summaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2018-10-19 13:23:23 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2018-10-19 13:23:23 -0400
commit3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065 (patch)
tree0400d589c68aaf38381591072e8faad09d3779f8 /examples
parent864e288c5cb51ae94ac09db8597714c605344c3d (diff)
downloadc++-3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065.tar.gz
c++-3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065.tar.bz2
c++-3b8e7ea25f0c23ca596c1c4e3e4f71d12c5fc065.zip
added more examples and cleaned up the model headers
Diffstat (limited to 'examples')
-rw-r--r--examples/CMakeLists.txt12
-rw-r--r--examples/clock.cpp98
-rw-r--r--examples/continuous_gaussian.cpp112
-rw-r--r--examples/discrete_gaussian.cpp117
-rw-r--r--examples/ising_standalone.cpp4
-rw-r--r--examples/potts.cpp110
6 files changed, 451 insertions, 2 deletions
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index c64bb06..634c600 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -3,11 +3,21 @@ add_executable(ising ising.cpp)
add_executable(ising_animation ising_animation.cpp)
add_executable(ising_standalone ising_standalone.cpp)
add_executable(xy On.cpp)
+add_executable(potts_3 potts.cpp)
+add_executable(clock_5 clock.cpp)
+add_executable(discrete_gaussian discrete_gaussian.cpp)
+add_executable(continuous_gaussian continuous_gaussian.cpp)
-add_compile_definitions(xy WOLFF_N=2)
+target_compile_definitions(xy PUBLIC WOLFF_N=2)
+target_compile_definitions(potts_3 PUBLIC WOLFF_POTTSQ=3)
+target_compile_definitions(clock_5 PUBLIC WOLFF_POTTSQ=5)
target_link_libraries(ising wolff)
target_link_libraries(ising_animation wolff GL GLU glut)
target_link_libraries(ising_standalone wolff)
target_link_libraries(xy wolff)
+target_link_libraries(potts_3 wolff)
+target_link_libraries(clock_5 wolff)
+target_link_libraries(discrete_gaussian wolff)
+target_link_libraries(continuous_gaussian wolff)
diff --git a/examples/clock.cpp b/examples/clock.cpp
new file mode 100644
index 0000000..4b0ffb8
--- /dev/null
+++ b/examples/clock.cpp
@@ -0,0 +1,98 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/potts.hpp>
+#include <wolff/models/dihedral.hpp>
+#include <wolff/finite_states.hpp>
+
+#include <wolff.hpp>
+
+using namespace wolff;
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ vector_t<2, double> H;
+ H.fill(0.0);
+ q_t Hi = 0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H[Hi] = atof(optarg);
+ Hi++;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const potts_t<WOLFF_POTTSQ>&, const potts_t<WOLFF_POTTSQ>&)> Z = [] (const potts_t<WOLFF_POTTSQ>& s1, const potts_t<WOLFF_POTTSQ>& s2) -> double {
+ return cos(2 * M_PI * (double)(s1.x + WOLFF_POTTSQ - s2.x) / (double)WOLFF_POTTSQ);
+ };
+
+ // define the spin-field coupling
+ std::function <double(const potts_t<WOLFF_POTTSQ>&)> B = [=] (const potts_t<WOLFF_POTTSQ>& s) -> double {
+ return H[0] * cos(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ) + H[1] * sin(2 * M_PI * (double)s.x / (double)WOLFF_POTTSQ);
+ };
+
+ // initialize the lattice
+ graph G(D, L);
+
+ // initialize the system
+ system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>> S(G, T, Z, B);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // define function that generates self-inverse rotations
+ std::function <dihedral_t<WOLFF_POTTSQ>(std::mt19937&, const system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>&, v_t)> gen_r = [] (std::mt19937& r, const system<dihedral_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>& S, v_t i0) -> dihedral_t<WOLFF_POTTSQ> {
