diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-07-10 12:37:02 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-07-10 12:37:02 -0400 |
commit | e53a4c09eb78e4c5a8365f1328a69ba7f9ff8992 (patch) | |
tree | 3c252af9ffafacab8392bf864270dcd034ed07ed /lib | |
parent | 609fb52b670d8ed74584a988b8c63da82d8d523b (diff) | |
parent | 1810103bc9ac4c9a8d432d113f5ca6eae6560fb4 (diff) | |
download | c++-e53a4c09eb78e4c5a8365f1328a69ba7f9ff8992.tar.gz c++-e53a4c09eb78e4c5a8365f1328a69ba7f9ff8992.tar.bz2 c++-e53a4c09eb78e4c5a8365f1328a69ba7f9ff8992.zip |
Merge branch 'master' of m5:/srv/git/wolff
Diffstat (limited to 'lib')
-rw-r--r-- | lib/cluster.c | 368 | ||||
-rw-r--r-- | lib/cluster.h | 216 | ||||
-rw-r--r-- | lib/cluster_finite.c | 14 | ||||
-rw-r--r-- | lib/cluster_finite.h | 13 | ||||
-rw-r--r-- | lib/dihedral.c | 23 | ||||
-rw-r--r-- | lib/dihedral.h | 4 | ||||
-rw-r--r-- | lib/graph.h | 12 | ||||
-rw-r--r-- | lib/initial_finite.c | 326 | ||||
-rw-r--r-- | lib/initial_finite.h | 27 | ||||
-rw-r--r-- | lib/measurement.c | 145 | ||||
-rw-r--r-- | lib/measurement.h | 23 | ||||
-rw-r--r-- | lib/orthogonal.c | 99 | ||||
-rw-r--r-- | lib/orthogonal.h | 157 | ||||
-rw-r--r-- | lib/rand.h | 9 | ||||
-rw-r--r-- | lib/stack.h | 9 | ||||
-rw-r--r-- | lib/symmetric.c | 43 | ||||
-rw-r--r-- | lib/symmetric.h | 2 | ||||
-rw-r--r-- | lib/vector.h | 85 | ||||
-rw-r--r-- | lib/wolff.h | 73 | ||||
-rw-r--r-- | lib/wolff_finite.c | 70 |
20 files changed, 1088 insertions, 630 deletions
diff --git a/lib/cluster.c b/lib/cluster.c deleted file mode 100644 index 7274eb9..0000000 --- a/lib/cluster.c +++ /dev/null @@ -1,368 +0,0 @@ - -#include "cluster.h" - -v_t flip_cluster(ising_state_t *s, v_t v0, q_t rot, gsl_rng *r) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - bool *marks = (bool *)calloc(s->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - - if (!marks[v]) { - q_t s_old, s_new; - dihedral_t *R_new; - bool external_flipped; - - marks[v] = true; - - if (v == s->g->nv - 1) { - R_new = dihedral_compose(s->q, rot, s->R); - external_flipped = true; - } else { - s_old = s->spins[v]; - s_new = dihedral_act(s->q, rot, s_old); - external_flipped = false; - } - - v_t nn = s->g->v_i[v + 1] - s->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - q_t sn; - double prob; - bool external_neighbor = false; - - v_t vn = s->g->v_adj[s->g->v_i[v] + i]; - - if (vn == s->g->nv - 1) { - external_neighbor = true; - } else { - sn = s->spins[vn]; - } - - if (external_flipped || external_neighbor) { - q_t rot_s_old, rot_s_new; - - if (external_neighbor) { - rot_s_old = dihedral_inverse_act(s->q, s->R, s_old); - rot_s_new = dihedral_inverse_act(s->q, s->R, s_new); - } else { - rot_s_old = dihedral_inverse_act(s->q, s->R, sn); - rot_s_new = dihedral_inverse_act(s->q, R_new, sn); - } - - prob = s->H_probs[rot_s_new * s->q + rot_s_old]; - - s->M[rot_s_old]--; - s->M[rot_s_new]++; - - s->E += - s->H[rot_s_new] + s->H[rot_s_old]; - } else { - q_t diff_old = (s_old + s->q - sn) % s->q; - q_t diff_new = (s_new + s->q - sn) % s->q; - - prob = s->J_probs[diff_new * s->q + diff_old]; - - s->E += - s->J[diff_new] + s->J[diff_old]; - } - - if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (external_flipped) { - free(s->R); - s->R = R_new; - } else { - s->spins[v] = s_new; - } - - if (v != s->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - free(marks); - - return nv; -} - -v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - bool *marks = (bool *)calloc(s->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - - if (!marks[v]) { - h_t s_old, s_new; - dihinf_t *R_new; - bool external_flipped; - - marks[v] = true; - - if (v == s->g->nv - 1) { - R_new = dihinf_compose(rot, s->R); - external_flipped = true; - } else { - s_old = s->spins[v]; - s_new = dihinf_act(rot, s_old); - external_flipped = false; - } - - v_t nn = s->g->v_i[v + 1] - s->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - h_t sn; - double prob; - bool external_neighbor = false; - - v_t vn = s->g->v_adj[s->g->v_i[v] + i]; - - if (vn == s->g->nv - 1) { - external_neighbor = true; - } else { - sn = s->spins[vn]; - } - - if (external_flipped || external_neighbor) { - h_t rot_s_old, rot_s_new; - - if (external_neighbor) { - rot_s_old = dihinf_inverse_act(s->R, s_old); - rot_s_new = dihinf_inverse_act(s->R, s_new); - } else { - rot_s_old = dihinf_inverse_act(s->R, sn); - rot_s_new = dihinf_inverse_act(R_new, sn); - } - - double dE = s->H(s->H_info, rot_s_old) - s->H(s->H_info, rot_s_new); - prob = 1.0 - exp(-dE / s->T); - - s->M += rot_s_new - rot_s_old; - s->E += dE; - } else { - double dE = (s->J)(s_old - sn) - (s->J)(s_new - sn); - prob = 1.0 - exp(-dE / s->T); - s->E += dE; - } - - if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (external_flipped) { - free(s->R); - s->R = R_new; - } else { - s->spins[v] = s_new; - } - - if (v != s->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - free(marks); - - return nv; -} - -v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - //node_t *T = NULL; - bool *marks = (bool *)calloc(s->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - -// if (!tree_contains(T, v)) { // if the vertex hasn't already been flipped - if (!marks[v]) { - bool v_is_external = false; - double *s_old, *s_new, *R_tmp; - - if (v == s->g->nv - 1) { - v_is_external = true; - } - - //tree_insert(&T, v); - marks[v] = true; - - if (v == s->g->nv - 1) { - R_tmp = orthogonal_rotate(s->n, rot, s->R); - } else { - s_old = &(s->spins[s->n * v]); // don't free me! I'm a pointer within array s->spins - s_new = vector_rotate(s->n, rot, s_old); // free