diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-07 18:52:17 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-07 18:52:17 +0100 |
commit | 96efa4aab61d26f673c725183d3da04a722da9ce (patch) | |
tree | 010c4c132f5cee41fc674b6575cf506fff6d21ff | |
parent | 572e2958fde0bdda61e8bc3b422c212c5381c167 (diff) | |
download | PRR_3_023064-96efa4aab61d26f673c725183d3da04a722da9ce.tar.gz PRR_3_023064-96efa4aab61d26f673c725183d3da04a722da9ce.tar.bz2 PRR_3_023064-96efa4aab61d26f673c725183d3da04a722da9ce.zip |
Added a bunch of interesting equations with no context.
-rw-r--r-- | bezout.tex | 35 |
1 files changed, 35 insertions, 0 deletions
@@ -164,6 +164,41 @@ not be greater than the product over all singular values \cite{Weyl_1912_Das}. Therefore, the absence of zero eigenvalues implies the absence of zero singular values. +% This is kind of a boring definition... +\begin{equation} \label{eq:count.def.marginal} + \overline{\mathcal N}(\kappa,\epsilon) + =\int da\,\overline{\mathcal N}(\kappa,\epsilon,a) +\end{equation} + +\begin{equation} \label{eq:count.zero.energy} + \overline{\mathcal N}(\kappa,0,a) + =\left[(p-1)a^{p-1}\sqrt{\frac{1-a^{-2}}{a^{2(p-1)}-|\kappa|^2}}\right]^N +\end{equation} + +\begin{equation} + \overline{\mathcal N}(\kappa,\epsilon) + =\lim_{a\to\infty}\overline{\mathcal N}(\kappa,\epsilon,a) + =(p-1)^N +\end{equation} + +For $|\kappa|<1$, +\begin{equation} + \lim_{a\to1}\overline{\mathcal N}(\kappa,\epsilon,a) + =0 +\end{equation} + +\begin{equation} + \lim_{a\to1}\overline{\mathcal N}(1,0,a) + =(p-1)^{N/2} +\end{equation} + +\begin{equation} \label{eq:threshold.energy} + |\epsilon_{\mathrm{th}}|^2 + =\frac{p-1}{2p}\frac{(1-|\delta|^2)^2a^{p-2}} + {1+|\delta|^2-2|\delta|\cos(\arg\kappa+2\arg\epsilon)} +\end{equation} +for $\delta=\kappa a^{-(p-2)}$. + \bibliographystyle{apsrev4-2} \bibliography{bezout} |