summaryrefslogtreecommitdiff
path: root/statphys27.tex
blob: 2524aefecbae5ffdb4d97a8d1431ae9a86214a8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

\documentclass[fleqn,aspectratio=169]{beamer}

\setbeamerfont{frametitle}{family=\bf}
\setbeamerfont{normal text}{family=\rm}
\setbeamertemplate{navigation symbols}{}

\usepackage{textcomp,rotating}

\title{Rejection-free cluster Monte Carlo in arbitrary external fields}
\subtitle{Phys Rev E \textbf{98}, 063306 (2018)}
\author{Jaron Kent-Dobias \and James P Sethna}
\institute{Cornell University}
\date{}

\begin{document}

\def\tr{\mathop{\mathrm{Tr}}\nolimits}

\begin{frame}
  \maketitle
\end{frame}

\begin{frame}
  \frametitle{Monte Carlo is too slow}

  \begin{columns}
    \begin{column}{0.5\textwidth}
      Critical timescales diverge like $L^z$.

      \vspace{2em}

      For 2D Ising local algorithms have $z\simeq2$--4.

      \vspace{2em}

      Cluster methods have $z\simeq0.3$!

      \vspace{2em}



    \end{column}
    \begin{column}{0.5\textwidth}
      \begin{overprint}
        \onslide<1>\includegraphics[width=\columnwidth]{figs/ising_hl_0_0}
        \onslide<2,4>\includegraphics[width=\columnwidth]{figs/ising_hl_0_1}
        \onslide<5>\includegraphics[width=\columnwidth]{figs/ising_hl_0_2}
        \onslide<3,6>\includegraphics[width=\columnwidth]{figs/ising_hl_0_3}
      \end{overprint}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Monte Carlo is too slow}

  Monte Carlo useful for lattice models, but near critical points suffers from \emph{critical slowing down}, power-law divergence of timescales.

  \vspace{1em}

  Often alleviated with cluster algorithms, but many applications lack a clean solution.

  \vspace{1em}

  We introduce a generic, natural, efficient way to extend models with existing cluster algorithms to operate in arbitrary external fields.

  \vspace{1em}

  \begin{enumerate}
    \item Introduction: The Ising Model
      \begin{enumerate}
        \item The Fortuin--Kasteleyn representation \& related algorithm
        \item The ghost spin Hamiltonian \& extension to a field
      \end{enumerate}
    \item Our work: Other lattice models
      \begin{enumerate}
        \item Fortuin--Kasteleyn representations \& algorithms via Ising embeddings
        \item The ghost transformation Hamiltonian \& clusters in arbitrary fields
      \end{enumerate}
  \end{enumerate}

\end{frame}


\begin{frame}
  \frametitle{Introduction: The Ising Model}
  \framesubtitle{The Fortuin--Kasteleyn representation}

  The Ising model
  $
    \mathcal H=-\sum_{\langle ij\rangle}J_{ij}s_is_j
  $
  for $s_i=\pm1$ can be written
  \[
    Z=\tr_se^{-\beta\mathcal H}\propto\tr_f\tr_s\prod_{\langle ij\rangle}\big[\delta_{f_{ij},0}(1-p_{ij})+\delta_{f_{ij},1}\delta_{s_i,s_j}p_{ij}\big]
  \]
  for $f_{ij}\in\{0,1\}$ on the bonds and $p_{ij}=1-e^{-2\beta J_{ij}}$.

  \vspace{1em}

  This gives conditional probabilities 
  \begin{align*}
    P(f_{ij}=1\mid s_i,s_j)=\begin{cases}p_{ij} & s_i=s_j \\ 0 & s_i\neq s_j\end{cases}
    &&
    P(s_i=s_j\mid f)=\begin{cases}1 & \text{$i$, $j$ in same cluster} \\ \frac12 & \text{otherwise}\end{cases}
  \end{align*}
\end{frame}

\begin{frame}
  \frametitle{Introduction: The Ising Model}
  \framesubtitle{From representation to algorithm}

  \begin{columns}
    \begin{column}{0.55\textwidth}
      \begin{overprint}
        \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_1}
        \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_2}
        \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_3}
        \onslide<5>\includegraphics[height=0.8\textheight]{figs/ising_fk_0_4}
      \end{overprint}
    \end{column}
    \begin{column}{0.45\textwidth}
      The joint probabilities imply algorithm based on switching back an forth:
      \begin{enumerate}
        \item\alert<2>{Take a spin configuration.}
        \item\alert<3>{Conditionally sample a configuration of bonds.}
        \item\alert<4>{Gather sites connected by bonds into clusters.}
        \item\alert<5>{Conditionally sample a configuration of spins.}
      \end{enumerate}