me! I'm a new vector - } - - v_t nn = s->g->v_i[v + 1] - s->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - v_t vn = s->g->v_adj[s->g->v_i[v] + i]; - - bool vn_is_external = false; - - if (vn == s->g->nv - 1) { - vn_is_external = true; - } - - double *sn; - - if (!vn_is_external) { - sn = &(s->spins[s->n * vn]); - } - - double prob; - - if (v_is_external || vn_is_external) { - double *rs_old, *rs_new; - if (vn_is_external) { - rs_old = vector_rotate_inverse(s->n, s->R, s_old); - rs_new = vector_rotate_inverse(s->n, s->R, s_new); - } else { - rs_old = vector_rotate_inverse(s->n, s->R, sn); - rs_new = vector_rotate_inverse(s->n, R_tmp, sn); - } - double dE = s->H(s->n, s->H_info, rs_old) - s->H(s->n, s->H_info, rs_new); - prob = 1.0 - exp(-dE / s->T); - vector_subtract(s->n, s->M, rs_old); - vector_add(s->n, s->M, rs_new); - s->E += dE; - - free(rs_old); - free(rs_new); - } else { - double dE = (s->J)(vector_dot(s->n, sn, s_old)) - (s->J)(vector_dot(s->n, sn, s_new)); - prob = 1.0 - exp(-dE / s->T); - s->E += dE; - } - - if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (v == s->g->nv - 1) { - free(s->R); - s->R = R_tmp; - } else { - vector_replace(s->n, s_old, s_new); - free(s_new); - } - - if (v != s->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - //tree_freeNode(T); - free(marks); - - return nv; -} - -/*G -template <class R_t, class X_t> -v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t *r, gsl_rng *rand) { - v_t nv = 0; - - ll_t *stack = NULL; // create a new stack - stack_push(&stack, v0); // push the initial vertex to the stack - - bool *marks = (bool *)calloc(state->g->nv, sizeof(bool)); - - while (stack != NULL) { - v_t v = stack_pop(&stack); - - if (!marks[v]) { - X_t *si_old, *si_new; - R_t *s0_old, *s0_new; - - si_old = state->s[v]; - s0_old = state->s0; - - marks[v] = true; - - if (v == state->g->nv - 1) { - s0_new = act <R_t, R_t> (r, s0_old); - } else { - si_new = act <R_t, X_t> (r, si_old); - } - - v_t nn = state->g->v_i[v + 1] - state->g->v_i[v]; - - for (v_t i = 0; i < nn; i++) { - v_t vn = state->g->v_adj[state->g->v_i[v] + i]; - - X_t *sj; - - if (vn != state->g->nv - 1) { - sj = state->s[vn]; - } - - double prob; - - bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1); - - if (is_ext) { - X_t *rs_old, *rs_new; - if (vn == state->g->nv - 1) { - rs_old = inverse_act <class R_t, class X_t> (s0_old, si_old); - rs_new = inverse_act <class R_t, class X_t> (s0_old, si_new); - } else { - rs_old = inverse_act <class R_t, class X_t> (s0_old, sj); - rs_new = inverse_act <class R_t, class X_t> (s0_new, sj); - } - double dE = state->B(rs_old) - state->B(rs_new); - prob = 1.0 - exp(-dE / state->T); - update_magnetization <X_t> (state->M, rs_old, rs_new); - state->E += dE; - - free_X <X_t> (rs_old); - free_X <X_t> (rs_new); - } else { - double dE = state->Z(si_old, sj) - state->Z(si_new, sj); - prob = 1.0 - exp(-dE / state->T); - state->E += dE; - } - - if (gsl_rng_uniform(rand) < prob) { // and with probability... - stack_push(&stack, vn); // push the neighboring vertex to the stack - } - } - - if (v == state->g->nv - 1) { - free_R <R_t> (state->s0); - state->s0 = s0_new; - } else { - free_X <X_t> (state->s[v]); - state->s[v] = si_new; - } - - if (v != state->g->nv - 1) { // count the number of non-external sites that flip - nv++; - } - } - } - - free(marks); - - return nv; -} -*/ diff --git a/lib/cluster.h b/lib/cluster.h index d118735..a20912e 100644 --- a/lib/cluster.h +++ b/lib/cluster.h @@ -1,13 +1,14 @@ #pragma once +#include <functional> #include <assert.h> #include <fftw3.h> #include <float.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_rng.h> #include <inttypes.h> -#include <math.h> +#include <cmath> #include <stdbool.h> #include <string.h> #include <sys/types.h> @@ -19,62 +20,169 @@ #include "graph.h" #include "tree.h" #include "measurement.h" +#include "vector.h" #include "orthogonal.h" #include "dihedral.h" #include "dihinf.h" #include "yule_walker.h" -typedef struct { - graph_t *g; - q_t *spins; - double T; - double *J; - double *H; - double *J_probs; - double *H_probs; - dihedral_t *R; - double E; - v_t *M; - q_t q; -} ising_state_t; - -typedef struct { - graph_t *g; - h_t *spins; - double T; - double (*J)(h_t); - double (*H)(double *, h_t); - double *H_info; - dihinf_t *R; - double E; - h_t M; -} dgm_state_t; - -typedef struct { - graph_t *g; - double *spins; - double T; - double (*J)(double); - double (*H)(q_t, double *, double *); - double *H_info; - double *R; - double E; - double *M; - q_t n; -} vector_state_t; - -typedef enum { - VECTOR, - MODULATED, - CUBIC, - QUADRATIC -} vector_field_t; - -v_t flip_cluster(ising_state_t *s, v_t v0, q_t s1, gsl_rng *r); - -v_t flip_cluster_vector(vector_state_t *s, v_t v0, double *rot, gsl_rng *r); - -v_t flip_cluster_dgm(dgm_state_t *s, v_t v0, h_t rot, gsl_rng *r); - -graph_t *graph_add_ext(const graph_t *g); +template <class T> +void init(T*); + +template <class T> +T scalar_multiple(v_t a, T b); + +template <class R_t, class X_t> +X_t act(R_t a, X_t b); + +template <class R_t, class X_t> +X_t act_inverse(R_t a, X_t b); + +template <class T> +T copy(T a); + +template <class T> +void free_spin(T a); + +template <class T> +T add(T, T); + +template <class T> +T subtract(T, T); + +template <class T> +T gen_rot(gsl_rng *r); + +template <class R_t, class X_t> +class state_t { + public: + D_t D; + L_t L; + v_t nv; + v_t ne; + graph_t *g; + double T; + X_t *spins; + R_t R; + double E; + X_t M; // the "sum" of the spins, like the total magnetization + + std::function <double(X_t, X_t)> J; + std::function <double(X_t)> H; + + state_t(D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H) : D(D), L(L), T(T), J(J), H(H) { + graph_t *h = graph_create_square(D, L); + nv = h->nv; + ne = h->ne; + g = graph_add_ext(h); + graph_free(h); + spins = (X_t *)malloc(nv * sizeof(X_t)); + for (v_t i = 0; i < nv; i++) { + init (&(spins[i])); + } + init (&R); + E = - (double)ne * J(spins[0], spins[0]) - (double)nv * H(spins[0]); + M = scalar_multiple (nv, spins[0]); + } + + ~state_t() { + graph_free(g); + for (v_t i = 0; i < nv; i++) { + free_spin(spins[i]); + } + free(spins); + free_spin(R); + free_spin(M); + } +}; + +template <class R_t, class X_t> +v_t flip_cluster(state_t <R_t, X_t> *state, v_t v0, R_t r, gsl_rng *rand) { + v_t nv = 0; + + ll_t *stack = NULL; // create a new stack + stack_push(&stack, v0); // push the initial vertex to the stack + + bool *marks = (bool *)calloc(state->g->nv, sizeof(bool)); + + while (stack != NULL) { + v_t v = stack_pop(&stack); + + if (!marks[v]) { + X_t si_old, si_new; + R_t R_old, R_new; + + si_old = state->spins[v]; + R_old = state->R; + + marks[v] = true; + + if (v == state->g->nv - 1) { + R_new = act (r, R_old); + } else { + si_new = act (r, si_old); + } + + v_t nn = state->g->v_i[v + 1] - state->g->v_i[v]; + + for (v_t i = 0; i < nn; i++) { + v_t vn = state->g->v_adj[state->g->v_i[v] + i]; + + X_t sj; + + if (vn != state->g->nv - 1) { + sj = state->spins[vn]; + } + + double prob; + + bool is_ext = (v == state->g->nv - 1 || vn == state->g->nv - 1); + + if (is_ext) { + X_t rs_old, rs_new; + if (vn == state->g->nv - 1) { + rs_old = act_inverse (R_old, si_old); + rs_new = act_inverse (R_old, si_new); + } else { + rs_old = act_inverse (R_old, sj); + rs_new = act_inverse (R_new, sj); + } + double dE = state->H(rs_old) - state->H(rs_new); + prob = 1.0 - exp(-dE / state->T); + + subtract (state->M, rs_old); + add (state->M, rs_new); + state->E += dE; + + free_spin (rs_old); + free_spin (rs_new); + } else { + double dE = state->J(si_old, sj) - state->J(si_new, sj); + prob = 1.0 - exp(-dE / state->T); + state->E += dE; + } + + if (gsl_rng_uniform(rand) < prob) { // and with probability... + stack_push(&stack, vn); // push the neighboring vertex to the stack + } + } + + if (v == state->g->nv - 1) { + free_spin(state->R); + state->R = R_new; + } else { + free_spin(state->spins[v]); + state->spins[v] = si_new; + } + + if (v != state->g->nv - 1) { // count the number of non-external sites that flip + nv++; + } + } + } + + free(marks); + + return nv; +} diff --git a/lib/cluster_finite.c b/lib/cluster_finite.c index f11a3ea..9392cf8 100644 --- a/lib/cluster_finite.c +++ b/lib/cluster_finite.c @@ -1,8 +1,8 @@ #include "cluster_finite.h" -v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) { - q_t *rot = s->transformations + s->q * rot_ind; +v_t flip_cluster_finite(state_finite_t *s, v_t v0, R_t rot_ind, gsl_rng *r) { + q_t *rot = s->transformations + s->q * s->involutions[rot_ind]; q_t *R_inv = symmetric_invert(s->q, s->R); v_t nv = 0; @@ -62,14 +62,14 @@ v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot_ind, gsl_rng *r) { s->M[rot_s_old]--; s->M[rot_s_new]++; - s->E += - s->H[rot_s_new] + s->H[rot_s_old]; } else { - q_t diff_old = (s_old + s->q - sn) % s->q; - q_t diff_new = (s_new + s->q - sn) % s->q; + q_t diff_old = s->bond_with_zero_type[s->transformations[s->q * s->transform_site_to_zero[sn] + s_old]]; + q_t diff_new = s->bond_with_zero_type[s->transformations[s->q * s->transform_site_to_zero[sn] + s_new]]; - prob = s->J_probs[diff_new * s->q + diff_old]; + prob = s->J_probs[diff_new * s->n_bond_types + diff_old]; - s->E += - s->J[diff_new] + s->J[diff_old]; + s->B[diff_old]--; + s->B[diff_new]++; } if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... diff --git a/lib/cluster_finite.h b/lib/cluster_finite.h index abdc8fc..b2d764e 100644 --- a/lib/cluster_finite.h +++ b/lib/cluster_finite.h @@ -23,10 +23,19 @@ #include "yule_walker.h" typedef struct { + D_t D; + L_t L; + v_t nv; + v_t ne; graph_t *g; q_t q; R_t n_transformations; q_t *transformations; + R_t n_involutions; + R_t *involutions; + R_t *transform_site_to_zero; + q_t n_bond_types; + q_t *bond_with_zero_type; double T; double *J; double *H; @@ -34,9 +43,9 @@ typedef struct { double *H_probs; q_t *spins; q_t *R; - double E; + v_t *B; v_t *M; } state_finite_t; -v_t flip_cluster_finite(state_finite_t *s, v_t v0, q_t rot, gsl_rng *r); +v_t flip_cluster_finite(state_finite_t *s, v_t v0, R_t rot, gsl_rng *r); diff --git a/lib/dihedral.c b/lib/dihedral.c index ac74a23..8158b43 100644 --- a/lib/dihedral.c +++ b/lib/dihedral.c @@ -11,10 +11,14 @@ dihedral_t *dihedral_compose(q_t q, q_t g1i, const dihedral_t *g2) { return g3; } -q_t dihedral_act(q_t q, q_t gi, q_t s) { +q_t dihedral_act(q_t q, q_t gi, bool r, q_t s) { // we only need to consider the action of reflections - return (gi + q - s) % q; + if (r) { + return (gi + q - s) % q; + } else { + return (gi + s) % q; + } } q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s) { @@ -26,15 +30,26 @@ q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s) { } q_t *dihedral_gen_transformations(q_t q) { - q_t *transformations = (q_t *)malloc(q * q * sizeof(q_t)); + q_t *transformations = (q_t *)malloc(2 * q * q * sizeof(q_t)); for (q_t i = 0; i < q; i++) { for (q_t j = 0; j < q; j++) { - transformations[q * i + j] = dihedral_act(q, i, j); + transformations[q * i + j] = dihedral_act(q, i, false, j); + transformations[q * q + q * i + j] = dihedral_act(q, i, true, j); } } return transformations; } +R_t *dihedral_gen_involutions(q_t q) { + R_t *transformations = (R_t *)malloc(q * sizeof(R_t)); + + for (q_t i = 0; i < q; i++) { + transformations[i] = q + i; + } + + return transformations; +} + diff --git a/lib/dihedral.h b/lib/dihedral.h index e5e4cbd..c95b23a 100644 --- a/lib/dihedral.h +++ b/lib/dihedral.h @@ -11,9 +11,11 @@ typedef struct { dihedral_t *dihedral_compose(q_t q, q_t gti, const dihedral_t *g2); -q_t dihedral_act(q_t q, q_t gi, q_t s); +q_t dihedral_act(q_t q, q_t gi, bool r, q_t s); q_t dihedral_inverse_act(q_t q, const dihedral_t *g, q_t s); q_t *dihedral_gen_transformations(q_t q); +R_t *dihedral_gen_involutions(q_t q); +R_t factorial(q_t); diff --git a/lib/graph.h b/lib/graph.h index 9c80dd6..beb7f4c 100644 --- a/lib/graph.h +++ b/lib/graph.h @@ -1,10 +1,16 @@ +#pragma once + #include <inttypes.h> #include <math.h> #include <stdlib.h> #include "types.h" +#ifdef __cplusplus +extern "C" { +#endif + typedef struct { v_t ne; v_t nv; @@ -13,8 +19,10 @@ typedef struct { } graph_t; graph_t *graph_create_square(D_t D, L_t L); - graph_t *graph_add_ext(const graph_t *G); - void graph_free(graph_t *h); +#ifdef __cplusplus +} +#endif + diff --git a/lib/initial_finite.c b/lib/initial_finite.c new file mode 100644 index 0000000..6ea76ef --- /dev/null +++ b/lib/initial_finite.c @@ -0,0 +1,326 @@ + +#include "initial_finite.h" + +double *Jprobs_from_J(q_t q, double T, double *J) { + double *J_probs = (double *)calloc(pow(q, 2), sizeof(double)); + + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + J_probs[q * i + j] = 1.0 - exp((J[i] - J[j]) / T); + } + } + + return J_probs; +} + +q_t *initialize_R(q_t q) { + q_t *R = (q_t *)malloc(q * sizeof(q_t)); + + for (q_t i = 0; i < q; i++) { + R[i] = i; + } + + return R; +} + +R_t *transformation_bringing_to_zero(q_t q, R_t n_transformations, q_t *transformations) { + R_t *destination = (R_t *)malloc(q * sizeof(R_t)); + + for (q_t i = 0; i < q; i++) { + for (R_t j = 0; j < n_transformations; j++) { + if (transformations[q * j + i] == 0) { + destination[i] = j; + } + } + } + + return destination; +} + +R_t find_involutions(R_t *destination, q_t q, R_t n_transformations, q_t *transformations) { + R_t n_involutions = 0; + + for (R_t i = 1; i < n_transformations; i++) { + bool is_involution = true; + for (q_t j = 0; j < q; j++) { + if (j != transformations[q * i + transformations[q * i + j]]) { + is_involution = false; + break; + } + } + if (is_involution) { + destination[n_involutions] = i; + n_involutions++; + } + } + + return n_involutions; +} + +state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H) { + state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t)); + + s->D = D; + s->L = L; + + { + graph_t *g = graph_create_square(D, L); + s->nv = g->nv; + s->ne = g->ne; + s->g = graph_add_ext(g); + graph_free(g); + } + + s->q = 2; + + s->n_transformations = 2; + s->transformations = (q_t *)malloc(2 * 2 * sizeof(q_t)); + s->transformations[0] = 0; + s->transformations[1] = 1; + s->transformations[2] = 1; + s->transformations[3] = 0; + + s->n_involutions = 1; + s->involutions = (R_t *)malloc(1 * sizeof(R_t)); + s->involutions[0] = 1; + + s->transform_site_to_zero = (R_t *)malloc(2 * sizeof(R_t)); + s->transform_site_to_zero[0] = 0; + s->transform_site_to_zero[1] = 1; + + s->n_bond_types = 2; + s->bond_with_zero_type = (q_t *)malloc(2 * sizeof(q_t)); + s->bond_with_zero_type[0] = 0; + s->bond_with_zero_type[1] = 1; + + s->T = T; + s->J = (double *)malloc(2 * sizeof(double)); + s->J[0] = 1.0; + s->J[1] = -1.0; + s->H = (double *)malloc(2 * sizeof(double)); + s->H[0] = H[0]; + s->H[1] = -H[0]; + + s->J_probs = Jprobs_from_J(2, T, s->J); + s->H_probs = Jprobs_from_J(2, T, s->H); + + s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); + s->R = initialize_R(2); + + s->M = (v_t *)calloc(2, sizeof(v_t)); + s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(2, sizeof(v_t)); + s->B[0] = s->ne; + + return s; +} + +state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, double *H) { + state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t)); + + s->D = D; + s->L = L; + + { + graph_t *g = graph_create_square(D, L); + s->nv = g->nv; + s->ne = g->ne; + s->g = graph_add_ext(g); + graph_free(g); + } + + s->q = q; + s->n_transformations = factorial(q); + s->transformations = symmetric_gen_transformations(q); + s->involutions = (R_t *)malloc(s->n_transformations * sizeof(R_t)); + s->n_involutions = find_involutions(s->involutions, q, s->n_transformations, s->transformations); + + s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations); + + s->n_bond_types = 2; + + s->bond_with_zero_type = (q_t *)malloc(q * sizeof(q_t)); + + s->bond_with_zero_type[0] = 0; + + for (q_t i = 1; i < q; i++) { + s->bond_with_zero_type[i] = 1; + } + + s->T = T; + s->J = (double *)calloc(2, sizeof(double)); + s->J[0] = 1.0; + s->J[1] = 0.0; + + s->H = (double *)malloc(q * sizeof(double)); + for (q_t i = 0; i < q; i++) { + s->H[i] = H[i]; + } + + s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J); + s->H_probs = Jprobs_from_J(q, T, s->H); + + s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); + s->R = initialize_R(q); + + s->M = (v_t *)calloc(q, sizeof(v_t)); + s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t)); + s->B[0] = s->ne; // everyone starts in state 0, remember? + + return s; +} + +state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, double *H) { + state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t)); + + s->D = D; + s->L = L; + + { + graph_t *g = graph_create_square(D, L); + s->nv = g->nv; + s->ne = g->ne; + s->g = graph_add_ext(g); + graph_free(g); + } + + s->q = q; + + s->n_transformations = 2 * q; + s->transformations = dihedral_gen_transformations(q); + s->n_involutions = q; + s->involutions = dihedral_gen_involutions(q); + + s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations); + s->bond_with_zero_type = malloc(q * sizeof(q_t)); + + s->n_bond_types = q / 2 + 1; + + for (q_t i = 0; i < q / 2 + 1; i++) { + s->bond_with_zero_type[i] = i; + } + + for (q_t i = 1; i < (q + 1) / 2; i++) { + s->bond_with_zero_type[q - i] = i; + } + + + s->T = T; + s->J = (double *)malloc(s->n_bond_types * sizeof(double)); + + for (q_t i = 0; i < s->n_bond_types; i++) { + s->J[i] = cos(2 * M_PI * i / ((double)q)); + } + + + s->H = (double *)malloc(q * sizeof(double)); + for (q_t i = 0; i < q; i++) { + s->H[i] = H[i]; + } + + s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J); + s->H_probs = Jprobs_from_J(q, T, s->H); + + s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); + s->R = initialize_R(q); + + s->M = (v_t *)calloc(q, sizeof(v_t)); + s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t)); + s->B[0] = s->ne; // everyone starts in state 0, remember? + + return s; +} + + +state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double *H) { + state_finite_t *s = (state_finite_t *)calloc(1, sizeof(state_finite_t)); + + s->D = D; + s->L = L; + + { + graph_t *g = graph_create_square(D, L); + s->nv = g->nv; + s->ne = g->ne; + s->g = graph_add_ext(g); + graph_free(g); + } + + s->q = q; + + s->n_transformations = 2 * q; + s->transformations = dihedral_gen_transformations(q); + s->n_involutions = q; + s->involutions = dihedral_gen_involutions(q); + + s->transform_site_to_zero = transformation_bringing_to_zero(q, s->n_transformations, s->transformations); + s->bond_with_zero_type = malloc(q * sizeof(q_t)); + + s->n_bond_types = q / 2 + 1; + + for (q_t i = 0; i < q / 2 + 1; i++) { + s->bond_with_zero_type[i] = i; + } + + for (q_t i = 1; i < (q + 1) / 2; i++) { + s->bond_with_zero_type[(int)q - (int)i] = i; + } + + s->T = T; + s->J = (double *)malloc(s->n_bond_types * sizeof(double)); + + for (q_t i = 0; i < s->n_bond_types; i++) { + s->J[i] = -pow(i, 2); + } + + s->H = (double *)malloc(q * sizeof(double)); + for (q_t i = 0; i < q; i++) { + s->H[i] = H[i]; + } + + s->J_probs = Jprobs_from_J(s->n_bond_types, T, s->J); + s->H_probs = Jprobs_from_J(q, T, s->H); + + s->spins = (q_t *)calloc(s->nv, sizeof(q_t)); + s->R = initialize_R(q); + + s->M = (v_t *)calloc(q, sizeof(v_t)); + s->M[0] = s->nv; // everyone starts in state 0, remember? + s->B = (v_t *)calloc(s->n_bond_types, sizeof(v_t)); + s->B[0] = s->nv; // everyone starts in state 0, remember? + + return s; +} + +double state_finite_energy(state_finite_t *s) { + double E = 0; + + for (q_t i = 0; i < s->n_bond_types; i++) { + E += s->J[i] * s->B[i]; + } + for (q_t i = 0; i < s->q; i++) { + E += s->H[i] * s->M[i]; + } + + return -E; +} + +void state_finite_free(state_finite_t *s) { + graph_free(s->g); + free(s->J); + free(s->H); + free(s->J_probs); + free(s->H_probs); + free(s->spins); + free(s->R); + free(s->M); + free(s->B); + free(s->transformations); + free(s->involutions); + free(s->transform_site_to_zero); + free(s->bond_with_zero_type); + free(s); +} + diff --git a/lib/initial_finite.h b/lib/initial_finite.h new file mode 100644 index 0000000..542f923 --- /dev/null +++ b/lib/initial_finite.h @@ -0,0 +1,27 @@ + +#pragma once + +#include <stdbool.h> + +#include "types.h" +#include "dihedral.h" +#include "cluster_finite.h" + +static char *finite_model_t_strings[] = {"ISING", "POTTS", "CLOCK", "DGM"}; + +typedef enum { + ISING, + POTTS, + CLOCK, + DGM +} finite_model_t; + +state_finite_t *initial_finite_prepare_ising(D_t D, L_t L, double T, double *H); +state_finite_t *initial_finite_prepare_potts(D_t D, L_t L, q_t q, double T, double *H); +state_finite_t *initial_finite_prepare_clock(D_t D, L_t L, q_t q, double T, double *H); +state_finite_t *initial_finite_prepare_dgm(D_t D, L_t L, q_t q, double T, double *H); + +void state_finite_free(state_finite_t *s); + +double state_finite_energy(state_finite_t *s); + diff --git a/lib/measurement.c b/lib/measurement.c index ad824f6..b30cf6b 100644 --- a/lib/measurement.c +++ b/lib/measurement.c @@ -1,6 +1,15 @@ +#include "convex.h" #include "measurement.h" +meas_t *meas_initialize(count_t W) { + meas_t *m = (meas_t *)calloc(1, sizeof(meas_t)); + m->W = W; + m->xx = (double *)calloc(2 * W + 1, sizeof(double)); + + return m; +} + double add_to_avg(double mx, double x, count_t n) { return mx * (n / (n + 1.0)) + x / (n + 1.0); } @@ -10,24 +19,42 @@ void meas_update(meas_t *m, double x) { m->x = add_to_avg(m->x, x, n); m->x2 = add_to_avg(m->x2, pow(x, 2), n); + m->x4 = add_to_avg(m->x4, pow(x, 4), n); m->m2 = add_to_avg(m->m2, pow(x - m->x, 2), n); m->m4 = add_to_avg(m->m4, pow(x - m->x, 4), n); - /* - if (n > 1) { - double s2 = n / (n - 1.) * (m->x2 - pow(m->x, 2)); - m->dx = sqrt(s2 / n); - m->c = s2; - m->dc = sqrt((m->m4 - (n - 3.)