|---|---|
| committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2019-09-04 21:54:19 -0400 | 
| commit | e51722156e7d93490cb0c2b1374eb132fea26027 (patch) | |
| tree | d0d231469dcd473a429308d5493a510657ae471c /statphys27.tex | |
| parent | 736908493db28e892d19d7b6a63bdef1372dd196 (diff) | |
| download | statphys_27-e51722156e7d93490cb0c2b1374eb132fea26027.tar.gz statphys_27-e51722156e7d93490cb0c2b1374eb132fea26027.tar.bz2 statphys_27-e51722156e7d93490cb0c2b1374eb132fea26027.zip  | |
Diffstat (limited to 'statphys27.tex')
| -rw-r--r-- | statphys27.tex | 408 | 
1 files changed, 177 insertions, 231 deletions
diff --git a/statphys27.tex b/statphys27.tex index 2524aef..048f7b3 100644 --- a/statphys27.tex +++ b/statphys27.tex @@ -22,343 +22,289 @@  \end{frame}  \begin{frame} -  \frametitle{Monte Carlo is too slow} +  \frametitle{Simulating critical lattice models is slow}    \begin{columns}      \begin{column}{0.5\textwidth} -      Critical timescales diverge like $L^z$. +      \alert<2>{Critical timescales diverge like $L^z$.} -      \vspace{2em} +      \vspace{1em} -      For 2D Ising local algorithms have $z\simeq2$--4. +      \alert<3-4>{2D Ising local algorithms have $z\simeq2$--4.} -      \vspace{2em} +      \vspace{1em} -      Cluster methods have $z\simeq0.3$! +      \alert<5-9>{Cluster methods have $z\simeq0.3$!} -      \vspace{2em} +      \vspace{1em} +      \alert<10-11>{Don't naturally work with on-site potentials like external fields.} + +      \vspace{1em} + +      \alert<12>{Our extension admits arbitrary on-site potentials for most lattice models.}      \end{column}      \begin{column}{0.5\textwidth}        \begin{overprint} -        \onslide<1>\includegraphics[width=\columnwidth]{figs/ising_hl_0_0} -        \onslide<2,4>\includegraphics[width=\columnwidth]{figs/ising_hl_0_1} -        \onslide<5>\includegraphics[width=\columnwidth]{figs/ising_hl_0_2} -        \onslide<3,6>\includegraphics[width=\columnwidth]{figs/ising_hl_0_3} +        \onslide<1-3>\includegraphics[width=\columnwidth]{figs/ising_hl_00_0} +        \onslide<4-5,7>\includegraphics[width=\columnwidth]{figs/ising_hl_00_1} +        \onslide<8,11->\includegraphics[width=\columnwidth]{figs/ising_hl_00_2} +        \onslide<6,9-10>\includegraphics[width=\columnwidth]{figs/ising_hl_00_3}        \end{overprint}      \end{column}    \end{columns}  \end{frame}  \begin{frame} -  \frametitle{Monte Carlo is too slow} - -  Monte Carlo useful for lattice models, but near critical points suffers from \emph{critical slowing down}, power-law divergence of timescales. - -  \vspace{1em} - -  Often alleviated with cluster algorithms, but many applications lack a clean solution. - -  \vspace{1em} - -  We introduce a generic, natural, efficient way to extend models with existing cluster algorithms to operate in arbitrary external fields. - -  \vspace{1em} - -  \begin{enumerate} -    \item Introduction: The Ising Model -      \begin{enumerate} -        \item The Fortuin--Kasteleyn representation \& related algorithm -        \item The ghost spin Hamiltonian \& extension to a field -      \end{enumerate} -    \item Our work: Other lattice models -      \begin{enumerate} -        \item Fortuin--Kasteleyn representations \& algorithms via Ising embeddings -        \item The ghost transformation Hamiltonian \& clusters in arbitrary fields -      \end{enumerate} -  \end{enumerate} - -\end{frame} - - -\begin{frame} -  \frametitle{Introduction: The Ising Model} -  \framesubtitle{The Fortuin--Kasteleyn representation} +  \frametitle{Lattice models} -  The Ising model -  $ -    \mathcal H=-\sum_{\langle ij\rangle}J_{ij}s_is_j -  $ -  for $s_i=\pm1$ can be written +  Consider spins $s\in X$ with symmetry group $G$ and     \[ -    Z=\tr_se^{-\beta\mathcal H}\propto\tr_f\tr_s\prod_{\langle ij\rangle}\big[\delta_{f_{ij},0}(1-p_{ij})+\delta_{f_{ij},1}\delta_{s_i,s_j}p_{ij}\big] +    \mathcal H=-\sum_{\langle ij\rangle}J(s_i,s_j)-\sum_iB(s_i)    \] -  for $f_{ij}\in\{0,1\}$ on the bonds and $p_{ij}=1-e^{-2\beta J_{ij}}$. +  Cluster method for $B=0$ if self-inverse $r^{-1}=r\in G$ are transitive. -  \vspace{1em} +  \vspace{2em} -  This gives conditional probabilities  -  \begin{align*} -    P(f_{ij}=1\mid s_i,s_j)=\begin{cases}p_{ij} & s_i=s_j \\ 0 & s_i\neq s_j\end{cases} -    && -    P(s_i=s_j\mid f)=\begin{cases}1 & \text{$i$, $j$ in same cluster} \\ \frac12 & \text{otherwise}\end{cases} -  \end{align*} +  \small +    \begin{tabular}{l|ccl} +      \hline +      & spin space ($X$) & symmetry group ($G$) & self-inverse elements ($r$'s) \\ +      \hline +      \alert<2>{Ising} & \alert<2>{$\pm1$} & \alert<2>{$\mathbb Z_2$} & \alert<2>{spin flips} \\ +      \alert<3>{$n$-vector} & \alert<3>{$(n-1)$ sphere} & \alert<3>{$\mathrm O(n)$} & \alert<3>{reflections through origin} \\ +      Potts & $\{1,\ldots,q\}$ & Symmetric ($S_q$)& transpositions \\ +      Clock & regular $q$-gon vertices & Dihedral ($D_q$) & reflections through origin\\ +      Roughening & $\mathbb Z$ & Infinite Dihedral ($D_\infty$)& subtraction by integer\\ +      \alert<4>{Chiral Potts} & \alert<4>{$\{1,\ldots,q\}$} & \alert<4>{$\mathbb Z/q\mathbb Z$} & \alert<4>{none} +    \end{tabular}  \end{frame}  \begin{frame} -  \frametitle{Introduction: The Ising Model} -  \framesubtitle{From representation to algorithm} +  \frametitle{Cluster methods without potentials}    \begin{columns} -    \begin{column}{0.55\textwidth} -      \begin{overprint} -        \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_1} -        \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_2} -        \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_3} -        \onslide<5>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_4} -      \end{overprint} -    \end{column} -    \begin{column}{0.45\textwidth} -      The joint probabilities imply algorithm based on switching back an forth: +    \begin{column}{0.5\textwidth} +      With $\Delta\mathcal H_{ij}=J(r\cdot s_i, s_j)-J(s_i, s_j)$ and +      \[ +        p_{ij}=\begin{cases}1-e^{\beta\Delta\mathcal H_{ij}} & \Delta\mathcal H_{ij}>0 \\ 0 & \text{otherwise,}\end{cases} +      \]        \begin{enumerate} -        \item\alert<2>{Take a spin configuration.} -        \item\alert<3>{Conditionally sample a configuration of bonds.} -        \item\alert<4>{Gather sites connected by bonds into clusters.} -        \item\alert<5>{Conditionally sample a configuration of spins.} +        \item \alert<2>{Pick self-inverse $r\in G$.} +        \item \alert<3>{Pick a random site, add to cluster.} +        \item \alert<4-7>{Add neighbors to cluster with probability $p_{ij}$.} +        \item \alert<8-9>{Repeat for all sites added to cluster.} +        \item \alert<10>{Apply $r$ to cluster.}        \end{enumerate} - -      \vspace{1em} - -    \tiny\raggedleft {Swendsen \& Wang, Phys Rev Lett \textbf{58} (1987) 56.