diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-10-19 13:23:23 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2018-10-19 13:23:23 -0400 |
commit | 3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065 (patch) | |
tree | 0400d589c68aaf38381591072e8faad09d3779f8 /examples | |
parent | 864e288c5cb51ae94ac09db8597714c605344c3d (diff) | |
download | c++-3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065.tar.gz c++-3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065.tar.bz2 c++-3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065.zip |
added more examples and cleaned up the model headers
Diffstat (limited to 'examples')
-rw-r--r-- | examples/CMakeLists.txt | 12 | ||||
-rw-r--r-- | examples/clock.cpp | 98 | ||||
-rw-r--r-- | examples/continuous_gaussian.cpp | 112 | ||||
-rw-r--r-- | examples/discrete_gaussian.cpp | 117 | ||||
-rw-r--r-- | examples/ising_standalone.cpp | 4 | ||||
-rw-r--r-- | examples/potts.cpp | 110 |
6 files changed, 451 insertions, 2 deletions
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index c64bb06..634c600 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -3,11 +3,21 @@ add_executable(ising ising.cpp) add_executable(ising_animation ising_animation.cpp) add_executable(ising_standalone ising_standalone.cpp) add_executable(xy On.cpp) +add_executable(potts_3 potts.cpp) +add_executable(clock_5 clock.cpp) +add_executable(discrete_gaussian discrete_gaussian.cpp) +add_executable(continuous_gaussian continuous_gaussian.cpp) -add_compile_definitions(xy WOLFF_N=2) +target_compile_definitions(xy PUBLIC WOLFF_N=2) +target_compile_definitions(potts_3 PUBLIC WOLFF_POTTSQ=3) +target_compile_definitions(clock_5 PUBLIC WOLFF_POTTSQ=5) target_link_libraries(ising wolff) target_link_libraries(ising_animation wolff GL GLU glut) target_link_libraries(ising_standalone wolff) target_link_libraries(xy wolff) +target_link_libraries(potts_3 wolff) +target_link_libraries(clock_5 wolff) +target_link_libraries(discrete_gaussian wolff) +target_link_libraries(continuous_gaussian wolff) diff --git a/examples/clock.cpp b/examples/clock.cpp new file mode 100644 index 0000000..4b0ffb8 --- /dev/null +++ b/examples/clock.cpp @@ -0,0 +1,98 @@ + +#include <getopt.h> +#include <iostream> +#include <chrono> + +#include "simple_measurement.hpp" + +#include <wolff/models/potts.hpp> +#include <wolff/models/dihedral.hpp> +#include <wolff/finite_states.hpp> + +#include <wolff.hpp> + +using namespace wolff; + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + vector_t<2, double> H; + H.fill(0.0); + q_t Hi = 0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H[Hi] = atof(optarg); + Hi++; + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function <double(const potts_t<WOLFF_POTTSQ>&, const potts_t<WOLFF_POTTSQ>&)> Z = [] (const potts_t<WOLFF_POTTSQ>& s1, const potts_t<WOLFF_POTTSQ>& s2) -> double { + return cos(2 * M_PI * (double)(s1.x + WOLFF_POTTSQ - s2.x) / (double)WOLFF_POTTSQ); + }; + + // define the spin-field coupling + std::function <double(const potts_t<WOLFF_POTTSQ>&)> B = [=] (const potts_t<WOLFF_POTTSQ>& s) -> double { + return H[0] * cos(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ) + H[1] * sin(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ); + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>> S(G, T, Z, B); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // define function that generates self-inverse rotations + std::function <dihedral_t<WOLFF_POTTSQ>(std::mt19937&, const system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>&, v_t)> gen_r = [] (std::mt19937& r, const system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>& S, v_t i0) -> dihedral_t<WOLFF_POTTSQ> { + dihedral_t<WOLFF_POTTSQ> rot; + rot.is_reflection = true; + std::uniform_int_distribution<q_t> dist(0, WOLFF_POTTSQ - 2); + q_t x = dist(r); + rot.x = (2 * S.s[i0].x + x + 1) % WOLFF_POTTSQ; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // run wolff N times + S.run_wolff(N, gen_r, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + diff --git a/examples/continuous_gaussian.cpp b/examples/continuous_gaussian.cpp new file mode 100644 index 0000000..ef08247 --- /dev/null +++ b/examples/continuous_gaussian.cpp @@ -0,0 +1,112 @@ + +#include <getopt.h> +#include <iostream> +#include <chrono> + +#include "simple_measurement.hpp" + +#include <wolff/models/height.hpp> +#include <wolff/models/dihedral_inf.hpp> + +#include <wolff.hpp> + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 0.8; + double H = 0.0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H = atof(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function <double(const height_t<double>&, const height_t<double>&)> Z = [] (const height_t<double>& s1, const height_t<double>& s2) -> double { + return - pow(s1.x - s2.x, 2); + }; + + // define the spin-field coupling + std::function <double(const height_t<double>&)> B = [&] (const height_t<double>& s) -> double { + return - H * pow(s.x, 2); + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system<dihedral_inf_t<double>, height_t<double>> S(G, T, Z, B); + + bool odd_run = false; + + std::function <dihedral_inf_t<double>(std::mt19937&, const system<dihedral_inf_t<double>, height_t<double>>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system<dihedral_inf_t<double>, height_t<double>>& S, v_t i0) -> dihedral_inf_t<double> { + dihedral_inf_t<double> rot; + rot.is_reflection = true; + + if (odd_run) { + std::uniform_int_distribution<v_t> dist(0, S.nv - 2); + v_t j = i0; + + //while (S.s[j].x == S.s[i0].x) { + v_t tmp = dist(r); + + if (tmp < i0) { + j = tmp; + } else { + j = tmp + 1; + } + //} + + rot.x = 2 * S.s[j].x; + } else { + std::normal_distribution<double> dist(0.0,1.0); + rot.x = 2 * S.s[i0].x + dist(r); + } + + odd_run = !odd_run; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // run wolff N times + S.run_wolff(N, gen_R_IH, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + diff --git a/examples/discrete_gaussian.cpp b/examples/discrete_gaussian.cpp new file mode 100644 index 0000000..75ea0f9 --- /dev/null +++ b/examples/discrete_gaussian.cpp @@ -0,0 +1,117 @@ + +#include <getopt.h> +#include <iostream> +#include <chrono> + +#include "simple_measurement.hpp" + +#include <wolff/models/height.hpp> +#include <wolff/models/dihedral_inf.hpp> + +#include <wolff.hpp> + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 0.8; + double H = 0.0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H = atof(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function <double(const height_t<int64_t>&, const height_t<int64_t>&)> Z = [] (const height_t<int64_t>& s1, const height_t<int64_t>& s2) -> double { + return - pow(s1.x - s2.x, 2); + }; + + // define the spin-field coupling + std::function <double(const height_t<int64_t>&)> B = [&] (const height_t<int64_t>& s) -> double { + return - H * pow(s.x, 2); + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system<dihedral_inf_t<int64_t>, height_t<int64_t>> S(G, T, Z, B); + + bool odd_run = false; + + std::function <dihedral_inf_t<int64_t>(std::mt19937&, const system<dihedral_inf_t<int64_t>, height_t<int64_t>>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system<dihedral_inf_t<int64_t>, height_t<int64_t>>& S, v_t i0) -> dihedral_inf_t<int64_t> { + dihedral_inf_t<int64_t> rot; + rot.is_reflection = true; + + if (odd_run) { + std::uniform_int_distribution<v_t> dist(0, S.nv - 2); + v_t j = i0; + + //while (S.s[j].x == S.s[i0].x) { + v_t tmp = dist(r); + + if (tmp < i0) { + j = tmp; + } else { + j = tmp + 1; + } + //} + + rot.x = 2 * S.s[j].x; + } else { + std::uniform_int_distribution<int> dist(0, 1); + int j = dist(r); + if (j) { + rot.x = 2 * S.s[i0].x + 1; + } else { + rot.x = 2 * S.s[i0].x - 1; + } + } + + odd_run = !odd_run; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // run wolff N times + S.run_wolff(N, gen_R_IH, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + diff --git a/examples/ising_standalone.cpp b/examples/ising_standalone.cpp index c958777..62b4089 100644 --- a/examples/ising_standalone.cpp +++ b/examples/ising_standalone.cpp @@ -23,8 +23,10 @@ class ising_t { }; class measure_clusters : public measurement<ising_t, ising_t> { - public: + private: v_t C; + + public: double Ctotal; measure_clusters() { diff --git a/examples/potts.cpp b/examples/potts.cpp new file mode 100644 index 0000000..84494e2 --- /dev/null +++ b/examples/potts.cpp @@ -0,0 +1,110 @@ + +#include <getopt.h> +#include <iostream> +#include <chrono> + +#include "simple_measurement.hpp" + +#include <wolff/models/potts.hpp> +#include <wolff/models/symmetric.hpp> +#include <wolff/finite_states.hpp> + +#include <wolff.hpp> + +using namespace wolff; + +int main(int argc, char *argv[]) { + + // set defaults + N_t N = (N_t)1e4; + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + vector_t<WOLFF_POTTSQ, double> H; + H.fill(0.0); + q_t Hi = 0; + + int opt; + + // take command line arguments + while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (N_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H[Hi] = atof(optarg); + Hi++; + break; + default: + exit(EXIT_FAILURE); + } + } + + // define the spin-spin coupling + std::function <double(const potts_t<WOLFF_POTTSQ>&, const potts_t<WOLFF_POTTSQ>&)> Z = [] (const potts_t<WOLFF_POTTSQ>& s1, const potts_t<WOLFF_POTTSQ>& s2) -> double { + if (s1.x == s2.x) { + return 1.0; + } else { + return 0.0; + } + }; + + // define the spin-field coupling + std::function <double(const potts_t<WOLFF_POTTSQ>&)> B = [=] (const potts_t<WOLFF_POTTSQ>& s) -> double { + return H[s.x]; + }; + + // initialize the lattice + graph G(D, L); + + // initialize the system + system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>> S(G, T, Z, B); + + // initialize the random number generator + auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count(); + std::mt19937 rng{seed}; + + // define function that generates self-inverse rotations + std::function <symmetric_t<WOLFF_POTTSQ>(std::mt19937&, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>&, v_t)> gen_r = [] (std::mt19937& r, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>& S, v_t i0) -> symmetric_t<WOLFF_POTTSQ> { + symmetric_t<WOLFF_POTTSQ> rot; + + std::uniform_int_distribution<q_t> dist(0, WOLFF_POTTSQ - 2); + q_t j = dist(r); + q_t swap_v; + if (j < S.s[i0].x) { + swap_v = j; + } else { + swap_v = j + 1; + } + + rot[S.s[i0].x] = swap_v; + rot[swap_v] = S.s[i0].x; + + return rot; + }; + + // initailze the measurement object + simple_measurement A(S); + + // run wolff N times + S.run_wolff(N, gen_r, A, rng); + + // print the result of our measurements + std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv + << ".\nThe average magnetization per site was " << A.avgM() / S.nv + << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n"; + + // exit + return 0; +} + |