/(n - 1.) * pow(m->m2, 2)) / n); + dll_t *tmp_window = m->x_window; + dll_t *pos_save; + count_t t = 0; + + while (tmp_window != NULL) { + m->xx[t] = add_to_avg(m->xx[t], x * (tmp_window->x), m->n - t - 1); + t++; + if (t == 2 * (m->W)) { + pos_save = tmp_window; + } + tmp_window = tmp_window->next; } - */ + + if (t == 2 * (m->W) + 1) { + if (2 * (m->W) + 1 == 1) { + free(m->x_window); + m->x_window = NULL; + } else { + free(pos_save->next); + pos_save->next = NULL; + } + } + + stack_push_d(&(m->x_window), x); (m->n)++; } double meas_dx(const meas_t *m) { - return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2))); + return 2 * get_tau(m) * Cxx(m, 0) / m->n; +// return sqrt(1. / (m->n - 1.) * (m->x2 - pow(m->x, 2))); } double meas_c(const meas_t *m) { @@ -74,3 +101,105 @@ double rho(const autocorr_t *o, count_t i) { return (o->OO[i] - pow(o->O, 2)) / (o->O2 - pow(o->O, 2)); } +double Cxx(const meas_t *m, count_t t) { + return m->xx[t] - pow(m->x, 2); +} + +double rho_m(const meas_t *m, count_t t) { + return Cxx(m, t) / Cxx(m, 0); +} + +double get_tau(const meas_t *m) { + double *Gammas = (double *)malloc((m->W + 1) * sizeof(double)); + + Gammas[0] = 1 + rho_m(m, 0); + for (uint64_t i = 0; i < m->W; i++) { + Gammas[1 + i] = rho_m(m, 2 * i + 1) + rho_m(m, 2 * i + 2); + } + + uint64_t n; + for (n = 0; n < m->W + 1; n++) { + if (Gammas[n] <= 0) { + break; + } + } + + double *conv_Gamma = get_convex_minorant(n, Gammas); + + double tau = - 0.5; + + for (uint64_t i = 0; i < n + 1; i++) { + tau += conv_Gamma[i]; + } + + free(Gammas); + + return tau; +} + +void print_meas(const meas_t *m, const char *sym, FILE *outfile) { + fprintf(outfile, "%s-><|n->%" PRIcount ",x->%.15f,x^2->%.15f,x^4->%.15f,xx->{", sym, m->n, m->x, m->x2, m->x4); + for (count_t i = 0; i < 2 * (m->W) + 1; i++) { + fprintf(outfile, "%.15f", m->xx[i]); + if (i < 2 * (m->W)) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "}|>"); +} + +void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile) { + fprintf(outfile, "%s-><|n->{", sym); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%" PRIcount, m[i]->n); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},x->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%.15f", m[i]->x); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},x^2->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%.15f", m[i]->x2); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},x^4->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "%.15f", m[i]->x4); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "},xx->{"); + for (q_t i = 0; i < q; i++) { + fprintf(outfile, "{"); + for (count_t j = 0; j < 2 * (m[i]->W) + 1; j++) { + fprintf(outfile, "%.15f", m[i]->xx[j]); + if (j < 2 * (m[i]->W)) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "}"); + if (i < q - 1) { + fprintf(outfile, ","); + } + } + fprintf(outfile, "}|>"); +} + +void free_meas(meas_t *m) { + free(m->xx); + while (m->x_window != NULL) { + stack_pop_d(&(m->x_window)); + } + free(m); +} + + diff --git a/lib/measurement.h b/lib/measurement.h index 46c034f..d9bd52e 100644 --- a/lib/measurement.h +++ b/lib/measurement.h @@ -3,16 +3,21 @@ #include <math.h> #include <stdlib.h> +#include <stdio.h> #include "types.h" #include "stack.h" typedef struct { - uint64_t n; + count_t n; double x; double x2; + double x4; double m2; double m4; + count_t W; + double *xx; + dll_t *x_window; } meas_t; typedef struct { @@ -24,11 +29,6 @@ typedef struct { double O2; } autocorr_t; -typedef struct { - void (*f)(state_finite_t *, void *); - void *data; -} measurement_t; - void meas_update(meas_t *m, double x); double meas_dx(const meas_t *m); @@ -41,3 +41,14 @@ void update_autocorr(autocorr_t *OO, double O); double rho(const autocorr_t *o, uint64_t i); +void print_meas(const meas_t *m, const char *sym, FILE *outfile); +void print_vec_meas(q_t q, const meas_t **m, const char *sym, FILE *outfile); + +void free_meas(meas_t *m); + +meas_t *meas_initialize(count_t W); + +double get_tau(const meas_t *m); + +double Cxx(const meas_t *m, count_t t); + diff --git a/lib/orthogonal.c b/lib/orthogonal.c deleted file mode 100644 index 87569ae..0000000 --- a/lib/orthogonal.c +++ /dev/null @@ -1,99 +0,0 @@ - -#include "orthogonal.h" - -void vector_replace(q_t n, double *v1, const double *v2) { - // writes vector v2 of length n to memory located at v1 - for (q_t i = 0; i < n; i++) { - v1[i] = v2[i]; - } -} - -void vector_add(q_t n, double *v1, const double *v2) { - // adds vector v2 of length n to vector v1 - for (q_t i = 0; i < n; i++) { - v1[i] += v2[i]; - } -} - -void vector_subtract(q_t n, double *v1, const double *v2) { - // subtracts vector v2 of length n from vector v1 - for (q_t i = 0; i < n; i++) { - v1[i] -= v2[i]; - } -} - -double *vector_rotate(q_t n, const double *rot, const double *vec) { - // multiplies n by n rotation matrix rot to vector vec - double *rot_vec = (double *)malloc(n * sizeof(double)); - - double prod = 0.0; - for (q_t i = 0; i < n; i++) { - prod += rot[i] * vec[i]; - } - - for (q_t i = 0; i < n; i++) { - rot_vec[i] = vec[i] - 2 * prod * rot[i]; - } - - return rot_vec; -} - -double *vector_rotate_inverse(q_t n, const double *rot, const double *vec) { - double *rot_vec = (double *)calloc(n, sizeof(double)); - - for (q_t i = 0; i < n; i++) { - for (q_t j = 0; j < n; j++) { - rot_vec[i] += rot[n * j + i] * vec[j]; - } - } - - return rot_vec; -} - -double vector_dot(q_t n, const double *v1, const double *v2) { - double dot = 0; - - for (q_t i = 0; i < n; i++) { - dot += v1[i] * v2[i]; - } - - return dot; -} - -double *orthogonal_rotate(q_t n, const double *r, const double *m) { - double *mul = (double *)calloc(n * n, sizeof(double)); - - for (q_t i = 0; i < n; i++) { - double akOki = 0; - - for (q_t k = 0; k < n; k++) { - akOki += r[k] * m[n * k + i]; - } - - for (q_t j = 0; j < n; j++) { - mul[n * j + i] = m[n * j + i] - 2 * akOki * r[j]; - } - } - - return mul; -} - -double *gen_rot(gsl_rng *r, q_t n) { - double *v = (double *)malloc(n * sizeof(double)); - - double v2 = 0; - - for (q_t i = 0; i < n; i++) { - v[i] = gsl_ran_ugaussian(r); - v2 += v[i] * v[i]; - } - - double magv = sqrt(v2); - - for (q_t i = 0; i < n; i++) { - v[i] /= magv; - } - - return v; -} - diff --git a/lib/orthogonal.h b/lib/orthogonal.h index 60d5f49..85f7a20 100644 --- a/lib/orthogonal.h +++ b/lib/orthogonal.h @@ -1,24 +1,163 @@ +#pragma once + #include <stdlib.