} +    \end{column} +    \begin{column}{0.5\textwidth} +      \begin{overprint} +        \onslide<1-2>\includegraphics[width=\columnwidth]{figs/ising_hl_0_1} +        \onslide<3>\includegraphics[width=\columnwidth]{figs/ising_hl_0_2} +        \onslide<4>\includegraphics[width=\columnwidth]{figs/ising_hl_0_3} +        \onslide<5>\includegraphics[width=\columnwidth]{figs/ising_hl_0_4} +        \onslide<6>\includegraphics[width=\columnwidth]{figs/ising_hl_0_5} +        \onslide<7>\includegraphics[width=\columnwidth]{figs/ising_hl_0_6} +        \onslide<8>\includegraphics[width=\columnwidth]{figs/ising_hl_0_7} +        \onslide<9>\includegraphics[width=\columnwidth]{figs/ising_hl_0_8} +        \onslide<10>\includegraphics[width=\columnwidth]{figs/ising_hl_0_9} +      \end{overprint}      \end{column}    \end{columns} +  \end{frame} +  \begin{frame} -  \frametitle{Introduction: The Ising Model} -  \framesubtitle{The ghost spin representation} +  \frametitle{The ghost site representation}    \begin{columns} -    \begin{column}{0.4\textwidth} -      A field means clusters flip with probability that depends on size. - -      \vspace{1em} - -      But, Fortuin--Kasteleyn doesn't care about lattice topology! Adding a ghost spin coupled to every site with $\tilde J_{0i}=H_i$ gives -      \[ -        \begin{aligned} -          \tilde{\mathcal H}&=-\sum_{\langle ij\rangle}J_{ij}s_is_j-s_0\sum_iH_is_i \\ -          &=-\sum_{\langle ij\rangle}\tilde J_{ij}s_is_j -        \end{aligned} -      \] -    \end{column} -    \begin{column}{0.6\textwidth} +    \begin{column}{0.5\textwidth}        \includegraphics[width=\textwidth]{figs/ghost_site}        \vspace{1em} -      \tiny\raggedleft {Coniglio, de Liberto, Monroy, \& Peruggi. J Phys A: Math Gen \textbf{22} (1989) L837.} -    \end{column} -  \end{columns} -\end{frame} -\begin{frame} -  \frametitle{Introduction: The Ising Model} -  \framesubtitle{The ghost spin algorithm} -  \begin{columns} -    \begin{column}{0.55\textwidth} -      \begin{overprint} -        \onslide<1>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_1} -        \onslide<2>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_2} -        \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_3} -        \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_4} -      \end{overprint} +      \tiny{Coniglio, de Liberto, Monroy, \& Peruggi. J Phys A \textbf{22} (1989) L837}      \end{column} -    \begin{column}{0.45\textwidth} -      Same algorithm can be run on new Hamiltonian without modification. +    \begin{column}{0.5\textwidth} +      \alert<2>{Introduce new site $0$ adjacent to all others.}        \vspace{1em} -      If the cluster containing $s_0$ is flipped, flip it too! +      \alert<3>{Draw object $s_0\in G$ on site from symmetry group $G$, \emph{not} spin space $X$.}        \vspace{1em} -      Properties of the original spins must be taken after ``unflipping'' the external field, or $s_0\times s$. - +      \alert<4>{Take the new Hamiltonian +      \[ +        \begin{aligned} +          \tilde{\mathcal H} +          &=-\sum_{\langle ij\rangle}J(s_i,s_j)-\sum_iB(s_0^{-1}\cdot s_i) \\ +          &=-\sum_{\langle ij\rangle'}\tilde J(s_i,s_j) +        \end{aligned} +      \] +      for $\tilde J(s_0,s_i)=B(s_0^{-1}\cdot s_i)$.}      \end{column}    \end{columns}  \end{frame}  \begin{frame} -  \frametitle{Other lattice models} -  \framesubtitle{Fortuin--Kasteleyn via embeddings} +  \frametitle{Cluster methods with potentials} +  \framesubtitle{Ising model with uniform $B(s)=Hs$}    \begin{columns} -    \begin{column}{0.4\textwidth} -    Cluster methods also known for models whose spins live in more complicated spaces $X$ and have -    \[ -      \mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j) -    \] -    If $G$ is the symmetry group of the spins, then a self-inverse element $r\in G$ can embed an Ising model -    \[ -      J_{ij}(r,s)=\frac12|Z(s_i, s_j)-Z(s_i, r\cdot s_j)| -    \] +    \begin{column}{0.5\textwidth} +      With $\Delta\tilde{\mathcal H}_{ij}=\tilde J(r\cdot s_i,s_j)-\tilde J(s_i,s_j)$ and +      \[ +        \tilde p_{ij}=\begin{cases}1-e^{\beta\Delta\tilde{\mathcal H}_{ij}} & \Delta\tilde{\mathcal H}_{ij}>0 \\ 0 & \text{otherwise,}\end{cases} +      \] +      \begin{enumerate} +        \item \alert<2>{Pick self-inverse $r\in G$.