+ dihedral_t<WOLFF_POTTSQ> rot;
+ rot.is_reflection = true;
+ std::uniform_int_distribution<q_t> dist(0, WOLFF_POTTSQ - 2);
+ q_t x = dist(r);
+ rot.x = (2 * S.s[i0].x + x + 1) % WOLFF_POTTSQ;
+
+ return rot;
+ };
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // run wolff N times
+ S.run_wolff(N, gen_r, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+
diff --git a/examples/continuous_gaussian.cpp b/examples/continuous_gaussian.cpp
new file mode 100644
index 0000000..ef08247
--- /dev/null
+++ b/examples/continuous_gaussian.cpp
@@ -0,0 +1,112 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/height.hpp>
+#include <wolff/models/dihedral_inf.hpp>
+
+#include <wolff.hpp>
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 0.8;
+ double H = 0.0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H = atof(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const height_t<double>&, const height_t<double>&)> Z = [] (const height_t<double>& s1, const height_t<double>& s2) -> double {
+ return - pow(s1.x - s2.x, 2);
+ };
+
+ // define the spin-field coupling
+ std::function <double(const height_t<double>&)> B = [&] (const height_t<double>& s) -> double {
+ return - H * pow(s.x, 2);
+ };
+
+ // initialize the lattice
+ graph G(D, L);
+
+ // initialize the system
+ system<dihedral_inf_t<double>, height_t<double>> S(G, T, Z, B);
+
+ bool odd_run = false;
+
+ std::function <dihedral_inf_t<double>(std::mt19937&, const system<dihedral_inf_t<double>, height_t<double>>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system<dihedral_inf_t<double>, height_t<double>>& S, v_t i0) -> dihedral_inf_t<double> {
+ dihedral_inf_t<double> rot;
+ rot.is_reflection = true;
+
+ if (odd_run) {
+ std::uniform_int_distribution<v_t> dist(0, S.nv - 2);
+ v_t j = i0;
+
+ //while (S.s[j].x == S.s[i0].x) {
+ v_t tmp = dist(r);
+
+ if (tmp < i0) {
+ j = tmp;
+ } else {
+ j = tmp + 1;
+ }
+ //}
+
+ rot.x = 2 * S.s[j].x;
+ } else {
+ std::normal_distribution<double> dist(0.0,1.0);
+ rot.x = 2 * S.s[i0].x + dist(r);
+ }
+
+ odd_run = !odd_run;
+
+ return rot;
+ };
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // run wolff N times
+ S.run_wolff(N, gen_R_IH, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+
diff --git a/examples/discrete_gaussian.cpp b/examples/discrete_gaussian.cpp
new file mode 100644
index 0000000..75ea0f9
--- /dev/null
+++ b/examples/discrete_gaussian.cpp
@@ -0,0 +1,117 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/height.hpp>
+#include <wolff/models/dihedral_inf.hpp>
+
+#include <wolff.hpp>
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 0.8;
+ double H = 0.0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H = atof(optarg);
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const height_t<int64_t>&, const height_t<int64_t>&)> Z = [] (const height_t<int64_t>& s1, const height_t<int64_t>& s2) -> double {
+ return - pow(s1.x - s2.x, 2);
+ };
+
+ // define the spin-field coupling
+ std::function <double(const height_t<int64_t>&)> B = [&] (const height_t<int64_t>& s) -> double {
+ return - H * pow(s.x, 2);
+ };
+
+ // initialize the lattice
+ graph G(D, L);
+
+ // initialize the system
+ system<dihedral_inf_t<int64_t>, height_t<int64_t>> S(G, T, Z, B);
+
+ bool odd_run = false;
+
+ std::function <dihedral_inf_t<int64_t>(std::mt19937&, const system<dihedral_inf_t<int64_t>, height_t<int64_t>>&, v_t)> gen_R_IH = [&](std::mt19937& r, const system<dihedral_inf_t<int64_t>, height_t<int64_t>>& S, v_t i0) -> dihedral_inf_t<int64_t> {
+ dihedral_inf_t<int64_t> rot;
+ rot.is_reflection = true;
+
+ if (odd_run) {