      \vspace{1em}

    \tiny\raggedleft {Swendsen \& Wang, Phys Rev Lett \textbf{58} (1987) 56.}
    \end{column}
  \end{columns}
\end{frame}
\begin{frame}
  \frametitle{Introduction: The Ising Model}
  \framesubtitle{The ghost spin representation}

  \begin{columns}
    \begin{column}{0.4\textwidth}
      A field means clusters flip with probability that depends on size.

      \vspace{1em}

      But, Fortuin--Kasteleyn doesn't care about lattice topology! Adding a ghost spin coupled to every site with $\tilde J_{0i}=H_i$ gives
      \[
        \begin{aligned}
          \tilde{\mathcal H}&=-\sum_{\langle ij\rangle}J_{ij}s_is_j-s_0\sum_iH_is_i \\
          &=-\sum_{\langle ij\rangle}\tilde J_{ij}s_is_j
        \end{aligned}
      \]
    \end{column}
    \begin{column}{0.6\textwidth}
      \includegraphics[width=\textwidth]{figs/ghost_site}

      \vspace{1em}
      \tiny\raggedleft {Coniglio, de Liberto, Monroy, \& Peruggi. J Phys A: Math Gen \textbf{22} (1989) L837.}
    \end{column}
  \end{columns}
\end{frame}
\begin{frame}
  \frametitle{Introduction: The Ising Model}
  \framesubtitle{The ghost spin algorithm}
  \begin{columns}
    \begin{column}{0.55\textwidth}
      \begin{overprint}
        \onslide<1>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_1}
        \onslide<2>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_2}
        \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_3}
        \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fk_h_4}
      \end{overprint}
    \end{column}
    \begin{column}{0.45\textwidth}
      Same algorithm can be run on new Hamiltonian without modification.

      \vspace{1em}

      If the cluster containing $s_0$ is flipped, flip it too!

      \vspace{1em}

      Properties of the original spins must be taken after ``unflipping'' the external field, or $s_0\times s$.

    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Other lattice models}
  \framesubtitle{Fortuin--Kasteleyn via embeddings}

  \begin{columns}
    \begin{column}{0.4\textwidth}
    Cluster methods also known for models whose spins live in more complicated spaces $X$ and have
    \[
      \mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)
    \]
    If $G$ is the symmetry group of the spins, then a self-inverse element $r\in G$ can embed an Ising model
    \[
      J_{ij}(r,s)=\frac12|Z(s_i, s_j)-Z(s_i, r\cdot s_j)|
    \]
    \end{column}
    \begin{column}{0.6\textwidth}
      \centering 
      \begin{tabular}{l|cc}
        & $X$ & $G$ \\
        \hline
        Ising & $\pm1$ & $\mathbb Z/2\mathbb Z$ \\
        $n$-vector & $(n-1)$ sphere & $\mathrm O(n)$ \\
        Potts & $\{1,\ldots,q\}$ & Symmetric \\
        Clock & $\{1,\ldots,q\}$ & Dihedral \\
        Roughening & $\mathbb Z$ & Infinite Dihedral
      \end{tabular}