} +        \item \alert<3>{Pick a random site, add to cluster.} +        \item \alert<4-8>{Add neighbors to cluster with probability $\tilde p_{ij}$.} +        \item \alert<9-10>{Repeat for all sites added to cluster.} +        \item \alert<11-12>{Apply $r$ to cluster.} +      \end{enumerate}      \end{column} -    \begin{column}{0.6\textwidth} -      \centering  -      \begin{tabular}{l|cc} -        & $X$ & $G$ \\ -        \hline -        Ising & $\pm1$ & $\mathbb Z/2\mathbb Z$ \\ -        $n$-vector & $(n-1)$ sphere & $\mathrm O(n)$ \\ -        Potts & $\{1,\ldots,q\}$ & Symmetric \\ -        Clock & $\{1,\ldots,q\}$ & Dihedral \\ -        Roughening & $\mathbb Z$ & Infinite Dihedral -      \end{tabular} - -      \vspace{1em} - -      \includegraphics[width=0.9\textwidth]{figs/clocks} +    \begin{column}{0.5\textwidth} +      \begin{overprint} +        \onslide<1-2>\includegraphics[width=\columnwidth]{figs/ising_hl_h_1} +        \onslide<3>\includegraphics[width=\columnwidth]{figs/ising_hl_h_2} +        \onslide<4>\includegraphics[width=\columnwidth]{figs/ising_hl_h_3} +        \onslide<5>\includegraphics[width=\columnwidth]{figs/ising_hl_h_4} +        \onslide<6>\includegraphics[width=\columnwidth]{figs/ising_hl_h_5} +        \onslide<7>\includegraphics[width=\columnwidth]{figs/ising_hl_h_6} +        \onslide<8>\includegraphics[width=\columnwidth]{figs/ising_hl_h_7} +        \onslide<9>\includegraphics[width=\columnwidth]{figs/ising_hl_h_8} +        \onslide<10>\includegraphics[width=\columnwidth]{figs/ising_hl_h_9} +        \onslide<11>\includegraphics[width=\columnwidth]{figs/ising_hl_h_10} +        \onslide<12>\includegraphics[width=\columnwidth]{figs/ising_hl_h_11} +      \end{overprint}      \end{column}    \end{columns}  \end{frame}  \begin{frame} -  \frametitle{Other lattice models} -  \framesubtitle{From embedding to algorithm\dots again} +  \frametitle{Cluster methods with potentials} +  \framesubtitle{XY model with $B(s)=h_5\cos(5\theta)$} +    \begin{columns} -    \begin{column}{0.55\textwidth} -      \begin{overprint} -        \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_1} -        \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_2} -        \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_3} -        \onslide<5>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_4} -        \onslide<6>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_5} -        \onslide<7>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_6} -        \onslide<8>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_7} -      \end{overprint} -    \end{column} -    \begin{column}{0.45\textwidth} +    \begin{column}{0.5\textwidth} +      With $\Delta\tilde{\mathcal H}_{ij}=\tilde J(r\cdot s_i,s_j)-\tilde J(s_i,s_j)$ and +      \[ +        \tilde p_{ij}=\begin{cases}1-e^{\beta\Delta\tilde{\mathcal H}_{ij}} & \Delta\tilde{\mathcal H}_{ij}>0 \\ 0 & \text{otherwise,}\end{cases} +      \]        \begin{enumerate} -        \item\alert<2>{Take a spin configuration.} -        \item\alert<3>{Draw a self-inverse $r\in G$.} -        \item\alert<4>{Infer Ising $J_{ij}$.