+ std::uniform_int_distribution<v_t> dist(0, S.nv - 2);
+ v_t j = i0;
+
+ //while (S.s[j].x == S.s[i0].x) {
+ v_t tmp = dist(r);
+
+ if (tmp < i0) {
+ j = tmp;
+ } else {
+ j = tmp + 1;
+ }
+ //}
+
+ rot.x = 2 * S.s[j].x;
+ } else {
+ std::uniform_int_distribution<int> dist(0, 1);
+ int j = dist(r);
+ if (j) {
+ rot.x = 2 * S.s[i0].x + 1;
+ } else {
+ rot.x = 2 * S.s[i0].x - 1;
+ }
+ }
+
+ odd_run = !odd_run;
+
+ return rot;
+ };
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // run wolff N times
+ S.run_wolff(N, gen_R_IH, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+
diff --git a/examples/ising_standalone.cpp b/examples/ising_standalone.cpp
index c958777..62b4089 100644
--- a/examples/ising_standalone.cpp
+++ b/examples/ising_standalone.cpp
@@ -23,8 +23,10 @@ class ising_t {
};
class measure_clusters : public measurement<ising_t, ising_t> {
- public:
+ private:
v_t C;
+
+ public:
double Ctotal;
measure_clusters() {
diff --git a/examples/potts.cpp b/examples/potts.cpp
new file mode 100644
index 0000000..84494e2
--- /dev/null
+++ b/examples/potts.cpp
@@ -0,0 +1,110 @@
+
+#include <getopt.h>
+#include <iostream>
+#include <chrono>
+
+#include "simple_measurement.hpp"
+
+#include <wolff/models/potts.hpp>
+#include <wolff/models/symmetric.hpp>
+#include <wolff/finite_states.hpp>
+
+#include <wolff.hpp>
+
+using namespace wolff;
+
+int main(int argc, char *argv[]) {
+
+ // set defaults
+ N_t N = (N_t)1e4;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ vector_t<WOLFF_POTTSQ, double> H;
+ H.fill(0.0);
+ q_t Hi = 0;
+
+ int opt;
+
+ // take command line arguments
+ while ((opt = getopt(argc, argv, "N:D:L:T:H:")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (N_t)atof(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'H': // external field
+ H[Hi] = atof(optarg);
+ Hi++;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ // define the spin-spin coupling
+ std::function <double(const potts_t<WOLFF_POTTSQ>&, const potts_t<WOLFF_POTTSQ>&)> Z = [] (const potts_t<WOLFF_POTTSQ>& s1, const potts_t<WOLFF_POTTSQ>& s2) -> double {
+ if (s1.x == s2.x) {
+ return 1.0;
+ } else {
+ return 0.0;
+ }
+ };
+
+ // define the spin-field coupling
+ std::function <double(const potts_t<WOLFF_POTTSQ>&)> B = [=] (const potts_t<WOLFF_POTTSQ>& s) -> double {
+ return H[s.x];
+ };
+
+ // initialize the lattice
+ graph G(D, L);
+
+ // initialize the system
+ system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>> S(G, T, Z, B);
+
+ // initialize the random number generator
+ auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
+ std::mt19937 rng{seed};
+
+ // define function that generates self-inverse rotations
+ std::function <symmetric_t<WOLFF_POTTSQ>(std::mt19937&, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>&, v_t)> gen_r = [] (std::mt19937& r, const system<symmetric_t<WOLFF_POTTSQ>, potts_t<WOLFF_POTTSQ>>& S, v_t i0) -> symmetric_t<WOLFF_POTTSQ> {
+ symmetric_t<WOLFF_POTTSQ> rot;
+
+ std::uniform_int_distribution<q_t> dist(0, WOLFF_POTTSQ - 2);
+ q_t j = dist(r);
+ q_t swap_v;
+ if (j < S.s[i0].x) {
+ swap_v = j;
+ } else {
+ swap_v = j + 1;
+ }
+
+ rot[S.s[i0].x] = swap_v;
+ rot[swap_v] = S.s[i0].x;
+
+ return rot;
+ };
+
+ // initailze the measurement object
+ simple_measurement A(S);
+
+ // run wolff N times
+ S.run_wolff(N, gen_r, A, rng);
+
+ // print the result of our measurements
+ std::cout << "Wolff complete!\nThe average energy per site was " << A.avgE() / S.nv
+ << ".\nThe average magnetization per site was " << A.avgM() / S.nv
+ << ".\nThe average cluster size per site was " << A.avgC() / S.nv << ".\n";
+
+ // exit
+ return 0;
+}
+