      \vspace{1em}

      \includegraphics[width=0.9\textwidth]{figs/clocks}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Other lattice models}
  \framesubtitle{From embedding to algorithm\dots again}
  \begin{columns}
    \begin{column}{0.55\textwidth}
      \begin{overprint}
        \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_1}
        \onslide<3>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_2}
        \onslide<4>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_3}
        \onslide<5>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_4}
        \onslide<6>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_5}
        \onslide<7>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_6}
        \onslide<8>\includegraphics[height=0.8\textheight]{figs/ising_fks_0_7}
      \end{overprint}
    \end{column}
    \begin{column}{0.45\textwidth}
      \begin{enumerate}
        \item\alert<2>{Take a spin configuration.}
        \item\alert<3>{Draw a self-inverse $r\in G$.}
        \item\alert<4>{Infer Ising $J_{ij}$.}
        \item\alert<5>{Sample bonds as before.}
        \item\alert<6>{Gather sites into clusters.}
        \item\alert<7>{Sample spins by applying $r$ to clusters.}
      \end{enumerate}

      \vspace{1em}

      \tiny\raggedleft{Wolff, Phys Rev Lett \textbf{62} (1989) 361.}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Other lattice models}
  \framesubtitle{The ghost\dots something representation}

  Can we add an external field with a ghost spin as before? Yes, but only for fields whose interaction is like that of another spin.

  \vspace{1em}

  Rules out novel fields like harmonic lattice anisotropies, cubic potentials, around Potts first-order lines, etc.

  \vspace{1em}

  Need to track the full array of transformations that have included the ghost\dots

  \vspace{1em}

  \dots which is precisely what elements of the symmetry group do!
\end{frame}

\begin{frame}
  \frametitle{Other lattice models}
  \framesubtitle{The ghost transformation representation}

  For a lattice model with spins with symmetry group $G$ and
  \[
    \mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iB(s_i)
  \]
  for any function $B$, we introduce a ghost \emph{transformation} $s_0$ and modified Hamiltonian
  \[
    \tilde{\mathcal H}=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iB(s_0^{-1}\cdot s_i)
    =-\sum_{\langle ij\rangle}\tilde Z(s_i,s_j)
  \]
  for $\tilde Z(s_0,s_i)=B(s_0^{-1}\cdot s_i)$. Both Hamiltonians yields the same statistics for $s_i$ if accumulated transformations are undone first with $s_0^{-1}\cdot s_i$.
\end{frame}

\begin{frame}
  \frametitle{Other lattice models}
  \framesubtitle{Ghost transformation in action}
  \begin{columns}
    \begin{column}{0.55\textwidth}
      \begin{overprint}
        \onslide<1-2>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_1}
        \onslide<3>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_2}
        \onslide<4>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_3}
        \onslide<5>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_4}
        \onslide<6>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_5}
        \onslide<7>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_6}
        \onslide<8>\includegraphics[height=0.8\textheight]{figs/potts_fk_h_7}
      \end{overprint}
    \end{column}
    \begin{column}{0.45\textwidth}
      Example: 5-spin clock model with a field favoring the two states to the bottom right.
      \begin{enumerate}
        \item\alert<2>{Take a spin configuration.}
        \item\alert<3>{Draw a self-inverse $r\in G$.}
        \item\alert<4>{Infer Ising $J_{ij}$.}
        \item\alert<5>{Sample bonds as before.}
        \item\alert<6>{Gather sites into clusters.}
        \item\alert<7>{Sample spins by applying $r$ to clusters.}
      \end{enumerate}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Other lattice models}
  \framesubtitle{The method is good}

  Results generalize to arbitrary bond and site dependence.

  \vspace{0.5em}

  Models already efficient at zero field are more efficient with a field.

  \vspace{0.5em}

  Extension appears natural in the scaling sense.

  \centering

  \includegraphics[width=0.85\textwidth]{figs/timescales}
  
\end{frame}

\begin{frame}
  \frametitle{Summary \& Extensions}

  Introduced a generic method for running cluster Monte Carlo on lattice systems with any external field.
s-
  \vspace{1em}

  Already used to efficiently show relevance/irrelevance of various harmonic perturbations to the XY model.

  \vspace{1em}

  Presently being used to model novel lattice models with coupled spins on sites and bonds which act as effective fields for each other.

  \vspace{1em}

  Currently working on using machine learning techniques to maximize efficiency related to the choice of the distribution of self-inverse group elements, i.e., Ising embeddings.

  \vspace{1em}

  Phys Rev E \textbf{98}, 063306 (2018) or contact Jaron Kent-Dobias (\texttt{jpk247@cornell.edu}).

\end{frame}

\end{document}