} -        \item\alert<5>{Sample bonds as before.} -        \item\alert<6>{Gather sites into clusters.} -        \item\alert<7>{Sample spins by applying $r$ to clusters.} +        \item \alert<2>{Pick self-inverse $r\in G$.} +        \item \alert<3>{Pick a random site, add to cluster.} +        \item \alert<3>{Add neighbors to cluster with probability $\tilde p_{ij}$.} +        \item \alert<3>{Repeat for all sites added to cluster.} +        \item \alert<4-6>{Apply $r$ to cluster.}        \end{enumerate} - -      \vspace{1em} - -      \tiny\raggedleft{Wolff, Phys Rev Lett \textbf{62} (1989) 361.} +    \end{column} +    \begin{column}{0.5\textwidth} +      \begin{overprint} +        \onslide<1>\includegraphics[width=\columnwidth]{figs/vector_hl_h5_0} +        \onslide<2>\includegraphics[width=\columnwidth]{figs/vector_hl_h5_1} +        \onslide<3>\includegraphics[width=\columnwidth]{figs/vector_hl_h5_2} +        \onslide<4>\includegraphics[width=\columnwidth]{figs/vector_hl_h5_3} +        \onslide<5>\includegraphics[width=\columnwidth]{figs/vector_hl_h5_4} +        \onslide<6>\includegraphics[width=\columnwidth]{figs/vector_hl_h5_5} +      \end{overprint}      \end{column}    \end{columns}  \end{frame}  \begin{frame} -  \frametitle{Other lattice models} -  \framesubtitle{The ghost\dots something representation} +  \frametitle{Cluster methods with potentials} +  \framesubtitle{XY model with $B(s)=h_n\cos(n\theta)$} -  Can we add an external field with a ghost spin as before? Yes, but only for fields whose interaction is like that of another spin. - -  \vspace{1em} - -  Rules out novel fields like harmonic lattice anisotropies, cubic potentials, around Potts first-order lines, etc. +  \begin{columns} +    \begin{column}{0.38\textwidth} +      \includegraphics[width=\columnwidth]{figs/harmonic_susceptibilities} +    \end{column} +    \begin{column}{0.62\textwidth} +      Symmetry breaking fields $B(\theta)=h_n\cos(n\theta)$ expected due to lattice anisotropies. -  \vspace{1em} +      \vspace{1em}  -  Need to track the full array of transformations that have included the ghost\dots +      Jos\'e, Kadanoff, Kirkpatrick \& Nelson (1977) predict  +      relevance for $n\leq4$. -  \vspace{1em} +      \vspace{1em} -  \dots which is precisely what elements of the symmetry group do! -\end{frame} +      Ala-Nissila et al.\ (1994) used hybrid metropolis and Wolff with cluster rejection to study. -\begin{frame} -  \frametitle{Other lattice models} -  \framesubtitle{The ghost transformation representation} +      \vspace{1em} -  For a lattice model with spins with symmetry group $G$ and -  \[ -    \mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iB(s_i) -  \] -  for any function $B$, we introduce a ghost \emph{transformation} $s_0$ and modified Hamiltonian -  \[ -    \tilde{\mathcal H}=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iB(s_0^{-1}\cdot s_i) -    =-\sum_{\langle ij\rangle}\tilde Z(s_i,s_j) -  \] -  for $\tilde Z(s_0,s_i)=B(s_0^{-1}\cdot s_i)$. Both Hamiltonians yields the same statistics for $s_i$ if accumulated transformations are undone first with $s_0^{-1}\cdot s_i$. -\end{frame} +      New method reveals different phenomena for $n=4,6$ faster and without rejection. -\begin{frame} -  \frametitle{Other lattice models} -  \framesubtitle{Ghost transformation in action} -  \begin{columns} -    \begin{column}{0.55\textwidth} -      \begin{overprint} -        \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_1} -        \onslide<3>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_2} -        \onslide<4>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_3} -        \onslide<5>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_4} -        \onslide<6>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_5} -        \onslide<7>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_6} -        \onslide<8>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_7} -      \end{overprint} -    \end{column} -    \begin{column}{0.45\textwidth} -      Example: 5-spin clock model with a field favoring the two states to the bottom right. -      \begin{enumerate} -        \item\alert<2>{Take a spin configuration.} -        \item\alert<3>{Draw a self-inverse $r\in G$.} -        \item\alert<4>{Infer Ising $J_{ij}$.} -        \item\alert<5>{Sample bonds as before.} -        \item\alert<6>{Gather sites into clusters.} -        \item\alert<7>{Sample spins by applying $r$ to clusters.} -      \end{enumerate}      \end{column}    \end{columns}  \end{frame}  \begin{frame} -  \frametitle{Other lattice models} -  \framesubtitle{The method is good} +  \frametitle{Is it efficient?} +  \begin{columns} +    \begin{column}{0.6\textwidth} +      Yes! Extension is fast and natural. -  Results generalize to arbitrary bond and site dependence. +      \vspace{1.5em} -  \vspace{0.5em} +      Dynamic scaling works in entire $t$--$h$ plane for every model we've looked at. -  Models already efficient at zero field are more efficient with a field. +      \vspace{1.5em} -  \vspace{0.5em} +      \alert<2>{Universal scaling functions decay with predictable power law $h^{-z\nu/\beta\delta}$ with Wolff or Swendsen--Wang $z$.} -  Extension appears natural in the scaling sense. +      \vspace{1.5em} -  \centering +      Distribution self-inverse $r\in G$ are sampled from affects performance far from criticality. -  \includegraphics[width=0.85\textwidth]{figs/timescales} -   +    \end{column} +    \begin{column}{0.4\textwidth} +      \begin{overprint} +        \onslide<1,3->\includegraphics[width=\textwidth]{figs/times_3dising_new} +        \onslide<2>\includegraphics[width=\textwidth]{figs/times_3dising_new_alert} +      \end{overprint} +      \begin{overprint} +        \onslide<1,3->\includegraphics[width=\textwidth]{figs/times_3dxy_new} +        \onslide<2>\includegraphics[width=\textwidth]{figs/times_3dxy_new_alert} +      \end{overprint} +    \end{column} +  \end{columns}  \end{frame} +  \begin{frame} -  \frametitle{Summary \& Extensions} +  \frametitle{Summary} + +  Generic and fast extension to cluster Monte Carlo with arbitrary on-site potentials. -  Introduced a generic method for running cluster Monte Carlo on lattice systems with any external field. -s-    \vspace{1em} -  Already used to efficiently show relevance/irrelevance of various harmonic perturbations to the XY model. +  Demonstrated efficient for canonical fields, symmetry-breaking potentials.    \vspace{1em} -  Presently being used to model novel lattice models with coupled spins on sites and bonds which act as effective fields for each other. +  Using now with spins on sites and bonds that act as effective fields for each other.    \vspace{1em} -  Currently working on using machine learning techniques to maximize efficiency related to the choice of the distribution of self-inverse group elements, i.e., Ising embeddings. +  Developing a generic way to optimize distributions self-inverse $r\in G$ are drawn from.    \vspace{1em}    Phys Rev E \textbf{98}, 063306 (2018) or contact Jaron Kent-Dobias (\texttt{jpk247@cornell.edu}). +  \vspace{2em} + +  \centering + +  \Large + +  Questions? +  \end{frame}  \end{document}  | 