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> -#include <math.h> +#include <cmath> #include "types.h" -void vector_replace(q_t n, double *v1, const double *v2); +template <q_t q, class T> +struct orthogonal_t { bool is_reflection; T *x; }; + +template <q_t q, class T> +void init(orthogonal_t <q, T> *ptr) { + ptr->is_reflection = false; + ptr->x = (T *)calloc(q * q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + ptr->x[q * i + i] = (T)1; + } +} + +template <q_t q, class T> +orthogonal_t <q, T> copy (orthogonal_t <q, T> m) { + orthogonal_t <q, T> m_copy; + m_copy.is_reflection = m.is_reflection; + + q_t size; + + if (m.is_reflection) { + size = q; + } else { + size = q * q; + } + + m_copy.x = (T *)calloc(size, sizeof(T)); + + for (q_t i = 0; i < size; i++) { + m_copy.x[i] = m.x[i]; + } + + return m_copy; +} + +template <q_t q, class T> +void free_spin (orthogonal_t <q, T> m) { + free(m.x); +} + +template <q_t q, class T> +vector_t <q, T> act (orthogonal_t <q, T> m, vector_t <q, T> v) { + vector_t <q, T> v_rot; + v_rot.x = (T *)calloc(q, sizeof(T)); + + if (m.is_reflection) { + double prod = 0; + for (q_t i = 0; i < q; i++) { + prod += v.x[i] * m.x[i]; + } + for (q_t i = 0; i < q; i++) { + v_rot.x[i] = v.x[i] - 2 * prod * m.x[i]; + } + } else { + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + v_rot.x[i] += m.x[q * i + j] * v.x[j]; + } + } + } + + return v_rot; +} + +template <q_t q, class T> +orthogonal_t <q, T> act (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) { + orthogonal_t <q, T> m2_rot; + + m2_rot.is_reflection = false; + m2_rot.x = (T *)calloc(q * q, sizeof(T)); + + if (m1.is_reflection) { + for (q_t i = 0; i < q; i++) { + double akOki = 0; + + for (q_t k = 0; k < q; k++) { + akOki += m1.x[k] * m2.x[q * k + i]; + } + + for (q_t j = 0; j < q; j++) { + m2_rot.x[q * j + i] = m2.x[q * j + i] - 2 * akOki * m1.x[j]; + } + } + } else { + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + for (q_t k = 0; k < q; k++) { + m2_rot.x[i * q + j] += m1.x[i * q + j] * m2.x[j * q + k]; + } + } + } + } + + return m2_rot; +} + +template <q_t q, class T> +vector_t <q, T> act_inverse (orthogonal_t <q, T> m, vector_t <q, T> v) { + if (m.is_reflection) { + return act(m, v); // reflections are their own inverse + } else { + vector_t <q, T> v_rot; + v_rot.x = (T *)calloc(q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + v_rot.x[i] += m.x[q * j + i] * v.x[j]; + } + } + + return v_rot; + } +} + +template <q_t q, class T> +orthogonal_t <q, T> act_inverse (orthogonal_t <q, T> m1, orthogonal_t <q, T> m2) { + if (m1.is_reflection) { + return act(m1, m2); // reflections are their own inverse + } else { + orthogonal_t <q, T> m2_rot; + m2_rot.x = (T *)calloc(q * q, sizeof(T)); -void vector_add(q_t n, double *v1, const double *v2); + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + for (q_t k = 0; k < q; k++) { + m2_rot.x[i * q + j] += m1.x[j * q + i] * m2.x[j * q + k]; + } + } + } -void vector_subtract(q_t n, double *v1, const double *v2); + return m2_rot; + } +} -double *vector_rotate(q_t n, const double *rot, const double *vec); +template <q_t q> +void generate_rotation (gsl_rng *r, orthogonal_t <q, double> *ptr) { + ptr->is_reflection = true; + ptr->x = (double *)calloc(q, sizeof(double)); -double *vector_rotate_inverse(q_t n, const double *rot, const double *vec); + double v2 = 0; -double vector_dot(q_t n, const double *v1, const double *v2); + for (q_t i = 0; i < q; i++) { + ptr->x[i] = gsl_ran_ugaussian(r); + v2 += ptr->x[i] * ptr->x[i]; + } -double *orthogonal_rotate(q_t n, const double *m1, const double *m2); + double mag_v = sqrt(v2); -double *gen_rot(gsl_rng *r, q_t n); + for (q_t i = 0; i < q; i++) { + ptr->x[i] /= mag_v; + } +} @@ -4,4 +4,13 @@ #include <assert.h> #include <stdio.h> +#ifdef __cplusplus +extern "C" { +#endif + unsigned long int rand_seed(); + +#ifdef __cplusplus +} +#endif + diff --git a/lib/stack.h b/lib/stack.h index a354ab5..8d25aff 100644 --- a/lib/stack.h +++ b/lib/stack.h @@ -8,6 +8,11 @@ #include "types.h" + +#ifdef __cplusplus +extern "C" { +#endif + typedef struct ll_tag { v_t x; struct ll_tag *next; @@ -24,3 +29,7 @@ void stack_push_d(dll_t **q, double x); v_t stack_pop(ll_t **q); double stack_pop_d(dll_t **q); +#ifdef __cplusplus +} +#endif + diff --git a/lib/symmetric.c b/lib/symmetric.c index 729b38c..4487538 100644 --- a/lib/symmetric.c +++ b/lib/symmetric.c @@ -25,3 +25,46 @@ q_t *symmetric_invert(q_t q, const q_t *g) { return g_inv; } +void swap(q_t *q1, q_t *q2) { + q_t temp = *q1; + *q1 = *q2; + *q2 = temp; +} + +R_t factorial(q_t q) { + if (q == 0) { + return 1; + } else { + return q * factorial(q - 1); + } +} + +void permute(q_t *a, q_t l, q_t r, R_t pos, q_t *transformations) { + if (l == r - 1) { + for (q_t i = 0; i < r; i++) { + transformations[r * pos + i] = a[i]; + } + } else { + for (q_t i = l; i < r; i++) { + swap((a+l), (a+i)); + permute(a, l+1, r, pos + (i - l) * factorial(r - l - 1), transformations); + swap((a+l), (a+i)); + } + } +} + +q_t *symmetric_gen_transformations(q_t q) { + q_t *transformations = (q_t *)malloc(q * factorial(q) * sizeof(q_t)); + q_t *tmp = (q_t *)malloc(q * sizeof(q_t)); + + for (q_t i = 0; i < q; i++) { + tmp[i] = i; + } + + permute(tmp, 0, q, 0, transformations); + + free(tmp); + + return transformations; +} + diff --git a/lib/symmetric.h b/lib/symmetric.h index 6e00f52..c71521d 100644 --- a/lib/symmetric.h +++ b/lib/symmetric.h @@ -11,3 +11,5 @@ q_t symmetric_act(const q_t *g, q_t s); q_t *symmetric_invert(q_t q, const q_t *g); +q_t *symmetric_gen_transformations(q_t q); + diff --git a/lib/vector.h b/lib/vector.h new file mode 100644 index 0000000..62ce59e --- /dev/null +++ b/lib/vector.h @@ -0,0 +1,85 @@ + +#pragma once + +#include <stdlib.h> +#include <cmath> + +#include "types.h" + +template <q_t q, class T> +struct vector_t { T *x; }; + +template <q_t q, class T> +void init(vector_t <q, T> *ptr) { + ptr->x = (T *)calloc(q, sizeof(T)); + + ptr->x[0] = (T)1; +} + +template <q_t q, class T> +vector_t <q, T> copy (vector_t <q, T> v) { + vector_t <q, T> v_copy; + + v_copy.x = (T *)calloc(q, sizeof(T)); + + for (q_t i = 0; i < q; i++) { + v_copy.x[i] = v.x[i]; + } + + return v_copy; +} + +template <q_t q, class T> +void add (vector_t <q, T> v1, vector_t <q, T> v2) { + for (q_t i = 0; i < q; i++) { + v1.x[i] += v2.x[i]; + } +} + +template <q_t q, class T> +void subtract (vector_t <q, T> v1, vector_t <q, T> v2) { + for (q_t i = 0; i < q; i++) { + v1.x[i] -= v2.x[i]; + } +} + +template <q_t q, class T> +vector_t <q, T> scalar_multiple(v_t a, vector_t <q, T> v) { + vector_t <q, T> multiple; + multiple.x = (T *)malloc(q * sizeof(T)); + for (q_t i = 0; i < q; i++) { + multiple.x[i] = a * v.x[i]; + } + + return multiple; +} + +template <q_t q, class T> +T dot(vector_t <q, T> v1, vector_t <q, T> v2) { + T prod = 0; + + for (q_t i = 0; i < q; i++) { + prod += v1.x[i] * v2.x[i]; + } + + return prod; +} + +template <q_t q, class T> +void free_spin (vector_t <q, T> v) { + free(v.x); +} + +template <q_t q, class T> +void write_magnetization(vector_t <q, T> M, FILE *outfile) { + fwrite(M.x, sizeof(double), q, outfile); +} + +template <q_t q> // save some space and don't write whole doubles +void write_magnetization(vector_t <q, double> M, FILE *outfile) { + for (q_t i = 0; i < q; i++) { + float M_tmp = (float)M.x[i]; + fwrite(&M_tmp, sizeof(float), 1, outfile); + } +} + diff --git a/lib/wolff.h b/lib/wolff.h new file mode 100644 index 0000000..caf413b --- /dev/null +++ b/lib/wolff.h @@ -0,0 +1,73 @@ + +#include <time.h> +#include <getopt.h> + +#include <cluster.h> + +template <q_t q, class T> +double H_vector(vector_t <q, T> v1, T *H) { + vector_t <q, T> H_vec; + H_vec.x = H; + return (double)(dot <q, T> (v1, H_vec)); +} + +template <class R_t, class X_t> +void wolff(count_t N, D_t D, L_t L, double T, std::function <double(X_t, X_t)> J, std::function <double(X_t)> H, unsigned long timestamp, bool silent) { + + state_t <R_t, X_t> s(D, L, T, J, H); + + // initialize random number generator + gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); + gsl_rng_set(r, rand_seed()); + + char *filename_M = (char *)malloc(255 * sizeof(char)); + char *filename_E = (char *)malloc(255 * sizeof(char)); + char *filename_S = (char *)malloc(255 * sizeof(char)); + + sprintf(filename_M, "wolff_%lu_M.dat", timestamp); + sprintf(filename_E, "wolff_%lu_E.dat", timestamp); + sprintf(filename_S, "wolff_%lu_S.dat", timestamp); + + FILE *outfile_M = fopen(filename_M, "wb"); + FILE *outfile_E = fopen(filename_E, "wb"); + FILE *outfile_S = fopen(filename_S, "wb"); + + free(filename_M); + free(filename_E); + free(filename_S); + + v_t cluster_size = 0; + + if (!silent) printf("\n"); + for (count_t steps = 0; steps < N; steps++) { + if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", steps, N, s.E, cluster_size); + + v_t v0 = gsl_rng_uniform_int(r, s.nv); + + R_t step; + generate_rotation(r, &step); + + cluster_size = flip_cluster <R_t, X_t> (&s, v0, step, r); + + free_spin(step); + + { + float smaller_E = (float)s.E; + fwrite(&smaller_E, sizeof(float), 1, outfile_E); + } + write_magnetization(s.M, outfile_M); + fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S); + + } + if (!silent) { + printf("\033[F\033[J"); + } + printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", N, N, s.E, cluster_size); + + fclose(outfile_M); + fclose(outfile_E); + fclose(outfile_S); + + gsl_rng_free(r); +} + diff --git a/lib/wolff_finite.c b/lib/wolff_finite.c deleted file mode 100644 index 64de9ba..0000000 --- a/lib/wolff_finite.c +++ /dev/null @@ -1,70 +0,0 @@ - -#include "cluster_finite.h" - -void wolff_finite(state_finite_t *s, count_t sweeps, count_t sweeps_per_measurement, count_t n_measurements, measurement_t *measurements) { - for (count_t i = 0; i < sweeps; i++) { - - count_t n_flips = 0; - - while (n_flips / h->nv < sweeps_per_measurement) { - v_t v0 = gsl_rng_uniform_int(r, h->nv); - R_t step; - - bool changed = false; - while (!changed) { - step = gsl_rng_uniform_int(r, s->n_transformations); - if v(symmetric_act(s->transformations + q * step, s->spins[v0]) != s->spins[v0]) { - changed = true; - } - } - - v_t tmp_flips = flip_cluster_finite(s, v0, step, r); - n_flips += tmp_flips; - - if (n_runs > 0) { - n_steps++; - meas_update(clust, tmp_flips); - - if (record_autocorrelation && n_steps % ac_skip == 0) { - update_autocorr(autocorr, s->E); - } - - } - - } - - for (q_t i = 0; i < q; i++) { - meas_update(M[i], s->M[i]); - } - meas_update(E, s->E); - - q_t n_at_max = 0; - q_t max_M_i = 0; - v_t max_M = 0; - - for (q_t i = 0; i < q; i++) { - if (s->M[i] > max_M) { - n_at_max = 1; - max_M_i = i; - max_M = s->M[i]; - } else if (s->M[i] == max_M) { - n_at_max++; - } - } - - if (record_distribution) { - mag_dist[s->M[0]]++; - } - - if (n_at_max == 1) { - for (q_t i = 0; i < q; i++) { - meas_update(sM[max_M_i][i], s->M[i]); - } - meas_update(sE[max_M_i], s->E); - freqs[max_M_i]++; - } - - diff = fabs(meas_dx(clust) / clust->x); - } -} - |